

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of raise any naterial error or or mission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Rele	ease	e Control Record	3
1	C	Certificate of Conformity	4
2	5	Summary of Test Results	5
2.	1	Measurement Uncertainty	5
2.	2	Modification Record	5
3	C	General Information	6
3.	1	General Description of EUT	6
3.	2	Description of Test Modes	
3.	2.1	Test Mode Applicability and Tested Channel Deta	7
3.	3	Description of Support Units	8
3.	3.1	Configuration of System under Test	8
3.	4	General Description of Applied Standards	8
4	Т	est Types and Results	9
4.	1	Radiated Emission Measurement	9
4.	1.1	Limits of Radiated Emission Measurement	9
4.	1.2	Test Instruments	10
4.	1.3	Test Procedures	.11
4.	1.4	Deviation from Test Standard	.11
4.	1.5	Test Set Up	12
4.	1.6	EUT Operating Conditions	13
4.	1.7	Test Results	
4.		Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
		Test Results	
4.	-	20dB Bandwidth Measurement	
		Limits of 20dB Bandwidth Measurement	
		Test Setup	
		Test Instruments	
	••••	Test Procedures Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	
4.	-	Deactivation Time Measurement	-
		Limits of Deactivation Time Measurement	
		Test Setup	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	
5	F	Pictures of Test Arrangements	28
App		lix – Information of the Testing Laboratories	
1. 1.		v	-

Release Control Record

Issue No.	Description	Date Issued
RFBGQZ-WTW-P20120253-1	Original Release	Feb. 24, 2021

Certificate of Conformity 1

Product:	CMOB1
Brand:	SimpliSafe
Test Model:	CMOB1
Sample Status:	Engineering Sample
Applicant:	SimpliSafe, Inc
Test Date:	Jan. 21, 2021 ~ Feb. 22, 2021
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.231)
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Vera Huang, Date:______, Date:______, Vera Huang/Specialist

Feb. 24, 2021

Approved by :

Ryhi

Feb. 24, 2021 Date:

Dylan Chiou / Senior Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.231)							
FCC Clause	Test Item	Result	Remarks				
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -33.42 dB at 0.85000 MHz.				
15.209 15.231(b)	Radiated Emission Test	Pass	Meet the requirement of limit. Minimum passing margin is -2.45 dB at 84.99 MHz.				
15.231(c)	15.231(c) Emission Bandwidth Measurement		Meet the requirement of limit.				
15.231(a)	De-activation	Pass	Meet the requirement of limit.				
15.203	Antenna Requirement	Pass	No antenna connector is used.				

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.79 dB
	9kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.59 dB
	200MHz ~ 1000MHz	3.60 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	CMOB1
Brand	SimpliSafe
Test Model	CMOB1
Sample Status	Engineering Sample
Devuer Currely Deting	5 or 15 Vdc (adapter)
Power Supply Rating	3.7 Vdc (Battery)
Modulation Type	FSK
Operating Frequency	433.92MHz
Field Strength	79.84 dBuV/m
Antenna Type	FPC Antenna
Antenna Connector	NA
Accessory Device	Refer to Note as below
Cable Supplied	Refer to Note as below

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
USB Cable	RAPID	MIRCO USB TO TYPE A	
Battery	SimpliSafe	SSCAM-BAT1	3.7 Vdc, 19.61 Wh

2. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

1	channel	is	provided	to	this	EUT
	onanioi	10	providou			

Channel	Freq. (MHz)
1	433.92

EUT Configu	e	Applicable to						
Mode	RE≥1G	RE < 1G	PLC	EB	DT	Description		
-	\checkmark	\checkmark		√	\checkmark	-		
Where RI	≥1G: Radiated Emis	sion above 1GHz		RE<1G: Radiated	Emission below	1GHz		
PL	C: Power Line Condu	ucted Emission		EB: 20dB Bandwi	dth measurement			
D	: Deactivation Time r	neasurement						
	nna had been pre-tes	·	ned of each 3 axis	. The worst cases	were found when	positioned on Z-plane		
Pre-Sca	n has been cond n available modu	ducted to deter			•			

