TEST REPORT

FCC ID: U8O-STB5-LTE Product: Micronet SmarTab LTE Model No.: Micronet SmarTab Additional Model No.: N/A Trade Mark: Micronet Report No.: TCT180723E040 Issued Date: Sep. 06, 2018

Issued for:

Micronet 1865 West 2100 South, Suite 2, Salt Lake City, Utah, 84119 United States

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1.	Test Certification				3
2.	Test Result Summary				3
3.	EUT Description				
4.	General Information				
	4.1. Test environment and m	ode			8
	4.2. Test Mode				
	4.3. Description of Support L				
	4.4. Configuration of Tested				
	4.5. Measurement Results Ex				
5.	Facilities and Accreditati				
	5.1. Facilities				
	5.2. Location				15
	5.3. Measurement Uncertaint	y		<u> </u>	15
6.	Test Results and Measur				
	6.1. Conducted Output Powe	r Measurement		<u> </u>	
	6.2. Peak to Average Ratio				
	6.3. Band Edge and Conduct				
	6.4. Field Strength of Spurior				
	6.5. Frequency Stability Meas				
Ap	pendix A: Photographs of				
-	pendix B: Photographs of	-			
•	st Data: Refer to Appendix		nd 2 Annor	dix For LTE	Band 4
16					
	Appendix For LTE				(K)
	Appendix For LTE	E Band 17			
					Č.
					(K)

CT 通	Centre Technology Report No.: ICI180/23E0	040
Product:	Micronet SmarTab LTE	
Model No.:	Micronet SmarTab	
Additional Model:	N/A	
Trade Mark:	Micronet	
Applicant:	Micronet	
Address:	1865 West 2100 South, Suite 2, Salt Lake City, Utah, 84119 United States	
Manufacturer:	Micronet	
Address:	1865 West 2100 South, Suite 2, Salt Lake City, Utah, 84119 United States	
Date of Test:	Jul. 24, 2018 – Sep. 05, 2018	
Applicable Standards:	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part22 FCC CFR Title 47 Part24 FCC CFR Title 47 Part27	

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	J'm Warg	Date:	Sep. 05, 2018	
Reviewed By:	Jin Wang Bern There	– Date:	Sep. 06, 2018	
Approved By:	Beryl Zhao	Date:	Sep. 06, 2018	
	Tomsin	_	Ś	
			Page 3 of	26

Requirement	CFR 47 Section	Result
Conducted Output Power	§2.1046; §22.913; §24.232(c); §27.50(d); §27.50(c); §27.50(b);	PASS
Peak-to-Average Ratio	§2.1046; §24.232(d) §27.50(d); §27.50(c); §27.50(b);	PASS
Effective Radiated Power	§2.1046; §22.913; §24.232(c); §27.50(d); §27.50(c); §27.50(b);	PASS
Equivalent Isotropic Radiated Power	§2.1046; §22.913; §24.232(c); §27.50(d); §27.50(c); §27.50(b);	PASS
Occupied Bandwidth	§2.1049; §24.238(b); §27.53;	PASS
Band Edge	§2.1051; §22.917(a); §27.53(h); §27.53(c); §27.53(g); §24.238(a);	PASS
Conducted Spurious Emission	§2.1051; §22.917(a); §27.53(h); §27.53(g); §27.53(c); §24.238(a);	PASS
Field Strength of Spurious Radiation	§2.1053; §22.917(a); §27.53(g) ; §27.53(c); §27.53(h); §24.238(a);	PASS
Frequency Stability for Temperature & Voltage	§2.1055;§22.355; §27.54; §24.235;	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

