

FCC Test Report

Report No.: RFBDHL-WTW-P22030883-1

FCC ID: U9K-CM0060

Product: Smart Alarm Wireless Indoor Security Camera

Brand: SimpliSafe

Model No.: CM006

Received Date: 2022/3/22

Test Date: 2022/11/17 ~ 2022/11/30

Issued Date: 2022/12/15

Applicant: SimpliSafe Inc

Address: 294 Washington St Floor 9

Boston 02108

- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

FCC Registration / 198487 / TW2021

Designation Number:

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report to notify us of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Releas	e Control Record	3
1 (Certificate of Conformity	4
2 9	Summary of Test Results	5
2.1 2.2	Measurement Uncertainty Modification Record	
3 (General Information	6
3.1	General Description of EUT	6
3.2	Description of Test Modes	
3.2.1	Test Mode Applicability and Tested Channel Deta	
3.1	Duty Cycle of Test Signal	8
3.2	Description of Support Units	9
3.2.1		
3.3	General Description of Applied Standards	.11
4 1	Test Types and Results	12
4.1	Radiated Emission Measurement	
4.1.1	Limits of Radiated Emission Measurement	12
4.1.2	Test Instruments	13
	Test Procedures	
	Deviation from Test Standard	
	Test Set Up	
	EUT Operating Conditions	
	Test Results	
4.2	Conducted Emission Measurement	
	Limits of Conducted Emission Measurement	
	Test Instruments	
	Test Procedures	
	Deviation from Test Standard	
	Test Setup EUT Operating Conditions	
	Test Results	
4.2.7	20dB Bandwidth Measurement	
-	Limits of 20dB Bandwidth Measurement	
	Test Setup	
		31
	Test Procedures	-
	Deviation from Test Standard	
	EUT Operating Conditions	
	Test Results	
4.4	Deactivation Time Measurement	33
4.4.1	Limits of Deactivation Time Measurement	33
	Test Setup	
	Test Instruments	
	Test Procedures	
	Deviation from Test Standard	
	EUT Operating Conditions	
	Test Results	
5 F	Pictures of Test Arrangements	35
Append	dix – Information of the Testing Laboratories	36

Release Control Record

Issue No.	Description	Date Issued
RFBDHL-WTW-P22030883-1	Original Release	2022/12/15

1	Certificate of Conformity						
	Product:	Smart Alarm Wireless Indoor Security Camera					
	Brand:	SimpliSafe					
	Test Model:	CM006					
	Sample Status:	Engineering sample					
	Applicant:	SimpliSafe Inc					
	Test Date:	2022/11/17 ~ 2022/11/30					
	Standards:	47 CFR FCC Part 15, Subpart C (Section 15.231)					
		ANSI C63.10: 2013					

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Jessica Cheng / Senior Specialist

Date:

Date:

2022/12/15

2022/12/15

Approved by :

Jeremy Lin / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.231)						
FCC Clause	lest Item Result Result Remarks						
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -12.90 dB at 0.44925 MHz				
15.209 15.231(b)	Radiated Emission Test	Pass	Meet the requirement of limit. Minimum passing margin is -2.9 dB at 81.30 MHz.				
15.231(c)	Emission Bandwidth Measurement	Pass	Meet the requirement of limit.				
15.231(a)	De-activation	Pass	Meet the requirement of limit.				
15.203	Antenna Requirement	Pass	No antenna connector is used.				

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	3.00 dB
	9kHz ~ 30MHz	5.7 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	4.61 dB
	200MHz ~ 1000MHz	5.41 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	3.00 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smart Alarm Wireless Indoor Security Camera
Brand	SimpliSafe
Test Model	CM006
Sample Status	Engineering sample
Davian Quantu Datian	4.2V Li battery
Power Supply Rating	5Vdc from Micro USB port
Modulation Type	FSK
Operating Frequency	433.92MHz
Field Strength	77.8 dBuV/m
Antenna Type	Metal Stamping Antenna with -7.2 dBi gain
Antenna Connector	NA
Accessory Device	NA
Data Cable Supplied	Micro-B USB cable (3m)

Note:

- 1. There are WiFi 2.4G and Sub-G 433MHz technology used for the EUT.
- 2. WiFi 2.4G and Sub-G 433MHz technologies cannot transmit at same time.
- 3. Due to radiated measurements are made and the antenna gain is already accounted for this device, so provide an antenna datasheet and/or antenna measurement report is not required. The antenna dimensions and pictures (include antenna wire length if have) are stated in EUT photo exhibit.
- 4. For Radiated Emissions test of charging mode, following modes were pre-tested:
 - ♦ Charging Mode (Powered from Adapter)
 - Charging Mode (Powered from Notebook)
 The worst emission level was found when the EUT tested under Charging Mode (Powered from Adapter), therefore, only its test data was recorded in this report.
- 5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