Following channel(s) was (were) selected for the final test as listed below. \bowtie

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	FSK

Radiated Emission Test (Below 1GHz):

- \boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- \boxtimes Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	FSK

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations \boxtimes between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- \boxtimes Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	FSK

Emission Bandwidth Measurement:

- \boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- \boxtimes Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	FSK

Deactivation Time Measurement:

 \boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

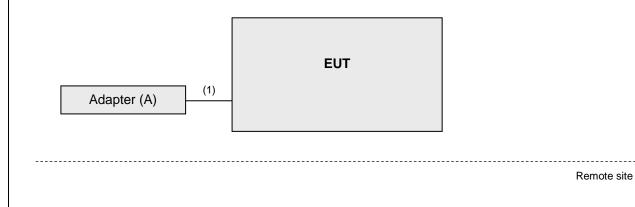
 \boxtimes Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
-	1	1	FSK

Test Condition:

Applicable to	Environmental Conditions	Input Power	Tested by
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Wayne Lai
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Wayne Lai
PLC	22 deg. C, 65 % RH	120 Vac, 60 Hz	Tim Chen
EB/DT	25 deg. C, 60 % RH	120 Vac, 60 Hz	Gavin Wu

3.3 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
А	Adapter	ASUS	AD827M	NA	NA	

Note: All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	1	N	0	Accessory of the EUT

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standard:

FCC Part 15, Subpart C (15.231) ANSI C63.10- 2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

Fundamental	Field Strength of	of Fundamental	Field Strength of Spurious	
Frequency (MHz)	uV/meter	dBuV/meter	uV/meter	dBuV/meter
40.66 ~ 40.70	2250	67.04	225	48.04
70 ~ 130	1250	61.94	125	41.94
130 ~ 174	1250 ~ 3750	61.94 ~ 71.48	125 ~ 375	41.94 ~ 51.48
174 ~ 260	3750	71.48	375	51.48
260 ~ 470	3750 ~ 12500	71.48 ~ 81.94	375 ~ 1250	51.48 ~ 61.94
Above 470	12500	81.94	1250	61.94

Note:

1. Where F is the frequency in MHz, the formula for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F)-6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F)- 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

2. The above field strength limits are specified at a distance of 3meters. The tighter limits apply at the band edges.

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Mar. 18, 2020	Mar. 17, 2021
Spectrum Analyzer Agilent	N9010A	MY52220314	Dec. 07, 2020	Dec. 06, 2021
Spectrum Analyzer ROHDE & SCHWARZ	FSV40	100980	Apr. 20, 2020	Apr. 19, 2021
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Apr. 16, 2020	Apr. 15, 2021
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-969	Nov. 22, 2020	Nov. 21, 2021
BILOG Antenna SCHWARZBECK	VULB 9168	9168-472	Nov. 06, 2020	Nov. 05, 2021
Fixed Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	Apr. 14, 2020	Apr. 13, 2021
Loop Antenna	EM-6879	269	Sep. 17, 2020	Sep. 16, 2021
Preamplifier EMCI	EMC001340	980201	Oct. 21, 2020	Oct. 20, 2021
Preamplifier EMCI	EMC 012645	980115	Oct. 07, 2020	Oct. 06, 2021
Preamplifier EMCI	EMC 330H	980112	Oct. 07, 2020	Oct. 06, 2021
Power Meter Anritsu	ML2495A	1012010	Sep. 01, 2020	Aug. 31, 2021
Power Sensor Anritsu	MA2411B	1315050	Sep. 01, 2020	Aug. 31, 2021
RF Coaxial Cable EMCI	EMC104-SM-SM- 8000	171005	Oct. 07, 2020	Oct. 06, 2021
RF Coaxial Cable HUBER+SUHNNER	SUCOFLEX 104	EMC104-SM-SM- 1000(140807)	Oct. 07, 2020	Oct. 06, 2021
RF Coaxial Cable WOKEN	8D-FB	Cable-Ch10-01	Oct. 07, 2020	Oct. 06, 2021
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 10.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