1.8

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 26

Report No.: TCT180723E040

3. EUT Description

Product:	Micronet SmarTab LTE
Model No.:	Micronet SmarTab
Additional Model:	N/A
Trade Mark:	Micronet
Hardware Version:	P1
Software Version:	TREQ_5_0.1.14.2_20180527.1112
Tx Frequency:	LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 17: 704 MHz ~ 716 MHz
Rx Frequency:	LTE Band 2: 1930MHz ~ 1990 MHz LTE Band 4: 2110 MHz ~ 2155 MHz LTE Band 5: 869 MHz ~ 894 MHz LTE Band 12: 729 MHz ~ 746 MHz LTE Band 17: 734 MHz ~ 746 MHz
Bandwidth:	LTE Band 2: 1.4MHz /3MHz /5MHz /10MHz /15MHz /20MHz LTE Band 4: 1.4MHz /3MHz /5MHz /10MHz /15MHz /20MHz LTE Band 5: 1.4MHz /3MHz /5MHz /10MHz LTE Band 12: 1.4MHz /3MHz /5MHz /10MHz LTE Band 17: 5MHz /10MHz
Maximum Output Power to Antenna:	LTE Band 2: 23.66dBm LTE Band 4: 23.44dBm
99% Occupied Bandwidth:	LTE Band 2: 17M9G7D LTE Band 4: 17M9G7D LTE Band 5: 8M95G7D LTE Band 12: 8M98G7D LTE Band 17: 8M99G7D
Type of Modulation:	QPSK/16QAM
Antenna Type:	PIFA Antenna
Antenna Gain:	LTE Band 2: 1.9dBi LTE Band 4: 1.9dBi LTE Band 5: 1.9dBi LTE Band 12: 1.9dBi LTE Band 17: 1.9dBi
Power Supply:	Rechargeable Li-ion Battery DC 3.7V

Page 5 of 26

Emission Designator

LTE Band 2	C	QPSK	160	AM
BW(MHz)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)
1.4	1M08G7D	0.277	1M08W7D	0.233
3	2M69G7D	0.294	2M69W7D	0.257
5	4M49G7D	0.316	4M48W7D	0.273
10	8M95G7D	0.358	8M95W7D	0.309
15	13M4G7D	0.325	13M4W7D	0.287
20	17M9G7D	0.360	17M9W7D	0.275
I TE Band 4	(PSK	160	ΔΜ

LTE Band 4	(QPSK	160	AM
BW(MHz)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)
1.4	1M08G7D	0.272	1M08W7D	0.233
3	2M69G7D	0.279	2M69W7D	0.252
5	4M48G7D	0.317	4M49W7D	0.217
10	8M95G7D	0.327	8M95W7D	0.284
15	13M4G7D	0.317	13M4W7D	0.275
20	17M9G7D	0.342	17M9W7D	0.257

LTE Band 5	QI	PSK	16	QAM
BW(MHz)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)
1.4	1M08G7D	0.269	1M08W7D	0.228
3	2M69G7D	0.305	2M69W7D	0.260
5	4M48G7D	0.340	4M48W7D	0.286
10	8M95G7D	0.350	8M95W7D	0.301

LTE Band 12		QPSK		16QAM
BW(MHz)	Emission Designator (99%OBW)	Maximum EIRP(W)	Emission Designator (99%OBW)	Maximum EIRP(W)
1.4	1M08G7D	0.238	1M08W7D	0.207
3	2M69G7D	0.293	2M68W7D	0.253
5	4M49G7D	0.324	4M48W7D	0.300
10	8M98G7D	0.327	8M98W7D	0.288

Report No.: TCT180723E040

TCT通测检测 TCT通测检测

LTI	E Band 17		QPSK			Report No.: TCT180 16QAM	
в	SW(MHz)	Emission Designator (99%OBW)	Maxi	mum EIRP(W)	Emission Designator (99%OBW)	Maximum Elf	RP(W)
	5	4M49G7D		0.360	4M49W7D	0.308	
	10	8M99G7D		0.363	8M98W7D	0.316	

Operating Environ	ment:				
Temperature:		24.0 °	с		
Humidity:	$\langle O \rangle$	54 %	RH		
Atmospheric Pre	ssure:	1010	mbar		
Test Mode: Operation mode:			the EUT in concord	ontinuous	transmitting
The sample was place norizontal and vertical by: having the EUT cor (X, Y & Z) and conside nterconnecting cables norizontal and vertical following pages.	polarities were perf ntinuously working, red typical configur , rotating the turnta	ormed. During investigated a ation to obtain ble, varying an	the test, each Il operating mo worst position tenna height fr	emission w des, rotated , manipulatii om 1m to 4	as maximized I about all 3 axi ng m in both

