I-Test Laboratory Total 35 pages

# **TEST REPORT**

Report No. : 15050811-1

Product description: Doorbell Transmitter

Model/Type : SIGNOLUXDTX-A, SIGNOLUXDTX-B

Applicant's name: Adec & Partner AG

Lab: I-Test Laboratory

Add: 1-2 floor, South Block, Building A2, No 3 Keyan Lu, Science City, Guangzhou, Guangdong Province, P.R. China
 Http:// www.i-testlab.com
 E-mail: itl@i-testlab.com

Tel: +86-20-32209330 Fax: +86-20-62824387

|                                                      | TEST REPORT                                                                                                                                               |                                    |  |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|
| FCC Part 15.231: 2014                                |                                                                                                                                                           |                                    |  |  |  |  |
|                                                      | FCC ID: U94SIGNOLUXDTX                                                                                                                                    |                                    |  |  |  |  |
| Report Reference No:                                 | 15050811-1                                                                                                                                                |                                    |  |  |  |  |
| Tested by (+ signature)                              | Jumy quu                                                                                                                                                  | Jumy Qiu                           |  |  |  |  |
| Tested by (+ signature):<br>Review by (+ signature): | Sunnay Zong                                                                                                                                               | Sunway Zeng                        |  |  |  |  |
| Approved by (+ signature)                            | Pauler L:                                                                                                                                                 | Pauler Li                          |  |  |  |  |
| Date of issue                                        | Jun. 4, 2015                                                                                                                                              |                                    |  |  |  |  |
| Total number of pages:                               | 35 Pages                                                                                                                                                  |                                    |  |  |  |  |
| Testing Laboratory:                                  | I-Test Laboratory<br>(Accredited by CNAS, Accredited Number: L4957)<br>FCC- Registration No: 935596 Renewal on April. 19, 2012<br>IC Assigned Code: 8368A |                                    |  |  |  |  |
| Address:                                             | 1-2 floor, South Block, Building A2 No3 Keyan Lu, Science City,<br>Guangzhou, Guangdong, China                                                            |                                    |  |  |  |  |
| Applicant's name:                                    | Adec & Partner AG                                                                                                                                         |                                    |  |  |  |  |
| Address                                              | Staldenbachstrasse 30 CH-8808 pf                                                                                                                          | affikon, Switzerland               |  |  |  |  |
| Manufacturer's name                                  | Dtech audio company limited                                                                                                                               |                                    |  |  |  |  |
| Address:                                             | No. B1 Enping District Zone II, Jian Guangdong, China                                                                                                     | gmen Industrial Transfer District, |  |  |  |  |
| Test specification:                                  | Entrusted testing                                                                                                                                         |                                    |  |  |  |  |
| Standard                                             | FCC PART 15.231: 2014                                                                                                                                     |                                    |  |  |  |  |
| Non-standard test method:                            | N/A                                                                                                                                                       |                                    |  |  |  |  |
| Date of Sample Receive                               | Mar. 15, 2015                                                                                                                                             |                                    |  |  |  |  |
| Date of Test:                                        | Mar. 18, 2015 to Jun. 4, 2015                                                                                                                             |                                    |  |  |  |  |
| Test item description:                               | Doorbell Transmitter                                                                                                                                      |                                    |  |  |  |  |
| Trade Mark                                           | Humantechnik                                                                                                                                              |                                    |  |  |  |  |
| Model/Type reference                                 | SIGNOLUXDTX-A                                                                                                                                             |                                    |  |  |  |  |
| Ratings:                                             | 3.0Vdc 1*CR2030 Battery                                                                                                                                   |                                    |  |  |  |  |

# TABLE OF CONTENT

|   | TES                                                                                                                                                                        | r Report                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                             |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Test Sun                                                                                                                                                                   | imary                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                             |
| 2 | General                                                                                                                                                                    | nformation                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                             |
|   | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7<br>2.8                                                                                                                       | Client Information<br>General Description of E.U.T.<br>Details of E.U.T.<br>Description of Support Units.<br>Standards Applicable for Testing<br>Test Location<br>Deviation from Standards<br>Abnormalities from Standard Conditions.                                                                                                                                                                                                       | 5<br>6<br>6<br>6<br>6                                                                                                                                                                                                                         |
| 3 | Test Res                                                                                                                                                                   | ults                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                             |
|   | 3.1<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.1.5<br>3.1.6<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.3<br>3.3.1<br>3.3.2<br>3.3.1<br>3.3.2<br>3.3.3<br>3.3.4<br>3.3.5 | Test Setup<br>Test Procedure<br>Measurement Data<br>Radiated outside of the specified frequency bands<br>Measurement Data for FCC Part 15.231.b)<br>Occupied Bandwidth<br>E.U.T. Operation<br>Test Setup<br>Test Procedure<br>Measurement Data<br>Dwell Time<br>E.U.T. Operation<br>Test Setup<br>Test Setup<br>Test Setup<br>Test Procedure<br>Test Procedure<br>Test Procedure<br>Test Procedure<br>Test Requirements<br>Measurement Data | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}, 7\\  \end{array}, 8\\  \begin{array}{c} \end{array}, 9\\ 12\\ 20\\ 23\\ 23\\ 23\\ 23\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 26\end{array} $ |
| 4 | Photogra                                                                                                                                                                   | phs                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27                                                                                                                                                                                                                                            |
| 5 | 4.1<br>4.2<br>4.3<br>Equipme                                                                                                                                               | Radiated Emission Test Setup<br>EUT Constructional Details<br>Antenna Photo<br>Ints Used during Test                                                                                                                                                                                                                                                                                                                                        | 29<br>34                                                                                                                                                                                                                                      |
| 0 | Equipine                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                                                                                                                                                                                            |

| Test                                         | Test Requirement     | Test Method                                      | Class / Severity                                                                        | Result |
|----------------------------------------------|----------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|--------|
| Radiated Emission<br>(9kHz to 25GHz)         | FCC Part 15.231b)    | ANSI C63.10:2013                                 | FCC Part<br>15.231b)                                                                    | PASS   |
| Occupied Bandwidth                           | FCC PART<br>15.215c) | ANSI C63.10:2013                                 | In FCC PART<br>15.215c)                                                                 | PASS   |
| Dwell Time                                   | FCC Part 15.231a)    | ANSI C63.10:2013                                 | FCC Part<br>15.231a)                                                                    | PASS   |
| Conducted<br>Emissions at Mains<br>Terminals | FCC PART 15.207      | ANSI C63.10: 2013:<br>Clause 6.2 & DA 00-<br>705 | In FCC PART<br>15.207                                                                   | N/A    |
| Frequency Stability                          | FCC Part 15.231d)    | FCC CFR 47 Part<br>2.1055                        | ±0.01% for<br>devices<br>operating within<br>the frequency<br>band 40.66 -<br>40.70 MHz | N/A    |
| Radiated Emission<br>(9kHz to 25GHz)         | FCC Part 15.231e)    | ANSI C63.10:2013                                 | FCC Part<br>15.231e)                                                                    | N/A    |

# **1 TEST SUMMARY**

#### Remark:

#### Model: SIGNOLUXDTX-A, SIGNOLUXDTX-B

Only tested **SIGNOLUXDTX-A**, since the other models listed above are electric identical with only difference being the model name and appearance (buttom's shape and location setting).