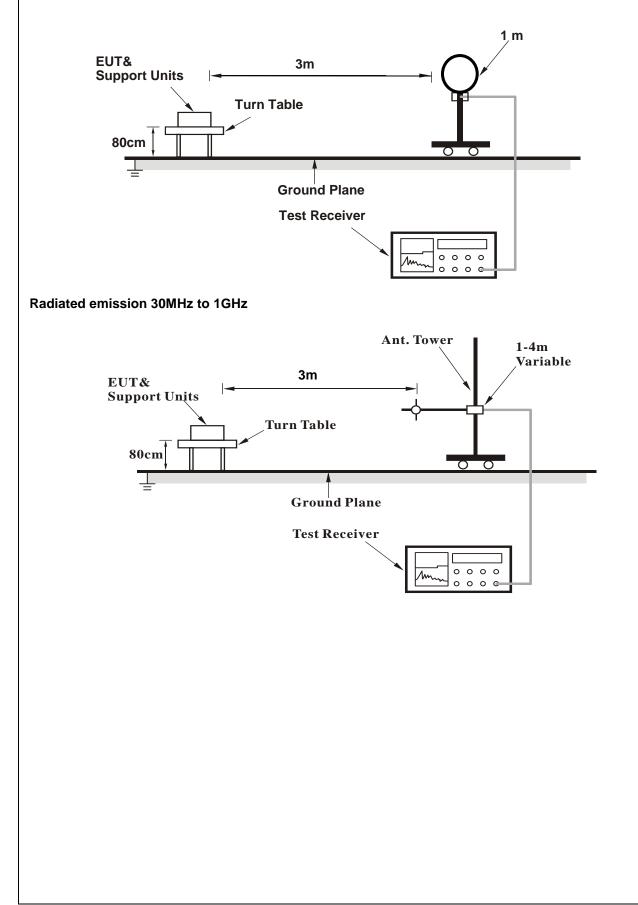
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

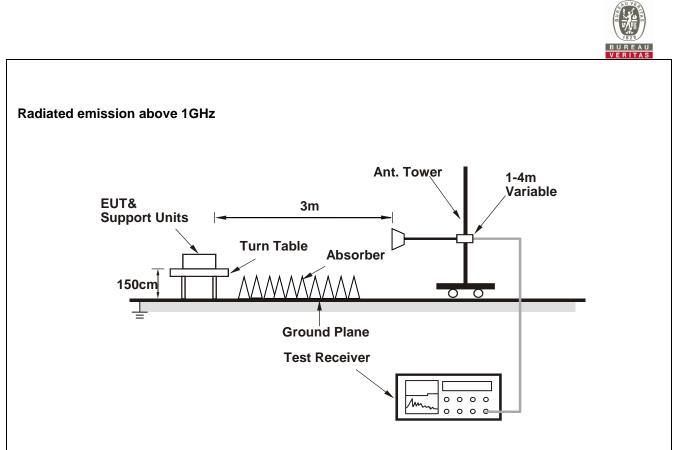
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

