

Date:	ESPOO 31.01.2007	Page: <u>1 (29)</u>
		Appendices
Number: No. 1 / 1	80106R1	Date of handing in: 23.01.2007 Measured by:
		Timo Hietala, Test Engineer
		Reviewed by: Jyrki Leino, Manager

SORT OF EQUIPMENT: WCDMA Base Station RF module

MARKETING NAME: Nokia Flexi BTS RF module 1.7GHz/2.1GHz

TYPE: **FRIA**

MANUFACTURER: **Nokia Corporation**

FCC ID: **UAFFRIA-01**

CLIENT: **Nokia Corporation**

P.O.Box 319, FI-90651 OULU, FINLAND ADDRESS:

TELEPHONE: +358 7180 08000

TEST LABORATORY: NET/IMN Oulu

FCC REG. NO. 411251

REFERENCE: FCC Part 27, SUBPART L

SUMMARY:

In regard to the performed tests the equipment under test fulfils the requirements defined in the test specifications, see page 4 for details

The test results are valid for the tested unit only. Without a written permission of Nemko Oy it is allowed to copy this report as a whole, but not partially.

FCC ID: UAFFRIA-01 Type: FRIA Test report No.: 80106R1

Contents

1.	EUT and Accessory Information	3
	1.1 EUT description	3
	1.2 EUT and accessories	3
Sı	mmary of Test Data	4
2.	General Equipment Specification	5
3.	RF Power Output	7
4.	Spurious Emissions at Antenna Terminals	10
5.	Field Strength of Spurious	21
6.	List of test equipment	24
7.	Photographs of Test Setup	25
8.	ANNEX A, TEST DETAILS	26
9.	ANNEX B, TEST DIAGRAMS	28

1.2

FCC ID: UAFFRIA-01 Type: FRIA

Test report No.: 80106R1

1. EUT and Accessory Information

1.1 EUT description

The EUT is a WCDMA Base station RF module 1.7GHz/2.1GHz with 2 power amplifiers.

EUT and ac	cessories				
Manufacture	er:	Nokia			
Model:		FRIA,	s/n: L60649087	79	
Other Units:		•	module, FSMB ission module, F	ГΙΑ	
General:		All mea	asurements are tr	aceable to na	ational standards.
	were conducted with FCC Part 27,			uipment for t	he purpose of demonstrating
	New Submission			\boxtimes	Production Unit
\boxtimes	Class I Permissiv	e Chang	e		Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. **NONE**

Nemko Oy authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Oy accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report applies only to the items tested.

Test report No.: 80106R1

Summary of Test Data

NAME OF TEST	SECTION IN CFR 47	SPEC.	RESULT
RF Power Output	27.50 (d), 2.1046	100 W	Complies
99% Occupied Bandwidth	2.1049, (i)	Unspecified	Not Tested
Spurious Emissions at Antenna Terminals	27.53(g), 2.1051	- 13 dBm	Complies
Field Strength of Spurious Emissions	27.53(g), 2.1053	- 13 dBm E.I.R.P	Complies
Frequency stability	27.54, 2.1055	± 0.05 ppm ¹⁾	Not Tested

Note 1) Limit is the manufacturer's specification

Measurement uncertainty is expressed to a confidence level of 95%.

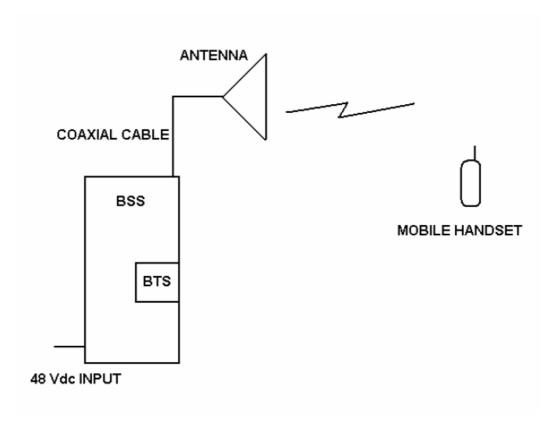
Test report No.: 80106R1

2. General Equipment Specification

Supply Voltage Input:	48 Vdc		
Frequency Bands: TX:	Block A: 2110 – 21	20 MHz	
	Block B: 2120 – 21	30 MHz	
	Block C: 2130 – 21	35 MHz	
	Block D: 2135 – 21	40 MHz	
	Block E: 2140 – 21	55 MHz	
	Block A : 1710 – 17	20 MHz	
Frequency Bands: RX:			
	Block B : 1720 – 17		
	Block C : 1730 – 17	'35 MHz	
	Block D : 1735 – 17	'40 MHz	
	Block E : 1740 – 17	55 MHz	
Type of Modulation and Designator:	W-CDMA (5M00F9W)	GSM (200KG7W)	NADC 40K0DXW)
Maximum No. of Carriers:	2		
Output Impedance:	50 ohms.		
RF Output:	Per channel: 40	W or 2x20W.	
Band Selection:	Software	Duplexer	Fullband

Test report No.: 80106R1

System Description


The BTS performs the radio function of the Base Station System (BSS), and is connected to the Radio Network Controller (RNC) via the Iub interface, and to Mobile Stations (MS) via the Air interface (Antenna). The RNC is further connected to Serving GPRS Support Node (SGSN) or it can be connected to the Mobile Switching Centre (MSC) via IWU (Inter Working Unit).

Setup for testing single carrier: The transmitter was set up according to 3GPP TS 25.141 Test Model 1 and 5 for all tests. Test model 1: 64 DPCHs at 30 ksps (SF=128) distributed randomly across the code space, at random power levels and random timing offsets, were defined to simulate a realistic operating scenario which may have high PAR (Peak-to-Average Ratio). Test model 5: 30 DPCHs at 30 ksps (SF=128) together with 8 HS-PDSCHs at 240 ksps (SF=16). Each DPCH is modulated by QPSK and each HS-PDCH is modulated by 16QAM modulation.

Setup for testing multi carrier:

The transmitter was set up according to 3GPP TS 25.141 Test Model 1 and 5 for all tests. Test model 1: 32 DPCHs at 30 ksps (SF=128) distributed randomly across the code space, at random power levels and random timing offsets, were defined to simulate a realistic operating scenario which may have high PAR (Peak-to-Average Ratio). Test model 5: 14 DPCHs at 30 ksps (SF=128) together with 4 HS-PDSCHs at 240 ksps (SF=16). Each DPCH is modulated by QPSK and each HS-PDCH is modulated by 16QAM modulation.

System Diagram

Test report No.: 80106R1

3. RF Power Output

NAME OF TEST: RF Power Output PARA.NO.: 27.50 (d) & 2.1046

TESTED BY: Timo Hietala DATE: 23/01/2007

Test Results: Complies.

Measurement Data: Refer to attached plot.

Multi carrier

Modulation Type	Frequency	Measured Output		
	(MHz)	Power/carr.	Power/carr.	Total power
		(dBm)	(W)	(dBm) / (W)
QPSK	2112.6 / 2117.6	42.35 / 42.52	17.18 / 17.86	45.45 / 35.04
QPSK	2132.5 / 2137.5	42.61 / 42.59	18.24 / 18.16	45.61 / 36.40
QPSK	2147.4 / 2152.4	42.46 / 42.61	17.62 / 18.24	45.55 / 35.86
16QAM	2112.6 / 2117.6	42.58 / 42.87	18.11 / 19.36	45.74 / 37.47
16QAM	2132.5 / 2137.5	42.61 / 42.58	18.24 / 18.11	45.61 / 36.35
16QAM	2147.4 / 2152.4	42.59 / 42.72	18.16 / 18.71	45.67 / 36.87

Equipment used: 1, 2, 4, 7, 8, 9.

Measurement

Uncertainty: $\pm 0.7 \text{ dB}$.

Temperature: 23 °C.

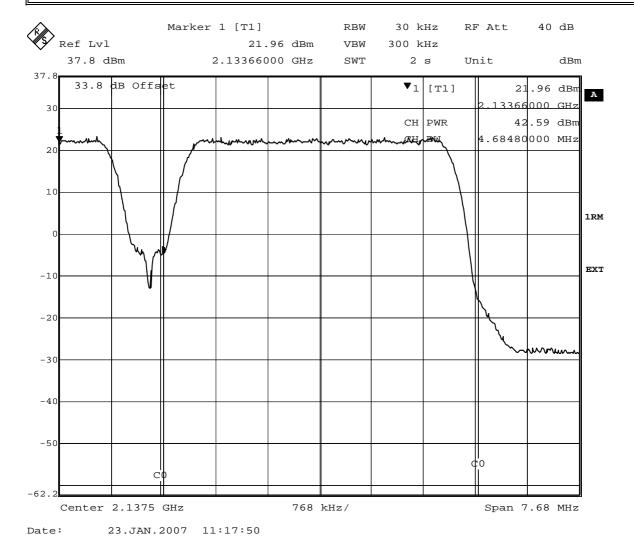
Relative

Humidity: 10 %.

Test report No.: 80106R1

Test Data – RF Power Output

ata Plot				RF PC	WER OU	TPUT				
e <u>1</u> of <u>2</u>									Complete	x
No.:	80105			Da	te: 23/01/2007				liminary:	
cification:	PT27		Te	mperature (°C): 23					
ted By:	Timo Hietala			e Humidity (%						
.T.:	WCDMA TRA	ANSMITTER								
figuration:	TX FULL PO	WER CENTE	ER CHANNE	L, multi carrie	r					
ple Number:	1									
ation:	NET/IMN Ou	ulu			RBW:	Refer to p	olots	Meas	urement	
ector type:	Rms	_			VBW:	Refer to p	olots	Г	Distance: N/	A
t Equipme	nt Used									
enna:				Dire	ectional Coupler:					
Amp:					Cable #1:					
er:					Cable #2:					
eiver:	1				Cable #3:					
nuator #1:	7				Cable #4:					
nuator #2:					Mixer:					
itional equipn		. 0.7 "	D.							
surement Un	certainty:	± 0.7 dl								
>		Marker	1 [T1]		RBW	30 kHz		Att	40 dB	
Ref Lv	1		-28	.52 dBm	VBW 3	300 kHz				
37.8	dBm		2.12866	000 GHz	SWT	2 s	Ur	nit	dBm	ı
. 8	1= 0.5.5	Π.								1
33.8	dB Offs	et				▼ 1 [7	[1]	-28	.52 dBm	A
30								2.12866	000 GHz	
						CH PW	IR.	42	.61 dBm	
		A-A-A		d	~~~~~	CH BIN	I	4.68480	OPO MHZ	
20		<i>J</i> * * * * * * * * * * * * * * * * * * *		7	4	V	/		J	
							\	/	1	
							\	/		
10		 / 		 			_			
		11 <i>1</i>					١ ١	1 1		
		/					\			1RM
0							$\overline{}$			1RM
0								da ANN		1RM
0								u mu		
0										1RM EXT
								L m		
	,,,							La Juan		
								Va. Vui		
10								VIE WIND		
20	A A A A A A A A A A A A A A A A A A A							L MIN		
10	A CONTRACTOR OF THE STATE OF TH						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
20	A CONTRACTOR OF THE STATE OF TH						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
20	A CONTRACTOR OF THE STATE OF TH						4			
20	A CONTRACTOR OF THE STATE OF TH						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
20	A CONTRACTOR OF THE STATE OF TH						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
20	A CONTRACTOR OF THE STATE OF TH									
20	A CONTRACTOR OF THE STATE OF TH									
20	A CONTRACTOR OF THE STATE OF TH									
20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
20	· C									


Notes: Carrier 1 QPSK 2132.5 MHz

Test report No.: 80106R1

Nemko Oy, Finland

Data Plot		RF POW	ER OUTPU
Page 2 of <u>2</u>			
Job No.:	80105	Date:	23/01/2007
Specification:	PT27	Temperature (°C):	23
Tested By:	Timo Hietala	Relative Humidity (%):	10
E.U.T.:	WCDMA TRANSMITTER		_
Configuration:	TX FULL POWER CENTER	CHANNEL, multi carrier	

Notes: Carrier 2 QPSK 2137.5 MHz

Test report No.: 80106R1

4. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA.NO.: 27.53(g), 2.1051

TESTED BY: Timo Hietala DATE: 23/01/2007

Test Results: Complies.

Test Data: See attached plots.

Multi carrier

Frequency		Spurious Emission
(MHz)	Modulation	(dBm) rms det.
All	QPSK	More than 20 dB below limit -13 dBm
All	16QAM	More than 20 dB below limit -13 dBm

Lower Band Edge Multi carrier

Frequency		Peak Emission
(MHz)	Modulation	Level (dBm) rms det.
2110.000	QPSK	-19.70
2110.000	16QAM	-20.99

Upper Band Edge Multi carrier

Frequency		Peak Emission
(MHz)	Modulation	Level (dBm) rms det.
2155.020	QPSK	-21.68
2155.020	16QAM	-21.37

Equipment used: 1, 2, 3, 4, 7, 8, 9, 12, 13, 14

Measurement

Uncertainty: $\pm 0.7 \text{ dB}$.

Temperature: 23 °C.

Relative

Humidity: 10 %.

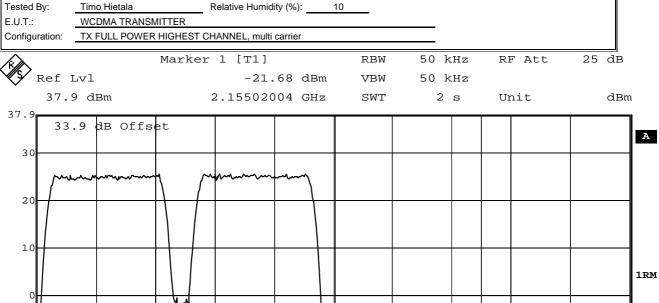
Test report No.: 80106R1

Test Data – Spurious Emissions

ata Plot		<u>S</u>	<u>puri</u>	ous Em	issions	at Antenr	na Terr	<u>ninals</u>			
ge <u>1</u> of <u>10</u>									Co	mplete <u>x</u>	
No.:	80105					23/01/2007	_		Prelim	ninary:	
ecification:	PT27			Tem	perature (°C):	23	_				
sted By:	Timo Hietala			Relative	Humidity (%):	10	_				
J.T.:	WCDMA TRA	NSMIT	TER								
nfiguration:	TX FULL PO	WER LC)WES	T CHANNEL,	multi carrier						
mple Number:	1					_					
cation:	NET/IMN Ou	lu				RBW:	Refer to	plots	Measure	ement	
tector type:	Rms	_				VBW:	Refer to	plots	Dist	tance: N/A	'
st Equipme	nt Used										
tenna:					Direc	ctional Coupler:					
e-Amp:	·					Cable #1:					
er:						Cable #2:					
ceiver:	1					Cable #3:					
enuator #1:	7					Cable #4:					
enuator #2:						Mixer:		<u>-</u>			
ditional equipn	nent used:										
asurement Un	ncertainty:	± 0).7 dB	_							
<u> </u>		Mar	ker	1 [T1]		RBW	50 k	Hz R	RF Att	25 dB	
Ref L	₇]				.70 dBm	VBW	50 k				
										_	
37.8	dBm			2.110000	000 GHz	SWT	2	s U	Jnit	dBı	n
	dB Offs	et									A
30											_
						man		س /	/mmh	my	SG
20								Λ		\	
20								\			
								\			
1.0								\ \ \		1	
10								1			
								1 1			1RI
_								\			110
0								\/			1
								V			
								V			EX
10											H
—D1 −:	13 dBm)					4
						Y I					
-20			-								1
					1						
					1 /						
- 3 0					~						-
				\	~~~~						
	₩₩₩	₩ ~	~~	LW-							
_~~~											-
1											
1											
1											
-40											
-40 -50											_
40		F	2		F						

23.JAN.2007 09:41:38

Notes: Tx 2112.6 and 2117.6 MHz, QPSK, LOWER BANDEDGE and 3rd order IM


FCC ID: UAFFRIA-01

Type: FRIA Test report No.: 80106R1

Test Data – Spurious Emissions

Nemko Oy, Finland

Data Plot	<u> </u>	Spurious Emissions a	t Antenn
Page 2 of <u>10</u>			
Job No.:	80105	Date:	23/01/2007
Specification:	PT27	Temperature (°C):	23
Tested By:	Timo Hietala	Relative Humidity (%):	10
E.U.T.:	WCDMA TRANS	SMITTER	
Configuration:	TX FULL POWE	R HIGHEST CHANNEL, multi carrier	

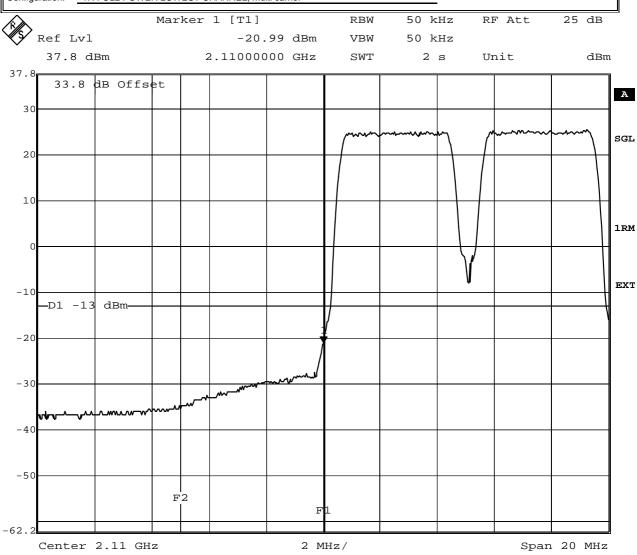
2 MHz/

Date: 23.JAN.2007 09:32:29

Center 2.155 GHz

Notes: Tx 2147.2 and 2152.4 MHz, QPSK, UPPER BANDEDGE and 3rd order IM

Span 20 MHz



Test report No.: 80106R1

Test Data - Spurious Emissions

Nemko Oy, Finland

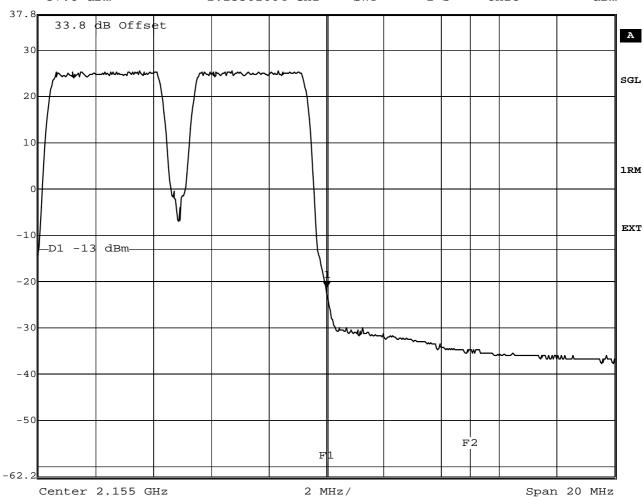
Data Plot	•	Spurious Emissions a	t Antenn
Page 3 of <u>10</u>	-		
Job No.:	80105	Date:	23/01/2007
Specification:	PT27	Temperature (°C):	23
Tested By:	Timo Hietala	Relative Humidity (%):	10
E.U.T.:	WCDMA TRANS	MITTER	
Configuration:	TX FULL POWER	R LOWEST CHANNEL, multi carrier	

Date: 23.JAN.2007 10:45:55

Notes: Tx 2112.6 and 2117.6 MHz, 16QAM, LOWER BANDEDGE and 3rd order IM

Test report No.: 80106R1

Test Data - Spurious Emissions


Nemko Oy, Finland

Spurious Emissions at Antenna Terminals Data Plot Band edge and 3rd IM Page 4 of <u>10</u> Job No.: 80105 Specification: PT27 Temperature (°C): Tested By: Timo Hietala Relative Humidity (%): WCDMA TRANSMITTER E.U.T.: TX FULL POWER highest CHANNEL, multi carrier Configuration:

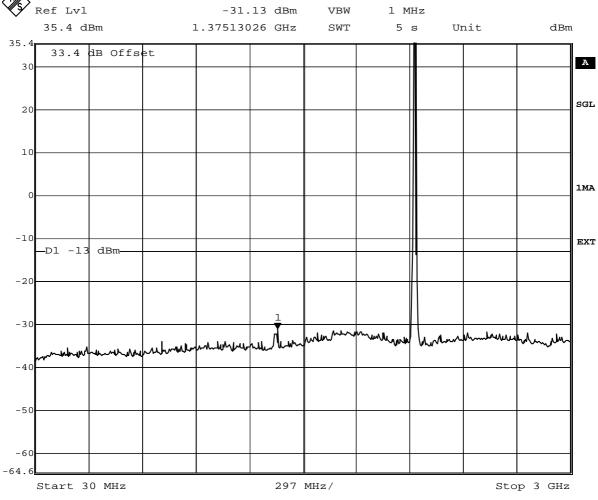
Marker 1 [T1] RBW 50 kHz RF Att 25 dB

Ref Lvl -21.37 dBm VBW 50 kHz

37.8 dBm 2.15502004 GHz SWT 2 s Unit dBm

Date: 23.JAN.2007 10:52:21

Notes: Tx 2147.2 and 2152.4 MHz, 16QAM, UPPER BANDEDGE and 3rd order IM



Test report No.: 80106R1

Test Data - Spurious Emissions

Nemko Oy, Finland

Data Plot		<u>Spuriou</u>	us Emissions a	t Antenn	a Termina	<u>ls</u>					
Page <u>5</u> of <u>10</u>							(Complete_	х	_	
Job No.:	80105		Date:	23/01/2007	<u>-</u>		Prel	iminary:		_	
Specification:	PT27		Temperature (°C):	23	_						
Tested By:	Timo Hietala		Relative Humidity (%):	10	_						
E.U.T.:	WCDMA TRAN	ISMITTER									
Configuration:	TX FULL POW	ER MIDDLE CH	IANNEL, multi carrier								
Sample Number:	1										
Location:	NET/IMN Oulu	<u>ı</u>		RBW:	Refer to plots		Meas	urement			
Detector type:	Peak	<u> </u>		VBW:	Refer to plots		D	istance:	N/A	_ m	
Test Equipme	nt Used										
Antenna:		_	Direct	ional Coupler:							
Pre-Amp:		_		Cable #1:							
Filter:		_		Cable #2:							
Receiver:	1	_		Cable #3:							
Attenuator #1:	13			Cable #4:							
Attenuator #2:				Mixer:							
Additional equipn	nent used:										
Measurement Un	certainty:	± 0.7 dB									
	-	Marker 1	[T1]	RBW	1 MHz	RF	Att	12	dВ		

Date: 23.JAN.2007 12:07:05

Notes: Tx 2132.5 and 2137.5 MHZ QPSK

Test report No.: 80106R1

Test Data – Spurious Emissions

Nemko Oy, F	-inland											
Data Plot		Spuri	ious Em	issions	at Ante	nn	a Ter	mina	ls			
Page <u>6</u> of <u>10</u>											Complete	ζ.
Job No.:	80105			Da	te: 23/01/20	07					iminary:	
Specification:	PT27		Tem								· —	
	Timo Hietala		Relative	Humidity (%): <u>23</u>): <u>10</u>							
	WCDMA TRAN				·							
Configuration:			CHANNEL	multi carrier								
Sample Number:												
Location:	NET/IMN Oulu	ı			— RB	BW:	Refer t	o plots		Measi	urement	
Detector type:	Peak						Refer t				istance: N/A	m
Dotootor typo.	1 out	_			* -		1101011	o pioto			1477	'''
Test Equipme	nt Used											
Antenna:				Dire	ectional Coup	ler:						
Pre-Amp:					Cable	#1:						
Filter:	12				Cable	#2:						
Receiver:	1											
Attenuator #1:	14											
Attenuator #2:						ker:						
Additional equipr	ment used:	_										
Measurement Ur		± 0.7 dB										
<u> </u>												
(§)		Marker			RBW		1 M		RF	Att	0 dB	
Ref Lv	7l		-37.	66 dBm	VBW		1 M	Hz				
6.3 d	iBm	6	3.408041	24 GHz	SWT		2	s	Uni	.t	dBm	ı
6.3				I							1	=
26.3	3 dB Offse	et										A
0												Α
												SGL
-10												БСП
—D1 −1	13 dBm											
-20												
												1MA
-30												
	1											
	 											
-40												EXT
		_										
-50		Ч								Λ		
h .n.h	Maryan	اسميا	. اسانە سىلم	Merria	n shumest	ىدا، يە	MM/N	$h \sim h$	M^{\downarrow}	row (r	mmm.	
		.0,00	walkan/kanr	, 		V	•					
-60												
-70												
-80									-+			
-90	+				+				+			
-93.7												

1.8 GHz/

Date: 23.JAN.2007 12:43:04

Start 3 GHz

Notes: Tx 2132.5 and 2137.5 MHZ QPSK

Stop 21 GHz

FCC ID: UAFFRIA-01

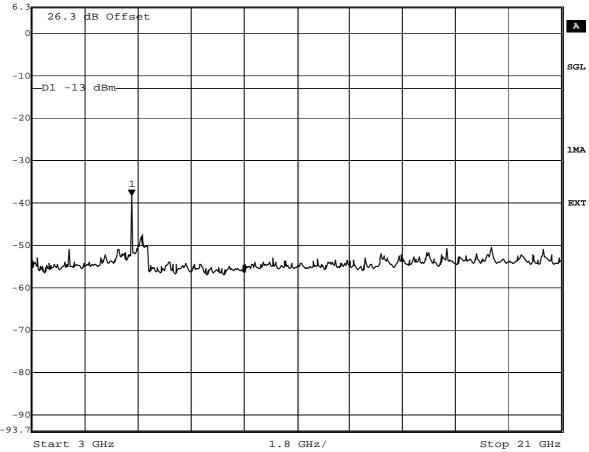
Type: FRIA Test report No.: 80106R1

Test Data – Spurious Emissions

ata Plot		<u>Sp</u>	ırious E	<u>mission</u>	s at An	tenn	a Term	<u>inals</u>			
ge <u>7</u> of <u>10</u>										Complete	x
No.:	80105			Г	Date: 23/01/	2007			Pr	eliminary:	
ecification:	PT27		Te	emperature (°	°C): 2	3	-				
sted By:	Timo Hietal	а	Relati	ve Humidity (%): 1	0	-				
J.T.:	WCDMA TF	RANSMITTE									
nfiguration:	TX FULL P	OWER MIDE	LE CHANNE	L multi carrie	r						
mple Number:	1										
cation:	NET/IMN C	Dulu				RBW:	Refer to p	lots	Mea	surement	
tector type:	Peak						Refer to p			Distance: 1	N/A
•						,					
st Equipme	nt Used										
tenna:				D	irectional Co	-					
e-Amp:					Cal	ole #1:					
er:	12										
ceiver:	1										
enuator #1:	14				Cal	ole #4:					
enuator #2:						Mixer:					
ditional equipn	nent used:										
asurement Un	certainty:	± 0.7	dB								
		Marker	1 [T1]		RBW		1 MHz	RF A	- +	12 dB	
> D - C -	7	ar vet		40 30				IVI. A		12 UD	
Ref Lv				.47 dBm	VBW		1 MHz				
35.4	dBm		1.36746	577 GHz	SWT		5 s	Unit		dBm	L
.4	dB Offs	ab+									Ī
30	db off.	300									A
30											
20											SGL
10											
0											1MA
10											EXT
— D1 −1	.3 dBm—			1							
20											
							Ш				
30				1							
			سلمي ما	سمر آل با	mm	mm	and hi	mann	MW	mumm	
mount	numur	mount	Maria area								
40											
50	+	+	+	+							
60											

Date: 23.JAN.2007 12:11:37

Notes: Tx 2132.5 and 2137.5 MHZ 16QAM



FCC ID: UAFFRIA-01

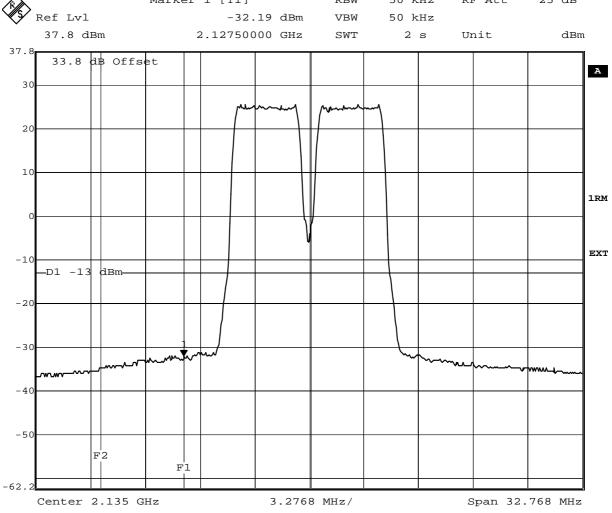
Type: FRIA Test report No.: 80106R1

Test Data - Spurious Emissions

Nemko Oy, F	inland											
Data Plot		Spuri	ous Em	issions	at Anter	nna	a Ter	mina	ls			
Page <u>8</u> of <u>10</u>									<u>_</u>	С	omplete <u>x</u>	<u>: </u>
Job No.:	80105			Date	e: 23/01/200	7				Prelir	minary:	
Specification:	PT27		Tem	perature (°C)	: 23							
Tested By:	Timo Hietala		Relative	Humidity (%)	: 10							
E.U.T.:	WCDMA TRANS	MITTER	·									
Configuration:	TX FULL POWE	R MIDDLE	CHANNEL,	multi carrier								
Sample Number:	1				_							
Location:	NET/IMN Oulu	_			RB\	N: _	Refer to	o plots		Measu	rement	
Detector type:	Peak	-			VB\	N: _	Refer to	o plots		Dis	stance: N/A	m
Test Equipme	nt Used											
Antenna:				Dire	ctional Couple	er:						
Pre-Amp:		•			Cable #	1:						
Filter:	12	•			Cable #							
Receiver:	1	•			Cable #							
Attenuator #1:	14	•			Cable #							
Attenuator #2:		•			Mixe	er:						
Additional equipr	nent used:	•										
Measurement Ur	ncertainty:	± 0.7 dB	_									
	M	arker	1 [T1]		RBW		1 M	lHz	RF A	Att	0 dB	
Ref Lv	<i>r</i> l		-38.	35 dBm	VBW		1 M	Hz				
6.3	lBm	6	.408041	24 GHz	SWT		2	s	Unit	:	dBm	L
6.3	dB Offset											İ
0 20.3	db Oliset	•										A
Ĭ												
-10												SGL
—D1 −1	13 dBm-											

23.JAN.2007 12:44:02

Notes: Tx 2132.5 and 2137.5 MHZ 16QAM



Test report No.: 80106R1

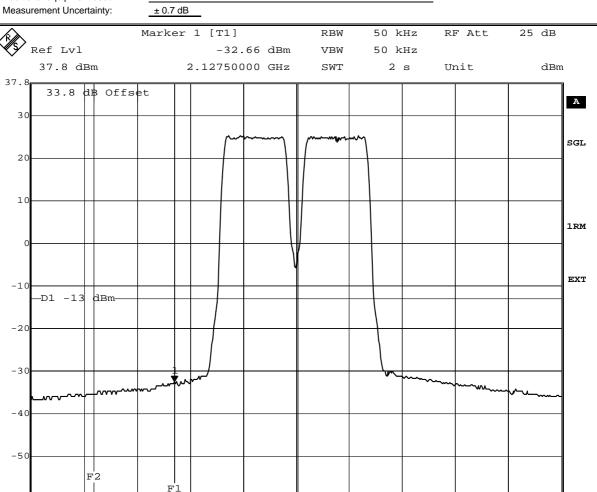
Test Data - Spurious Emissions

Nemko Oy, Finland

Data Plot		Spurious Emissions at			<u>.</u>
Page <u>9</u> of <u>10</u>		3 rd order inband interm	odulation	on	Completex
Job No.:	80105	Date:	23/01/2007	_	Preliminary:
Specification:	PT27	Temperature (°C):	23	_	
Tested By:	Timo Hietala	Relative Humidity (%):	10	_	
E.U.T.:	WCDMA TRAN	ISMITTER			
Configuration:	TX FULL POW	ER MIDDLE CHANNEL, multi carrier			
Sample Number:	1				
Location:	NET/IMN Oulu	<u>ı_</u>	RBW:	Refer to plots	Measurement
Detector type:	rms		VBW:	Refer to plots	Distance: N/A m
Test Equipme	nt Used				
Antenna:		Directio	nal Coupler:		
Pre-Amp:			Cable #1:		
Filter:	12		Cable #2:		
Receiver:	1				
Attenuator #1:	14		Cable #4:		
Attenuator #2:			Mixer:		
Additional equipn	nent used:				
Measurement Un	ncertainty:	± 0.7 dB			

Date: 23.JAN.2007 11:34:59

Notes: Tx 2132.5 and 2137.5 MHZ QPSK



Test report No.: 80106R1

Test Data – Spurious Emissions

Nemko Oy, Finland

Data Plot		Spurious Emissions at			<u>ls</u>	
Page <u>10</u> of <u>10</u>		3 rd order inband interme	odulatio	on	Complete x	
Job No.:	80105	Date: 2	23/01/2007	_	Preliminary:	
Specification:	PT27	Temperature (°C):	23	_		
Tested By:	Timo Hietala	Relative Humidity (%):	10	_		
E.U.T.:	WCDMA TRANS	SMITTER				
Configuration:	TX FULL POWE	R MIDDLE CHANNEL, multi carrier				
Sample Number:	1					
Location:	NET/IMN Oulu	_	RBW:	Refer to plots	Measurement	
Detector type:	rms	- -	VBW:	Refer to plots	Distance: N/A m	1
Test Equipme	nt Used					
Antenna:		Direction	al Coupler:			
Pre-Amp:			Cable #1:			
Filter:	12		Cable #2:			
Receiver:	1					
Attenuator #1:	14					
Attenuator #2:	•		Mixer:			
Additional equipn	nent used:	-				
Measurement Un	certainty:	± 0.7 dB				
^		4	DDW	FO 1-11-	DE 344 OF 4D	

3.2768 MHz/

Date: 23.JAN.2007 11:30:20

Center 2.135 GHz

-62.2

Notes: Tx 2132.5 and 2137.5 MHZ 16QAM

Span 32.768 MHz

Test report No.: 80106R1

5. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA.NO.: 27.53(g), 2.1053

TESTED BY: Timo Hietala DATE: 26/01/2007

Test Results: Complies.

Test Data: See attached table.

Frequency	Spurious Emission
(MHz)	EIRP (dBm) ave
All	More than 20 dB below
7 (11	limit -13 dBm

Equipment used: 15, 16, 17, 18, 19, 23, 24, 25, 26

Measurement

Uncertainty: $\pm 5.2 \text{ dB}.$

Temperature: 23 °C.

Relative

Humidity: 10 %.

NOTE:

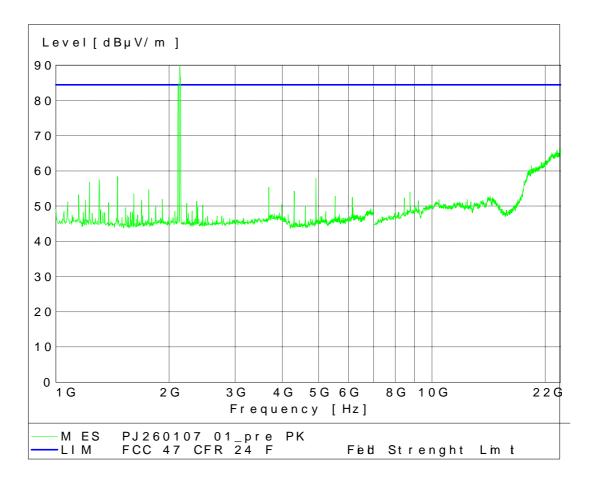
The spectrum was searched from 30 MHz to the 10th harmonic of the carrier.

Test report No.: 80106R1

Test Data - Radiated Emissions

Nemko Oy, Finland

Data Plot		Radia	ted Emissio	ns Substituti	on Method	d		
Page <u>1</u> of <u>1</u>						_	Comple	ete <u>x</u>
Job No.:	80105			Date: 26/01/2007			Preliminary	y:
Specification:	PT27		Temperature	(°C): 23				
Tested By:	Timo Hietala	I	Relative Humidity	y (%): <u>10</u>				
E.U.T.:	WCDMA TR	ANSMITTER						
Configuration:	TX FULL PC	WER 2132.5 a	nd 2137.5 MHz					
Sample Number:	1							
Location:	NET/IMN O	ulu_		RBW:	1 MHz		Measuremer	nt
Detector type:	Ave			VBW:	1 MHz		Distance	e: <u>3</u> m
Test Equipme	nt Head							
Antenna:	17 and 18	3		Directional Coupler:				
Pre-Amp:	24	<u> </u>		•				
Filter:				Cable #2:				
Receiver:	16							
Attenuator #1:	-							
Attenuator #2:				Mixer:				
Additional equipm	nent used:	19,23,25	and 26					
Measurement Un	certainty:	± 5.2 dB	_					
Frequency	Meter	Correction	Gen.	Substitution	EIRP	EIRP	Polarity	Comments
	Reading	Factor	Level	Antenna Gain				_
(MHz)	(dBm)	(dB)	(dBm)	(dBi)	(dBm)	(µW)		
	ı	i l				1		

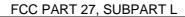

Notes: Pre measurement in stack installation FRIB Tx C1 2132.5 MHz and C2 2137.5 MHz

and FRIA Tx C1 2112.5 MHz and C2 2117.5 MHz, transmitters full power terminated 50Ω

Test report No.: 80106R1

Test Data - Radiated Emissions 1 GHz -22 GHz

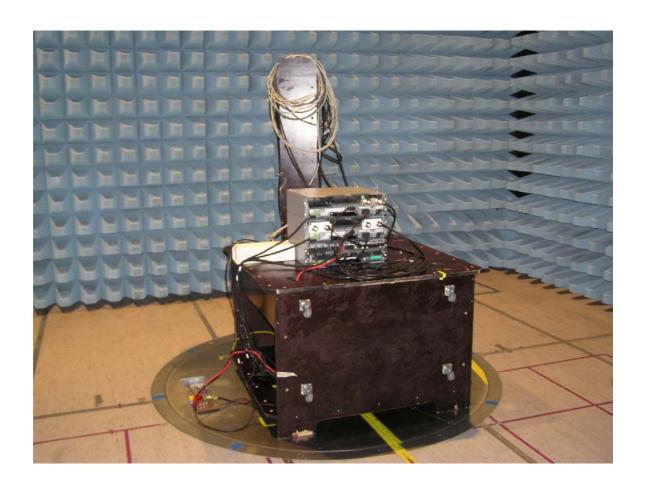
Notes: Limit line (84.4 dBuV/m) is converted from substitution limit (-13 dBm) to unit dBuV/m in 3 meter measurement distance



Test report No.: 80106R1

6. List of test equipment

Each active test equipment is calibrated annually.


Nr.	Equipment	Name of equipment	Serial number
1	Signal analyzer	Rohde & Schwarz:FSIQ26	836702/020
2	Network analyzer	Hewlett-Packard:HP8753E	US38431868
3	Network analyzer	Hewlett-Packard:HP8720ES	US39172107
4	Calibration kit	Hewlett-Packard:HP85032B	2919A04843
5	Enviromental chamber	Weiss technick	59226012320010
6	Frequency standard	Datum 8040	23006282
7	Interface Unit	Orbis TX SSU2100A	SSU-0346-999
8	DC power	Sörensen	9950C0085
9	Temperature/humidity meter	VAISALA HMI 31	P3730008
10	Signal analyzer	Rohde & Schwarz:FSIQ26	833370/009
11	Frequency standard	Datum 8040	0041005473
12	High Pass filter	Reactel 9HSX-3/20-S11	0531
13	Attenuator	MCE/Weinschel 67-20-33	BM0633
14	Attenuator	Narda FSCM 99899	08275
15	Semianechoic chamber	Siemens Matsushita	Product No
		$9m \times 5m \times 6m$	S&M B83317-
		(room 0039)	C6019-T232
16	EMI Test Receiver	R&S ESIB 26	100335
17	LogPer Antenna	R&S HL025	349048/002 (1-26 GHz)
18	Bilog Antenna	Chase CBL6112B	2694
19	Horn Antenna	Emco 3115	0102A06346
20	Biconical Antenna	R&S HK116	836891/009
21	Dipole VHF	Mess-Elektronik VHA9103	
22	Dipole UHF	Mess-Elektronik UHA9105	
23	Signal Generator	R&S SMR 20	1715
24	Amplifier	Miteq AFSX4	791117
25	Antenna Mast	Deisel HD240	2401323194
26	Mast Controller	Deisel HD100	1001331

FCC ID: UAFFRIA-01 Type: FRIA Test report No.: 80106R1

7. Photographs of Test Setup

Test report No.: 80106R1

8. ANNEX A, TEST DETAILS

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No. 27.50 (d). Base stations are limited to 1640 watts peak

E.I.R.P. with an antenna height up to 300 meters HAAT. In no case may the peak output power of a base station transmitter

exceed 100 watts.

Method Of Measurement:

CDMA Per ANSI/J-STD-014 TDMA Per ANSI/J-STD-010

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter or a spectrum analyzer.

NAME OF TEST: Occupied Bandwidth

Minimum Standard: Para. No. 2.1049. The 99% occupied bandwidth is the width of a

frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to

0.5% of the emitted power.

Method Of Measurement:

The 99% occupied bandwidth of the carrier emission is measured using a spectrum analyzer with Resolution Bandwidth set to 1% of the necessary bandwidth of the transmitted carrier.

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 2.1051

Minimum Standard: Para. No. 27.53(g). On any frequency outside a licensee's

frequency block, the power of any emission shall be attenuated below the transmitter power by at least $43 + 10 \log (P) \, dB$.

Method Of Measurement:

Spectrum analyzer settings:

RBW: 1 MHz VBW: 1 MHz

Within 1 MHz of the upper and lower edges of the assigned band of operation the resolution bandwidth is lowered to 1 % of the 26 dB occupied bandwidth of the

transmitted carrier. A pre-measurement was performed with the max peak detector and spurious

emissions closer than 20 dB to the limit was measured with rms detector.

PARA. NO.: 2.1049

Test report No.: 80106R1

PARA. NO.: 2.1053

NAME OF TEST: Field Strength of Spurious Radiation

Minimum Standard: Para. No.27.53(g). On any frequency outside a licensee's

frequency block, the power of any emission shall be attenuated

below the transmitter power by at least 43 + 10 log (P) dB.

Test Method:

TIA/EIA-603-C-2004, Section 2.2.12

The test was performed in a semi-anechoic shielded room. The EUT was placed on a non-conductive 0.8 m high table standing on the turntable. During the test in the frequency range 30-22000 MHz the distance from the EUT to the measuring antenna was 3 m. In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna were varied during the tests. The test was performed with the measuring antenna being both in horizontal and vertical polarizations.

Vertical and horizontal polarizations in the frequency range 30-22000 MHz was first measured by using the peak detector. During the peak detector scan the turntable was rotated from 0° to 360° with 30° step with the antenna heights 1.0 m and 2.5 m.

The limit of -13 dBm has been calculated to correspond 84.4 dB(μ V/m). Spurious emissions closer than 20 dB to the limit was measured with average detector.

The antenna substitution method was used to determine the equivalent radiated power at spurious frequencies. The EUT was replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator $G_{Antenna[dBi]}$. This antenna was fed with a signal at the spurious frequency $P_{Gen[dBm]}$. The level of the signal was adjusted to repeat the previously measured level. The resulting EIRP is the signal level fed to the reference antenna corrected for gain referenced to an isotropic. The formula below was used to calculate the EIRP of the EUT.

 $P_{EIRP[dbm]} = P_{Gen[dBm]} - L_{Cable[dB]} + G_{Antenna[dBi]}$

NAME OF TEST: Frequency Stability

Minimum Standard: Para. No. 27.54. The frequency stability shall be sufficient to

ensure that the fundamental emission stays within the

authorized frequency block.

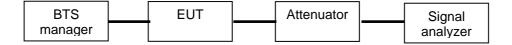
Method Of Measurement:

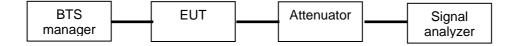
Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency error is measure. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

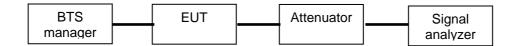
Frequency Stability With Temperature Variation

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency error is measured.

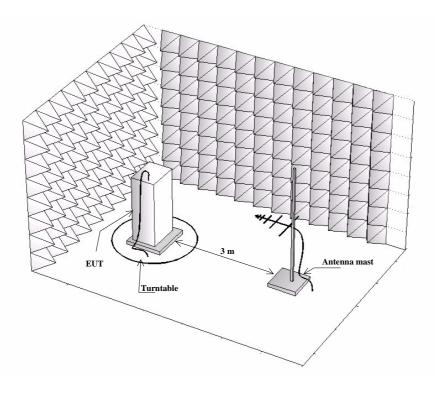

PARA. NO.: 2.1055

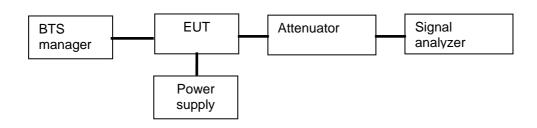

Test report No.: 80106R1

9. ANNEX B, TEST DIAGRAMS

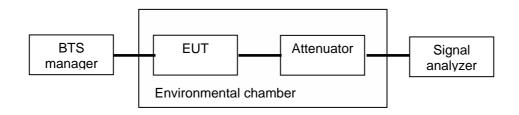

RF Power Output PARA. NO.: 2.1046

Occupied Bandwidth PARA. NO.: 2.1049


Spurious Emission at Antenna Terminals PARA. NO.: 2.1051


FCC ID: UAFFRIA-01 Type: FRIA Test report No.: 80106R1

Field Strength of Spurious Radiation PARA. NO.: 2.1053



Frequency Stability PARA. NO.: 2.1055

Frequency Stability With Voltage Variation

Frequency Stability With Temperature Variation