escription Operatio				
	d 2(1.4MHz)		and 2(3MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz	
18607	1850.7	18615	1851.5	
18900	1880	18900	1880	
19193	1909.3	19185	1908.5	
Channel	d 2(5MHz) Frequency (MHz)	Channel	nd 2(10MHz)	
18625	1852.5	18650	Frequency (MHz 1855	
18900	1880	18900	1880	
19175	1907.5	19150	1905	
	d 2(15MHz)		nd 2(20MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz	
18675	1857.5	18700	1860	
18900	1880	18900	1880	
19125	1902.5	19100	1900	
8)		
LTE Band 4(1.4MHz)		LTE Band 4(3MHz)		
Channel	Frequency (MHz)	Channel	Frequency (MHz	
19957	1710.7	19965	1711.5	
20175	1732.5	20175	1732.5	
20393	1754.3	20385	1753.5	
LTE Ban	nd 4(5MHz)	LTE Band 4(10MHz)		
Channel	Frequency (MHz)	Channel	Frequency (MHz	
19975	1712.5	20000	1715	
20175	1732.5	20175	1732.5	
20375	1752.5	20350	1750	
LTE Ban	d 4(15MHz)	LTE Ba	nd 4(20MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz	
20025	1717.5	20050	1720	
20175	1732.5	20175	1732.5	
20325	1747.5	20300	1745	

LTE Band	5(1.4MHz)	LTE Band 5(3MHz)		
Channel	Channel Frequency (MHz)		Frequency (MHz)	
20407	824.7	20415	825.5	
20525	836.5	20525	836.5	
20643	848.3	20635	847.5	
LTE Band	1 5(5MHz)	LTE Band 5(10MHz)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
20425	826.5	20450	829	
20525	836.5	20525	836.5	
20625	846.5	20600	844	

LTE Band	12(1.4MHz)	LTE Band	12(3MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
23017	699.7	23025	700.5	
23095	707.5	23095	707.5	
23173	715.3	23165	714.5	
LTE Band	l 12(5MHz)	LTE Band 12(10MHz)		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
23035	701.5	23060	704	
23095	707.5	23095	707.5	
23155	23155 713.5		711	

LTE Band	1 17(5MHz)	LTE Band	17(10MHz)
Channel	Frequency (MHz)	Channel	Frequency (MHz)
23755	706.5	23780	709
23790	710	23790	710
23825	713.5	23800	711

Report No.: TCT180723E040

4.2. Test Mode

All modes and data rates and positions were investigated. Test modes are chosen to be reported as the worst case configuration below:

Test Mode							
	Band	Radiated TCs	Conducted TCs				
	LTE Band 2	QPSK Link (1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz / 20MHz)	16QAM Link (1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz / 20MHz)				
	LTE Band 4	QPSK Link (1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz / 20MHz)	16QAM Link (1.4MHz / 3MHz / 5MHz / 10MHz / 15MHz / 20MHz)				
	LTE Band 5	QPSK Link (1.4MHz / 3MHz / 5MHz / 10MHz)	16QAM Link (1.4MHz / 3MHz / 5MHz / 10MHz)				
	LTE Band 12	QPSK Link (1.4MHz / 3MHz / 5MHz / 10MHz)	16QAM Link (1.4MHz / 3MHz / 5MHz / 10MHz)				
	LTE Band 17	QPSK Link (5MHz / 10MHz)	16QAM Link (5MHz / 10MHz)				

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas License Digital Systems v03 with maximum output power. Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Report No.: TCT180723E040