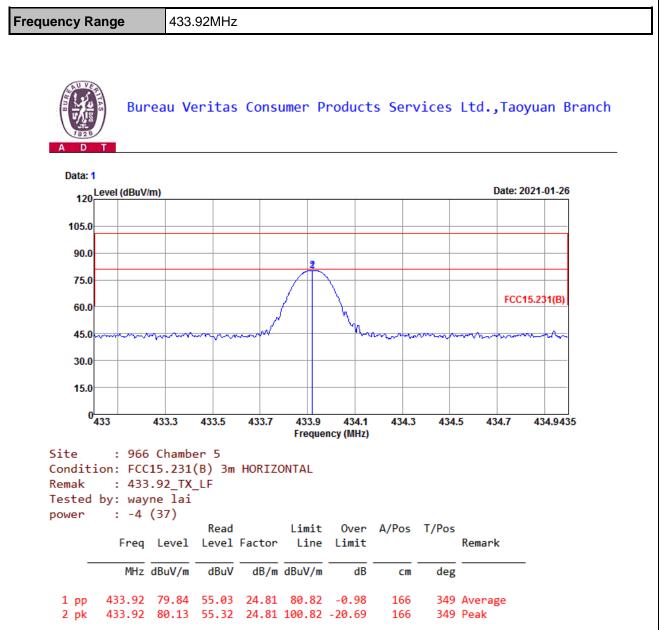
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) or Average detection (AV) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

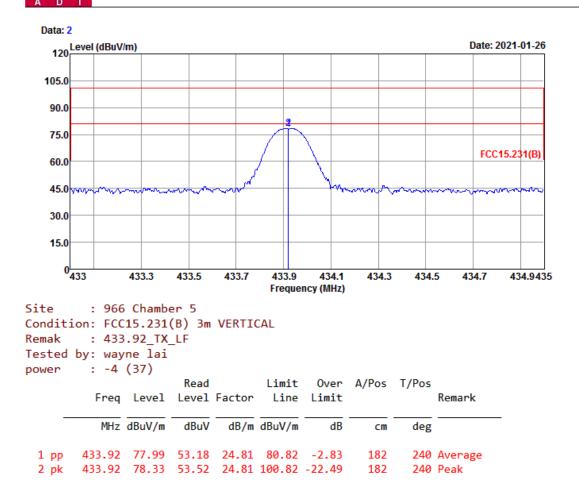
4.1.5 Test Set Up

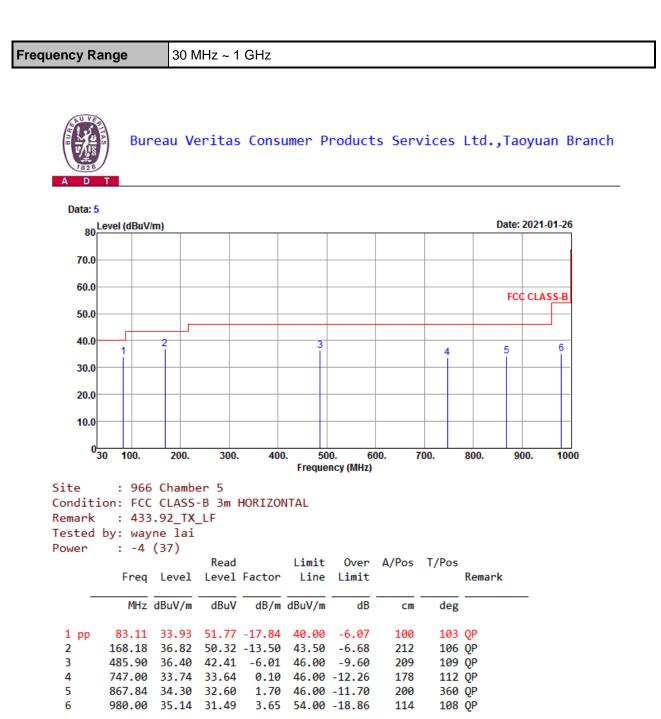
Radiated emission below 30MHz


For the actual test configuration, please refer to the attached file (Test Setup Photo).

