

SAR TEST REPORT

Applicant Micronet

FCC ID U8O-A9

Product SmarTab-8

Brand TREQ

Model SmarTab-8

Report No. R1912A0704-S1

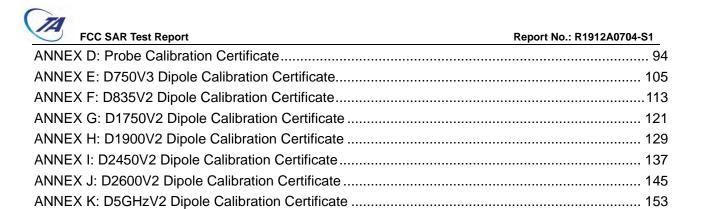
Issue Date March 17, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528- 2013, ANSI C95.1: 1992/IEEE C95.1: 1991.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Yu Wang

Approved by: Guangchang Fan

Guangchang Fan


TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Tes	t Laborato	ory	4
	1.1	Notes of	the Test Report	4
	1.2.	Test faci	lity	4
	1.3	Testing L	_ocation	4
	1.4	Laborato	ry Environment	5
2	Sta	tement of	Compliance	6
3	Des	scription o	f Equipment under Test	7
4	Tes	t Specifica	ation, Methods and Procedures	9
5	Оре	erational C	Conditions during Test	10
	5.3	Test Pos	itions	10
	5.4	Measure	ment Variability	12
	5.5		figuration	
			GSM Test Configuration	
			UMTS Test Configuration	
			WCDMA Test Configuration	
			LTE Test Configuration ·····	
		5.5.4	Wi-Fi Test Configuration ·····	. 19
6	SAI	R Measure	ements System Configuration	20
	6.1	SAR Mea	asurement Set-up	20
	6.2	DASY5 E	E-field Probe System	21
	6.3	SAR Mea	asurement Procedure	22
7	Mai	in Test Eq	uipment	24
8	Tiss		tric Parameter Measurements & System Verification	
	8.1	Tissue V	erification	25
	8.2	System F	Performance Check	27
	8.3	SAR Sys	stem Validation	30
9	Nor	mal and N	/laximum Output Power	31
	9.1	GSM Mo	de	31
	9.2	WCDMA	Mode	32
	9.3	LTE Mod	de	33
	9.4	WLAN M	lode	45
	9.5	Bluetooth	n Mode	47
10) Me	asured an	d Reported (Scaled) SAR Results	48
	10.1	EUT Ant	enna Locations	48
	10.2	Standalo	ne SAR test exclusion considerations	49
	10.3	Measure	d SAR Results	50
			eous Transmission Analysis	
11	Me	asuremen	t Uncertainty	68
Α	NNEX	A: Test La	ayout	69
Α	NNEX	B: Systen	n Check Results	71
Α	NNEX	C: Highes	st Graph Results	79

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 1: Highest Reported SAR

Made	Highest Reported SAR (W/kg)
Mode	Product Specific 10-g SAR(Separation 0mm)
GSM 850	1.012
GSM 1900	0.813
WCDMA Band II	0.464
WCDMA Band IV	2.236
WCDMA Band V	0.618
LTE FDD 2	0.388
LTE FDD 4	1.680
LTE FDD 5	0.623
LTE FDD 7	2.808
LTE FDD 12	1.139
LTE FDD 13	0.661
LTE FDD 17	0.938
Wi-Fi (2.4G)	0.133
Wi-Fi (5G)	0.177
ВТ	/
Date of Testing:	January 7, 2020~ January 11, 2020

Note: 1. The device is in compliance with SAR for Uncontrolled Environment /General Population exposure limits (1.6 W/kg and 4.0 W/kg) specified in ANSI C95.1: 1992/IEEE C95.1: 1991, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

2. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Table 2: Highest Simultaneous Transmission SAR

Exposure Configuration	Product Specific 10-g SAR (Separation 0mm)
Highest Simultaneous Transmission SAR (W/kg)	2.941
Note: 1. The detail for simultaneous transmission co	nsideration is described in chapter 10.3.

3 Description of Equipment under Test

Client Information

Applicant	Micronet
Applicant address	1865 West 2100 South, Suite 2 Salt Lake City, Utah 84119 United States
Manufacturer	Micronet
Manufacturer address	1865 West 2100 South, Suite 2 Salt Lake City, Utah 84119 United States

General Technologies

Application Purpose:	Original Grant					
EUT Stage	Identical Prototype					
Model:	SmarTab-8					
IMEI:	353436100010544					
Hardware Version:	A9: C801_V1.00_PCB					
Software Version:	MSTAB8_9.00.2.7.0					
Antenna Type:	Internal Antenna					
Device Class:	В					
Mr. E. Hatanat	Wi-Fi 2.4G					
Wi-Fi Hotspot	Wi-Fi 5G U-NII-1&U-NII-3					
	GSM 850:4					
Power Class:	GSM 1900:1					
Power Class:	UMTS Band II/IV/V:3					
	LTE FDD 2/4/5/7/12/13/17:3					
	GSM 850:level 5					
Power Level	GSM 1900:level 0					
Power Level	UMTS Band II/IV/V:all up bits					
	LTE FDD 2/4/5/7/12/13/17:max power					
	EUT Accessory					
Potton	Manufacturer: Howell					
Battery	Model: HWE30100100 6600mAH (ENH.)					
Note: The EUT is sent from	om the applicant to TA and the information of the EUT is declared by the					
applicant.						

TA Technology (Shanghai) Co., Ltd.

Report No.: R1912A0704-S1

Wireless Technology and Frequency Range

Wireless Technology		Modulation	Operating mode	Tx (MHz)	
	850	Voice(GMSK) GPRS(GMSK)	☐Multi-slot Class:8-1UP ☐Multi-slot Class:10-2UP	824 ~ 849	
GSM	1900	EGPRS(GMSK,8PSK)	⊠Multi-slot Class:12-4UP ☐Multi-slot Class:33-4UP	1850 ~ 1910	
	Does this dev	vice support DTM (Dual Ti	ransfer Mode)? □Yes ⊠No	slot Class:8-1UP slot Class:10-2UP slot Class:12-4UP slot Class:33-4UP e)? □Yes ☒No UE Category:24 A UE Category:7 1850 ~ 1910 1710 ~ 1755 824 ~ 849 1850 ~ 1910 1710 ~ 1755 824 ~ 849 1850 ~ 1910 1710 ~ 1755 824 ~ 849 2500 ~ 2570 699 ~ 716 777 ~ 787 704 ~ 716 □ Yes downlink only ☒No 11b/g/n HT20 2412 ~ 2462 2.11n HT40 12422 ~ 2452 1a/n 20M/40M/ 5150 ~ 5250	
	Band II			1850 ~ 1910	
UMTS	Band IV	QPSK		1710 ~ 1755	
	Band V		□Multi-slot Class:8-1UP □Multi-slot Class:10-2UP ☑Multi-slot Class:12-4UP □Multi-slot Class:33-4UP Insfer Mode)? □Yes ☒No HSDPA UE Category:24 HSUPA UE Category:7 Rel.10 /Category 4 ation (CA) □ Yes downlink only ☒ I-LTE)? □Yes ☒No on 4.2 LE 802.11b/g/n HT20 802.11a/n 20M/40M/ ac 20M/40M	824 ~ 849	
	FDD 2			1850 ~ 1910	
	FDD 4			1710 ~ 1755	
	FDD 5			824 ~ 849	
	FDD 7	QPSK, 16QAM	Rel.10 /Category 4	2500 ~ 2570	
LTE	FDD 12			699 ~ 716	
	FDD 13			777 ~ 787	
	FDD 17			704 ~ 716	
	Does this dev	vice support Carrier Aggre	gation (CA) Yes downlink onl	y⊠No	
	Does this dev	vice support SV-LTE (1xR	TT-LTE)? □Yes ⊠No		
ВТ	2.4G	Ver	sion 4.2 LE	2402 ~2480	
	2.40	DSSS,OFDM	802.11b/g/n HT20	2412 ~ 2462	
	2.4G	OFDM	802.11n HT40	2422 ~ 2452	
Wi-Fi	5G	OFDM			
	Does this dev	vice support MIMO □Yes	⊠No		

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992/IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures:

248227 D01 802.11 Wi-Fi SAR v02r02

447498 D01 General RF Exposure Guidance v06

648474 D04 Handset SAR v01r03

865664 D01 SAR measurement 100 MHz to 6 GHz v01r04

865664 D02 RF Exposure Reporting v01r02

941225 D01 3G SAR Procedures v03r01

941225 D05 SAR for LTE Devices v02r05

941225 D06 Hotspot Mode v02r01

941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02

616217 D04 SAR for laptop and tablets v01r02

5 Operational Conditions during Test

5.3 Test Positions

According to KDB 616217 D04, SAR evaluation is required for back surface and edges of the devices. The back surface and edges of the tablet are tested with the tablet touching the phantom. Exposures from antennas through the front surface of the display section of a tablet are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required.

