



# COMPLIANCE WORLDWIDE INC. TEST REPORT 284-22

In Accordance with the Requirements of

Federal Communications Commission CFR Title 47 Part 15.231, Subpart C
Class II Permissive Change
Innovation, Science and Economic Development Canada RSS 210, Issue 10
Low Power License-Exempt Radio Communication Devices
Intentional Radiators

Issued to

SimpliSafe Inc 294 Washington Street, 9th Floor Boston, MA 02108

for the

**Siren** 

Model: SSWS3 433.92 MHz

FCC ID: U9K-WS3000 IC: 20992-WS3000

Report Issued on August 31, 2022

Tested by

Sean P. Defelice

Reviewed by

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.



ACCREDITED
TESTING CERT #1673.01

Issue Date: 8/31/2022

## **Table of Contents**

| 1. Scope                                        | 3   |
|-------------------------------------------------|-----|
| 2. Product Details                              | 3   |
| 2.1. Manufacturer                               | 3   |
| 2.2. Model Number                               | 3   |
| 2.3. Serial Number                              | 3   |
| 2.4. Description                                |     |
| 2.5. Power Source                               |     |
| 2.6. EMC Modifications                          | 3   |
| 3. Product Configuration                        |     |
| 3.1. Operational Characteristics & Software     | 3   |
| 3.2. EUT Hardware                               |     |
| 3.3. Support Equipment                          | 3   |
| 3.4. Support Equipment Cables                   | 4   |
| 3.5. Block Diagram                              |     |
| 4. Measurements Parameters                      |     |
| 4.1. Measurement Equipment Used to Perform Test | 4   |
| 4.2. Software used to perform the test          |     |
| 4.3. Measurement & Equipment Setup              | 5   |
| 4.4. Measurement Uncertainty                    |     |
| 5. Choice of Equipment for Test Suits           |     |
| 6. Measurement Summary                          |     |
| 7. Measurement Data                             |     |
| 7.1. Antenna Requirement                        |     |
| 7.2. Operational Requirement                    |     |
| 7.3. Radiated Field Strength of Fundamental     |     |
| 7.4. Radiated Field Strength of Harmonics       | .11 |
| 7.5. Spurious Radiated Emissions                |     |
| 7.6. Emission Bandwidth                         | .19 |
| 7.7. Bandwidth of Momentary Signals             | 20  |
| 7.8. Conducted Emissions                        | 21  |
| 7.9. Duty Cycle Calculations                    |     |
| 8. Test Site Description                        |     |
| 9. Test Setup Photographs                       | .25 |





#### 1. Scope

This test report certifies that the Simplisafe, Inc, Siren SSWS3 433.92 MHz Transmitter, as tested, meets the Subpart C, FCC Part 15.231 requirements and the ISED Canada RSS 210 Annex II, Issue 10 Rules. The scope of this test report is limited to the test sample provided by the client, only in as much as that sample represents other production units. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

#### 2. Product Details

2.1. Manufacturer: SimpliSafe2.2. Model Number: SSWS32.3 Serial Number: 02486B11

2.4 Description of EUT: Your Base Station already has a 95dB siren. In case of a break-in,

an extra siren can be used to really give intruders a scare—or alert

your neighbors to an emergency

**2.5 Power Source:** Batteries 6 VDC, 4 x 1.5V AA Batteries

**2.6 Hardware Revision:** Revision E **2.7 Software/Firmware Revision:** 1.1.3.12

**2.8. Modulation Type:** Frequency Shift Keying (2FSK)

2.9. Operating Frequency: 433.92 MHz

2.10. EMC Modifications: None

## 3. Product Configuration

## 3.1. Operational Characteristics & Software

#### 3.2. EUT Hardware

| Manufacturer | Model/Part # /<br>Options | Serial<br>Number | Volts | Freq<br>(Hz) | Description/Function |
|--------------|---------------------------|------------------|-------|--------------|----------------------|
| SimpliSafe   | SSWS3                     | 02486B11         | 6     | VDC          | Wireless Siren       |

#### 3.3. Support Equipment

| Manufacturer | Model/Part # / Options | Serial<br>Number | Input<br>Voltage | Freq<br>(Hz) | Description/Function |
|--------------|------------------------|------------------|------------------|--------------|----------------------|
| None         |                        |                  |                  |              |                      |





Test Number: 284-22 Issue Date: 8/31/2022

## 3. Product Configuration (continued)

## 3.4. Equipment Cables

| Cable Type | Length | Shield | From | То |
|------------|--------|--------|------|----|
| None       |        |        |      |    |

## 3.5. Block Diagram

| Wireless Siren |
|----------------|
|                |
|                |
|                |
|                |
|                |
|                |