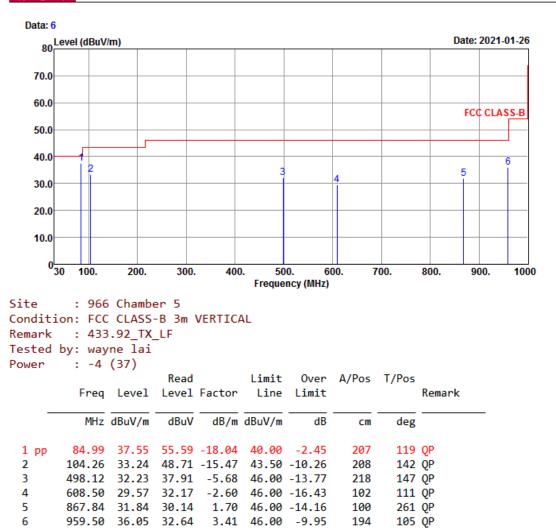
4.1.6 EUT Operating Conditions

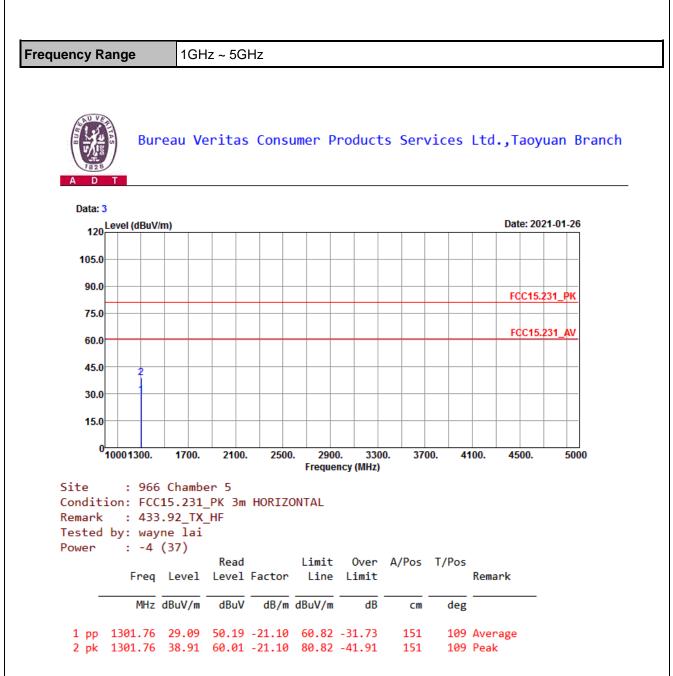
a. Set the EUT under transmission condition continuously at specific channel frequency.


4.1.7 Test Results

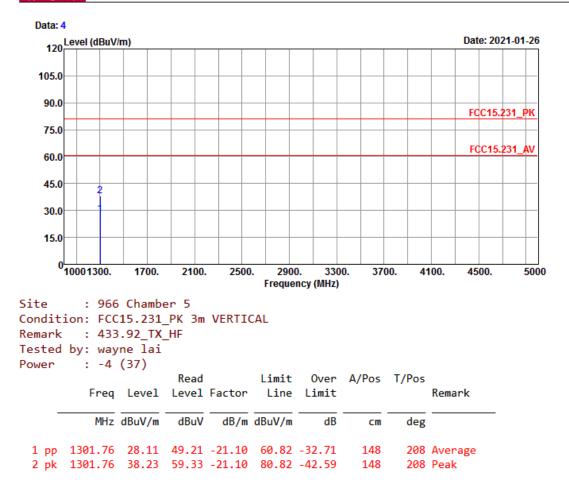


Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch





Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch



Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)		
Frequency (MHz)	Quasi-Peak	Average	
0.15 - 0.5	66 - 56	56 - 46	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

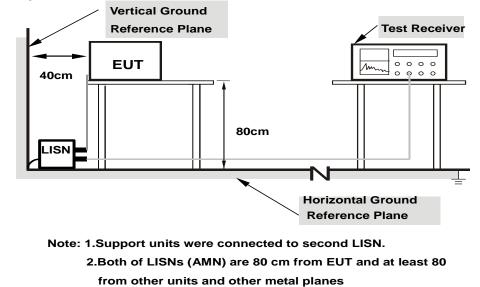
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 04, 2020	Dec. 03, 2021
RF signal cable Woken	5D-FB	Cable-cond1-01	Jan. 16, 2021	Jan. 15, 2022
LISN/AMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 20, 2020	Feb. 19, 2021
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 28, 2020	Aug. 27, 2021
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-12040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