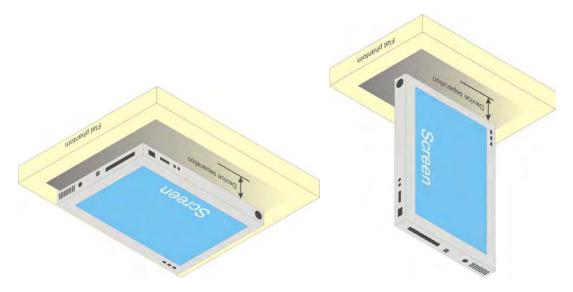
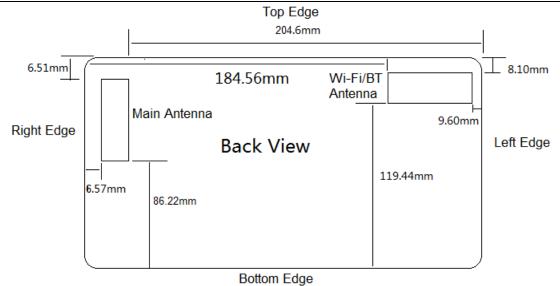


Fig-4.1 Illustration for Tablet Setup

According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following formula.

(1) The SAR exclusion threshold for distances ≤50mm is defined by the following equation:


(max. power of channel, including tune-up tolerance, mW) *√ Frequency (GHz) ≤3.0 (min. test separation distance, mm)

- (2) The SAR exclusion threshold for distances >50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B:
 - a) at 100 MHz to 1500 MHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) · (f (MHz)/150)] mW

b) at > 1500 MHz and≤ 6 GHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) ·10] mW

		Max.	Ва	ck Side		L	eft Edge		Rig	ht Edge		To	p Edge		Bot	tom Edg	je
Band	Frequency (MHz)	Tune-up Power (dBm)	Ant. To Surgace (mm)	Evaluati on	Conclu sion	Ant. To Surgace (mm)	Evaluatio n	Conclu sion	Ant. To Surgace (mm)	Evaluati on	Concl usion	Ant. To Surgace (mm)	Evaluati on	Conclu sion	Ant. To Surgace (mm)	Evaluat ion	Conclu sion
GSM 850	836.6	33.50	5.00	409.53	Yes	204.60	903.21	Yes	6.57	311.67	Yes	6.51	314.54	Yes	86.22	242.96	Yes
GSM 1900	1880	31.00	5.00	345.23	Yes	204.60	1580.52	No	6.57	262.73	Yes	6.51	265.15	Yes	86.22	396.72	Yes
WCDMA II	1880	24.50	5.00	77.29	Yes	204.60	1553.73	No	6.57	58.82	Yes	6.51	59.36	Yes	86.22	369.93	N0
WCDMA IV	1732.6	25.00	5.00	83.25	Yes	204.60	1554.32	No	6.57	63.36	Yes	6.51	63.94	Yes	86.22	370.52	N0
WCDMA V	836.6	24.50	5.00	51.56	Yes	204.60	867.41	No	6.57	39.24	Yes	6.51	39.60	Yes	86.22	207.17	Yes
LTE 2	1880	24.00	5.00	68.88	Yes	204.60	1552.89	No	6.57	52.42	Yes	6.51	52.91	Yes	86.22	369.09	N0
LTE 4	1732.5	23.00	5.00	52.53	Yes	204.60	1551.25	No	6.57	39.97	Yes	6.51	40.34	Yes	86.22	367.45	N0
LTE 5	836.5	25.00	5.00	57.84	Yes	204.60	867.94	No	6.57	44.02	Yes	6.51	44.43	Yes	86.22	207.77	Yes
LTE 7	2535	23.00	5.00	63.54	Yes	204.60	1552.35	No	6.57	48.35	Yes	6.51	48.80	Yes	86.22	368.55	N0
LTE 12	707.5	23.50	5.00	37.66	Yes	204.60	732.96	No	6.57	28.66	Yes	6.51	28.93	Yes	86.22	174.60	Yes
LTE 13	782	24.00	5.00	44.43	Yes	204.60	810.42	No	6.57	33.81	Yes	6.51	34.12	Yes	86.22	193.27	Yes
LTE 17	710	24.00	5.00	42.33	Yes	204.60	736.01	No	6.57	32.22	Yes	6.51	32.51	Yes	86.22	175.67	Yes
Wi-Fi 2.4G	2437	19.00	5.00	24.80	Yes	9.60	12.92	Yes	184.56	1348.08	No	8.10	15.31	Yes	119.44	696.88	N0
Wi-Fi 5G (U-NII1)	5250	13.50	5.00	10.26	Yes	9.60	5.34	Yes	184.56	1346.63	No	8.10	6.33	Yes	119.44	695.43	N0
Wi-Fi 5G (U-NII3)	5850	12.50	5.00	8.60	Yes	9.60	4.48	No	184.56	1346.46	No	8.10	5.31	Yes	119.44	695.26	N0
ВТ	2441	9.00	5.00	2.48	No	9.60	1.29	No	184.56	1345.85	No	8.10	1.53	No	119.44	694.65	N0

5.4 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

5.5 Test Configuration

5.5.1 GSM Test Configuration

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following: Output power of reductions:

Table 3: The allowed power reduction in the multi-slot configuration


Number of timeslots in uplink	Permissible nominal reduction of maximum
assignment	output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

5.5.2 UMTS Test Configuration

5.5.2.1 3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

5.5.2.2 WCDMA Test Configuration

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

5.5.2.3 Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

5.5.2.4 Release 5 HSDPA Test Configuration

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 4: Subtests for UMTS Release 5 HSDPA

Sub-set	eta_{c}	β_{d}	β _d (SF)	β_c/β_d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)	
1	2/15	15/15	64	2/15	4/15	0.0	0.0	
2	12/15	15/15	64	12/15	24/15	1.0	0.0	
	(note 4)	(note 4)	04	(note 4)	24/15	1.0	0.0	
3	15/15	8/15	` '		30/15	1.5	0.5	

TA Technology (Shanghai) Co., Ltd.

TA-MB-02-011S

Page 14 of 165

FCC SAR Test Report

		-				•	
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \stackrel{\longleftrightarrow}{=} A_{hs} = \beta_{hs}/\beta_c = 30/15 \stackrel{\longleftrightarrow}{=} \beta_{hs} = 30/15 *\beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

5.5.2.5 Release 6 HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Table 5: Sub-Test 5 Setup for Release 6 HSUPA

Sub- set	β _c	β_{d}	β _d (SF)	β _o /β _d	$\beta_{hs}^{(1)}$	$eta_{ ext{ec}}$	$eta_{\sf ed}$	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{ed1} 47/15 β_{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 *\beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

- Note 3: For subtest 1 the β c/ β d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β c = 10/15 and β d = 15/15.
- Note 4: For subtest 5 the β c/ β d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β c = 14/15 and β d = 15/15.
- Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 6: HSUPA UE category

	Tree Carego.	,				
UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
_	2	8	2	4	2798	
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
_	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	2		11484	5.76
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00
7	4	8	2	2 SF2 & 2 SF4	22996	?
(No DPDCH)	4	4	10		20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

Table 7: HS-DSCH UE category

Table 5.1a: FDD HS-DSCH physical layer categories

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation
Category 1	5	3	7298	19200			
Category 2	5	3	7298	28800			
Category 3	5	2	7298	28800			
Category 4	5	2	7298	38400			
Category 5	5	1	7298	57600	Trackie orbeiter		
Category 6	5	1	7298	67200	QPSK, 16QAM		
Category 7	10	-1	14411	115200		Not	
Category 8	10	1	14411	134400		applicable	
Category 9	15	1	20251	172800		(MIMO not	
Category 10	15	1	27952	172800		supported)	
Category 11	5	2	3630	14400	422.21		
Category 12	5	1	3630	28800	QPSK		
Category 13	15	1	35280	259200	QPSK.		Not
Category 14	15	1	42192	259200	16QAM, 64QAM		applicable (dual cell operation
Category 15	15	1	23370	345600	opour 4		not
Category 16	15	1	27952	345600	QPSK, 16	MADO	supported)
Category 17 NOTE 2	15	1	35280	259200	QPSK, 16QAM, 64QAM		supporteu
NOTEZ	100		23370	345600		QPSK, 16QAM	
Category 18 NOTE 3	15	1	42192	259200	QPSK, 16QAM, 64QAM		
NOIES			27952	345600		QPSK, 16QAM	
Category 19	15	1	35280	518400	ODEK 400A	M CAOAM	
Category 20	15	1	42192	518400	QPSK, 16QAI	W, 04WAM	
Category 21	15	1	23370	345600			QPSK,
Category 22	15	1	27952	345600			16QAM
Category 23	15	1	35280	518400	200	10.40	QPSK,
Category 24	15	1	42192	518400			16QAM, 64QAM

5.5.3 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to

C) A-MPR

simulator.