# 2 GENERAL INFORMATION

#### 2.1 Client Information

| Applicant:               | Adec & Partner AG                                    |
|--------------------------|------------------------------------------------------|
| Address of<br>Applicant: | Staldenbachstrasse 30 CH-8808 pfaffikon, Switzerland |

#### 2.2 General Description of E.U.T.

| EUT Name:   | Doorbell Transmitter         |
|-------------|------------------------------|
| Item No.:   | SIGNOLUXDTX-A, SIGNOLUXDTX-B |
| Serial No.: | Not supplied by client       |

#### 2.3 Details of E.U.T.

| Power Supply:             | 3.0Vdc 1*CR2030 Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main Function:            | Copied from the SIGNOLUXDTX-A's manual<br>A "signolux" light signal system consists of at least one transmitter<br>(e.g. doorbell pushbutton) ad a "signolux" receiver. Up to 8<br>transmitters can be integrated. If e.g. the doorbell pushbutton is<br>pressed, a radio signal (radio impulses with 915 MHz) are transmitted<br>to the " signolux " receiver. This one signals the receiver signals<br>acoustically and visually with sounds and light signals.                                                                                                                        |
| Oscillating<br>Frequency: | Copied from the SIGNOLUXDTX-A's manual<br>A "signolux" light signal system consists of at least one transmitter<br>(e.g. call-pushbutton) ad a "signolux" receiver. Up to 8 transmitters<br>can be integrated. If e.g. the doorbell pushbutton is pressed, a radio<br>signal (radio impulses with 915 MHz) are transmitted to the<br>" signolux " receiver. This one signals the receiver signals acoustically<br>and visually with sounds and light signals.<br>RF module IC (TH72031)(@U3), crystal (@Y2) frequency: 28.59<br>MHz; CPU(MCV14A)(@U1), crystal (@Y1) frequency: 12.0 MHz |

Frequency Range: 915 MHz

Modulation: FSK; Emission designator: 600KF1D Occupied bandwidth (99 % BW): 600kHz

Antenna Number & Type: One & Fixed on PCB; Gained: 2 dBi; Antenna length: 20mm; Impedance: 50-Ohm; Antenna min distance to the shell: 10mm.

Types of Momentary Signals : (a) A manually operated transmitter shall be equipped with a push-to-operate switch and be under manual control at all transmission times. When released, the transmitter shall cease transmission (holdover time of up to 5 seconds is permitted).

| 1 | Product SW/HW version       | N/A            |
|---|-----------------------------|----------------|
| 2 | Radio SW/HW version         | N/A            |
| 3 | Test SW Version             | push_door. hex |
| 4 | RF power setting in TEST SW | 1.0 mW         |

#### 2.4 Description of Support Units

### 2.5 Standards Applicable for Testing

The standard used was FCC PART 15.231.

The EUT belongs to low power communication device transmitter, and it's an unlicensed low power auxiliary device.

#### 2.6 Test Location

1

I-Test Laboratory

Address: 1-2 floor, South Block, Building A2 No3 Keyan Lu, Science City, Guangzhou, Guangdong, China

Accredited by CNAS, Accredited Number: L4957

FCC- Registration No: 935596 Renewal on April. 19, 2012

IC Assigned Code: 8368A

#### 2.7 Deviation from Standards

None.

#### 2.8 Abnormalities from Standard Conditions

None.

# **3 TEST RESULTS**

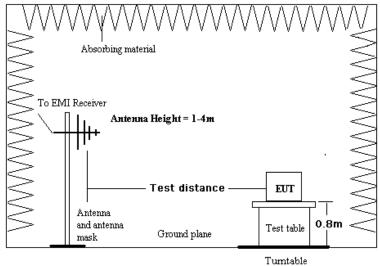
#### 3.1 Radiation Interference

| Test Requirement: | FCC Part15.231b) & FCC Part15.209                                                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013                                                                                                                                                                                                     |
| Detector:         | Peak for pre-scan (The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz.)<br>Average detector if maximised peak within 6dB of limit |

### 3.1.1 E.U.T. Operation

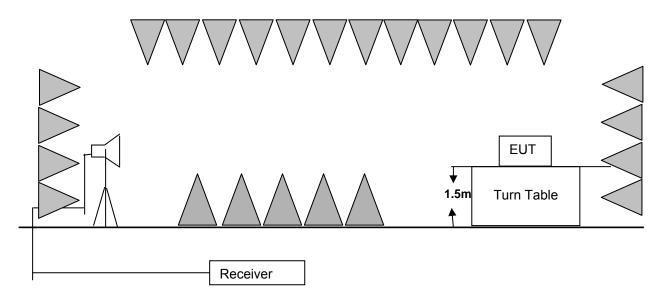
**Operating Environment:** 

 Temperature: 20°C
 Humidity:50% RH
 Atmospheric Pressure: 103 kPa


 FUE Operation:
 Fue operation:

EUT Operation:

In the fundamental test, connecting the EUT to peripheral devices.


Test the EUT work normally in on mode during the whole test.

#### 3.1.2 Test Setup



TRF No. /

#### 1 GHz to 40 GHz emissions:



#### 3.1.3 Test Procedure

# ANSI STANDARD C63.10-2013 6.5 Radiated emissions from unlicensed wireless devices in the frequency range of 30 MHz to 1000 MHz

An initial pre-scan was performed in the 3m chamber using the spectrum analyser in peak detection mode. Average measurements were conducted based on the peak sweep graph. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical polarities. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes for the final measurement.