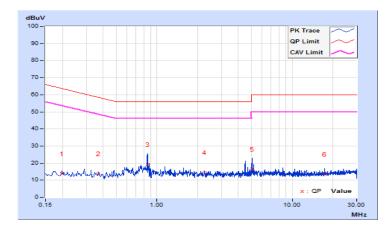
4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

4.2.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

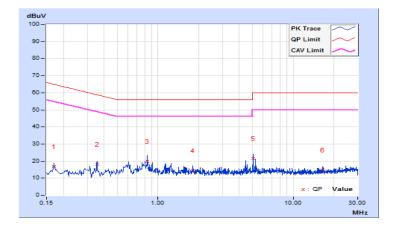

4.2.7 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	22℃, 65%RH
Tested by	Tim Chen	Test Date	2021/1/21

	Phase Of Power : Line (L)									
	Frequency	Correction	Reading Value		Emission Level		Limit		Margin	
No		Factor	(dBuV)		(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.19780	9.71	4.01	1.89	13.72	11.60	63.70	53.70	-49.98	-42.10
2	0.37000	9.77	3.95	1.38	13.72	11.15	58.50	48.50	-44.78	-37.35
3	0.85000	9.84	9.28	2.74	19.12	12.58	56.00	46.00	-36.88	-33.42
4	2.25800	9.90	4.67	1.23	14.57	11.13	56.00	46.00	-41.43	-34.87
5	5.08600	9.94	6.55	2.28	16.49	12.22	60.00	50.00	-43.51	-37.78
6	17.43000	10.02	3.38	0.86	13.40	10.88	60.00	50.00	-46.60	-39.12

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

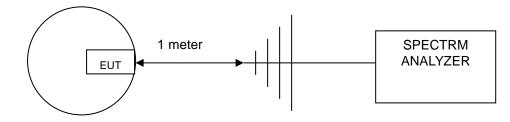


Fraguenov Bongo	150kHz ~ 30MHz	Detector Function &	Quasi-Peak (QP) / Average	
Frequency Range		Resolution Bandwidth	(AV), 9kHz	
Input Power	120Vac 60Hz	Environmental Conditions	22℃, 65%RH	
—				
Tested by	Tim Chen	Test Date	2021/1/21	

	Phase Of Power : Neutral (N)									
	Frequency	Correction	Reading Value		Emission Level		Limit		Margin	
No		Factor	(dBuV)		(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17000	9.71	7.03	1.20	16.74	10.91	64.96	54.96	-48.22	-44.05
2	0.35400	9.79	8.28	1.56	18.07	11.35	58.87	48.87	-40.80	-37.52
3	0.83798	9.85	10.06	2.47	19.91	12.32	56.00	46.00	-36.09	-33.68
4	1.81800	9.90	4.61	0.88	14.51	10.78	56.00	46.00	-41.49	-35.22
5	5.08200	9.98	11.72	2.52	21.70	12.50	60.00	50.00	-38.30	-37.50
6	16.43400	10.13	4.52	0.87	14.65	11.00	60.00	50.00	-45.35	-39.00

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value


4.3 20dB Bandwidth Measurement

4.3.1 Limits of 20dB Bandwidth Measurement

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for device operating above 70 MHz and below 900 MHz.