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station

D) Largest channel bandwidth standalone SAR test requirements

3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) as 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > ½ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the *reported* SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

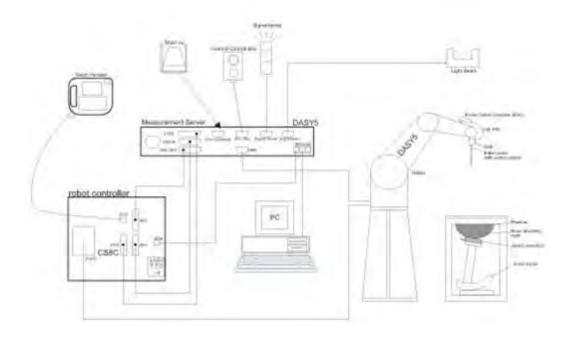
5.5.4 Wi-Fi Test Configuration

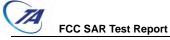
SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - ❖ For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - → The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.


A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.


6 SAR Measurements System Configuration

6.1 SAR Measurement Set-up

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- > The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- > The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- ➤ The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- ➤ The phantom, the device holder and other accessories according to the targeted measurement.

FCC SAR Test Report No.: R1912A0704-S1

6.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration

service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic 10 μ W/g to > 100 mW/g Linearity: Range \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure
Scenario (e.g., very strong gradient
fields). Only probe which enables
compliance testing for frequencies up to

6 GHz with precision of better 30%.

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR=CAT/At

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

 $SAR=IEI^2\sigma/\rho$

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.3 SAR Measurement Procedure

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest		
measurement point (geometric center of	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
probe sensors) to phantom surface		
Maximum probe angle from probe axis to		
phantom surface normal at the	30° ± 1°	20° ± 1°
measurement location		
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm
	When the x or y dimens	sion of the test device, in
Maximum area scan spatial resolution:	the measurement plar	ne orientation, is smaller
ΔxArea, ΔyArea	than the above, the m	neasurement resolution
	must be ≤ the correspo	nding x or y dimension of
	the test device with at	least one measurement
	point on the	e test device.

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3GHz	> 3 GHz	
Maximum zo	om scan	spatial resolution:△x _{zoom}	≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*	
	\triangle	Yzoom	2 – 3GHz: ≤5mm* 4 – 6GHz: ≤4n		
Maximum				3 – 4GHz: ≤4mm	
Maximum	Uı	niform grid: $\triangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm	
zoom scan				5 – 6GHz: ≤2mm	
spatial		$\triangle z_{zoom}(1)$: between 1 st two		3 – 4GHz: ≤3mm	
resolution, normal to	Cradad	points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm	
	Graded	surface		5 – 6GHz: ≤2mm	
phantom surface	grid	△z _{zoom} (n>1): between subsequent points	≤1.5•△2	z _{zoom} (n-1)	
Minimum				3 – 4GHz: ≥28mm	
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm	
volume				5 – 6GHz: ≥22mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is 1.4W/kg, ≤8mm, ≤7mm and ≤5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.

Report No.: R1912A0704-S1

7 Main Test Equipment

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Cal.	Cal. Due Date
Network analyzer	Agilent	E5071B	MY42404014	2019-05-19	2020-05-18
Dielectric Probe Kit	HP	85070E	US44020115	2019-05-19	2020-05-18
Power meter	Agilent	E4417A	GB41291714	2019-05-19	2020-05-18
Power sensor	Agilent	N8481H	MY50350004	2019-05-19	2020-05-18
Power sensor	Agilent	E9327A	US40441622	2019-05-19	2020-05-18
Dual directional coupler	Agilent	778D-012	50519	2019-05-19	2020-05-18
Dual directional coupler	Agilent	777D	50146	2019-05-19	2020-05-18
Amplifier	INDEXSAR	IXA-020	0401	2019-05-19	2020-05-18
Wireless communication tester	Anritsu	MT8820C	6201342015	2019-05-19	2020-05-18
Wireless communication tester	Key sight	E5515C	MY48360988	2019-12-15	2020-12-14
Wideband radio communication tester	R&S	CMW 500	113645	2019-05-19	2020-05-18
Base Station Simulator	R&S	CMW270	100673	2019-05-19	2020-05-18
E-field Probe	SPEAG	EX3DV4	3677	2019-06-19	2020-06-18
DAE	SPEAG	DAE4	1317	2019-10-23	2020-10-22
Validation Kit 750MHz	SPEAG	D750V3	1045	2017-08-27	2020-08-26
Validation Kit 835MHz	SPEAG	D835V2	4d020	2017-08-28	2020-08-27
Validation Kit 1750MHz	SPEAG	D1750V2	1023	2019-06-20	2021-06-19
Validation Kit 1900MHz	SPEAG	D1900V2	5d060	2017-08-26	2020-08-25
Validation Kit 2450MHz	SPEAG	D2450V2	786	2017-08-29	2020-08-28
Validation Kit 2600MHz	SPEAG	D2600V2	1025	2018-05-02	2021-05-01
Validation Kit 5GHz	SPEAG	D5GHzV2	1145	2019-10-16	2022-10-15
Temperature Probe	Tianjin jinming	JM222	AA1009129	2019-05-19	2020-05-18
Hygrothermograph	Anymetr	NT-311	20150731	2019-05-19	2020-05-18
Software for Test Speag		DASY5 52.8.8.1222		/	/
Softwarefor Tissue	Agilent	85070	E06.01.36	/	/

8 Tissue Dielectric Parameter Measurements & System Verification

8.1 Tissue Verification

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within \pm 2° C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance.

Target values

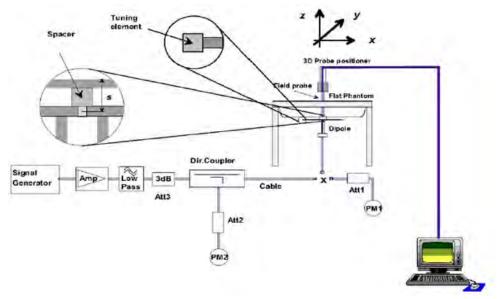
Frequency (MHz)	Water (%)	Salt (%)	Sugar (%)	Glycol (%)	Preventol (%)	Cellulose (%)	٤r	σ(s/m)
750	41.448	1.452	56	0	0.1	1.0	41.9	0.89
835	41.45	1.45	56	0.00	0.1	1.0	41.5	0.90
1750	55.24	0.31	0	44.45	0	0	40.0	1.34
1900	55.242	0.306	0	44.452	0	0	40.0	1.40
2300	55.242	0.306	0	44.452	0	0	39.5	1.67
2450	62.70	0.50	0	36.80	0	0	39.2	1.80
2600	55.242	0.306	0	44.452	0	0	39.0	1.96
Frequency (MHz)	Water (%)		Diethylenglycol monohexylether (%)		Triton X	-100 (%)	٤r	σ(s/m)
5250	65.53		17.24		17.23		35.9	4.71
5750	65.53		17.24		17.	23	35.4	5.22

FCC SAR Test Report No.: R1912A0704-S1

Measurements results

Frequency		Measured Dielectric Temp Parameters				Dielectric neters	Limit (Within ±5%) Dev Dev ε _r (%) σ(%) 0.95 -1.12		
(MHz)	Test Date	°C	٤ _r	σ(s/m)	ε _r	σ(s/m)	Dev	Dev	
750	1/7/2020	21.5	42.3	0.88	41.9	0.89	0.95	-1.12	
835	1/11/2020	21.5	41.4	0.88	41.5	0.90	-0.24	-2.22	
1750	1/8/2020	21.5	40.2	1.34	40.0	1.34	0.50	0.00	
1900	1/9/2020	21.5	40.1	1.41	40.0	1.40	0.25	0.71	
2450	1/10/2020	21.5	38.6	1.81	39.2	1.80	-1.53	0.56	
2600	1/10/2020	21.5	38.2	2.01	39.0	1.96	-2.05	2.55	
5250	1/10/2020	21.5	35.5	4.80	35.9	4.71	-1.11	1.91	
5750	1/10/2020	21.5	34.9	5.21	35.4	5.22	-1.41	-0.19	

Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements > 3 GHz.



FCC SAR Test Report No.: R1912A0704-S1

8.2 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

Picture 1 System Performance Check setup

Picture 2 Setup Photo

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole		Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ
Dipole		8/27/2017	-28.5	/	52.5	/
D750V3	Head Liquid	8/26/2018	-27.6	3.3	53.2	-0.7
SN: 1045	Liquid	8/25/2019	-27.5	0.4	54.1	-0.9
Dipole		8/28/2017	-31.9	/	50.3	/
D835V2	Head Liquid	8/27/2018	-29.0	10.0	46.6	3.7
SN: 4d020	Liquid	8/26/2019	-29.4	-1.4	45.9	0.7
Dipole		8/26/2017	-23.4	/	52.0	/
D1900V2	Head Liquid	8/25/2018	-24.7	-5.3	54.4	-2.4
SN: 5d060	Liquid	8/24/2019	-24.9	-0.8	56.2	-1.8
Dipole		8/29/2017	-25.5	/	53.4	/
D2450V2	Head Liquid	8/28/2018	-23.0	10.9	57.2	-3.8
SN: 786	Liquid	8/27/2019	-22.2	3.6	56.4	8.0
Dipole	Head	5/2/2018	-22.0	/	48.1	/
D2600V2 SN: 1025	Liquid	5/1/2019	-22.5	-2.2	48.7	-0.6

Report No.: R1912A0704-S1

System Check results

Frequency (MHz)	Test Date	Temp ℃	250mW /100mW Measured SAR _{1g} (W/kg)	1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.
750	1/7/2020	21.5	2.13	8.52	8.34	2.16	1
835	1/11/2020	21.5	2.44	9.76	9.45	3.28	2
1750	1/8/2020	21.5	8.95	35.80	36.10	-0.83	3
1900	1/9/2020	21.5	9.88	39.52	40.10	-1.45	4
2450	1/10/2020	21.5	13.70	54.80	52.60	4.18	5
2600	1/10/2020	21.5	13.90	55.60	54.10	2.77	6
5250	1/10/2020	21.5	7.87	78.70	78.80	-0.13	7
5750	1/10/2020	21.5	7.66	76.60	78.80	-2.79	8
Note: Target	Values used o	derive fro	m the calibration	n certificate Da	ita Storage and	l Evaluation	۱.

8.3 SAR System Validation

required tissue-equivalent media.

Per FCC KDB 865664 D02v01, SAR system verification is required to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles are used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point must be validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the

a tabulated summary of the system validation status, measurement frequencies, SAR probes, calibrated signal type(s) and tissue dielectric parameters has been included.

F		Dunka	Dooks			DEDM	COND	CW	Validatio	n	Mod	l. Validati	ion
Frequency	Date	Probe	Probe	Probe C	Cal Point	PERM	COND	0	Probe	Probe	Mod.	Duty	242
[MHz]		SN	Type			(Er)	(Σ)	Sensitivity	Linearity	Isotropy	Туре	Factor	PAR
750	6/25/2019	3677	EX3DV4	750	Head	42.81	0.85	PASS	PASS	PASS	FDD	PASS	N/A
835	6/25/2019	3677	EX3DV4	835	Head	42.22	0.90	PASS	PASS	PASS	GMSK	PASS	N/A
1750	6/25/2019	3677	EX3DV4	1750	Head	39.91	1.32	PASS	PASS	PASS	NA	N/A	N/A
1900	6/25/2019	3677	EX3DV4	1900	Head	39.43	1.42	PASS	PASS	PASS	GMSK	PASS	N/A
2450	6/25/2019	3677	EX3DV4	2450	Head	38.19	1.83	PASS	PASS	PASS	OFDM	PASS	PASS
2600	6/25/2019	3677	EX3DV4	2600	Head	37.60	1.99	PASS	PASS	PASS	TDD	PASS	N/A
5250	6/25/2019	3677	EX3DV4	5250	Head	35.36	4.83	PASS	PASS	PASS	OFDM	N/A	PASS
5600	6/25/2019	3677	EX3DV4	5600	Head	34.43	5.29	PASS	PASS	PASS	OFDM	N/A	PASS
5750	6/25/2019	3677	EX3DV4	5750	Head	34.07	5.47	PASS	PASS	PASS	OFDM	N/A	PASS
750	6/25/2019	3677	EX3DV4	750	Body	55.35	0.99	PASS	PASS	PASS	FDD	PASS	N/A
835	6/25/2019	3677	EX3DV4	835	Body	54.88	0.98	PASS	PASS	PASS	GMSK	PASS	N/A
1750	6/25/2019	3677	EX3DV4	1750	Body	51.24	1.44	PASS	PASS	PASS	NA	N/A	N/A
1900	6/25/2019	3677	EX3DV4	1900	Body	50.98	1.56	PASS	PASS	PASS	GMSK	PASS	N/A
2450	6/25/2019	3677	EX3DV4	2450	Body	50.59	1.95	PASS	PASS	PASS	OFDM	PASS	PASS
2600	6/25/2019	3677	EX3DV4	2600	Body	50.14	2.13	PASS	PASS	PASS	TDD	PASS	N/A
5250	6/25/2019	3677	EX3DV4	5250	Body	47.37	5.44	PASS	PASS	PASS	OFDM	N/A	PASS
5600	6/25/2019	3677	EX3DV4	5600	Body	46.42	5.99	PASS	PASS	PASS	OFDM	N/A	PASS
5750	6/25/2019	3677	EX3DV4	5750	Body	46.02	6.23	PASS	PASS	PASS	OFDM	N/A	PASS

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664D01v01 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5dB), such as OFDM according to KDB 865664.

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.1 GSM Mode

		Burst-Ave	eraged ou	utput pow	ver(dBm)		Frame-A	veraged o	output pov	ver(dBm)
GSN	Л 850	Tune-up	Channe	l/Frenqu	cy(MHz)	Division	Tune-up	Channe	l/Frenquo	y(MHz)
GSIN	N 030	MAX	128	190	251	Factors	MAX	128	190	251
		IVIAA	/824.2	/836.6	/848.8		IVIAA	/824.2	/836.6	/848.8
	1 Tx Slot	33.50	32.94	32.95	32.88	9.03	24.47	23.91	23.92	23.85
GPRS	2 Tx Slots	32.50	31.89	31.93	32.01	6.02	26.48	25.87	25.91	25.99
(GMSK)	3 Tx Slots	31.00	30.50	30.64	30.74	4.26	26.74	26.24	26.38	26.48
	4 Tx Slots	30.00	29.16	29.34	29.54	3.01	26.99	26.15	26.33	26.53
	1 Tx Slot	25.00	24.21	24.76	24.71	9.03	15.97	15.18	15.73	15.68
EGPRS	2 Tx Slots	24.00	23.04	23.51	23.80	6.02	17.98	17.02	17.49	17.78
(8PSK)	3 Tx Slots	23.00	22.12	22.45	22.50	4.26	18.74	17.86	18.19	18.24
	4 Tx Slots	22.00	21.15	21.47	21.49	3.01	18.99	18.14	18.46	18.48
		Burst-Ave	eraged ou	ıtput pow	er(dBm)		Frame-A	veraged o	output pov	ver(dBm)
GSM	1 1900	Tune-up	Channel/Frenqucy(MHz)			Division	Tune-up	Channe	l/Frenquo	y(MHz)
GSIVI	1 1900	MAX	512	661	810	Factors	MAX	512	661	810
		IVIAA	/1850.2	/1880	/1909.8		IVIAA	/1850.2	/1880	/1909.8
	1 Tx Slot	31.00	30.08	30.24	30.35	9.03	21.97	21.05	21.21	21.32
GPRS	2 Tx Slots	30.50	29.84	29.74	20.70		04.40	23.82	23.72	23.68
		00.00	23.04	29.74	29.70	6.02	24.48	23.02	23.72	23.00
(GMSK)	3 Tx Slots	29.50	28.71	28.63	28.87	6.02 4.26	25.24	24.45	24.37	24.61
(GMSK)										
(GMSK)	3 Tx Slots	29.50	28.71	28.63	28.87	4.26	25.24	24.45	24.37	24.61
(GMSK)	3 Tx Slots 4 Tx Slots	29.50 28.50	28.71 27.72	28.63 27.70	28.87 28.03	4.26 3.01	25.24 25.49	24.45 24.71	24.37 24.69	24.61 25.02
	3 Tx Slots 4 Tx Slots 1 Tx Slot	29.50 28.50 26.00	28.71 27.72 25.04	28.63 27.70 24.88	28.87 28.03 25.05	4.26 3.01 9.03	25.24 25.49 16.97	24.45 24.71 16.01	24.37 24.69 15.85	24.61 25.02 16.02

Notes:The worst-case configuration and mode for SAR testing is determined to be as follows:

^{1.} Standalone: GSM 850 GMSK (GPRS) mode with 4 time slots for Max power, GSM 1900 GMSK (GPRS) mode with 4 time slots for Max power, based on the output power measurements above.

9.2 WCDMA Mode

The following tests were completed according to the test requirements outlined in the 3GPP TS34.121 specification.

WC	DMA	Band II(dBm)					Band I	V(dBm)		Band V(dBm)			
Tx C	hannel	9262	9400	9538	Tune-up	1312	1413	1513	Tune-up	4132	4183	4233	Tune-up
Frequer	ncy(MHz)	1852.4	1880	1907.6	Limit	1712.4	1732.6	1752.6	Limit	826.4	836.6	846.6	Limit
RMC	12.2kbps	23.26	23.45	23.83	24.50	24.13	24.22	24.24	25.00	23.59	23.58	23.62	24.50
AMR	12.2kbps	23.10	23.28	23.68	24.50	23.97	24.05	24.09	25.00	23.43	23.41	23.47	24.50
	Sub 1	22.68	22.87	23.25	24.00	23.55	23.64	23.66	24.50	23.01	23.00	23.04	24.00
HSDPA	Sub 2	22.67	22.86	23.24	24.00	23.54	23.63	23.65	24.50	23.00	22.99	23.03	24.00
ПОДРА	Sub 3	22.16	22.35	22.73	23.50	23.03	23.12	23.14	24.00	22.49	22.48	22.52	23.50
	Sub 4	22.15	22.34	22.72	23.50	23.02	23.11	23.13	24.00	22.48	22.47	22.51	23.50
	Sub 1	22.64	22.83	23.21	24.00	23.51	23.60	23.62	24.50	22.97	22.96	23.00	24.00
	Sub 2	21.63	21.82	22.20	23.00	22.50	22.59	22.61	23.50	21.96	21.95	21.99	23.00
HSUPA	Sub 3	22.11	22.31	22.69	23.50	22.98	23.08	23.10	24.00	22.44	22.44	22.48	23.50
	Sub 4	21.60	21.80	22.18	23.00	22.47	22.57	22.59	23.50	21.93	21.93	21.97	23.00
	Sub 5	22.59	22.79	23.17	24.00	23.46	23.56	23.58	24.50	22.92	22.92	22.96	24.00

Note: 1.Per KDB 941225 D01, SAR for each exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

FCC SAR Test Report No.: R1912A0704-S1

9.3 LTE Mode

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

LTE FDD Band 2				Conducted Power(dBm)			_
Dan duvi dila	Madulatian	DD =:===	RB offset	Channel/Frequency (MHz)			Tune-up
Bandwidth	Modulation	RB size		18607/1850.7	18900/1880	19193/1909.3	Limit
		1	0	22.69	22.71	22.80	24.00
		1	2	23.00	23.05	23.13	24.00
		1	5	22.55	22.68	22.86	24.00
	QPSK	3	0	22.85	23.02	23.20	24.00
		3	2	22.93	23.08	23.13	24.00
		3	3	22.94	23.04	23.10	24.00
1.4MHz		6	0	21.95	22.11	22.16	23.00
1.4111172	16QAM	1	0	21.99	22.05	22.19	23.00
		1	2	22.27	22.34	22.50	23.00
		1	5	21.78	22.03	22.09	23.00
		3	0	21.82	21.93	22.14	23.00
		3	2	21.88	22.00	22.12	23.00
		3	3	21.83	22.02	22.05	23.00
		6	0	20.90	21.06	21.14	22.00
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
Danawidin				18615/1851.5	18900/1880	19185/1908.5	Limit
	QPSK	1	0	22.72	22.75	22.82	24.00
		1	7	23.04	23.10	23.16	24.00
3MHz		1	14	22.59	22.73	22.89	24.00
		8	0	21.98	22.14	22.30	23.00
		8	4	22.05	22.18	22.25	23.00
		8	7	22.04	22.15	22.20	23.00
		15	0	21.98	22.15	22.19	23.00
	16QAM	1	0	22.02	22.07	22.22	23.00
		1	7	22.31	22.39	22.53	23.00
		1	14	21.81	22.07	22.11	23.00
		8	0	20.94	21.06	21.25	22.00
TA Technology (Shanghai) Co., Ltd. TA-MB-02-011S Page 33 of 165							

TA Technology (Shanghai) Co., Ltd.

TA-MB-02-011S

Page 33 of 165

21.00 21.13 8 4 21.23 22.00 8 20.96 21.14 21.15 22.00 15 0 21.10 20.93 21.17 22.00 Channel/Frequency (MHz) Tune-up Modulation RB size **RB** offset **Bandwidth** 18625/1852.5 18900/1880 19175/1907.5 Limit 1 0 22.68 22.73 22.79 24.00 23.14 1 13 23.01 23.06 24.00 24 22.55 22.68 22.86 24.00 1 **QPSK** 12 0 21.94 22.09 22.27 23.00 12 6 22.00 22.14 22.23 23.00 12 13 22.00 22.13 22.18 23.00 25 0 21.96 22.14 22.17 23.00 5MHz 1 0 21.99 22.03 22.19 23.00 13 22.50 1 22.28 22.37 23.00 1 24 21.77 22.05 22.08 23.00 16QAM 12 0 20.91 21.02 21.23 22.00 12 6 21.20 20.96 21.08 22.00 12 13 20.92 21.09 21.12 22.00 25 0 20.88 21.06 21.15 22.00 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 18650/1855 18900/1880 19150/1905 Limit 1 0 22.71 22.74 22.81 24.00 25 1 23.05 23.11 23.17 24.00 1 49 22.58 22.72 22.88 24.00 **QPSK** 25 0 21.98 22.14 22.30 23.00 25 13 22.04 22.19 22.26 23.00 25 25 22.20 22.05 22.17 23.00 50 22.16 22.25 23.00 0 22.00 10MHz 1 0 22.01 22.06 22.21 23.00 1 25 22.31 22.41 22.53 23.00 1 49 21.80 22.07 22.11 23.00 16QAM 25 0 20.95 21.07 21.26 22.00 25 13 20.99 21.22 22.00 21.12 25 25 20.96 21.14 21.15 22.00 50 0 20.92 21.11 21.18 22.00 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 18675/1857.5 18900/1880 19125/1902.5 Limit 22.69 22.70 22.80 24.00 1 0 38 1 23.02 23.10 23.15 24.00 74 1 22.54 22.67 22.85 24.00 **QPSK** 15MHz 36 0 22.10 22.28 23.00 21.95 22.23 36 18 22.00 22.14 23.00 36 39 22.01 22.14 22.17 23.00

Report No.: R1912A0704-S1 75 0 21.95 22.12 22.23 23.00 1 0 21.99 22.04 22.16 23.00 1 38 22.29 22.38 22.51 23.00 1 74 22.03 22.08 23.00 21.77 16QAM 36 0 20.92 21.05 21.23 22.00 18 22.00 36 20.95 21.07 21.19 39 20.93 21.10 21.13 22.00 36 75 0 20.88 21.06 21.15 22.00 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 18700/1860 18900/1880 Limit 19100/1900 1 0 22.66 22.66 22.77 24.00 1 23.06 24.00 50 23.00 23.14 1 99 22.51 22.66 22.83 24.00 **QPSK** 50 0 21.91 22.05 22.25 23.00 50 25 22.10 22.21 23.00 21.97 50 50 21.97 22.09 22.14 23.00 22.20 100 0 22.07 23.00 21.91 20MHz 1 0 21.94 22.00 22.14 23.00 1 50 22.25 22.36 22.47 23.00 1 99 22.00 22.06 23.00 21.75 16QAM 50 0 20.89 21.01 21.20 22.00 50 25 20.92 21.05 21.16 22.00 50 21.10 22.00 50 20.89 21.05 100 0 20.85 21.02 21.13 22.00

LTE FDD Band 4				Conducted Power(dBm)			Tung up
Bandwidth	Modulation	RB size	RB offset	Chan	Tune-up		
				19957/1710.7	20175/1732.5	20393/1754.3	Limit
	QPSK	1	0	22.25	22.20	22.19	23.00
		1	2	22.45	22.44	22.49	23.00
		1	5	22.09	22.11	22.05	23.00
		3	0	22.37	22.46	22.48	23.00
		3	2	22.45	22.44	22.38	23.00
		3	3	22.40	22.27	22.32	23.00
1.4MHz		6	0	21.41	21.43	21.43	22.00
1.4111112	16QAM	1	0	21.49	21.50	21.46	22.00
		1	2	21.82	21.66	21.79	22.00
		1	5	21.39	21.31	21.32	22.00
		3	0	21.32	21.39	21.46	22.00
		3	2	21.40	21.33	21.40	22.00
		3	3	21.34	21.24	21.29	22.00
		6	0	20.41	20.41	20.44	21.00
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up

	J JAK Test Kepo					Report No.: K1912A	_
				19965/1711.5	20175/1732.5	20385/1753.5	Limit
3MHz		1	0	22.28	22.24	22.21	23.00
		1	7	22.49	22.49	22.52	23.00
		1	14	22.13	22.16	22.08	23.00
	QPSK	8	0	21.50	21.58	21.58	22.00
		8	4	21.57	21.54	21.50	22.00
		8	7	21.50	21.38	21.42	22.00
		15	0	21.44	21.47	21.46	22.00
		1	0	21.52	21.52	21.49	22.00
		1	7	21.86	21.71	21.82	22.00
		1	14	21.42	21.35	21.34	22.00
	16QAM	8	0	20.44	20.52	20.57	21.00
		8	4	20.52	20.46	20.51	21.00
		8	7	20.47	20.36	20.39	21.00
		15	0	20.44	20.45	20.47	21.00
Bandwidth	Modulation	RB size	RB offset	Chan	nannel/Frequency (MHz)		Tune-up
Danawiatii	Modulation	IND SIZE	ND 011361	19975/1712.5	20175/1732.5	20375/1752.5	Limit
	QPSK	1	0	22.24	22.22	22.18	23.00
		1	13	22.46	22.45	22.50	23.00
		1	24	22.09	22.11	22.05	23.00
		12	0	21.46	21.53	21.55	22.00
		12	6	21.52	21.50	21.48	22.00
		12	13	21.46	21.36	21.40	22.00
5MHz		25	0	21.42	21.46	21.44	22.00
311112	16QAM	1	0	21.49	21.48	21.46	22.00
		1	13	21.83	21.69	21.79	22.00
		1	24	21.38	21.33	21.31	22.00
		12	0	20.41	20.48	20.55	21.00
		12	6	20.48	20.41	20.48	21.00
		12	13	20.43	20.31	20.36	21.00
		25	0	20.39	20.41	20.45	21.00
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
Bariawiatii	iviodulation	IND SIZE	IVD Olloct	20000/1715	20175/1732.5	20350/1750	Limit
10MHz	QPSK	1	0	22.27	22.23	22.20	23.00
		1	25	22.50	22.50	22.53	23.00
		1	49	22.12	22.15	22.07	23.00
		25	0	21.50	21.58	21.58	22.00
		25	13	21.56	21.55	21.51	22.00
		25	25	21.51	21.40	21.42	22.00
		50	0	21.46	21.48	21.52	22.00
	16QAM	1	0	21.51	21.51	21.48	22.00
		1	25	21.86	21.73	21.82	22.00
		1	49	21.41	21.35	21.34	22.00

<u> </u>	SAN TEST NEPO					Report No., K1912A	
		25	0	20.45	20.53	20.58	21.00
		25	13	20.51	20.45	20.50	21.00
		25	25	20.47	20.36	20.39	21.00
		50	0	20.43	20.46	20.48	21.00
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency (MHz)	Tune-up
Danawiath	Modulation	KD SIZE	KD Ullset	20025/1717.5	20175/1732.5	20325/1747.5	Limit
		1	0	22.25	22.19	22.19	23.00
		1	38	22.47	22.49	22.51	23.00
		1	74	22.08	22.10	22.04	23.00
	QPSK	36	0	21.47	21.54	21.56	22.00
		36	18	21.52	21.50	21.48	22.00
		36	39	21.47	21.37	21.39	22.00
4 E M L I —		75	0	21.41	21.44	21.50	22.00
15MHz		1	0	21.49	21.49	21.43	22.00
		1	38	21.84	21.70	21.80	22.00
		1	74	21.38	21.31	21.31	22.00
	16QAM	36	0	20.42	20.51	20.55	21.00
		36	18	20.47	20.40	20.47	21.00
		36	39	20.44	20.32	20.37	21.00
		75	0	20.39	20.41	20.45	21.00
Domalusi déla	Modulation	RB size	DP offeet	Chan	nel/Frequency (MHz)	Tune-up
Bandwidth	Modulation	RB Size	RB offset	20050/1720	20175/1732.5	20300/1745	Limit
		1	0	22.22	22.15	22.16	23.00
		1	50	22.45	22.45	22.50	23.00
		1	99	22.05	22.09	22.02	23.00
	QPSK	50	0	21.43	21.49	21.53	22.00
		50	25	21.49	21.46	21.46	22.00
		50	50	21.43	21.32	21.36	22.00
201411-		100	0	21.37	21.39	21.47	22.00
20MHz		1	0	21.44	21.45	21.41	22.00
		1	50	21.80	21.68	21.76	22.00
		1	99	21.36	21.28	21.29	22.00
	16QAM	50	0	20.39	20.47	20.52	21.00
		50	25	20.44	20.38	20.44	21.00
		50	50	20.40	20.27	20.34	21.00
		100	0	20.36	20.37	20.43	21.00

	LTE FDD B	and 5		Conducted Power(dBm)			Tuno un
Pandwidth	Modulation	RB size	RB offset	Chan	MHz)	Tune-up	
Bandwidth		KD SIZE	KD Ollset	20407/824.7	20525/836.5	20643/848.3	Limit
		1	0	23.49	23.51	23.46	25.00
1.4MHz	QPSK	1	2	23.89	23.79	24.34	25.00
		1	5	23.64	23.55	24.11	25.00

	OAK Test Kepon			i		report No., Kristza	
		3	0	22.89	22.79	22.77	24.00
		3	2	22.94	22.88	22.95	24.00
		3	3	23.04	22.81	23.00	24.00
		6	0	22.98	22.84	22.82	24.00
		1	0	22.67	22.69	22.73	24.00
		1	2	23.15	23.04	23.21	24.00
		1	5	22.92	22.86	22.86	24.00
	16QAM	3	0	21.85	21.73	21.78	23.00
		3	2	21.91	21.82	21.94	23.00
		3	3	21.99	21.78	22.00	23.00
		6	0	21.86	21.75	21.84	23.00
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency ((MHz)	Tune-up
Danuwidin	Modulation	KD SIZE	KD UIISEL	20415/825.5	20525/836.5	20635/847.5	Limit
		1	0	23.52	23.52	23.48	25.00
		1	7	23.93	23.84	24.37	25.00
		1	14	23.67	23.59	24.13	25.00
	QPSK	8	0	22.93	22.84	22.80	24.00
		8	4	22.98	22.93	22.98	24.00
		8	7	23.09	22.85	23.02	24.00
3MHz		15	0	23.02	22.86	22.90	24.00
SIVITIZ		1	0	22.69	22.72	22.75	24.00
		1	7	23.18	23.08	23.24	24.00
		1	14	22.95	22.88	22.89	24.00
	16QAM	8	0	21.89	21.78	21.81	23.00
		8	4	21.94	21.86	21.96	23.00
		8	7	22.03	21.83	22.03	23.00
		15	0	21.90	21.80	21.87	23.00
Pondwidth	Modulation	RB size	RB offset	Chan	nel/Frequency ((MHz)	Tune-up
Bandwidth	Modulation	ND SIZE	IVD Ollset	20425/826.5	20525/836.5	20625/846.5	Limit
		1	0	23.50	23.48	23.47	25.00
		1	13	23.90	23.83	24.35	25.00
		1	24	23.63	23.54	24.10	25.00
	QPSK	12	0	22.90	22.80	22.78	24.00
		12	6	22.94	22.88	22.95	24.00
		12	13	23.05	22.82	22.99	24.00
EMIL-		25	0	22.97	22.82	22.88	24.00
5MHz		1	0	22.67	22.70	22.70	24.00
		1	13	23.16	23.05	23.22	24.00
		1	24	22.92	22.84	22.86	24.00
	16QAM	12	0	21.86	21.76	21.78	23.00
		12	6	21.90	21.81	21.93	23.00
		12	13	22.00	21.79	22.01	23.00
		25	0	21.86	21.75	21.84	23.00

Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency (MHz)	Tune-up
Bandwidth	iviodulation	KD SIZE	VD Ollger	20450/829	20525/836.5	20600/844	Limit
		1	0	23.47	23.44	23.44	25.00
		1	25	23.88	23.79	24.34	25.00
		1	49	23.60	23.53	24.08	25.00
	QPSK	25	0	22.86	22.75	22.75	24.00
		25	13	22.91	22.84	22.93	24.00
		25	25	23.01	22.77	22.96	24.00
10MHz		50	0	22.93	22.77	22.85	24.00
TUIVIE		1	0	22.62	22.66	22.68	24.00
		1	25	23.12	23.03	23.18	24.00
		1	49	22.90	22.81	22.84	24.00
	16QAM	25	0	21.83	21.72	21.75	23.00
		25	13	21.87	21.79	21.90	23.00
		25	25	21.96	21.74	21.98	23.00
		50	0	21.83	21.71	21.82	23.00

	LTE FDD B	and 7		Cond	ucted Power(dBm)	Tuna un
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up Limit
Bandwidth	iviodulation	KD SIZE	KD OIISEL	20775/2502.5	21100/2535	21425/2567.5	LIIIII
		1	0	22.41	22.39	22.20	23.00
		1	13	22.59	22.50	22.39	23.00
		1	24	22.50	22.41	22.27	23.00
	QPSK	12	0	21.46	21.38	21.25	22.00
		12	6	21.45	21.39	21.21	22.00
		12	13	21.52	21.47	21.36	22.00
5MHz		25	0	21.44	21.39	21.18	22.00
SIVITIZ		1	0	21.36	21.23	21.14	22.00
		1	13	21.83	21.74	21.60	22.00
		1	24	21.51	21.45	21.31	22.00
	16QAM	12	0	20.52	20.44	20.39	21.00
		12	6	20.45	20.38	20.31	21.00
		12	13	20.36	20.30	20.22	21.00
		25	0	20.44	20.42	20.24	21.00
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Bandwidth	Modulation	IND SIZE	IVD Olloct	20800/2505	21100/2535	21400/2565	Limit
		1	0	22.44	22.40	22.22	23.00
		1	25	22.63	22.55	22.42	23.00
		1	49	22.53	22.45	22.29	23.00
10MHz	QPSK	25	0	21.50	21.43	21.28	22.00
		25	13	21.49	21.44	21.24	22.00
		25	25	21.57	21.51	21.38	22.00
		50	0	21.48	21.41	21.26	22.00