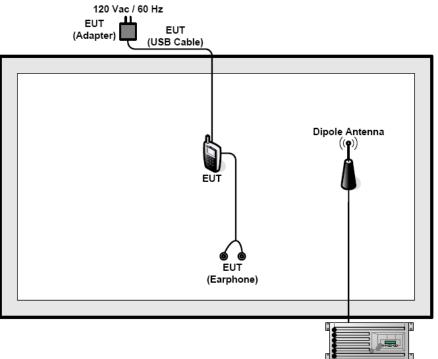
T Report No.: TCT180723E040 Bandwidth (MHz) Modulation RB # Test Channel **Test Items** Band Full 1.4 5 15 20 QPSK 16QAM М Н 3 10 1 Half L 2 v v v v v v v v v v v v v v Max. Output 4 v v v v v v v v v v v ۷ v v Power 5 v v v v -v v v v v v v v 12 v v v v _ _ v v v v v v v v 17 v v v v v -v v v v v 2 v v v v v v v v v v v v v v Peak-to-Average 4 v v v v v v v v v v v v v v Ratio 5 v v v v -v v v v v v v v 12 v v v v v v v v v v _ v v 17 v v v v v v v v v v 26dB and 99% 2 v v v v v v v v v v v v v v Bandwidth 4 v v v v v v v v v v v v v v 5 v 2 v v v v v v v v v v v 12 v v v v _ 1 v v v v v v v v 17 _ -_ v v _ v v v v v v v v RB # Bandwidth (MHz) Modulation **Test Channel Test Items** Band 20 5 QPSK 1.4 3 10 15 16QAM 1 Half Full L Μ н 2 v v v v v v v v v v v v v Conducted 4 v v v v v v v v v v v v v Band Edge 5 v v v v v v v v v v v 12 v v ۷ v -v v v v v v v 17 _ v v v v v v _ -v v v _ 2 v v v v v v v v -_ v v v v Conducted 4 v v v v v v v v v v v v Spurious 5 v v v v Ļ v v v 1. _ v v v Emission 12 v v v v v v v -v v v 17 v v v v v v v v 2 2 v -. -v v v . v v v Frequency 4 1 _ --_ _ v v v v v v v Stability 5 -----v v v v v v v 2 12 v _ v v v v v v 17 v _ 2 4 v 2 -. v v v v v -

Page 12 of 26

		TESTING CEN	v	INOLOGY V	v	v	v	v	v	v	v	v	v	<u>.: TCT18</u> v	v	1
E.R.F	./ E.I.R.P.	4	v	v	v	v	v	v	v	v	v	v	v	v	v	,
		5	v	v	v	v		<u>3)</u>	v	v	v	v	v	v	v	
		12	v	v	v	v	_	<u> </u>	v	v	v	v	v	v	v	V
		17	-	-	v	v	-	-	v	v	v	v	v	v	v	\ \
	diated	2	v	-	C.	-	-	-	v	v	v	-	-	V	v	`
	ourious	4	v	-) -	-	-	v	v	v	-	-	V	v	'
Er	nission	5	v	-	-	-	-	-	v	v	v	-	-	v	v	`
		12	v	-	-	-	•	-	v	v	v	-	-	v	v	
		17	(\mathbf{G}^{-})	-	v	-	-	5-)	v	v chosen f	v	<u>()</u>	-	v	v	,
	S	2. Th	e mark	: "-" m	eans t	hat th	is ban	dwidth	n is not	support	ed.			<u>E</u>)	

4.3. Description of Support Units

CT 通测检测 TESTING CENTRE TECHNOLOGY


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	1	/	1	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4. Configuration of Tested System

System Simulator

4.5. Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level. The spectrum analyzer offset is derived from RF cable loss and attenuator factor. Offset = RF cable loss + attenuator factor.

Report No.: TCT180723E040

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

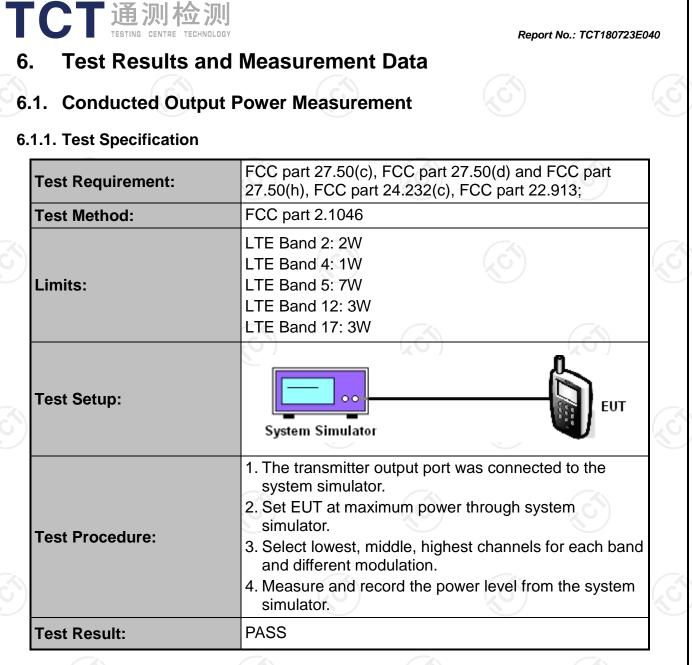
Shenzhen Tongce Testing Lab.

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

 IC - Registration No.: 10668A-1 The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab


Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU	
1	Conducted Emission		
2	RF power, conducted	±0.12dB	
3	Spurious emissions, conducted	±0.11dB	
4	All emissions, radiated(<1G)	±3.92dB	
5	All emissions, radiated(>1G)	±4.28dB	
6	Temperature	±0.1°C	
7	Humidity	±1.0%	

6.1.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	114220	Sep. 27, 2018
RF cable (9kHz-40GHz)	тст	RE-05	N/A	Sep. 27, 2018
Antenna Connector	ТСТ	RFC-02	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 16 of 26

2. Peak to Average F	Ratio	
2.1. Test Specification		
Test Requirement:	FCC part 2.1046; 22.913; 24.232; 27.50(d); 27.50(c); 27.50(b)	
Test Method:	FCC KDB 971168 D01v03	
Limit:	The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.	
Test Setup:	System Simulator Spectrum Analyzer	
Test Procedure:	 The testing follows FCC KDB 971168 D01v03 Section 5.7.1. The EUT was connected to spectrum analyzer and system simulator via a power divider. Set EUT to transmit at maximum output power. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer. Record the maximum PAPR level associated with a 	- 1

6.2.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	114220	Sep. 27, 2018
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF cable (9kHz-40GHz)	тст	RE-05	N/A	Sep. 27, 2018
Antenna Connector	тст	RFC-02	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 17 of 26

6.3. 99% Occupied Bandwidth and 26dB Bandwidth Measurement

6.3.1. Test Specification

Test Requirement:	FCC part 27.53(h)(3) and FCC part 27.53(m)(6), FCC part 24.238(b)
Test Method:	FCC part 2.1049
Limit:	N/A
Test Setup:	System Simulator Spectrum Analyzer
Test Procedure:	 The testing follows FCC KDB 971168 D01v03 Section 4.2. The EUT was connected to the spectrum analyzer and system simulator via a power divider. The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. The 99% occupied bandwidth were measured, set RBW= 1% of OBW, VBW= 3*RBW, sample detector, trace maximum hold. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace maximum hold.
Test Result:	PASS

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	114220	Sep. 27, 2018
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF cable (9kHz-40GHz)	тст	RE-05	N/A	Sep. 27, 2018
Antenna Connector	тст	RFC-02	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 18 of 26

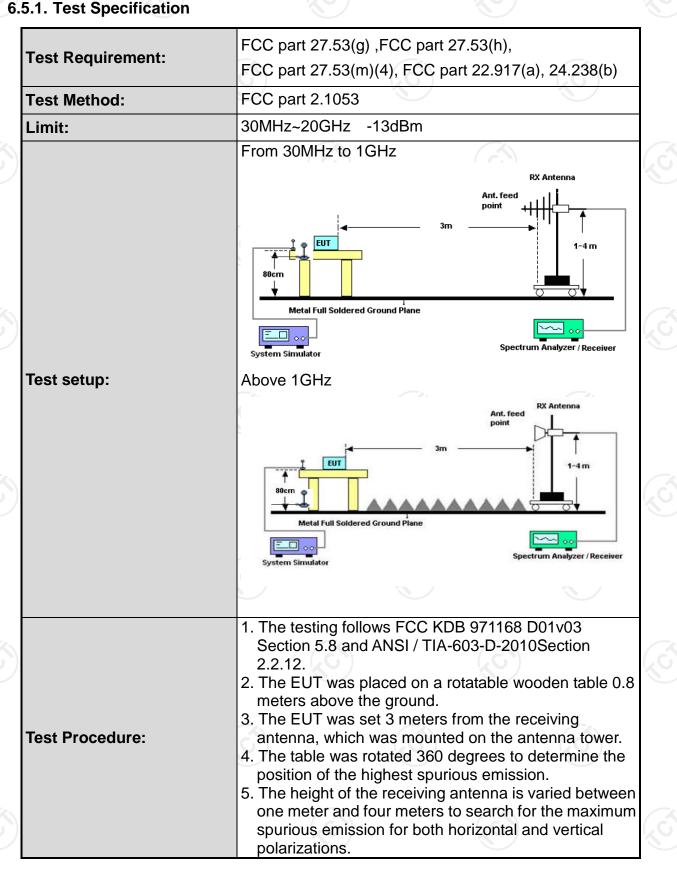
TCT通测检测 6.4. Band Edge and Conducted Spurious Emission Measurement