#### 4. Measurements Parameters

## 4.1. Measurement Equipment and Software Used to Perform Test

| Device                                           | Manufacturer    | Model No. | Serial No. | Cal Due    | Interval |
|--------------------------------------------------|-----------------|-----------|------------|------------|----------|
| EMI Test Receiver, 9kHz - 7GHz <sup>1</sup>      | Rohde & Schwarz | ESR7      | 101156     | 10/26/2023 | 2 Years  |
| EMI Test Receiver, 10 Hz - 7GHz <sup>1</sup>     | Rohde & Schwarz | ESR7      | 101770     | 7/23/2023  | 2 Years  |
| Spectrum Analyzer, 2 Hz to 26.5 GHz <sup>2</sup> | Rohde & Schwarz | FSW26     | 102057     | 6/24/2023  | 2 Years  |
| Spectrum Analyzer, 9 kHz to 40 GHz <sup>3</sup>  | Rohde & Schwarz | FSV40     | 100899     | 8/12/2023  | 3 Years  |
| Spectrum Analyzer 10 Hz – 40 GHz <sup>1</sup>    | Rohde & Schwarz | FSVR40    | 100909     | 9/18/2023  | 3 Years  |
| Biconilog Antenna, 30 MHz - 2 GHz                | Sunol Sciences  | JB1       | A050913    | 7/1/2023   | 2 Years  |
| Loop Antenna 9 kHz - 30 MHz                      | EMCO            | 6512      | 9309-1139  | 4/14/2024  | 2 Years  |
| Dbl Ridged Guide Antenna 1- 18 GHz               | ETS-Lindgren    | 3117      | 00143292   | 5/11/2024  | 2 Years  |
| Dbl Ridged Guide Antenna 1- 18 GHz               | ETS-Lindgren    | 3117      | 00227631   | 4/21/2024  | 2 Years  |
| Preamplifier, 1 GHz to 26.5 GHz                  | Hewlett Packard | 8449B     | 3008A01323 | 11/30/2023 | 2 Years  |
| Preamplifier, 1 GHz to 26.5 GHz                  | Hewlett Packard | 8449B H02 | 3008A00329 | 1/20/2024  | 2 Years  |
| LISN                                             | EMCO            | 3825/2    | 9109-1860  | 1/4/2023   | 1 Year   |
| Digital Barometer                                | Control Company | 4195      | ID236      | 1/27/2024  | 2 Years  |

<sup>&</sup>lt;sup>1</sup> ESR7 Firmware revision: V3.48 SP3, Date installed: 09/30/2020 FSW26 Firmware revision: V4.71 SP1, Date installed: 11/16/2020

Previous V3.48 SP2, installed 07/23/2020.

Previous V4.61, installed 08/11/2020. Previous V2.30 SP1, installed 10/22/2014.

installed 10/22/2014. Previous V2.23,

Firmware revision: V2.30 SP4, Date installed: 05/04/2016

<sup>&</sup>lt;sup>4</sup> FSVR40 Firmware revision: V2.23 SP1, Date installed: 08/19/2016





## 4. Measurements Parameters (continued)

#### 4.2. Software Used to Perform Test

| Manufacturer         | Manufacturer Software Description  |                          | Rev. | Report Sections                          |  |
|----------------------|------------------------------------|--------------------------|------|------------------------------------------|--|
| Compliance Worldwide | Test Report<br>Generation Software | Test Report<br>Generator | 1.0  | Used to process conducted emissions data |  |

## 4.3 Measurement & Equipment Setup

Test Dates: 8/24/2022, 8/26/2022,

8/29/2022 Sean Defelice

Test Engineer: Sean Defeli Site Temperature (°C): 19.5

Relative Humidity (%RH):

Frequency Range:

Measurement Distance:

EMI Receiver IF Bandwidth:

30 kHz to 5 GHz

3 Meters and 1 Meter

200 Hz (30 kHz – 150 kHz)

9 kHz (150 kHz – 30 MHz)

9 kHz (150 kHz – 30 MHz) 120 kHz (30 MHz – 1 GHz)

1 MHz (>1 GHz)
EMI Receiver Avg Bandwidth: ≥ 3 \* RBW or IF(BW)
Detector Functions: Peak, Quasi-Peak and

Average

#### 4.4 Test Procedure

Test measurements were made in accordance FCC Part 15.231: Periodic operation within the bands 40.66 - 40.70 MHz and above 70 MHz, ISED RSS-210, Issue 10 Annex II and RSS-GEN, Issue 5.

The test methods used to generate the data in this test report are in accordance with ANSI C63.10: 2013, American National Standard for Methods for Unlicensed Wireless Devices.





## 5. Choice of Equipment for Test Suits

#### 5.1. Choice of Model

This test report is based on the test samples supplied by the manufacturer and are reported by the manufacturer to be equivalent to the production units.

#### 5.2. Presentation

The test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for the product equipment configuration.

## 5.3. Choice of Operating Frequencies

The transmitter in the unit under test utilizes a single operating frequency at approximately 433.92 MHz

| Test Mode Mode 1: Transmit mode                    |
|----------------------------------------------------|
| Description: Automatic FSK message every 2 seconds |
| Radio PA Setting: -5 dB                            |
| Data Rate: 4.8kbps                                 |
| Frequency Deviation: 26 kHz                        |
| Modulation: 2FSK                                   |
| Maximum Packet Length (ms): 65.7                   |

| Mode 2: Normal mode                          |
|----------------------------------------------|
| Description: Representative of Production FW |
| Radio PA Setting: -5 dB                      |
| Data Rate: 4.8kbps                           |
| Frequency Deviation: 26 kHz                  |
| Modulation: 2FSK                             |
| Typical Packet Length (ms): 55               |





# 6. Measurement Summary

| Test Requirement                                    | FCC<br>Requirement       | ISED<br>Requirement               | Test<br>Report<br>Section | Result    | Comment                                                |
|-----------------------------------------------------|--------------------------|-----------------------------------|---------------------------|-----------|--------------------------------------------------------|
| Antenna Requirement                                 | 15.203                   | RSS-GEN<br>6.8                    | 7.1                       | Compliant | The antenna is enclosed within the device under test.  |
|                                                     | 15.231 (a)(1)            | RSS-210<br>A1.1(a)                | 7.2.1                     | N/A       | The EUT is not a manually operated transmitter         |
|                                                     | 15.231 (a)(2)            | RSS-210<br>A1.1(b)                | 7.2.2                     | Compliant |                                                        |
| Operational Requirements                            | 15.231 (a)(3)            | RSS-210<br>A1.1(c)                | 7.2.3                     | Compliant |                                                        |
|                                                     | 15.231 (a)(4)            | RSS-210<br>A1.1(d)                | 7.2.4                     | N/A       | Not something that is measured.                        |
|                                                     | 15.231 (a)(5)            | N/A                               | 7.2.5                     | N/A       | Not something that is measured                         |
| Radiated Field Strength of Fundamental              | 15.231 (b)               | RSS-210<br>A1.1.2 (a)             | 7.3                       | Compliant |                                                        |
| Radiated Field Strength of<br>Harmonics             | 15.231 (b)(3)            | RSS-210<br>A1.1.2 (b)             | 7.4                       | Compliant |                                                        |
| Spurious Radiated<br>Emissions                      | 15.231 (b)(3),<br>15.209 | RSS-GEN<br>6.13.2                 | 7.5                       | Compliant |                                                        |
| Emission Bandwidth (20 dB)                          | 15.231 (c)               | Not Required                      | 7.6                       | Compliant |                                                        |
| Bandwidth of Momentary<br>Signals (99% Emission BW) | Not Required             | IC RSS-210<br>A1.3<br>RSS-GEN 6.7 | 7.7                       | Compliant |                                                        |
| Conducted Emissions                                 | 15.207                   | RSS-GEN 8.8                       | 7.8                       | Compliant |                                                        |
| Determination of Average<br>Factor (Duty Cycle)     | 15.35 (c)                | RSS-GEN 8.2                       | 7.9                       | N/A       | For pulsed transmissions less than 100 mS, PRF <=20 Hz |





#### 7. Measurement Data

#### 7.1. Antenna Requirement (Section 15.203 RSS-GEN 6.8)

Requirement: An intentional radiator shall be designed to ensure that no antenna

other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

Status: Compliant - The antenna utilized by the device under test is contained

inside a sealed plastic enclosure.

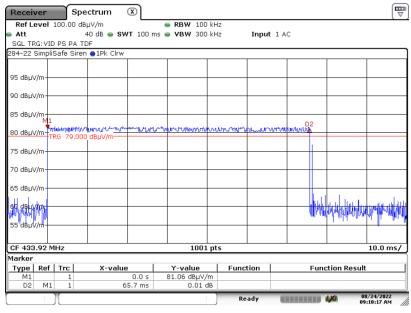
## 7.2. Operational Requirements (Section 15.231(a), RSS-210 A1.1(a))

7.2.1. Requirement: A manually operated transmitter shall employ a switch that will

automatically deactivate the transmitter within not more than 5

seconds of being released (Section 15.231(a)(1)).

Status: The transmitter is activated automatically and transmits for 55


mS. Therefore this section does not apply. Refer to section 6.2.2.

7.2.2. Requirement: A transmitter activated automatically shall cease transmission

within 5 seconds after activation (Section 15.231(a)(2), RSS-210

A1.1(b)).

Status: Compliant – The device's longest transmission is for 65.7 mS.



Date: 24.AUG.2022 09:10:17





#### 7.2. Operational Requirements (Section 15.231(a)) RSS-210 A1.1 (continued)

7.2.3. Requirement: Periodic transmissions at regular predetermined intervals are not

permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour (Section 15.231(a)(3),

RSS-210 A1.1(c)).

Status: Compliant, the device only sends a 55mS "heartbeat" message

once every 7 hours.

7.2.4. Requirement: Intentional radiators which are employed for radio control

purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition. (Section 15.231(a)(4), RSS-210

A1.1(d)).

Status: Noted.

7.2.5. Requirement: Transmission of set-up information for security systems may

exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include

data.

Status: Noted.





## 7. Measurement Data (continued)

## 7.3. Radiated Field Strength of Fundamental (15.231, Section (b), RSS-210 A1.1.2(a))

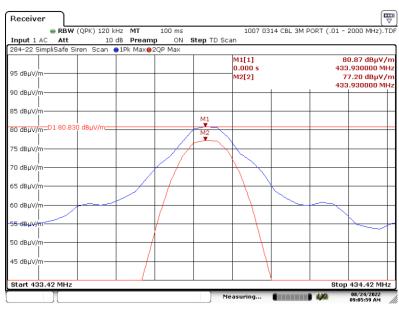
Requirement: The 3 meter field strength of the fundamental emissions from intentional radiators operating within the 260-470 MHz frequency bands shall comply with the limits specified in FCC Part 15.231, Section (b). The limit is based on a linear interpolation of the following field strength:

| Fundamental Frequency | Field Strength of Fundamental |  |  |  |  |
|-----------------------|-------------------------------|--|--|--|--|
| (MHz)                 | (μV/m)                        |  |  |  |  |
| 260–470               | 3,750 to 12,500 μV/m          |  |  |  |  |

Fundamental Limit at 433.93 MHz =  $10,997 \mu V/m = 80.83 dB\mu V/m$ 

Test Note: A Quasi Peak Detector was used to compare against the average limits

due to the longest duration of a digital transmission.


Conclusion: Compliant - The radiated field strength of the device under test complies

with the requirements detailed in FCC Part 15.231, Section (b) and RSS-

210 A1.1.2(a).

#### 7.3.1. Worst Case Radiated Field Strength of Fundamental

| Frequency<br>(MHz) |       | litude¹<br>µV/m) | Duty<br>Cycle<br>Correction | Amplitude<br>(dBµV/m) | Limit<br>(dBµV/m) |         | 3      |       |     |     | Turntable<br>Azimuth | Result    |
|--------------------|-------|------------------|-----------------------------|-----------------------|-------------------|---------|--------|-------|-----|-----|----------------------|-----------|
| (,                 | Peak  | QP               | dB                          | Average               | Peak              | Average | Peak   | Ave   | H/V | cm  | Deg                  |           |
| 433.93             | 80.87 | 77.20            | -3.649                      | 77.221                | 100.83            | 80.83   | -19.96 | -3.60 | V   | 121 | 58                   | Compliant |







## 7. Measurement Data (continued)

#### 7.4. Radiated Field Strength of Harmonics (15.231, Section (b), RSS-210 A.1.1.2(b))

Requirement: The 3 meter field strength of the harmonic emissions from intentional radiators operating within the 260-470 MHz frequency band shall comply with the limits specified in FCC Part 15.231, Section (b). The limit is based on a linear interpolation of the following field strength:

| Fundamental<br>Frequency | Field Strength of<br>Spurious Emissions |  |  |
|--------------------------|-----------------------------------------|--|--|
| (MHz)                    | (μV/m)                                  |  |  |
| 260-470                  | 375 to 1250                             |  |  |

Spurious Emissions Limit =  $1,099.71 \mu V/m = 60.83 dB\mu V/m$ 

Test Notes: For emissions falling within in the restricted bands of operation

(reference FCC Part 15.205), the lower FCC Part 15.209 limits take precedence. The peak field strength may not be greater than 20 dB

above the average limit.

Conclusion: Compliant - The device under test complies with the requirements

detailed in FCC 15.231, Section B and RSS-210 A1.1.2(b).

#### **7.4.1. Harmonics < 1 GHz**

| Freq.<br>(MHz) | Peak<br>Stre | Measured<br>Peak Field<br>Strength<br>(dBµV/m) |        | Average<br>Field<br>Strength | Limit<br>(dBµV/m) |       | Margin<br>(dBµV/m) |        |     |     |     |           |  |  | Ant.<br>Pol.<br>(H/V) | Ant.<br>Ht.<br>(cm) | Table<br>Position<br>(Deg) | Result |
|----------------|--------------|------------------------------------------------|--------|------------------------------|-------------------|-------|--------------------|--------|-----|-----|-----|-----------|--|--|-----------------------|---------------------|----------------------------|--------|
|                | Peak         | QP                                             | (dB)   | (dBµV/m) <sup>1</sup>        | Peak              | Avg.  | Peak               | Avg.   | , , | , , |     |           |  |  |                       |                     |                            |        |
| 867.84         | 36.20        | 25.95                                          | -3.649 | 32.55                        | 80.83             | 60.83 | -44.63             | -28.28 | Н   | 148 | 350 | Compliant |  |  |                       |                     |                            |        |
| 867.84         | 36.87        | 28.47                                          | -3.649 | 33.22                        | 80.83             | 60.83 | -43.96             | -27.61 | ٧   | 112 | 244 | Compliant |  |  |                       |                     |                            |        |

<sup>&</sup>lt;sup>1</sup> Average Field Strength = Peak Field Strength – Duty Cycle Correction Factor

#### **7.4.2. Harmonics > 1 GHz**

| Freq.<br>(MHz) |       |      | Duty<br>Cycle<br>CF | Average<br>Field<br>Strength | Lin<br>(dBµ' |       | Margin<br>(dBµV/m)² |        |   |     |      |           |  |  | Ant.<br>Pol.<br>(H/V) | Ant.<br>Ht.<br>(cm) | Table<br>Position<br>(Deg) | Result |
|----------------|-------|------|---------------------|------------------------------|--------------|-------|---------------------|--------|---|-----|------|-----------|--|--|-----------------------|---------------------|----------------------------|--------|
|                | Peak  | Avg. | (dB)                | (dBµV/m) <sup>1</sup>        | Peak         | Avg.  | Peak                | Avg.   | , | ,   | , ,, |           |  |  |                       |                     |                            |        |
| 1301.790       | 40.55 |      | -3.649              | 36.90                        | 74.00        | 54.00 | -33.45              | -17.10 | V | 150 | 0    | Compliant |  |  |                       |                     |                            |        |
| 1735.720       | 42.67 |      | -3.649              | 39.02                        | 80.83        | 60.83 | -38.16              | -21.81 | ٧ | 150 | 0    | Compliant |  |  |                       |                     |                            |        |
| 2169.650       | 45.10 |      | -3.649              | 41.45                        | 80.83        | 60.83 | -35.73              | -19.38 | V | 150 | 0    | Compliant |  |  |                       |                     |                            |        |
| 2603.580       | 52.28 |      | -3.649              | 48.63                        | 80.83        | 60.83 | -28.55              | -12.20 | Η | 150 | 0    | Compliant |  |  |                       |                     |                            |        |
| 3037.510       | 44.81 |      | -3.649              | 41.16                        | 80.83        | 60.83 | -36.02              | -19.67 | V | 150 | 0    | Compliant |  |  |                       |                     |                            |        |
| 3471.440       | 48.11 |      | -3.649              | 44.46                        | 80.83        | 60.83 | -32.72              | -16.37 | V | 148 | 69   | Compliant |  |  |                       |                     |                            |        |
| 3905.370       | 46.10 |      | -3.649              | 42.45                        | 74.00        | 54.00 | -27.90              | -11.55 | V | 150 | 0    | Compliant |  |  |                       |                     |                            |        |
| 4339.300       | 46.30 |      | -3.649              | 42.65                        | 74.00        | 54.00 | -27.70              | -11.35 | Н | 150 | 0    | Compliant |  |  |                       |                     |                            |        |

<sup>&</sup>lt;sup>1</sup> Average Field Strength = Peak Field Strength – Duty Cycle Correction Factor





## 7. Measurement Data (continued)

7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231, Section (b), RSS-GEN 6.13.2)

Requirement: The spurious radiated emissions requirements for intentional radiators

shall demonstrate compliance with the field strength limits detailed in Part 15.231, Section B, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a

CISPR quasi-peak detector.

Procedure: This test was performed in accordance with the information provided in

47CFR Part 15.231, Section (b).

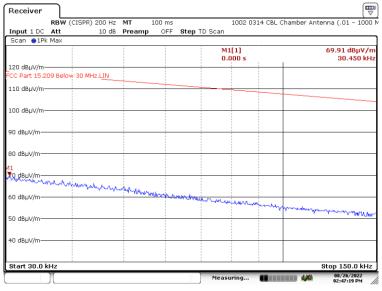
Test measurements were made in accordance with ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices.

Conclusion: Compliant - The Emissions from the DUT did not exceed the field

strength levels specified in Part 15.231, Section B and RSS-GEN

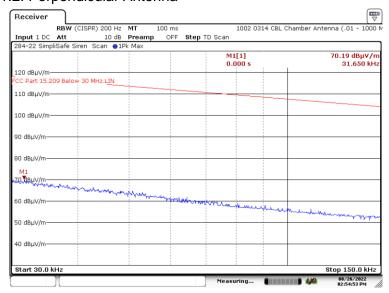
6.13.2.






## 7. Measurement Data (continued)

# 7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231(b), RSS-GEN 6.13.2) (continued)


7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

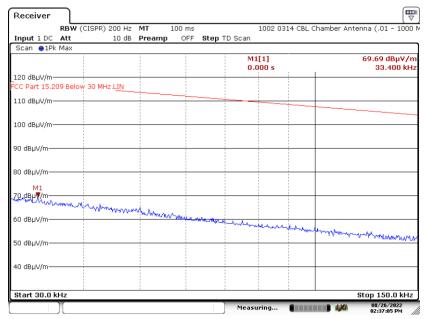
#### 7.5.1.1. Parallel Antenna



Date: 26.AUG.2022 14:47:20

## 7.5.1.2. Perpendicular Antenna




Date: 26.AUG.2022 14:54:52





## 7. Measurement Data (continued)

- 7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231(b), RSS-GEN 6.13.2) (continued)
  - 7.5.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results
    - 7.5.1.3. Ground Parallel Antenna

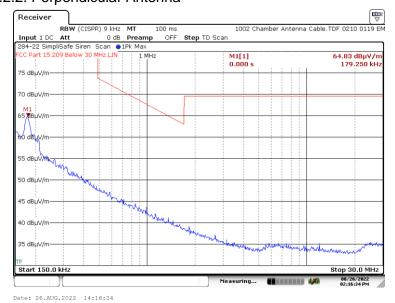


Date: 26.AUG.2022 14:37:05





## 7. Measurement Data (continued)

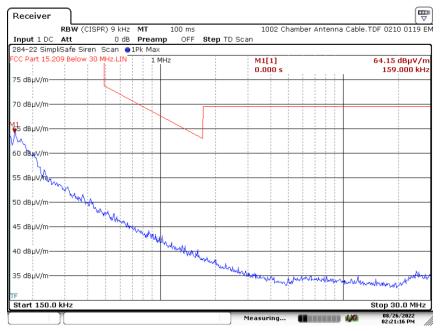

# 7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231(b), RSS-GEN 6.13.2) (continued)

7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

#### 7.5.2.1. Parallel Antenna



#### 7.5.2.2. Perpendicular Antenna







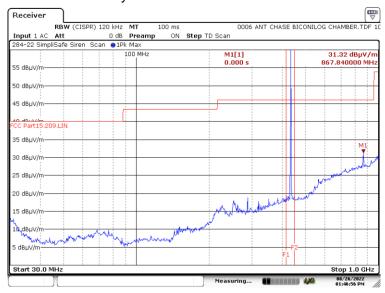

## 7. Measurement Data (continued)

- 7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231(b), RSS-GEN 6.13.2) (continued)
  - 7.5.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results
    - 7.5.2.3. Ground Parallel Antenna



Date: 26.AUG.2022 14:21:16






## 7. Measurement Data (continued)

- 7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231(b), RSS-GEN 6.13.2) (continued)
  - 7.5.3. Spurious Radiated Emissions, 30 MHz to 1 GHz Test Results 7.5.3.1. Horizontal Polarity

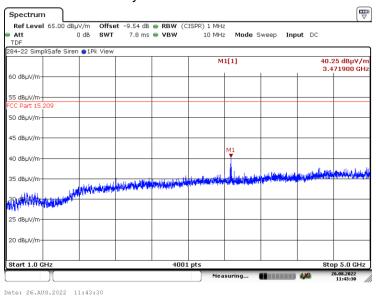


#### 7.5.3.2. Vertical Polarity

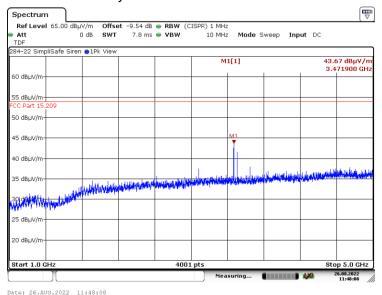


Date: 26.AUG.2022 13:46:56






## 7. Measurement Data (continued)


# 7.5. Spurious Radiated Emissions, 30 kHz to 5 GHz (15.231(b), RSS-GEN 6.13.2) (continued)

7.5.4. Spurious Radiated Emissions, 1 to 5 GHz Test Results

#### 7.5.4.1. Horizontal Polarity



#### 7.5.4.2. Vertical Polarity





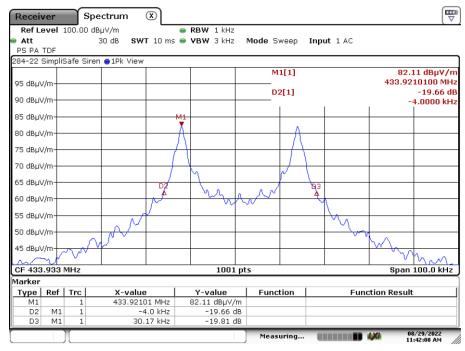


## 7. Measurement Data (continued)

#### 7.6. Emission Bandwidth (FCC P15.231 (c)

Requirement: The bandwidth of the emission shall be no wider than 0.25% of the center

frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated


carrier.

Test Note: Reference ANSI C63.10:2013, Section 6.9.2. The span range for the SA

display shall be between two times and five times the OBW. The nominal IF filter bandwidth (3 dB RBW) should be approximately 1% to 5% of the OBW, unless otherwise specified, depending on the applicable requirement. The dynamic range of the SA at the selected RBW shall be more than 10 dB below the target "dB down" (attenuation) requirement.

Conclusion: Compliant - The DUT emission bandwidth meets the above requirement.

| Fundamental<br>Frequency | -20 dB<br>Bandwidth | Limit  | Result    |  |
|--------------------------|---------------------|--------|-----------|--|
| (MHz)                    | (MHz)               | (MHz)  |           |  |
| 433.92                   | 0.03417             | 1.0848 | Compliant |  |



Date: 29.AUG.2022 11:42:09





## 7. Measurement Data (continued)

## 7.7. Bandwidth of Momentary Signals (IC RSS-210 A1.1.3)

Requirement: The 99% bandwidth of the emission shall be no wider than 0.25% of the

center frequency for devices operating between 70 MHz - 900 MHz.

Test Note: Reference RSS-Gen, Section 4.6.1. The transmitter shall be operated at

its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak

hold may produce a wider bandwidth than actual.

Conclusion: Compliant - The DUT bandwidth meets the above requirement.

| Fundamental<br>Frequency | 99%<br>Bandwidth | Limit  | Result    |  |
|--------------------------|------------------|--------|-----------|--|
| (MHz)                    | (MHz)            | (MHz)  |           |  |
| 433.92                   | 0.04775          | 1.0848 | Compliant |  |



Date: 26.AUG.2022 16:51:46





## 7. Measurement Data (continued)

### 7.8. Conducted Emissions Test Setup

#### 7.8.1. Regulatory Limit: FCC Part 15.207, RSS-GEN 8.8

| Frequency Range<br>(MHz)                         | Limits<br>(dBµV) |           |  |  |  |  |
|--------------------------------------------------|------------------|-----------|--|--|--|--|
| (2)                                              | Quasi-Peak       | Average   |  |  |  |  |
| 0.15 to 0.50                                     | 66 to 56*        | 56 to 46* |  |  |  |  |
| 0.50 to 5.0                                      | 56               | 46        |  |  |  |  |
| 5.0 to 30.0                                      | 60               | 50        |  |  |  |  |
| * Decreases with the logarithm of the frequency. |                  |           |  |  |  |  |

## 7.8.2. Measurement Equipment and Software Used to Perform Test

| Device                  | Manufacturer      | Model No.      | Serial No.               | Cal Due    |  |
|-------------------------|-------------------|----------------|--------------------------|------------|--|
| LISN                    | EMCO              | 3825/2         | 9109-1860                | 1/4/2023   |  |
| EMI Test Receiver       | Rohde & Schwarz   | ESR7           | 101156                   | 10/16/2023 |  |
|                         |                   |                |                          |            |  |
| Manufacturer            | Software De       | scription      | Title/Model #            | Rev.       |  |
| Compliance<br>Worldwide | Test Report Gener | ation Software | Test Report<br>Generator | 1.0        |  |

#### 7.8.3. Measurement & Equipment Setup

Test Date: N/A
Test Engineer: N/A
Site Temperature (°C): N/A
Relative Humidity (%RH): N/A

Frequency Range: 0.15 MHz to 30 MHz

EMI Receiver IF Bandwidth: 9 kHz

EMI Receiver Avg Bandwidth: ≥ 3 \* RBW or IF(BW)

Detector Functions: Peak, Quasi-Peak. & Average

Measurement Uncertainty  $\pm$  3.56 dB

#### 7.8.4. Test Procedure

Test measurements were made in accordance with ANSI C63.4-2014, Standard Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronics Equipment in the Range of 9 kHz to 40 GHz.

Sample Calculation: Final Result = Measurement Value + LISN Factor + Cable Loss.

**Note:** All correction factors are loaded into the measurement instrument prior to testing to determine the final result.

Page 21 of 30





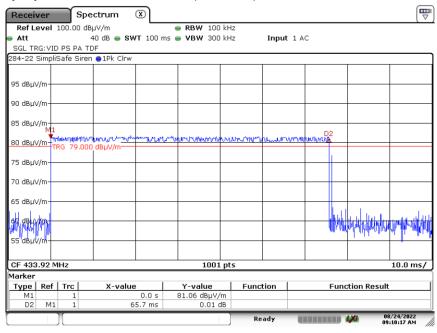
## 7. Measurement Data (continued)

## 7.9. Duty Cycle Calculations (ANSI C63.10:2013, Section 7.5, RSS-GEN 8.2)

Requirement: When the average value of the pulsed emissions from a DUT must be determined, the average can be found by measuring the peak pulse amplitude and determining the duty cycle correction factor of the pulse modulation. The duty cycle correction factor δ may be expressed in dB

as in the following equation:

$$\delta$$
 (dB) =  $20_{logdB}$  ( $\delta$ )


The longest transmitted frame is less than 100 mS, therefore a duty cycle correction factor is applied to the measured peak values.

Note: The DUT was operated at its maximum transmission rate under normal operations to produce the following duty cycle.

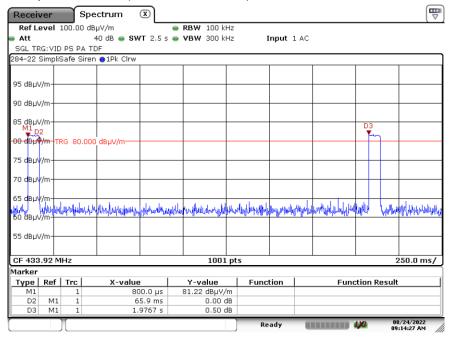
#### 7.9.1. Duty Cycle for the Device as Tested

| Time of One<br>Full Cycle<br>or 100<br>(mS) | Time On<br>During One<br>Full Cycle<br>(mS) | Duty Cycle | Duty Cycle<br>Correction<br>Factor | Applied Duty Cycle Correction Factor (dB) |
|---------------------------------------------|---------------------------------------------|------------|------------------------------------|-------------------------------------------|
| 100.00                                      | 65.70                                       | 65.70%     | -3.649                             | 3.649                                     |

## 7.9.1a Duty Cycle Transmission Time (On Time)



Date: 24.AUG.2022 09:10:17






## 7. Measurement Data (continued)

## 7.9. Duty Cycle Calculations (ANSI C63.10:2013, Section 7.5)

7.9.1d Repetition Time (On and Off Times)



Date: 24.AUG.2022 09:14:28

Note: This repetition time was chosen for measurement purposes.



## 8. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with the Federal Communications Commission (FCC) and Innovation Science and Economic Development Canada (ISED) standards. Through our American Association for Laboratory Accreditation (A2LA) ISO Guide 17025 Accreditation our test sites are designated with the FCC (designation number **US1091**), Industry Canada (file number **IC 3023A-1)** and VCCI (Member number 3168) under registration number A-0274.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 22, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 11, KN 13, KN 14-1, KN 22, KN 32, KN 61000-6-3, KN 61000-6-4.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16'  $\times$  20'  $\times$  12' ferrite tile chamber and uses one of the walls for the vertical ground plane required by EN 55022. A second conducted emissions site is also located in the basement of the OATS site with a 2.3  $\times$  2.5 meter ground plane and a 2.4  $\times$  2.4 meter vertical wall.

The radiated emissions test site for measurements above 1GHz is a 3 Meter open area test site (OATS) with a 3.6 by 3.6 meter anechoic absorber floor patch to achieve a quasi-free space measurement environment per ANSI C63.4/C63.10 and CISPR 16-1-4 standards.

The sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.



**TESTING CERT #1673.01** 

# 9. Test Setup Photographs

9.1. Radiated Emissions Front View (Below 30 MHz)





WORLDWIDE
Test Number: 284-22
Issue Date: 8/31/2022

# 9. Test Setup Photographs

## 9.2. Radiated Emissions Rear View < 30 MHz







**TESTING CERT #1673.01** 

# 9. Test Setup Photographs

## 9.3. Radiated Emissions Rear View 30 MHz - 1 GHz





**TESTING CERT #1673.01** 

# 9. Test Setup Photographs

## 9.4. Radiated Emissions Front View > 1 GHz







# 9. Test Setup Photographs

## 9.5. Radiated Emissions Front View > 1 GHz





WORLDWIDE
Test Number: 284-22
Issue Date: 8/31/2022

# 9. Test Setup Photographs

## 9.6. Radiated Emissions Rear View > 1 GHz