	SAK Test Kepor					Report No.: R 1912	
		1	0	21.38	21.26	21.16	22.00
		1	25	21.86	21.78	21.63	22.00
		1	49	21.54	21.47	21.34	22.00
	16QAM	25	0	20.56	20.49	20.42	21.00
		25	13	20.48	20.42	20.33	21.00
		25	25	20.40	20.35	20.25	21.00
		50	0	20.48	20.47	20.27	21.00
Bandwidth	Madulation	RB size	Channel/Frequency (MHz)		(MHz)	Tune-up	
Danawiath	Modulation	ND SIZE	RB offset	20825/2507.5	21100/2535	21375/2562.5	Limit
		1	0	22.42	22.36	22.21	23.00
		1	38	22.60	22.54	22.40	23.00
		1	74	22.49	22.40	22.26	23.00
	QPSK	36	0	21.47	21.39	21.26	22.00
		36	18	21.45	21.39	21.21	22.00
		36	39	21.53	21.48	21.35	22.00
4 E BALL-		75	0	21.43	21.37	21.24	22.00
15MHz		1	0	21.36	21.24	21.11	22.00
		1	38	21.84	21.75	21.61	22.00
		1	74	21.51	21.43	21.31	22.00
	16QAM	36	0	20.53	20.47	20.39	21.00
		36	18	20.44	20.37	20.30	21.00
		36	39	20.37	20.31	20.23	21.00
		75	0	20.44	20.42	20.24	21.00
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
bandwidth	Modulation	KD SIZE	KD Ullset	20850/2510	21100/2535	21350/2560	Limit
		1	0	22.39	22.32	22.18	23.00
		1	50	22.58	22.50	22.39	23.00
		1	99	22.46	22.39	22.24	23.00
	QPSK	50	0	21.43	21.34	21.23	22.00
		50	25	21.42	21.35	21.19	22.00
		50	50	21.49	21.43	21.32	22.00
201411-		100	0	21.39	21.32	21.21	22.00
20MHz		1	0	21.31	21.20	21.09	22.00
		1	50	21.80	21.73	21.57	22.00
		1	99	21.49	21.40	21.29	22.00
	16QAM	50	0	20.50	20.43	20.36	21.00
		50	25	20.41	20.35	20.27	21.00
		50	50	20.33	20.26	20.20	21.00
		100	0	20.41	20.38	20.22	21.00

LTE FDD Band 12			Conducted Power(dBm)			Tung up	
Bondwidth Madulation DD size DD offe				Chan	nel/Frequency ((MHz)	Tune-up Limit
Danawiain	Bandwidth Modulation RB size		RB offset	23017/699.7	23095/707.5	23173/715.3	LIIIII

FCC SAR Test Report Report No.: R1912A0704-S1 22.46 22.61 1 0 22.66 23.50 1 2 22.79 22.68 22.84 23.50 1 5 22.53 22.55 22.76 23.50 **QPSK** 0 21.92 21.97 22.00 23.50 3 3 2 22.11 21.98 22.02 23.50 3 3 21.88 22.01 22.06 23.50 6 0 21.94 21.92 22.05 22.50 1.4MHz 22.17 22.50 1 0 21.97 22.01 2 1 22.16 22.25 22.28 22.50 1 5 21.65 21.93 21.96 22.50 3 0 20.89 21.00 21.12 22.50 16QAM 3 2 20.87 20.96 21.18 22.50 3 3 21.00 20.96 20.93 22.50 6 0 21.86 21.75 21.84 22.50 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 23025/700.5 23095/707.5 23165/714.5 Limit 0 22.49 22.62 22.68 23.50 1 7 1 22.83 22.87 23.50 22.73 1 14 22.56 22.59 22.78 23.50 **QPSK** 8 0 21.96 22.02 22.03 22.50 8 4 22.02 22.07 22.14 22.50 8 7 21.93 22.05 22.08 22.50 15 0 21.98 21.94 22.13 22.50 3MHz 1 22.19 0 21.99 22.04 22.50 7 1 22.19 22.29 22.31 22.50 1 14 21.68 21.95 21.99 22.50 0 16QAM 8 20.93 21.05 21.15 21.50 8 4 20.90 21.20 21.50 21.00 8 7 21.04 21.01 20.96 21.50 15 0 20.90 21.03 21.09 21.50 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 23035/701.5 23095/707.5 23155/713.5 Limit 1 0 22.47 22.58 22.67 23.50 1 13 22.80 22.72 22.85 23.50 1 24 22.52 22.54 22.75 23.50 **QPSK** 12 0 21.93 21.98 22.01 22.50 22.11 22.50 12 6 21.98 22.02 22.05 22.50 12 13 21.89 22.02 5MHz 25 0 21.93 21.90 22.11 22.50

16QAM

1

1

1

12

21.97

22.17

21.65

20.90

22.02

22.26

21.91

21.03

22.50

22.50

22.50

21.50

22.14

22.29

21.96

21.12

0

13

24

0

Report No.: R1912A0704-S1 12 6 20.86 20.95 21.17 21.50 12 13 21.01 20.97 20.94 21.50 25 0 20.86 20.98 21.06 21.50 Channel/Frequency (MHz) Tune-up **RB** offset **Bandwidth** Modulation RB size 23060/704 23095/707.5 23130/711 Limit 1 0 22.44 22.54 22.64 23.50 25 22.78 22.84 23.50 1 22.68 1 49 22.49 22.53 22.73 23.50 0 21.89 21.98 22.50 **QPSK** 25 21.93 22.09 22.50 25 13 21.95 21.98 25 25 21.85 21.97 22.02 22.50 22.08 22.50 50 0 21.89 21.85 10MHz 1 0 22.12 21.92 21.98 22.50 1 25 22.13 22.24 22.25 22.50 1 49 21.88 21.94 22.50 21.63 16QAM 25 0 20.87 20.99 21.09 21.50 21.14 25 13 20.83 20.93 21.50 25 25 20.97 20.92 20.91 21.50 50 0 20.83 20.94 21.04 21.50

	LTE FDD Ba	and 13		Cond	(dBm)	Tune-up	
Bandwidth	Modulation	RB size	RB offset	Chann	el/Frequency	(MHz)	Limit
Bandwidth	Woddiation	ND SIZE	KD 011961	23205/779.5	23230/782	23255/784.5	LIIIII
		1	0	23.37	23.42	23.24	24.00
		1	13	23.63	23.67	23.74	24.00
		1	24	23.42	23.39	23.68	24.00
	QPSK	12	0	22.76	22.85	22.65	23.00
		12	6	22.81	22.52	22.77	23.00
		12	13	22.71	22.57	22.72	23.00
5MHz		25	0	22.63	22.77	22.63	23.00
SIVITZ		1	0	22.32	22.5	22.43	23.00
	16QAM	1	13	22.86	22.76	22.87	23.00
		1	24	22.68	22.67	22.54	23.00
		12	0	21.62	21.62	21.51	22.00
		12	6	21.64	21.63	21.53	22.00
		12	13	21.66	21.64	21.74	22.00
		25	0	21.63	21.59	21.62	22.00
Bandwidth	Modulation	RB size	RB offset	Chann	el/Frequency	(MHz)	Tune-up
Bandwidth	Wodulation	ND SIZE	KD 011361	/	23230/782	/	Limit
		1	0	/	23.38	/	24.00
10MHz	QPSK	1	25	/	23.63	/	24.00
IUIVIE	QF3N	1	49	/	23.38	/	24.00
		25	0	/	22.80	/	23.00

74	
TA	FCC SAR Test Report

Report No.: R1912A0704-S1 22.48 25 13 / 23.00 23.00 25 25 22.52 / / 50 0 22.72 23.00 1 0 / 22.46 / 23.00 1 25 22.74 23.00 1 49 22.64 23.00 25 / 21.58 22.00 16QAM 0 25 13 / 21.61 22.00 25 25 21.59 22.00 50 0 / 21.55 / 22.00