#### 3.1.4 Measurement Data

Copy from FCC Part 15.231b)

(b) In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

| Above 470   | 12,500             |                       | 1,250              |  |  |
|-------------|--------------------|-----------------------|--------------------|--|--|
| 260-470     | 3,750 to 12,500**  |                       | 375 to 1,250**     |  |  |
| 174-260     | 3,750              |                       | 375                |  |  |
| 130-174     | 1,250 to 3,750**   |                       | 125 to 375**       |  |  |
| 70-130      | 1,250              |                       | 125                |  |  |
| 40.66-40.70 | 2,250              |                       | 225                |  |  |
| (MHz)       | (microvolts/meter) |                       | (microvolts/meter) |  |  |
| Frequency   | Fundamental        |                       | Emissions          |  |  |
| Fundamental | Field Strength of  | Field Strength of the |                    |  |  |

\*\* linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz,  $\mu$ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz,  $\mu$ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

| Average measurement of carrier |                             |      |            |        |           |       |  |
|--------------------------------|-----------------------------|------|------------|--------|-----------|-------|--|
| Frequency                      | Le                          | vel  | Transducer | Limit  | Margin    |       |  |
| MHz                            | dBu                         | V/m  | dB         | dBuV/m | dB        |       |  |
|                                | V                           | Н    |            |        | V         | Н     |  |
| 915.0                          | 77.9                        | 78.4 | 24.0       | 81.94  | 4.04 3.54 |       |  |
|                                | Peak measurement of carrier |      |            |        |           |       |  |
| Frequency                      | Le                          | vel  | Transducer | Limit  | Margin    |       |  |
| MHz                            | dBu                         | V/m  | dB         | dBuV/m | dB        |       |  |
|                                | V                           | Н    |            |        | V         | Н     |  |
| 915.0                          | 90.8                        | 91.4 | 24.0       | 101.94 | 11.14     | 10.54 |  |

Note:

Fundamental: 12500uV/m (81.94 dBuV/m) for AV limit in band (Above 470MHz).

The transducer factor = antenna factor + cable loss - preamplifier.

The Level = Read level + transducer factor.

H: Antenna polarization horizontal direction. V: Antenna polarization vertical direction.

The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.

The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

|                  | Average measurement of harmonics and spurious emission at 913.0 Miliz |      |        |            |        |             |       |  |
|------------------|-----------------------------------------------------------------------|------|--------|------------|--------|-------------|-------|--|
| Fre              | equency                                                               | Lev  | vel    | Transducer | Limit  | Min. Margin |       |  |
|                  | MHz                                                                   | dBu  | dBuV/m |            | dBuV/m | dB          |       |  |
|                  |                                                                       | V    | Н      |            |        | V           | Н     |  |
| 2 <sup>nd</sup>  | 1830.0                                                                | 32.2 | 33.4   | 27.4       |        | 29.74       | 28.54 |  |
| 3 <sup>rd</sup>  | 2745.0                                                                | 31.8 | 33.2   | 27.9       |        | 30.14       | 28.74 |  |
| 4 <sup>th</sup>  | 3660.0                                                                | 32.4 | 34.4   | 30.3       |        | 29.54       | 27.54 |  |
| 5 <sup>th</sup>  | 4575.0                                                                | 33.2 | 34.3   | 34.1       |        | 28.74       | 27.64 |  |
| 6 <sup>th</sup>  | 5490.0                                                                | 33.1 | 34.7   | 31.0       | 61.94  | 28.84       | 27.24 |  |
| 7 <sup>th</sup>  | 6405.0                                                                | 34.0 | 34.4   | 35.1       |        | 27.94       | 27.54 |  |
| 8 <sup>th</sup>  | 7320.0                                                                | 34.2 | 34.8   | 35.0       |        | 27.74       | 27.14 |  |
| 9 <sup>th</sup>  | 8235.0                                                                | 34.5 | 35.2   | 36.0       |        | 27.44       | 26.74 |  |
| 10 <sup>th</sup> | 9150.0                                                                | 34.7 | 35.8   | 37.3       |        | 27.24       | 26.14 |  |

| Peak measurement of harmonics and spurious emission at 915.0 MHz |                                                                                                |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| equency                                                          | Level                                                                                          |                                                                                                                                                                                                                                                            | Transducer                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit                                                  | Min. M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>I</i> largin                                        |
| MHz                                                              | dBu                                                                                            | V/m                                                                                                                                                                                                                                                        | dB                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBuV/m                                                 | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                      |
|                                                                  | V                                                                                              | Н                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                      |
| 1830.0                                                           | 40.3                                                                                           | 40.4                                                                                                                                                                                                                                                       | 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 41.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41.54                                                  |
| 2745.0                                                           | 43.2                                                                                           | 43.5                                                                                                                                                                                                                                                       | 27.9                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 38.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.44                                                  |
| 3660.0                                                           | 43.1                                                                                           | 44.8                                                                                                                                                                                                                                                       | 30.3                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 38.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.14                                                  |
| 4575.0                                                           | 43.2                                                                                           | 44.7                                                                                                                                                                                                                                                       | 34.1                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 38.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.24                                                  |
| 5490.0                                                           | 44.2                                                                                           | 44.6                                                                                                                                                                                                                                                       | 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81.94                                                  | 37.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.34                                                  |
| 6405.0                                                           | 44.3                                                                                           | 44.6                                                                                                                                                                                                                                                       | 35.1                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 37.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.34                                                  |
| 7320.0                                                           | 44.2                                                                                           | 44.9                                                                                                                                                                                                                                                       | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 37.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.04                                                  |
| 8235.0                                                           | 44.5                                                                                           | 45.6                                                                                                                                                                                                                                                       | 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 37.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.34                                                  |
| 9150.0                                                           | 44.1                                                                                           | 45.8                                                                                                                                                                                                                                                       | 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 37.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.14                                                  |
|                                                                  | Aquency<br>MHz<br>1830.0<br>2745.0<br>3660.0<br>4575.0<br>5490.0<br>6405.0<br>7320.0<br>8235.0 | Image         Lew           MHz         dBu           V         1830.0           2745.0         43.2           3660.0         43.1           4575.0         43.2           5490.0         44.2           6405.0         44.3           7320.0         44.5 | Image         Image         Level           MHz         dBuV/m           V         H           1830.0         40.3         40.4           2745.0         43.2         43.5           3660.0         43.1         44.8           4575.0         43.2         44.7           5490.0         44.2         44.6           6405.0         44.3         44.6           7320.0         44.2         44.9           8235.0         44.5         45.6 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Image         Level         Transducer         Limit           MHz         dBuV/m         dB         dBuV/m           V         H         dB         dBuV/m           1830.0         40.3         40.4         27.4           2745.0         43.2         43.5         27.9           3660.0         43.1         44.8         30.3           4575.0         43.2         44.7         34.1           5490.0         44.2         44.6         31.0           6405.0         44.3         44.6         35.1           7320.0         44.2         44.9         35.0           8235.0         44.5         45.6         36.0 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Peak measurement of harmonics and spurious emission at 915.0 MHz

Note:

Unwanted Emissions:  $1250 \mu$ V/m (61.94dBuV/m) for AV limit.

The transducer factor = antenna factor + cable loss - preamplifier.

The Level = Read level + transducer factor.

H: Antenna polarization horizontal direction. V: Antenna polarization vertical direction.

The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.

The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Note:

The EUT's transmitting frequency range belonged to 915MHz, and it is complied with the requirements of FCC Part 15.231b).

#### 3.1.5 Radiated outside of the specified frequency bands

Copy from FCC Part 15.209: Radiated emission limits, general requirements (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency     | Field Strength         | Measurement Distance |
|---------------|------------------------|----------------------|
| MHz           | microvolts/meter(uV/m) | (meters)             |
| 0.009 - 0.490 | 2400/F(kHz)            | 300                  |
| 0.490 - 1.705 | 24000/F(kHz)           | 30                   |
| 1.705 - 30.0  | 30                     | 30                   |
| 30 - 88       | 100 **                 | 3                    |
| 88 - 216      | 150 **                 | 3                    |
| 216 - 960     | 200 **                 | 3                    |
| Above 960     | 500                    | 3                    |

\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

#### Copy from FCC Part 15.231b)

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emissions and for limiting peak emissions apply. Further, compliance with the provisions of Section 15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- (3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

Note:

Since the fundamental emissions peak and average values are shown on section 3.1.6 of this report, the general radiated emission limits in Section 15.209 is the tighter limits apply at the band edges.

|            | FCC Pa  | rt 15.209 |
|------------|---------|-----------|
| Frequency  | General | Radiated  |
|            | lim     | nits      |
| MHz        | dBuV/ı  | m@3m      |
| IVITZ      | QP      | AVG       |
| 30 - 88    | 40      | /         |
| 88 - 216   | 43.5    | /         |
| 216 - 960  | 46      | /         |
| 960 - 1000 | 54      | /         |
| Above 1000 | 74(PK)  | 54        |

#### Limits for the frequency bands of 902MHz - 928 MHz

| Frequency  | FCC Part 15.231.b) |      |  |
|------------|--------------------|------|--|
| Frequency  | lim                | nits |  |
| MHz        | dBuV/m@3m          |      |  |
| IVITIZ     | QP                 | AVG  |  |
| 30 - 88    | 40                 | /    |  |
| 88 - 216   | 43.5               | /    |  |
| 216 - 902  | 46                 | /    |  |
| 928-960    | 46                 | /    |  |
| 960 - 1000 | 54                 | /    |  |
| 1000-9150  | 74(PK)             | 54   |  |

#### Remark:

- 1. RF line voltage (dBuV)= 20 log RF line voltage (uV)
- 2. In the above table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

#### **Detector:**

Resolution bandwidth for Peak and Quasi-Peak value: 200 Hz for 9 kHz to 150 kHz 9 kHz for 150 kHz to 30 MHz 120 kHz for 30 MHz to 1GHz 1 MHz for above 1 GHz, VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold For AV value: Average = Peak value + 20log (Duty cycle)

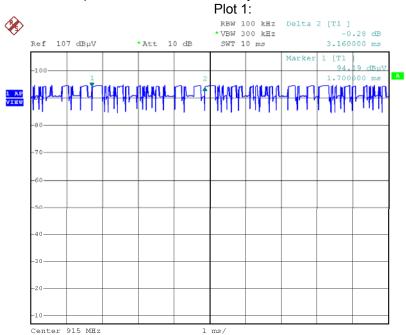
The average correction factor is computed by analyzing the on time in one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds, therefore the average value of fundamental frequency is: Average = Peak value + 20log (Duty cycle), where the duty factor is calculated from following formula:

The duration of one cycle = 3.17 ms

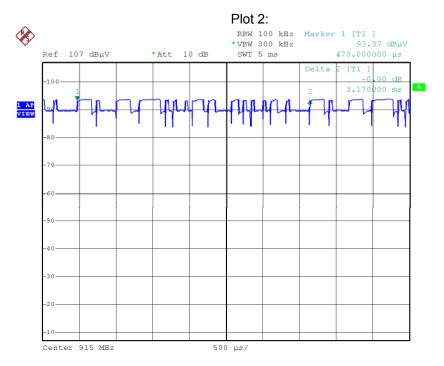
Effective period of the cycle= $\Sigma$ tn

=(200+40+200+300+40+40+40+150+90+100+50+40+40+90+40)us= 1460 us = 1.46 ms

DC =1.46/3.17=0.46057 or 46.057%


Therefore, the averaging factor is found by 20lg(0.46057) = -6.7341

And we choose averaging factor = -6.7

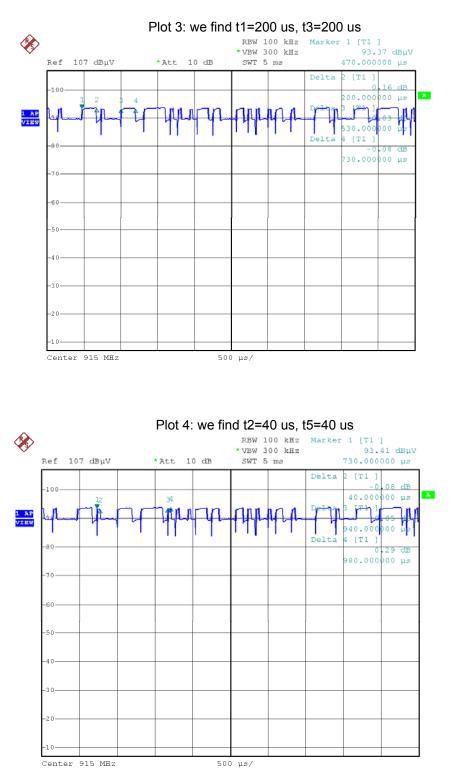

Please refer to below plots for more details.