1 channel is provided to this EUT

Channel	Freq. (MHz)
1	433.92

3.2.1 Test Mode Applicability and Tested Channel Deta

UT Configure Applicable to						Description
Mode	RE≥1G	RE < 1G PLC		EB	DT	Description
А		\checkmark	-	\checkmark	\checkmark	Battery
В	-	\checkmark	\checkmark	-	-	Charging with Adapter
С	-	-	\checkmark	-	-	Charging with Laptop
ere RE≥10	G: Radiated Emis	sion above 1GHz		RE<1G: Radiate	d Emission bel	ow 1GHz
	Power Line Cond			EB: 20dB Bandw	vidth measurem	ient
DT: De	eactivation Time r	neasurement				
e: The antenna	a had been pre-te	sted on the positio	ned of each 3 a	ixis. The worst case	s were found w	hen positioned on Z-plane.
listod Emie	sion Test (Al					
					•	ble combinations
architectur		nations, data ra	ales and ante	enna ports (if EL	or with anter	ina diversity
	,	s (were) select	ed for the fir	nal test as listed	below.	
EUT Config		Available C		Tested Cha		Modulation Type
A		1		1		FSK
liated Emis	sion Test (Be	elow 1GHz):				
architectur	e).	ilations, data ra				ina diversity
architectur Following	e). channel(s) wa	s (were) select	ed for the fir	al test as listed	below.	
architectur Following o EUT Config	e). channel(s) wa gure Mode	is (were) select Available C	ed for the fir	nal test as listed Tested Cha	below.	Modulation Type
architectur Following	e). channel(s) wa gure Mode	s (were) select	ed for the fir	al test as listed	below.	
architectur Following o EUT Config A	e). channel(s) wa gure Mode	is (were) select Available C	ed for the fir	nal test as listed Tested Cha	below.	Modulation Type FSK
architectur Following o EUT Config A B	e). channel(s) wa gure Mode	is (were) select Available (1 -	ed for the fir	nal test as listed Tested Cha	below.	Modulation Type FSK
architectur Following o EUT Config A B ver Line Co	e). channel(s) wa gure Mode	is (were) select Available (1 - ission Test:	ted for the fir	nal test as listed Tested Cha 1	below. annel	Modulation Type FSK
architectur Following o EUT Config A B ver Line Co Pre-Scan h	e). channel(s) wa gure Mode	is (were) select Available 0 1 - ission Test: ducted to deter	ted for the fir Channel	nal test as listed Tested Cha 1	below. annel	Modulation Type FSK
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a	e). channel(s) wa gure Mode a a a a a a b a b a b a b a b a b a b	is (were) select Available 0 1 - ission Test: ducted to deter	ted for the fir Channel	nal test as listed Tested Cha 1	below. annel	Modulation Type FSK
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur	e). channel(s) wa gure Mode onducted Em nas been cond vailable modu e).	is (were) select Available (1 - - - - - - - - - - - - - - - - - -	and for the fir	nal test as listed Tested Cha 1 st-case mode fi enna ports (if EU	below. annel rom all possi JT with anter	Modulation Type FSK
architectur Following of EUT Config A B ver Line Co Pre-Scan h between ar architectur Following of	e). channel(s) wa gure Mode onducted Em nas been cond vailable modu e). channel(s) wa	is (were) select Available (1 - - - - - - - - - - - - - - - - - -	mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fr enna ports (if EU nal test as listed	below. annel rom all possi JT with anter below.	Modulation Type FSK
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config	e). channel(s) wa gure Mode onducted Em nas been cond vailable modu e). channel(s) wa gure Mode	is (were) select Available (1 - - - - - - - - - - - - - - - - - -	mine the wo ates and ante	nal test as listed Tested Cha 1 st-case mode fi enna ports (if EU	below. annel rom all possi JT with anter below.	Modulation Type FSK
architectur Following of EUT Config A B ver Line Co Pre-Scan h between ar architectur Following of	e). channel(s) wa gure Mode onducted Em has been cond vailable modu e). channel(s) wa gure Mode	is (were) select Available (1 - - - - - - - - - - - - - - - - - -	mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fr enna ports (if EU nal test as listed	below. annel rom all possi JT with anter below.	Modulation Type FSK
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config B C	e). channel(s) wa gure Mode onducted Em nas been cond vailable modu e). channel(s) wa gure Mode	is (were) select Available (1 - - - - - - - - - - - - - - -	mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fr enna ports (if EU nal test as listed	below. annel rom all possi JT with anter below.	Modulation Type FSK
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config B C	e). channel(s) wa gure Mode onducted Em has been cond vailable modu e). channel(s) wa gure Mode	is (were) select Available (1 - - - - - - - - - - - - - - -	mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fr enna ports (if EU nal test as listed	below. annel rom all possi JT with anter below.	Modulation Type FSK
architectur Following of EUT Config A B Ver Line Co Pre-Scan h between at architectur Following of EUT Config B C ission Bano	e). channel(s) wa gure Mode onducted Em has been conducted vailable modu e). channel(s) wa gure Mode dwidth Measu	is (were) select Available (1 	amine the wo ates and ante ted for the fir	nal test as listed Tested Cha 1 rst-case mode fi enna ports (if EU nal test as listed Tested Cha	below. annel rom all possi JT with anter below. annel	Modulation Type FSK
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config B CC ission Band Pre-Scan h between a	e). channel(s) wa gure Mode mas been conducted Em has been conducted e). channel(s) wa gure Mode channel(s) wa gure Mode channel(s) wa gure Mode channel(s) wa gure Mode channel(s) wa gure Mode	is (were) select Available (1 ission Test: ission Test: ducted to deter lations, data ra is (were) select Available (- - urement: ducted to deter	mine the wo ates and ante ted for the fir Channel	nal test as listed Tested Cha 1 rst-case mode fi enna ports (if EU nal test as listed Tested Cha	below. annel rom all possi JT with anter below. annel	Modulation Type FSK - ble combinations a diversity Modulation Type - -
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config B CC ission Bano Pre-Scan h between a architectur	e). channel(s) wa gure Mode mas been conducted Em mas been conducted channel(s) wa gure Mode channel(s) wa gure Mode channel(s) wa gure been conducted mas been conducted vailable modu e).	is (were) select Available (1 ission Test: ission Test: ducted to deter ilations, data ra (were) select Available (- - urement: ducted to deter lations, data ra	mine the wo ates and ante channel mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fr enna ports (if EL nal test as listed Tested Cha rst-case mode fr enna ports (if EL	below. annel rom all possi JT with anter below. annel rom all possi JT with anter	Modulation Type FSK - ble combinations a diversity Modulation Type - -
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config B CC ission Band Pre-Scan h between a architectur Following of	e). channel(s) wa gure Mode onducted Em nas been conducted e). channel(s) wa gure Mode dwidth Measure has been conducted channel(s) wa channel(s) wa channel(s) wa	is (were) select Available (1 ission Test: ission Test: ducted to deter attaions, data rations, data ration	mine the wo ates and ante mine the wo ates and ante mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fi enna ports (if EU nal test as listed Tested Cha -	below. annel rom all possi JT with anter below. annel rom all possi JT with anter	Modulation Type FSK - ble combinations a diversity Modulation Type - -
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config B C ission Band Pre-Scan h between a architectur Following of EUT Config	e). channel(s) wa gure Mode mas been conducted Em has been conducted e). channel(s) wa gure Mode channel(s) wa gure Mode channel(s) wa gure Mode	is (were) select Available (1 	mine the wo ates and ante mine the wo ates and ante mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fi enna ports (if EL nal test as listed Tested Cha rst-case mode fi enna ports (if EL nal test as listed Tested Cha	below. annel rom all possi JT with anter below. annel T with anter below.	Modulation Type FSK ble combinations a diversity Modulation Type ble combinations a diversity Modulation Type
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config B CC ission Band Pre-Scan h between a architectur Following of	e). channel(s) wa gure Mode mas been conducted Em has been conducted e). channel(s) wa gure Mode channel(s) wa gure Mode channel(s) wa gure Mode	is (were) select Available (1 ission Test: ission Test: ducted to deter attaions, data rations, data ration	mine the wo ates and ante mine the wo ates and ante mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fi enna ports (if EU nal test as listed Tested Cha rst-case mode fi enna ports (if EU nal test as listed	below. annel rom all possi JT with anter below. annel T with anter below.	Modulation Type FSK - ble combinations a diversity Modulation Type - - - - - - - - - - - - -
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config B C ission Band Pre-Scan h between a architectur Following of EUT Config	e). channel(s) wa gure Mode mas been conducted Em has been conducted e). channel(s) wa gure Mode channel(s) wa gure Mode channel(s) wa gure Mode	is (were) select Available (1 	mine the wo ates and ante mine the wo ates and ante mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fi enna ports (if EL nal test as listed Tested Cha rst-case mode fi enna ports (if EL nal test as listed Tested Cha	below. annel rom all possi JT with anter below. annel T with anter below.	Modulation Type FSK ble combinations a diversity Modulation Type ble combinations a diversity Modulation Type
architectur Following of EUT Config A B ver Line Co Pre-Scan h between a architectur Following of EUT Config B CC ission Band Pre-Scan h between a architectur Following of EUT Config	e). channel(s) wa gure Mode mas been conducted Em has been conducted e). channel(s) wa gure Mode channel(s) wa gure Mode channel(s) wa gure Mode	is (were) select Available (1 	mine the wo ates and ante mine the wo ates and ante mine the wo ates and ante	nal test as listed Tested Cha 1 rst-case mode fi enna ports (if EL nal test as listed Tested Cha rst-case mode fi enna ports (if EL nal test as listed Tested Cha	below. annel rom all possi JT with anter below. annel T with anter below.	Modulation Type FSK ble combinations a diversity Modulation Type ble combinations a diversity Modulation Type