I.1. Test Specification			
Test Requirement:	FCC part 27.53(h), FCC FCC part 27.53(m)(4), F	part 27.53(g) , CC part 24.238(a), 22.917(a	a)
Test Method:	FCC part2.1051	c ⁽) (c ⁽)	
Limit:	-13dBm		
Test Setup:	System Simulator	ower Divider	
Test Procedure:	 6.0. 2. The EUT was connect system simulator via 3. The RF output of EUT analyzer by an RF can analyzer by an RF can be path loss was considered and edges of low highest RF powers with the band edges of low highest RF powers with the conducted spurious frequency range was 6. The RF fundamental function of the limit line is derived the transmitter power P(Watts) = P(W) - [43, 10log(P)] (dBm) - [43,	was connected to the spectable and attenuator. Sompensated to the results for w and high channels for the vere measured. Sus emission for the whole is taken. frequency should be excluded in the operating frequency be d from 43 + 10log(P) dB below 3 + 10log(P) (dB) = [30 + 3 + 10log(P) (dB) = -13dBm t line is derived from 55 +	r and etrum or ed oand. low
Test Result:	PASS		
		Page 1:	9 of 26

6.4.2. Test Instruments

TCT通测检测 TCT通测检测

Equipment Manufacture		Model	Serial Number	Calibration Due	
Wideband Radio Communication Tester	R&S	CMW500	114220	Sep. 27, 2018	
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018	
RF cable (9kHz-40GHz)	тст	RE-05	N/A	Sep. 27, 2018	
Antenna Connector	тст	RFC-02	N/A	Sep. 27, 2018	


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 20 of 26

1. The testing follows FCC KDB 971168 D01v03 Section 5.8 and ANSI / TIA-603-D-2010Section 2.2.12. 2. The EUT was placed on a rotatable wooden table 0.8 meters above the ground. 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower. 4. The table was rotated 360 degrees to determine the position of the highest spurious emission. 5. The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations. Page 21 of 26 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.5. Field Strength of Spurious Radiation Measurement

6.5.1. Test Specification

TCT通测检测			RBV max 7. A ho and 8. Tun 8. Tun 9. Taki 10. Re 11. EIF Ant 12. ER 13. Th aga 14. Th the t	 6. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission. 7. A horn antenna was substituted in place of the EUT and was driven by a signal generator. 8. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission. 9. Taking the record of output power at antenna port. 10. Repeat step 7 to step 8 for another polarization. 11. EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain 12. ERP (dBm) = EIRP - 2.15 13. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 14. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) 				
ँ	est results		= [30 = -1; For	0 + 10log(P) 3dBm. Band 17, he	0log(P)] (dB] (dBm) - [4 e limit line is ow the trans	3 + 10log(P)	n 55 +	

6.5.2. Test Instruments

	Radiated Em	ission Test Sit	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
System simulator	R&S	CMU200	111382	Sep. 27, 2018
Spectrum Analyzer	ROHDE&SCHW ARZ	R&S	FSQ	Sep. 27, 2018
Signal Generator	HP	83623B	3614A00396	Sep. 27, 2018
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018
Broadband Antenna	Schwarzbeck	VULB9163	412	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBHA 9120D	1201	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBH 9170	582	Sep. 27, 2018
Dipole Antenna	тст	TCT-RF	N/A	Sep. 27, 2018
Coax cable (9kHz-1GHz)	тст	RE-low-01	N/A	Sep. 27, 2018
Coax cable (9kHz-40GHz)	тст	RE-high-02	N/A	Sep. 27, 2018
Coax cable (9kHz-1GHz)	ТСТ	RE-low-03	N/A	Sep. 27, 2018
Coax cable (9kHz-40GHz)	тст	RE-High-04	N/A	Sep. 27, 2018
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