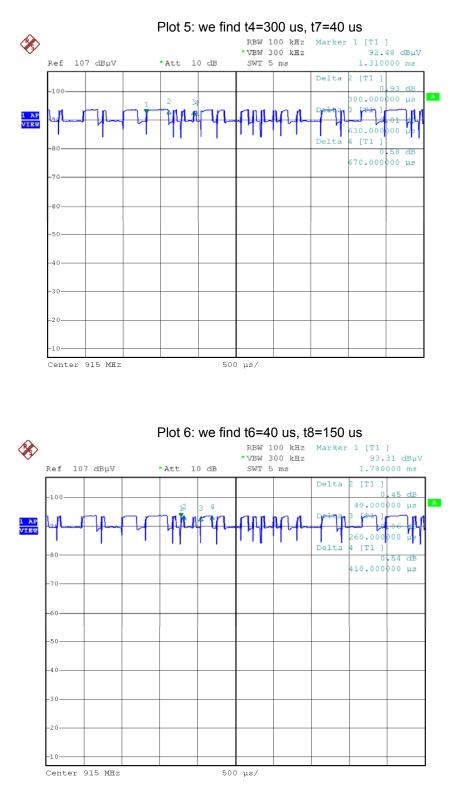

For AV value: Average = Peak value + 20log (Duty cycle) = Peak value -6.7

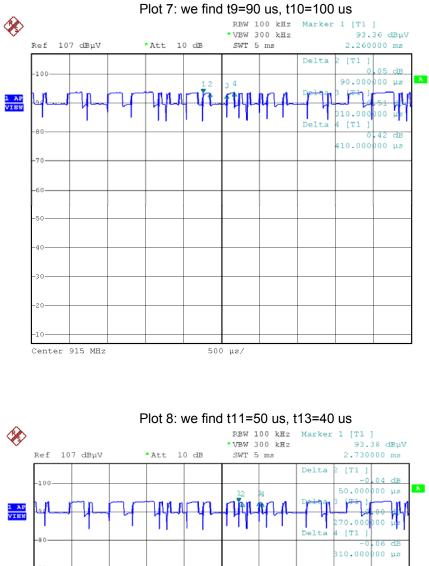
Test mode: keep the EUT work continuously.



Date: 4.JUN.2015 11:56:14





The duration of one cycle = 3.16 ms (SWT=10ms),

The duration of one cycle = 3.17 ms (SWT=5ms),

And we choose: The case of SWT=5ms, and the duration of one cycle = 3.17 ms. There are 15 pulses in one cycle with marker 1 to 2 in plot 2, and the 15 pulses' widths are shown in plot 3 to 10 as followings. And we define that "tn" = pulse width, n=pulse number.







 REW 100 kHz
 Marker 1 [T1 ]

 \*VEW 300 kHz
 93.38 dBµV

 Ref 107 dBµV
 \*Att 10 dB
 SWT 5 ms
 2.730000 ms

 100
 12 44
 0.04 dB
 50.000000 µs

 100
 12 44
 50.000000 µs
 12 40

 100
 12 44
 50.000000 µs
 10 000 µs

 100
 12 44
 50.000000 µs
 10 000 µs

 100
 12 44
 11 1
 50.000000 µs

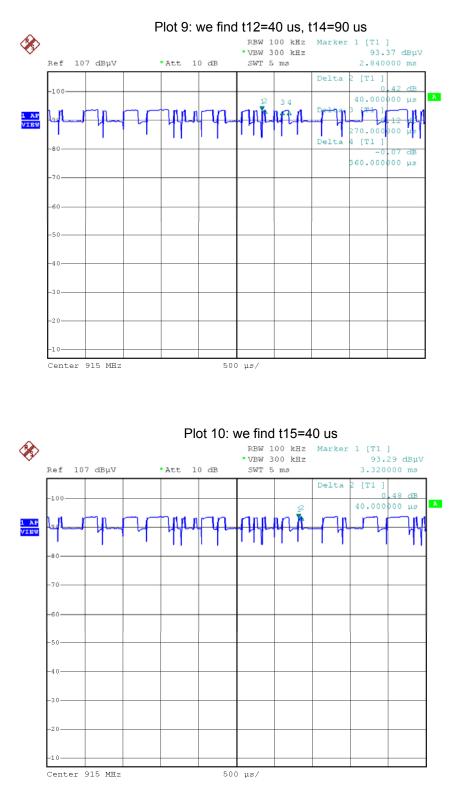
 100
 10
 10
 10 00
 10 00

 100
 10
 10
 10 00
 10 00

 100
 10
 10 00
 10 00
 10 00

 100
 10
 10 00
 10 00
 10 00

 100
 10
 10 00
 10 00
 10 00


 100
 10
 10 00
 10 00
 10 00

 100
 10
 10 00
 10 00
 10 00

 100
 10 00
 10 00
 10 00
 10 00

 100
 10 00
 10 00
 10 00
 10 00

 100
 10 00
 10 00
 10 00
 10 00



When RBW=10kHz,

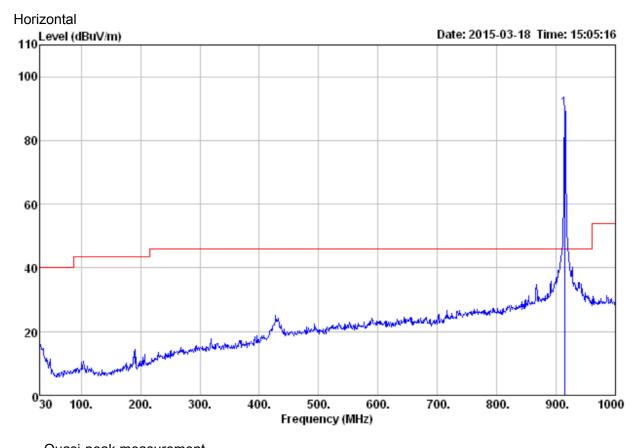
In page 13, we find PW= $\Sigma$ tn

=(200+40+200+300+40+40+40+150+90+100+50+40+40+90+40)us

- = 1460 us
- = 1.46 ms,

2/PW = 2/1.46 ms = 1.37 kHz < 10 kHz = RBW, So PDCF is not needed.

#### 3.1.6 Measurement Data for FCC Part 15.231.b)


Test the EUT work normally in transmitting mode in mains.

#### 1) 9kHz~30MHz Test result

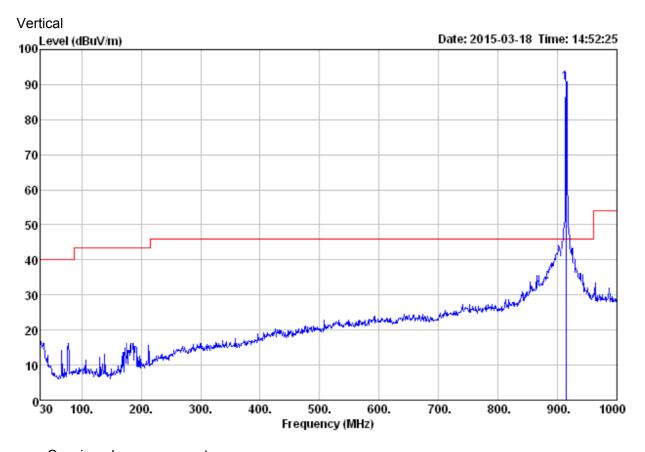
The Low frequency, which started from 9kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report.

#### 2) 30 MHz~1 GHz Spurious Emissions. Quasi-Peak Measurement

Test curves (with the Quasi-peak measurement and QP limit), 30M-1GHz, Horizontal & Vertical:



| Quasi-peak me | easurement |            |        |        |
|---------------|------------|------------|--------|--------|
| Frequency     | Level      | Transducer | Limit  | Margin |
| MHz           | dBuV/m     | dB         | dBuV/m | dB     |
| 30.0          | 17.3       | 17.9       | 40     | 22.7   |
| 184.2         | 16.6       | 8.9        | 43.5   | 26.9   |
| 423.4         | 24.4       | 16.6       | 46     | 21.6   |
| 860.1*        | 35.4       | 23.0       | 46     | 10.6   |
| 936.2*        | 35.8       | 24.2       | 46     | 10.2   |
| 972.6         | 33.3       | 23.9       | 54     | 20.7   |


Note:

The transducer factor includes antenna factor and cable loss.

\* means the max Quasi peak value for band-edge (frequency range of 802 MHz to 902MHz, except for harmonics) is the plot measurement at 860.1 MHz.

\* means the max Quasi peak value for band-edge (frequency range of 928 MHz to 1000 MHz, except for harmonics) is the plot measurement at 936.2 MHz.

The EUT was measured for both the Horizontal and Vertical polarities and performed a pretest three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.



| Quasi-peak me | asurement |            |        |        |
|---------------|-----------|------------|--------|--------|
| Frequency     | Level     | Transducer | Limit  | Margin |
| MHz           | dBuV/m    | dB         | dBuV/m | dB     |
| 30.0          | 15.5      | 17.9       | 40     | 24.5   |
| 184.1         | 15.4      | 8.9        | 43.5   | 28.1   |
| 524.2         | 22.4      | 18.8       | 46     | 23.6   |
| 900.4*        | 41.5      | 23.9       | 46     | 4.5    |
| 935.2*        | 37.5      | 24.2       | 46     | 8.5    |
| 981.7         | 33.3      | 23.7       | 54     | 20.7   |
|               |           |            |        |        |

Note:

The transducer factor includes antenna factor and cable loss.

\* means the max Quasi peak value for band-edge (frequency range of 802 MHz to 902MHz, except for harmonics) is the plot measurement at 900.4 MHz.

\* means the max Quasi peak value for band-edge (frequency range of 928 MHz to 1000 MHz, except for harmonics) is the plot measurement at 935.2 MHz.

The EUT was measured for both the Horizontal and Vertical polarities and performed a pretest three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.

#### 3) 1 GHz~9.30 GHz Spurious Emissions .Average & PK Measurement Horizontal & Vertical:

| Frequency | Level      |          | Transducer | Limit  | Mar        | gin      |
|-----------|------------|----------|------------|--------|------------|----------|
|           | dBuV/m     |          | dB         |        | dB         |          |
| GHz       | Horizontal | Vertical | uв         | dBuV/m | Horizontal | Vertical |
| 1.218     | 32.3       | 33.6     | 24.8       |        | 21.7       | 20.4     |
| 2.393     | 31.1       | 33.6     | 26.6       |        | 22.9       | 20.4     |
| 2.562     | 32.3       | 34.2     | 26.8       | 54     | 21.7       | 19.8     |
| 5.243     | 33.3       | 34.6     | 33.1       | 54     | 20.7       | 19.4     |
| 7.458     | 33.2       | 34.9     | 35.9       |        | 20.8       | 19.1     |
| 9.217     | 34.1       | 34.6     | 37.5       |        | 19.9       | 19.4     |

## Average measurement at 915 MHz

#### Peak measurement at 915 MHz

| Frequency | Level      |          | Transducer | Limit    | Mar        | gin      |
|-----------|------------|----------|------------|----------|------------|----------|
| GHz       | dBuV/m     |          |            | dBuV/m   | dl         | 3        |
| GHZ       | Horizontal | Vertical | dB         | ubuv/III | Horizontal | Vertical |
| 1.218     | 40.6       | 40.5     | 24.8       |          | 33.4       | 33.5     |
| 2.393     | 43.1       | 43.7     | 26.6       |          | 30.9       | 30.3     |
| 2.562     | 43.4       | 44.8     | 26.8       | 74       | 30.6       | 29.2     |
| 5.243     | 43.2       | 44.8     | 33.1       |          | 30.8       | 29.2     |
| 7.458     | 44.3       | 44.7     | 35.9       |          | 29.7       | 29.3     |
| 9.217     | 44.4       | 44.7     | 37.5       |          | 29.6       | 29.3     |
| Note:     |            |          |            |          |            |          |

#### Note:

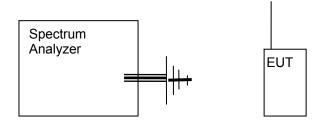
The transducer factor includes antenna factor and cable loss.

The EUT was measured for both the Horizontal and Vertical polarities and performed a pretest three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.

#### 3.2 Occupied Bandwidth

| Test Requirement: | FCC Part15.215c)                                                                                                              |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10: 2013                                                                                                             |
| Detector:         | Peak for scan (The resolution bandwidth was 10kHz and the video<br>bandwidth was 30kHz, span was 2MHz)<br>maximised peak hold |

#### 3.2.1 E.U.T. Operation

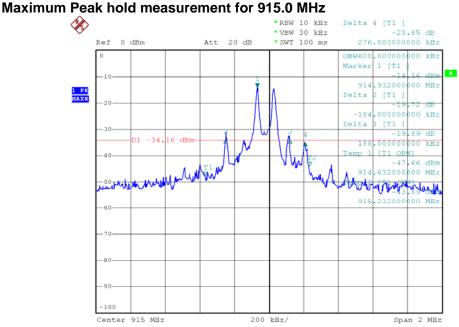

**Operating Environment:** 

Humidity:45% RH Atmospheric Pressure: 1020mBar

Temperature: 25°C EUT Operation:

Test the EUT work normally in on mode during the whole test.

#### 3.2.2 Test Setup




#### 3.2.3 Test Procedure

#### ANSI STANDARD C63.10-2013 6.9 Occupied bandwidth tests:

An initial pre-scan was performed in the 3m chamber using the spectrum analyzer in peak detection mode. Average measurements were conducted based on the peak sweep graph. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical polarities.

#### 3.2.4 Measurement Data Test for the EUT with switch ON.



Date: 16.MAY.2015 08:27:17

| Center Frequency | ΔFL- / kHz | ΔFL+ / kHz | -20dB Bandwidth/ kHz |
|------------------|------------|------------|----------------------|
| 915MHz           | -184       | 188        | 372                  |

#### Limit:

Copied from FCC Part 15.231c)

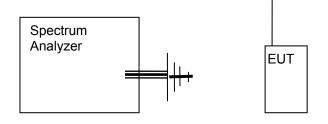
(c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

#### Note:

-20dB bandwidth = 372 kHz Limit: 0.5% of the centre frequency = 0.5%\*915 MHz=4575kHz -20dB bandwidth < 0.5% of the centre frequency

The EUT's transmitting frequency range belonged to 915MHz, and it is complied with the requirements of FCC Part 15.231c).

#### 3.3 Dwell Time


| Test Requirement: | FCC Part15.215a)                                                                                  |
|-------------------|---------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10: 2013                                                                                 |
| Detector:         | Peak for scan (The resolution bandwidth was 3MHz and the video bandwidth was 10MHz, span was 0Hz) |
|                   | maximised peak view                                                                               |

#### 3.3.1 E.U.T. Operation

| Operating Environment: |                 |                                |
|------------------------|-----------------|--------------------------------|
| Temperature: 25°C      | Humidity:45% RH | Atmospheric Pressure: 1020mBar |
| EUT Operation:         |                 |                                |

Test mode: test the EUT within switching on singly.

#### 3.3.2 Test Setup



#### 3.3.3 Test Procedure

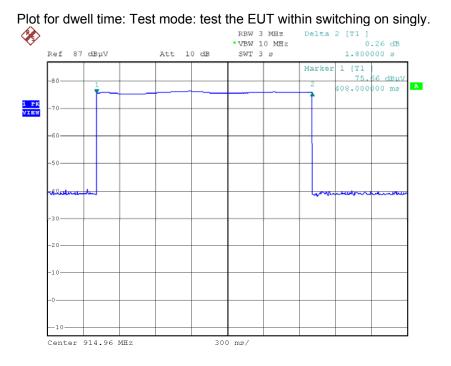
1

#### 3.3.4 Test Requirements

#### Copied From FCC Part 15.231a)

(a) The provisions of this Section are restricted to periodic operation within the band 40.66 - 40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this Section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:

(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

(4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

(5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmission are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

#### 3.3.5 Measurement Data



Date: 18.MAY.2015 13:08:41

Shutdown Time = 408 ms+1.800 s = 2.208 s, limit: 5s

#### Note:

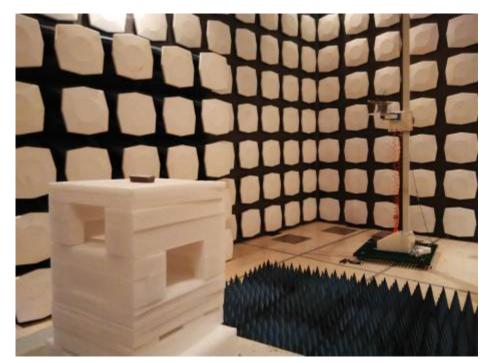
The EUT does not have automatic transmission, and it does not employ periodic transmission. The EUT does not employ for radio control purposes during emergencies involving fire, security, and safety of life.

#### Result:

The EUT's dwell time test complied with the requirements of FCC Part 15.231a)(1). And the EUT was Not Applicable to the section a(2)/a(3)/a(4)/a(5) of FCC part 15.231.


# 4 PHOTOGRAPHS

# 4.1 Radiated Emission Test Setup

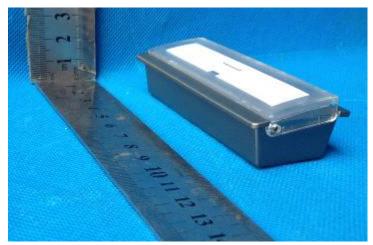

9kHz - 30MHz

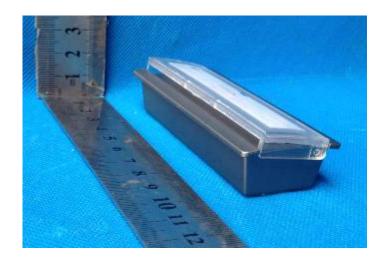


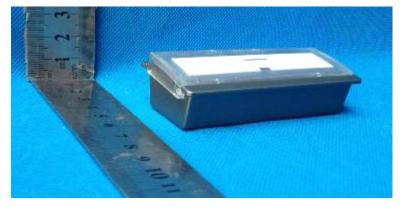
30MHz – 1GHz



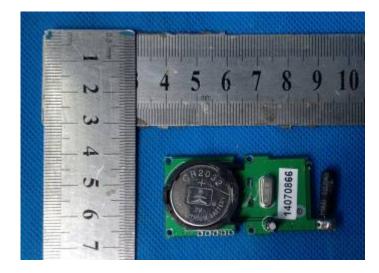
1GHz – 9.3GHz

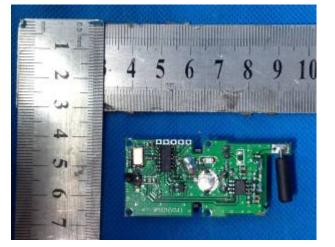


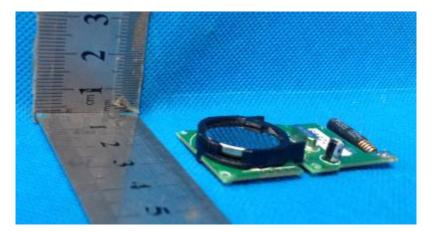


### 4.2 EUT Constructional Details

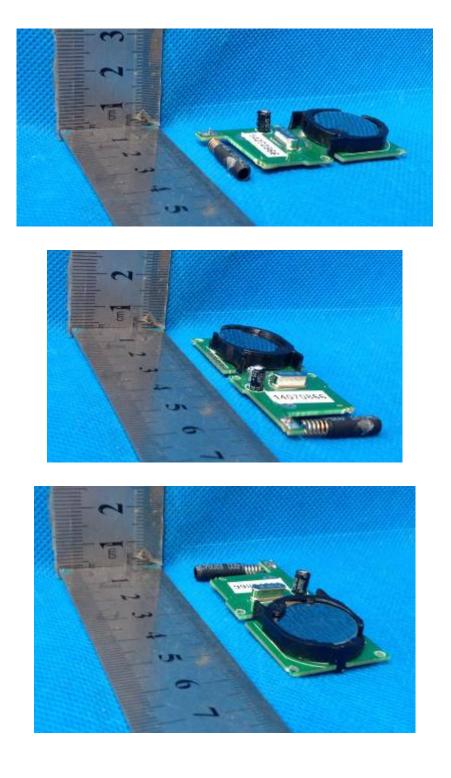

SIGNOLUXDTX-A





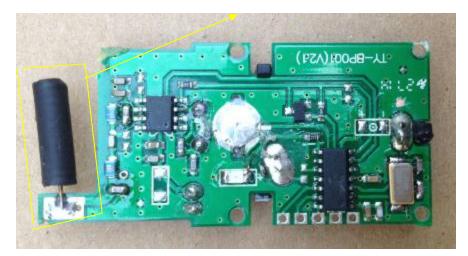













#### 4.3 Antenna Photo

#### SIGNOLUXDTX-A

#### Antenna



Note:

The EUT was used permanently attached antenna, and it's complied with the requirements of section 15.203: antenna requirement.

# 5 EQUIPMENTS USED DURING TEST

| ltem | Test Equipment                       | Manufacturer            | Model No.          | Inventory No. | Cal. Date | Cal. Due<br>date |
|------|--------------------------------------|-------------------------|--------------------|---------------|-----------|------------------|
| 1    | RF Generator                         | Rohde & Schwarz         |                    | 1.031         | 2014-5-10 | 2015-5-10        |
| I    | Ni Generator                         |                         | SMB100A-B106       | 1.051         | 2015-5-10 | 2016-5-10        |
| 2    | Spectrum Analyzer                    | Rohde & Schwarz         | FSP30              | EMC0001       | 2015-3-24 | 2016-3-24        |
| 3    | EMI Test Receiver                    | Rohde & Schwarz         | ESCI               | EMC1002       | 2015-3-24 | 2016-3-24        |
| 4    | 2-Channel Power<br>Meter             | Rohde & Schwarz         | NRP2               | 1.033         | 2014-5-10 | 2015-5-10        |
|      |                                      |                         |                    |               | 2015-5-10 | 2016-5-10        |
| 5    | Audio Analyzer                       | Hewlett Packard         | 8903B              | EMC0011       | 2014-11-5 | 2015-11-5        |
| 6    | Power Sensor                         | Rohde & Schwarz         | NRP-Z91            | 1.034         | 2014-5-10 | 2015-5-10        |
|      |                                      |                         |                    |               | 2015-5-10 | 2016-5-10        |
| 7    | Power Sensor                         | Rohde & Schwarz         | NRP-Z91            | 1.035         | 2014-5-10 | 2015-5-10        |
|      | Temperature                          |                         |                    |               | 2015-5-10 | 2016-5-10        |
| 8    | Chamber                              | Gongwen                 | GDS-250            | SFT0009       | 2014-11-5 | 2015-11-5        |
| 9    | D.C. Power Supply                    | KIKUSUI                 | PAN35-10A          | SFT0319       | 2014-11-5 | 2015-11-5        |
| 10   | Temperature<br>Chamber               | Gongwen                 | GDS-250            | SFT0009       | 2014-11-5 | 2015-11-5        |
| 11   | D.C. Power Supply                    | KIKUSUI                 | PAN35-10A          | SFT0319       | 2014-11-5 | 2015-11-5        |
| 12   | Humidity/<br>Temperature Meter       | Anymetre                | TH101B             | SFT0063       | 2014-11-5 | 2015-11-5        |
| 13   | Barometer                            | ChangChun               | DYM3               | SEL0088       | 2014-6-8  | 2015-6-8         |
| 14   | Multimeter                           | UNI-T                   | UT70A              | EMC0017       | 2014-11-5 | 2015-11-5        |
| 15   | Monopole Antenna                     | HST                     | N/A                | EMC0089       | 2014-11-5 | 2015-11-5        |
| 16   | Low loss coaxial<br>cable            | HST                     | 2 m                | EMC1008       | 2014-11-5 | 2015-11-5        |
| 17   | Monopole Antenna                     | HST                     | N/A                | N/A           | 2014-11-5 | 2015-11-5        |
| 18   | Noise Generaror                      | Ningbo Zhongce          | DF1681             | EMC0009       | 2014-11-5 | 2015-11-5        |
| 19   | Semi-Anechoic<br>chamber             | ETS•Lindgren            | FACT3 2.0          | ITL-100       | 2013-6-17 | 2016-6-17        |
| 20   | EMI Test receiver                    | R&S                     | ESVS10             | ITL-111       | 2015-1-19 | 2016-1-19        |
| 21   | EXA Spectrum<br>Analyzer             | Agilent<br>Technologies | N9010A             | ITL-114       | 2015-1-19 | 2016-1-19        |
| 22   | Biconilog Antenna                    | ETS•Lindgren            | 3142D              | ITL-105       | 2015-1-24 | 2018-1-24        |
| 23   | Pre Amplifier                        | HP                      | 8447F              | ITL-116       | 2015-1-19 | 2016-1-19        |
| 24   | Wideband<br>Amplifier Super<br>Ultra | Mini-circuits           | ZVA-183-S+         | ITL-117       | 2015-1-19 | 2016-1-19        |
| 25   | Horn Antenna                         | A-INFOMW                | JXTXLB-<br>10180-N | ITL-110       | 2015-1-24 | 2018-1-24        |
| 26   | Software                             | Audix                   | E3                 | ITL-109       | 1         | /                |
| 27   | Loop Antenna                         | BJ 2nd Factory          | ZN30900A           | EMC6001       | 2013-7-29 | 2016-7-29        |

\*\*\*End of report\*\*\*