Deactivation Time Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type
А	1	1	FSK

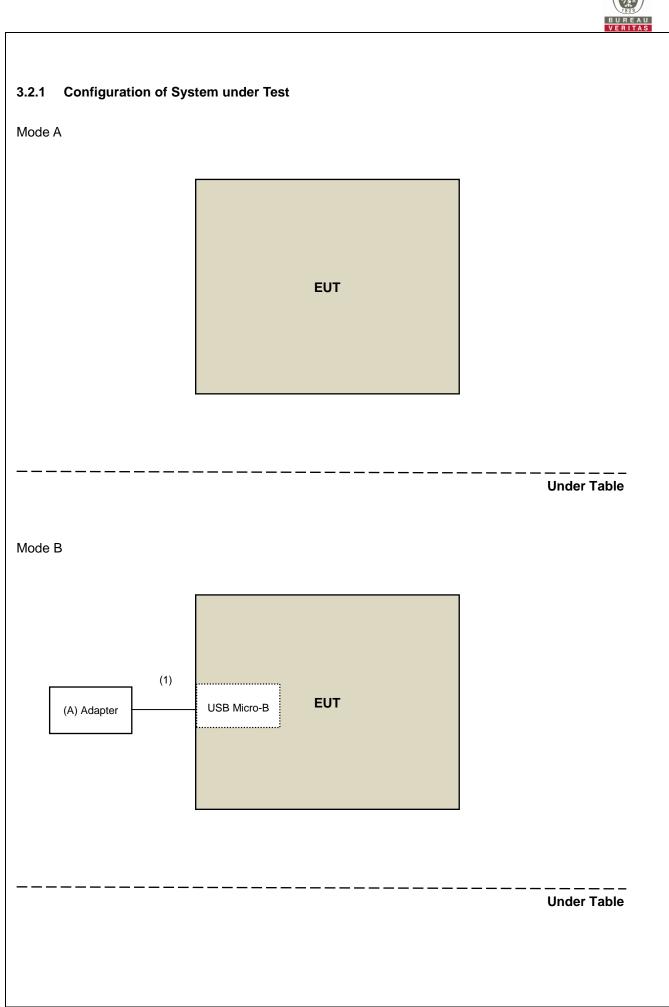
Test Condition:

Applicable to	ble to EUT Configure Mode Environmental Input Power		Input Power	Tested by
RE≥1G	А	23 deg. C, 66 % RH	4.2Vdc	Greg Lin
DE 40	А	23 deg. C, 66 % RH	4.2Vdc	Edison Lee
RE<1G	В	21 deg. C, 67 % RH	120 Vac, 60 Hz	Ian Chang
DI C	В	25 deg. C, 75 % RH	120 Vac, 60 Hz	lan Chang
PLC	С	25 deg. C, 75 % RH	120 Vac, 60 Hz (System)	lan Chang
EB/DT	А	25 deg. C, 76 % RH	4.2Vdc	Dalen Dai

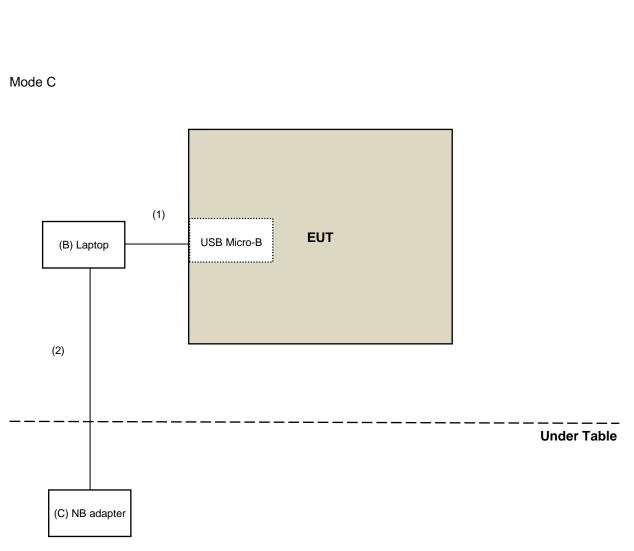
3.1 Duty Cycle of Test Signal

Duty cycle = 100%

		Duty Cycl	e Analysis		
140-					RBW: 10.000MHz
120-					VBW: 50.000MHz
110-					Total Tx on: 100ms
- 100 - 90 - 90 - 90 - 90 - 90 - 90 - 90					Measure Time: 100ms
-08 e					Duty Cycle:
70-					100%
60- 50-					
40-					100 5555
0	20m	40m Tin	60m ne (s)	80m	100.6566m



3.2 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
А	Adapter	Ktec	KSC-10A- 050150HU	N/A	N/A	Supplied by applicant
В	Laptop	Lenovo	80WG	YD01YRC9	N/A	Provided by Lab
С	NB adapter	Lenovo	PA-1450-55LL	N/A	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	Micro-B USB cable	1	3	Ν	0	Accessory of EUT
2	NB Adapter Cable	1	1.8	N	0	Provided by Lab

3.3 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standard: FCC Part 15, Subpart C (15.231) ANSI C63.10- 2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

Fundamental	Field Strength of	of Fundamental	Field Strength of Spurious		
Frequency (MHz)	uV/meter	uV/meter dBuV/meter		dBuV/meter	
40.66 ~ 40.70	2250	67.04	225	48.04	
70 ~ 130	1250	61.94	125	41.94	
130 ~ 174	1250 ~ 3750	61.94 ~ 71.48	125 ~ 375	41.94 ~ 51.48	
174 ~ 260	3750	71.48	375	51.48	
260 ~ 470	3750 ~ 12500	71.48 ~ 81.94	375 ~ 1250	51.48 ~ 61.94	
Above 470	12500	81.94	1250	61.94	

Note:

1. Where F is the frequency in MHz, the formula for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F)-6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F)- 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

2. The above field strength limits are specified at a distance of 3meters. The tighter limits apply at the band edges.

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
* LOOP ANTENNA EMCI	LPA600	270	2021/9/2	2023/9/1
Bi_Log Antenna Schwarzbeck	VULB 9168	137	2022/10/21	2023/10/20
Coupling/Dcoupling Network	CDNE-M2	00097	2022/6/1	2023/5/31
Schwarzbeck	CDNE-M3	00091	2022/6/1	2023/5/31
Pre_Amplifier HP	8447D	2432A03504	2022/2/17	2023/2/16
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2022/6/30	2023/6/29
Software	Radiated_V7.7.1.1.1	N/A	N/A	N/A
BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer R&S	FSV40	101544	2022/5/9	2023/5/8
Test Receiver	N0029A	MY51210129	2022/4/8	2023/4/7
Agilent	N9038A	MY51210137	2022/6/9	2023/6/8
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

Notes:

1. * The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA

2. The test was performed in Linkou 966 Chamber 6 (CH 6) , The test site validated date: 2021/11/4 (NSA)

3. Tested Date: 2022/11/18 ~ 2022/11/28

Unwanted Emissions above 1 GHz

Unwanted Emissions above 1 G				
Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Band Pass Filter MICRO-TRONICS	BRM17690	005	2022/5/26	2023/5/25
Boresight antenna tower fixture BV	BAF-02	6	N/A	N/A
High Pass Filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	2022/5/26	2023/5/25
Horn Antenna EMCO	3115	00027024 00028257	2022/11/13 2022/11/13	2023/11/12 2023/11/12
Horn Antenna ETS-Lindgren	3117-PA	00215857	2022/11/13	2023/11/12
Horn Antenna Schwarzbeck	BBHA 9170	212	2022/10/20	2023/10/19
Notch Filter MICRO-TRONICS	BRC50703-01	010	2022/5/26	2023/5/25
Pre-amplifier HP	8449B	3008A01201	2022/2/17	2023/2/16
Pre-amplifier (18GHz-40GHz) EMCI	EMC184045B	980175	2022/9/3	2023/9/2
Pre_Amplifier	EMC0126545	980076	2022/2/17	2023/2/16
EMCI	EMC184045B	980235	2022/2/17	2023/2/16
RF Coaxial Cable EM	EM102-KMKM-3.5+1M	EM102-KMKM- 3.5+1M-01	2022/7/7	2023/7/6
RF Coaxial Cable HUBER SUHNER	SF-104	Cable-CH6-01	2022/9/20	2023/9/19
Software	Radiated_V7.7.1.1.1	N/A	N/A	N/A
BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer Agilent	E4446A	MY51100009	2022/6/27	2023/6/26
Spectrum Analyzer KEYSIGHT	N9030A	MY54490260	2022/7/14	2023/7/13
Spectrum Analyzer	50)/40	101042	2022/9/5	2023/9/4
R&S	FSV40	101544	2022/5/9	2023/5/8
Test Receiver	NOCOOA	MY51210129	2022/4/8	2023/4/7
Agilent	N9038A	MY51210137	2022/6/9	2023/6/8
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

Notes:

The test was performed in Linkou 966 Chamber 6 (CH 6).
 Tested Date: 2022/11/17

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

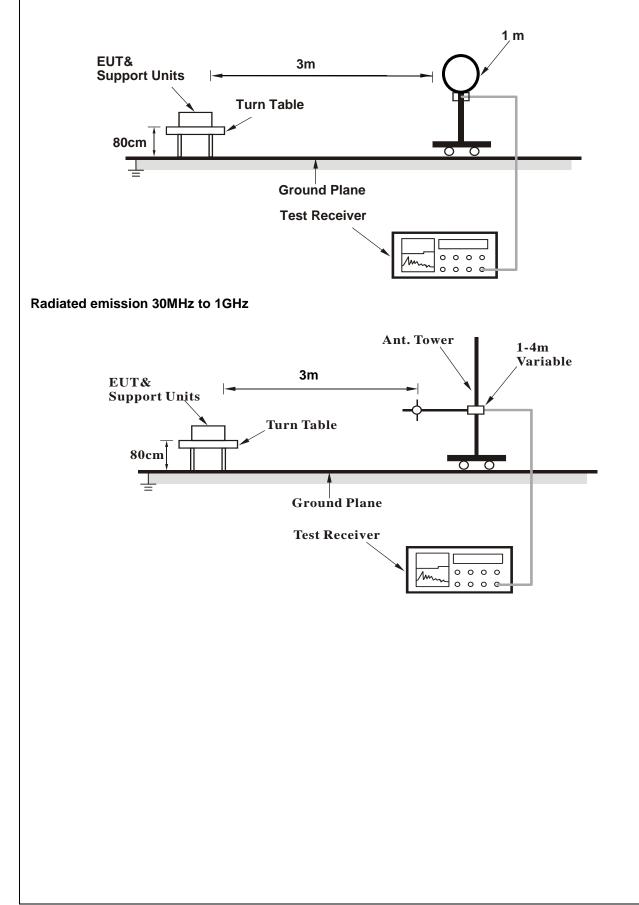
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

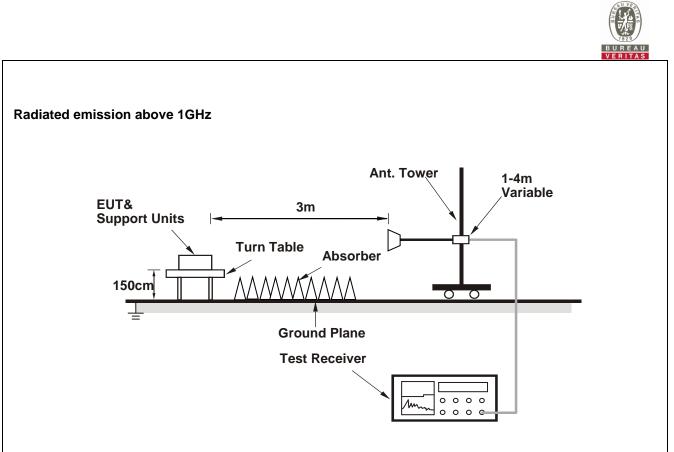
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) or Average detection (AV) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 10Hz (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Set Up

Radiated emission below 30MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Mode A- Operating Mode

Set the EUT under transmission condition continuously at specific channel frequency continuously.

Mode B - Charging Mode

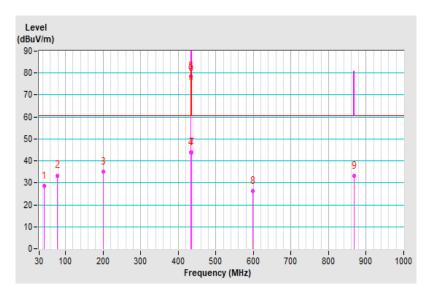
- a. Connected the EUT to Adapter.
- b. Set the EUT under charging condition.

4.1.7 Test Results

Mode A

Frequency Range	30 MHz ~ 1 GHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP), 120 kHz
Input Power	4.2 Vdc	Environmental Conditions	21°C, 67% RH
Tested By	lan Chang		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	43.21	28.60 QP	60.80	-32.20	1.34 H	235	37.40	-8.80	
2	78.34	33.40 QP	60.80	-27.40	1.65 H	255	46.20	-12.80	
3	201.00	35.10 QP	60.80	-25.70	1.52 H	251	45.70	-10.60	
4	432.92	43.70 QP	60.80	-17.10	2.93 H	0	46.10	-2.40	
5	*433.92	78.60 PK	100.80	-22.20	1.00 H	79	81.00	-2.40	
6	*433.92	77.80 AV	80.80	-3.00	1.00 H	79	80.20	-2.40	
7	434.92	43.90 QP	60.80	-16.90	1.58 H	0	46.20	-2.30	
8	598.89	26.30 QP	60.80	-34.50	1.54 H	178	25.20	1.10	
9	867.84	33.20 QP	80.80	-47.60	4.00 H	19	27.20	6.00	


Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

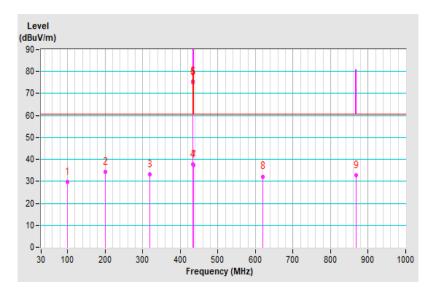
- Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. " * ": Fundamental frequency

		Detector Function		
Frequency Range	30 MHz ~ 1 GHz	& Resolution	Quasi-Peak (QP), 120 kHz	
		Bandwidth		
Innut Dowor	4.2 Vdc	Environmental	21%C 67% DH	
Input Power	4.2 Vuc	Conditions	21°C, 67% RH	
Tested By	lan Chang			

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	99.62	29.80 QP	60.80	-31.00	2.23 V	269	42.60	-12.80	
2	200.22	34.20 QP	60.80	-26.60	2.15 V	102	44.80	-10.60	
3	318.23	33.20 QP	60.80	-27.60	1.66 V	289	38.50	-5.30	
4	432.92	37.60 QP	60.80	-23.20	2.55 V	147	40.00	-2.40	
5	*433.92	75.40 PK	100.80	-25.40	1.18 V	195	77.80	-2.40	
6	*433.92	75.10 AV	80.80	-5.70	1.18 V	195	77.50	-2.40	
7	434.92	37.50 QP	60.80	-23.30	1.59 V	242	39.80	-2.30	
8	620.34	32.20 QP	60.80	-28.60	2.21 V	153	30.70	1.50	
9	867.84	32.70 QP	80.80	-48.10	1.00 V	360	26.70	6.00	

Remarks:

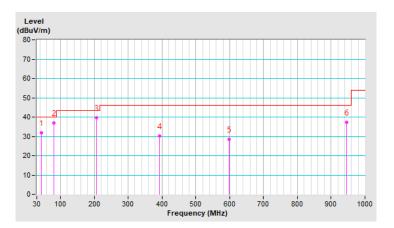

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

- Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.

- 4. Margin value = Emission level Limit value
- 5. " * ": Fundamental frequency



Mode B

Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	5 Vdc	Environmental Conditions	21°C, 67% RH
Tested By	lan Chang		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	44.44	31.8 QP	40.0	-8.2	2.00 H	101	40.5	-8.7		
2	81.30	37.1 QP	40.0	-2.9	2.38 H	140	50.6	-13.5		
3	207.40	39.8 QP	43.5	-3.7	2.60 H	161	50.2	-10.4		
4	392.24	30.3 QP	46.0	-15.7	1.54 H	188	33.9	-3.6		
5	599.28	28.4 QP	46.0	-17.6	3.86 H	285	27.3	1.1		
6	946.54	37.3 QP	46.0	-8.7	2.90 H	191	29.3	8.0		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Frequency Range	30 MH7 ~ 1 GH7	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	5 Vdc	Environmental Conditions	21°C, 67% RH
Tested By	lan Chang		

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	36.68	34.4 QP	40.0	-5.6	3.63 V	337	44.2	-9.8		
2	100.70	32.8 QP	43.5	-10.7	3.27 V	302	45.5	-12.7		
3	201.58	39.7 QP	43.5	-3.8	2.99 V	274	50.3	-10.6		
4	317.98	36.2 QP	46.0	-9.8	2.01 V	177	41.5	-5.3		
5	444.26	29.9 QP	46.0	-16.1	1.96 V	230	32.1	-2.2		
6	618.68	35.1 QP	46.0	-10.9	2.60 V	235	33.6	1.5		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

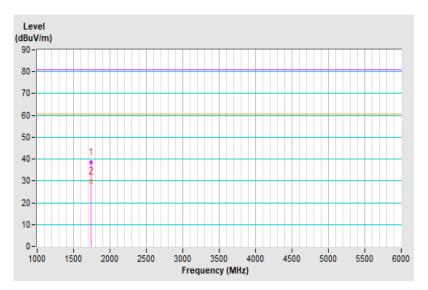
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

- 4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Mode A

Frequency Range	1GHz ~ 6GHz	Detector Function & Resolution Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz
Input Power	4.2 Vdc	Environmental Conditions	21°C, 67% RH
Tested By	lan Chang		


	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1735.68	38.4 PK	80.8	-42.4	1.64 H	263	42.6	-4.2
2	1735.68	29.7 AV	60.8	-31.1	1.64 H	263	33.9	-4.2

Remarks:

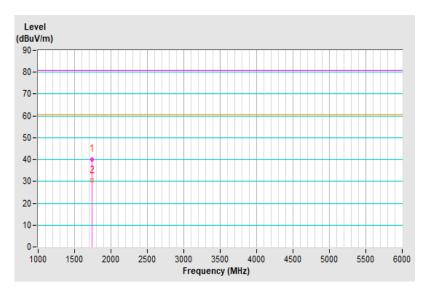
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

– Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

Frequency Range	1GHz ~ 6GHz	& Resolution	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz
Input Power	4.2 Vdc	Environmental Conditions	21°C, 67% RH
Tested By	lan Chang		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1735.68	40.2 PK	80.8	-40.6	2.15 V	123	44.4	-4.2	
2	1735.68	30.4 AV	60.8	-30.4	2.15 V	123	34.6	-4.2	


Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

– Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-Peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.2.2 Test Instruments

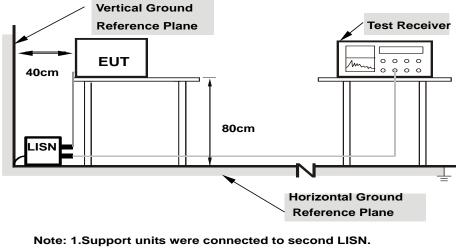
Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
50 ohm terminal	minal 0900510		2022/9/19	2023/9/18
LYNICS	0900310	E1-011286	2022/9/19	2023/9/18
50 Ohms Terminator LYNICS	0900510	E1-01-305	2022/2/9	2023/2/8
Attenuator STI	STI02-2200-10	NO.4	2022/9/2	2023/9/1
DC LISN		100219	2022/8/2	2023/8/1
R&S	ESH3-Z6	844950/018	2022/8/2	2023/8/1
DC LISN Schwarzbeck	NNLK 8121	8121-808	2022/4/29	2023/4/28
High Voltage Probe Schwarzbeck	TK9420	00982	2021/12/24	2022/12/23
Isolation Transformer Erika Fiedler	D-65396	017	2022/9/8	2023/9/7
LISN R&S	ENV216	101196	2022/5/24	2023/5/23
		8121-731	2022/5/26	2023/5/25
LISN	NNLK 8121	8121-00759	2022/8/18	2023/8/17
Schwarzbeck	NNLK8129	8129229	2022/6/8	2023/6/7
	NSLK 8128	8128-244	2022/11/8	2023/11/7
RF Coaxial Cable Commate	5D-FB	Cable-CO5-01	2022/1/28	2023/1/27
Software BVADT	Cond_V7.3.7.4	N/A	N/A	N/A
Test Receiver R&S	ESR3	102412	2022/1/22	2023/1/21

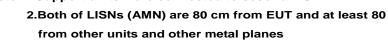
Notes:

1. The test was performed in Linkou Conduction 5.

2. Tested Date: 2022/11/30

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.


Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

4.2.4 Deviation from Test Standard

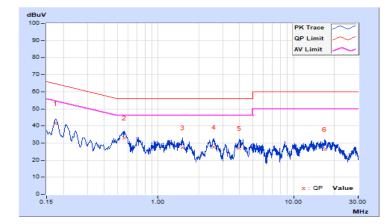
No deviation.

4.2.5 Test Setup

4.2.6 EUT Operating Conditions

Mode B & C- Charging Mode

- a. Connected the EUT to Adapter or Notebook PC.
- b. Set the EUT under charging condition.

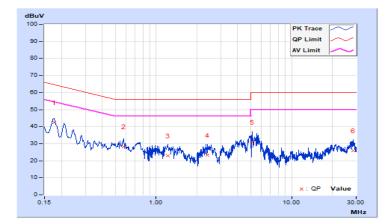

4.2.7 Test Results

Mode B

Frequency Range	150 kHz ~ 30 MHz	Pasallitian	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	lan Chang		

	Phase Of Power : Line (L)									
No	Frequency Correction Reading Value Emission Level o Factor (dBuV) (dBuV)						rgin B)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17394	9.93	31.49	16.78	41.42	26.71	64.77	54.77	-23.35	-28.06
2	0.56384	9.95	23.02	13.35	32.97	23.30	56.00	46.00	-23.03	-22.70
3	1.50548	10.01	17.41	7.48	27.42	17.49	56.00	46.00	-28.58	-28.51
4	2.57480	10.06	17.53	7.36	27.59	17.42	56.00	46.00	-28.41	-28.58
5	3.97928	10.12	16.96	6.80	27.08	16.92	56.00	46.00	-28.92	-29.08
6	17.00192	10.55	15.73	4.19	26.28	14.74	60.00	50.00	-33.72	-35.26

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150 kHz ~ 30 MHz		Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	lan Chang		

	Phase Of Power : Neutral (N)									
No			Frequency Correction Reading Value Emission Level Factor (dBuV) (dBuV)			nit uV)		gin B)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17793	9.94	32.54	17.25	42.48	27.19	64.58	54.58	-22.10	-27.39
2	0.57980	9.97	18.31	9.48	28.28	19.45	56.00	46.00	-27.72	-26.55
3	1.21817	10.00	12.99	4.21	22.99	14.21	56.00	46.00	-33.01	-31.79
4	2.39126	10.06	13.09	4.54	23.15	14.60	56.00	46.00	-32.85	-31.40
5	5.13167	10.18	20.64	6.70	30.82	16.88	60.00	50.00	-29.18	-33.12
6	28.36544	10.62	15.26	4.69	25.88	15.31	60.00	50.00	-34.12	-34.69

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Mode C

Frequency Range	nge 150 kHz ~ 30 MHz Bandwidth		Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	lan Chang		

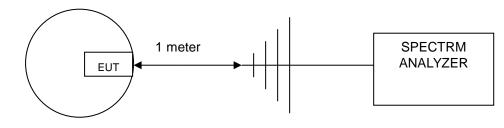
	Phase Of Power : Line (L)									
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15399	9.93	41.07	22.70	51.00	32.63	65.78	55.78	-14.78	-23.15
2	0.44526	9.94	29.27	23.40	39.21	33.34	56.96	46.96	-17.75	-13.62
3	0.73142	9.96	19.51	13.56	29.47	23.52	56.00	46.00	-26.53	-22.48
4	2.04014	10.03	17.46	12.93	27.49	22.96	56.00	46.00	-28.51	-23.04
5	4.71344	10.15	16.06	7.71	26.21	17.86	56.00	46.00	-29.79	-28.14
6	13.92164	10.49	13.75	8.67	24.24	19.16	60.00	50.00	-35.76	-30.84

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Frequency Range	150 kHz ~ 30 MHz		Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	lan Chang		

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor	Readin (dB			Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.94	41.60	23.25	51.54	33.19	66.00	56.00	-14.46	-22.81
2	0.44925	9.96	29.41	24.03	39.37	33.99	56.89	46.89	-17.52	-12.90
3	0.75137	9.98	19.54	13.50	29.52	23.48	56.00	46.00	-26.48	-22.52
4	1.38179	10.01	19.15	14.63	29.16	24.64	56.00	46.00	-26.84	-21.36
5	7.86931	10.28	16.60	9.76	26.88	20.04	60.00	50.00	-33.12	-29.96
6	19.88669	10.57	13.09	8.77	23.66	19.34	60.00	50.00	-36.34	-30.66

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value


4.3 20dB Bandwidth Measurement

4.3.1 Limits of 20dB Bandwidth Measurement

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for device operating above 70 MHz and below 900 MHz.

Fundamental Frequency (MHz)	Limit Of Emission Bandwidth (kHz)		
433.92	1084.80		

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

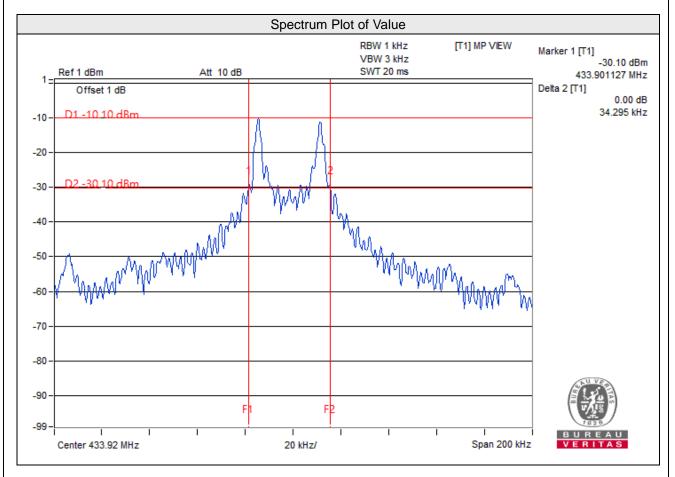
- a. The EUT was placed on the turn table.
- b. The signal was coupled to the spectrum analyzer through an antenna.
- c. Set the resolution bandwidth to 1kHz and video bandwidth to 3kHz then select Peak function to scan the channel frequency.
- d. The emission bandwidth was measured and recorded.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

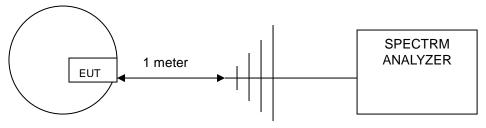


4.3.7 Test Results

Mode A

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Maximum Limit (MHz)	Pass / Fail			
1	433.92	0.03	1.0848	Pass			

*Limit: 433.92MHz * 0.25% = 1084.80kHz



4.4.1 Limits of Deactivation Time Measurement

A transmitter activated manually shall cease transmission within 5 seconds after activation.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

a. The EUT was placed on the turning table.

- b. The signal was coupled to the spectrum analyzer through an antenna.
- c. Set the resolution bandwidth to 1kHz and video bandwidth to 3kHz. The spectrum analyser was turned to the centre frequency of the transmitter's and the analyser's marker function was used to determine the duration of transmission.
- d. The transmission duration was measured and recorded.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

Mode A

Push Button	Frequency (MHz)	Transmissi Time(Sec		aximum Limit (Sec)	Pass/Fail				
1	433.92	0.4928		5	Pass				
			Nf V / a la sa						
Spectrum Plot Of Value									
Spectrum (
Ref Level -10.00 dB	m 👘 Offset 1.00 dB 🌒	🕽 RBW 1 kHz							
Att 10 c	dB 🛑 SWT 10 s 🖲	▶ VBW 3 kHz							
●1Pk View		- <u>-</u>							
			M3[1]		-100.50 dBm 1.5507 s				
-20 dBm	End of transmis	siþn	M1[1] -10						
-30 dBm					2.3333 s				
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
Start of transm -80 dBm	Ission								
Transmission Activated	<u> </u>								
-100 dBm									
how the station of the second of the second	pilint your hillow will	uto hand the server	manufapply	ord/billion.multiply.org	Marcadiation of Marchadian and M				
CF 433.92 MHz 691 pts 1.0 s/									
Marker									
Type Ref Trc	X-value	Y-value	Function	Func	tion Result				
M1 1 D2 M1 1	2.3333 s 492.8 ms	-104.23 dBm 71.03 dB							
M3 1	1.5507 s	-100.50 dBm							

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@bureauveritas.com</u> Web Site: <u>http://ee.bureauveritas.com.tw</u>

The address and road map of all our labs can be found in our web site also.

--- END ----