Fundamental Frequency (MHz)	Limit Of Emission Bandwidth (kHz)			
433.92	1084.80			

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

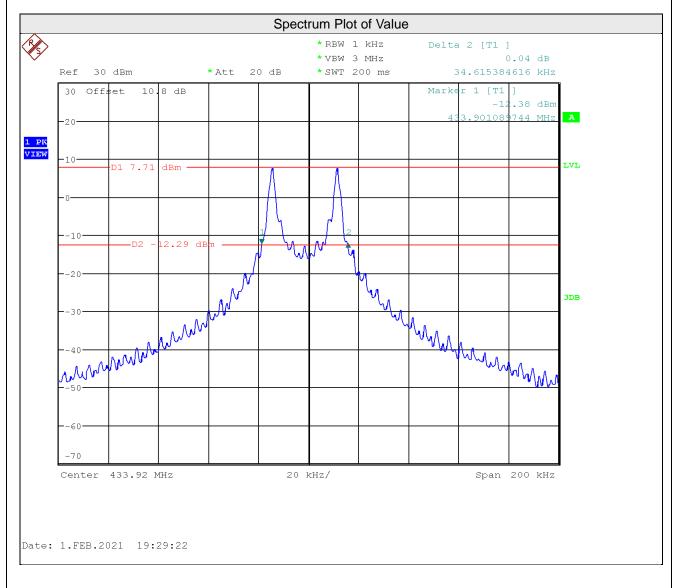
4.3.4 Test Procedures

- a. The EUT was placed on the turn table.
- b. The signal was coupled to the spectrum analyzer through an antenna.
- c. Set the resolution bandwidth to 1kHz and video bandwidth to 3kHz then select Peak function to scan the channel frequency.
- d. The emission bandwidth was measured and recorded.

4.3.5 Deviation from Test Standard

No deviation.

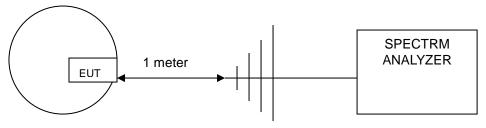
4.3.6 EUT Operating Conditions


Same as Item 4.1.6.

4.3.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (kHz)	Maximum Limit (kHz)	Pass / Fail		
1	433.92	34.615384616	1084.80	Pass		
*1 imit: 422 02NU = * 0.250/ 4004 00U =						

*Limit: 433.92MHz * 0.25% = 1084.80kHz



4.4 Deactivation Time Measurement

4.4.1 Limits of Deactivation Time Measurement

A transmitter activated manually shall cease transmission within 5 seconds after activation.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

a. The EUT was placed on the turning table.

- b. The signal was coupled to the spectrum analyzer through an antenna.
- c. Set the resolution bandwidth to 1MHz and video bandwidth to 3MHz. The spectrum analyser was turned to the centre frequency of the transmitter's and the analyser's marker function was used to determine the duration of transmission.
- d. The transmission duration was measured and recorded.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

Push Button	Frequency (MHz)	Maximum Limit (Sec)	Pass/Fail	
1	433.92	5	Pass	
	Spectrum I	Plot Of Value		
MultiView 📑 Spectrum			•	
	• RBW 1 kHz		SGL	
● Att 10 dB ● SWT 10 s ● I Zero Span	● VBW 3 kHz		o1Pk Clrw	
			D3[1] -15.89 dB	
-20 dBm			140.00 ms	
-30 dBm			M1[1] -108.74 dBm 1.89000 s	
			1.89000 \$	
-40 dBm				
-50 dBm				
Start of	transmission			
-60 dBm				
M2				
-70 dBm				
	of transmission			
-80 dBm				
-90 dBm				
Transmission Activated				
-100 dBm				
share a second and the second of the second se	يدينها بشيرة المحطين معتقاله ورزر	a second to the state of a location	المحاف الملهد والمعالية والمعالم والمالية والمحاف	
ullusisesteeneelelleneerseentherrette Unite	Ahrendation and the second of the second second	georranischer werden Maleranne ander geber tasie	Makharan walan wasan wana maka maka maka maka maka mana da	
CF 433.92 MHz	100)1 pts	1.0 s/	
2 Marker Table				
	Value Y-Value L.89 s -108.74 dBm	Function	Function Result	
M2 1 1	L.96 s -68.06 dBm .0 ms -15.89 dB			
D3 M2 1 140	.0 ms -15.89 (B		22.02.2021	
		✓ Rea	ady 42.02.2021	

12:56:33 22.02.2021

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ----