4 FCC §2.1091, §15.407(f) & IC RSS-102 - RF Exposure

4.1 Applicable Standard

According to FCC §15.407(f) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
Limits for General Population/Uncontrolled Exposure						
0.3-1.34	614	1.63	* (100)	30		
1.34-30	824/f	2.19/f	* (180/f ²)	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz

According to IC RSS-102 Issue 5 section 4, RF limits used for general public will be applied to the EUT.

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Reference Period (minutes)
$0.003 - 10^{21}$	83	90	-	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	$87/f^{0.5}$	14	_	6**
10-20	27.46	0.0728	2	6
20-48	$58.07/f^{0.25}$	$0.1540/f^{0.25}$	$8.944/f^{0.5}$	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	$616000/f^{1.2}$
150000-300000	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/ f ^{1.2}

Note: *f* is frequency in MHz.

^{* =} Plane-wave equivalent power density

^{*}Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

4.3 MPE Results

Maximum peak output power at antenna input terminal (dBm): 10.92 12.36 Maximum peak output power at antenna input terminal (mW): Prediction distance (cm): 20 Prediction frequency (MHz): 5210 Maximum Antenna Gain, typical (dBi): 0.3 Maximum Antenna Gain (numeric): 1.07 Power density of prediction frequency at 20.0 cm (mW/cm²): 0.0026 Power density of prediction frequency at 20.0 cm (W/m²): 0.026 1.0 FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 9.08 IC MPE limit for uncontrolled exposure at prediction frequency (W/m^2) :

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is $0.0026 \text{ mW/cm}^2 (0.026 \text{ W/m}^2)$. Limit is $1.0 \text{ mW/cm}^2 (9.08 \text{ W/m}^2)$.