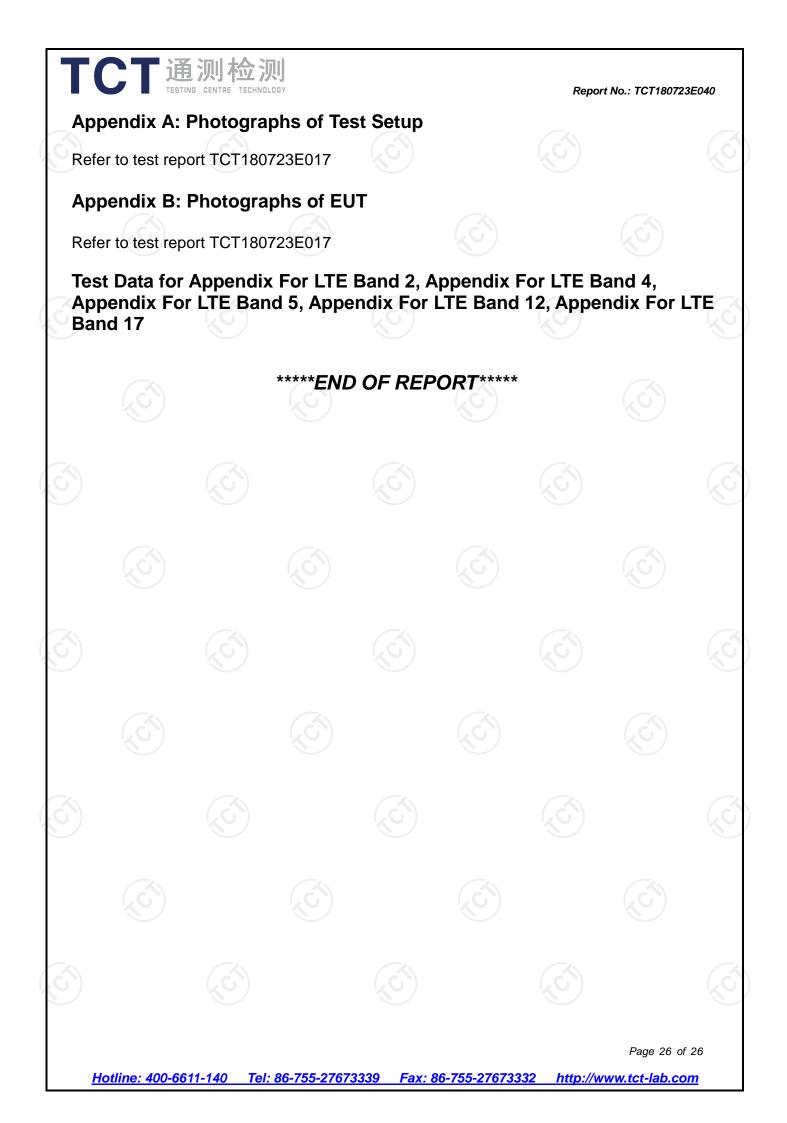
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 23 of 26

Report No.: TCT180723E040 6.6. Frequency Stability Measurement 6.6.1. Test Specification **Test Requirement:** FCC part 27.54, FCC part 22.355, 24.235 Test Method: FCC Part 2.1055 \pm 2.5 ppm Limit: **Test Setup:** Thermal Chambe **Test Procedures for Temperature Variation** 1. The testing follows FCC KDB 971168 D01v03 Section 9.0. 2. The EUT was set up in the thermal chamber and connected with the system simulator. 3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute. 4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and Test Procedure: the maximum frequency change was recorded within one minute. **Test Procedures for Voltage Variation** 1. The testing follows FCC KDB 971168 D01v03 Section 9.0. 2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator. 3. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT. 4. The variation in frequency was measured for the worst case. PASS Test Result:

Page 24 of 26

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Report No.: TCT180723E040

6.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Wideband Radio Communication Tester	R&S	CMW500	114220	Sep. 27, 2018
Programable tempratuce and humidity chamber	JQ	JQ-2000	N/A	Sep. 27, 2018
DC power supply	Kingrang	KR3005K 30V/5A	N/A	Sep. 27, 2018
RF cable (9kHz-40GHz)	тст	RE-04	N/A	Sep. 27, 2018
Antenna Connector	ТСТ	RFC-03	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 25 of 26