	LTE FDD Ba	and 17		Cond	ucted Power	(dBm)	T	
Dan desidile	NA - de de 4' - c	DD -:	DD -#+	Chann	el/Frequency	(MHz)	Tune-up Limit	
Bandwidth	Modulation	RB size	RB offset	23755/706.5	23790/710	23825/713.5	LIIIIII	
		1	0	23.35	23.31	23.3	24.00	
		1	13	23.51	23.49	23.48	24.00	
		1	24	23.4	23.33	23.37	24.00	
	QPSK	12	0	22.37	22.43	22.45	23.00	
		12	6	22.45	22.46	22.46	23.00	
		12	13	22.42	22.42	22.46	23.00	
5MHz		25	0	22.4	22.46	22.47	23.00	
ЭМП2	16QAM	1	0	22.59	22.51	22.53	23.00	
		1	13	22.79	22.68	22.77	23.00	
		1	24	22.64	22.57	22.52	23.00	
		12	0	21.26	21.32	21.38	22.00	
		12	6	21.4	21.4	21.41	22.00	
		12	13	21.33	21.35	21.39	22.00	
		25	0	21.33	21.36	21.38	22.00	
Bandwidth	Modulation	RB size	RR offset	RB offset	Chann	el/Frequency	(MHz)	Tune-up
Bandwidth	Woddiation	IND SIZE	IVD Ollset	23780/709	23790/710	23800/711	Limit	
		1	0	23.32	23.27	23.27	24.00	
		1	25	23.49	23.45	23.47	24.00	
		1	49	23.37	23.32	23.35	24.00	
	QPSK	25	0	22.33	22.38	22.42	23.00	
		25	13	22.42	22.42	22.44	23.00	
10MHz		25	25	22.38	22.37	22.43	23.00	
10141112		50	0	22.36	22.41	22.44	23.00	
		1	0	22.54	22.47	22.51	23.00	
		1	25	22.75	22.66	22.73	23.00	
	16QAM	1	49	22.62	22.54	22.50	23.00	
		25	0	21.23	21.28	21.35	22.00	
		25	13	21.37	21.38	21.38	22.00	

FCC SAR Test Report Report No.: R1912A0704-S1

_					-	
	25	25	21.29	21.30	21.36	22.00
	50	0	21.30	21.32	21.36	22.00

9.4 WLAN Mode

Wi-Fi 2.4G	Channal		Maximum Output Power (dBm)	
Mode	Channel - /Frequency(MHz)	Tune-up	Meas.	TP Set Level
IVIOGE	1/0.110	40.00	1-01	1.0
802.11b	1/2412	18.00	17.04	19
(1M)	6/2437	18.00	17.47	19
(1141)	11/2462	18.00	17.21	19
	1/2412	18.00	17.24	17
802.11g (6M)	6/2437	18.00	17.24	17
(OIVI)	11/2462	18.00	16.81	17
000 44 11700	1/2412	18.00	16.81	17
802.11n-HT20 (MCS0)	6/2437	18.00	17.01	18
(IVICSO)	11/2462	18.00	16.75	19
000 44 11740	3/2422	19.00	17.82	16.5
802.11n-HT40 (MCS0)	6/2437	19.00	18.34	16.5
(IVICSU)	9/2452	18.00	16.63	16.5
Note: Initial test config	uration is 802.11b mod	le.		

Wi-Fi 5G	Channel		Maximum Output Power (dBm)	
(U-NII-1)	/Frequency(MHz)	Tune-up	Meas.	TP Set Level
Mode	// requeriey(ivii iz)	rune-up	ivicas.	Tr Set Level
	36/5180	13.00	12.32	17
802.11a	40/5200	13.00	12.61	17
(6M)	44/5220	13.00	11.56	17
	48/5240	13.00	12.31	17
	36/5180	13.00	12.48	17
802.11n-HT20	40/5200	13.00	12.79	17
(MCS0)	44/5220	13.00	11.61	17
	48/5240	13.00	12.44	17
802.11n-HT40	38/5190	13.50	13.18	16.5
(MCS0)	46/5230	13.50	13.08	16.5
	36/5180	13.00	12.42	17
802.11ac-VHT20	40/5200	13.00	12.70	17
(6M)	44/5220	13.00	11.29	17
	48/5240	13.00	12.44	17
802.11ac-VHT40	38/5190	13.50	13.12	16.5
(MCS0)	46/5230	13.50	10.28	16.5
Note. Initial test config	uration is 802.11n-HT4	10 mode, since th	ne highest maximum output powe	r

(MCS0)

Wi-Fi 5G Maximum Output Power (dBm) Channel (U-NII-3) /Frequency(MHz) Tune-up Meas. TP Set Level Mode 149/5745 12.00 11.21 17 802.11a 157/5785 12.00 17 11.36 (6M) 12.00 11.02 17 165/5825 12.00 17 149/5745 11.23 802.11n-HT20 17 157/5785 12.00 11.41 (MCS0) 17 165/5825 12.00 11.08 802.11n-HT40 151/5755 12.50 11.78 16.5 (MCS0) 12.50 159/5795 12.05 16.5 12.00 17 149/5745 11.24 802.11ac-HT20 157/5785 12.00 11.42 17 (6M) 165/5825 12.00 11.03 17 9.50 8.73 151/5755 16.5 802.11ac-HT40

Note. Initial test configuration is 802.11n-HT40 mode, since the highest maximum output power.

12.50

12.05

159/5795

Report No.: R1912A0704-S1

16.5

9.5 Bluetooth Mode

	C	onducted Power(dBr	n)	T
ВТ	Ch	Tune-up Limit (dBm)		
	Ch 0/2402 MHz	Lillit (abili)		
GFSK	8.57	8.38	8.02	9.00
π/4DQPSK	6.43	6.35	5.89	7.00
8DPSK	6.46	6.37	5.90	7.00
BLE	Ch 0/2402 MHz	Ch 19/2440 MHz	Ch 39/2480 MHz	Tune-up Limit (dBm)
GFSK	4.02	4.13	3.87	5.00

FCC SAR Test Report No.: R1912A0704-S1

10 Measured and Reported (Scaled) SAR Results

10.1 EUT Antenna Locations

Note: The location of the test is detailed in Section 5.1

10.2 Standalone SAR test exclusion considerations

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for product specific 10-g SAR

- > f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- > The result is rounded to one decimal place for comparison

Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Bluetooth	Distance (mm)	MAXPower (dBm)	Frequency (MHz)	Ratio	Evaluation
Product Specific 10-g SAR	5	9.00	2480	2.50	No

10.3 Measured SAR Results

Table 8: GSM 850

			Channal/		Management	Li	mit of 10gS	AR 4 W/k	g (mW/g)		
Test Position	Cover Type	Time slot	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
			Product	Specific 1	0-g SAR (Di	stance 0mm	1)				
	standard	4Txslots	128/824.2	30.00	29.16	0.834	1.390	0.030	1.21	1.012	9
Back Side	standard	4Txslots	190/836.6	30.00	29.34	0.805	1.440	-0.021	1.16	0.937	/
	standard	4Txslots	251/848.8	30.00	29.54	0.658	1.150	0.099	1.11	0.732	/
Front Side	standard	4Txslots	190/836.6	30.00	29.34	0.413	0.728	0.100	1.16	0.481	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	4Txslots	190/836.6	30.00	29.34	0.325	0.601	0.120	1.16	0.378	/
Top Edge	standard	4Txslots	190/836.6	30.00	29.34	0.072	0.129	-0.040	1.16	0.084	/
Bottom Edge	standard	4Txslots	190/836.6	30.00	29.34	0.038	0.067	0.045	1.16	0.044	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

standard

standard

standard

Top Edge

Bottom Edge

FCC SAR Test Report No.: R1912A0704-S1
Table 9: GSM 1900

			Channel/ Frequency (MHz)		Measured -	Li	mit of 10gS	AR 4 W/k	g (mW/g)		
Test Position	Cover Type	Time slot		Tune-up (dBm)		Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
	Product Specific 10-g SAR (Distance 0mm)										
Back Side	standard	4Txslots	661/1880	28.50	27.70	0.448	0.968	0.011	1.20	0.539	/
Front Side	standard	4Txslots	661/1880	28.50	27.70	0.154	0.321	0.026	1.20	0.185	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	standard	4Txslots	512/1850.2	28.50	27.72	0.679	1.440	0.032	1.20	0.813	10
Right Edge	standard	4Txslots	661/1880	28.50	27.70	0.622	1.320	-0.120	1.20	0.748	/

28.03

27.70

27.70

0.593

0.023

0.012

1.270

0.051

0.024

-0.180

0.017

-0.038

0.661

0.028

0.014

/

/

1.11

1.20

1.20

Note: 1.The value with blue color is the maximum SAR Value of each test band.

810/1909.8

661/1880

661/1880

4Txslots

4Txslots

4Txslots

2. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

28.50

28.50

28.50



Table 10: UMTS Band II

- FUU SA	k lest kepolt	Report No.: K1912A0704-31
alala 40. LIM	TC Daniel II	

			Channell	Tune-up (dBm)	Massured	L	imit of 10g	SAR 4 W/k	g (mW/g)		
Test Position	Cover Type	Channel Type	Channel/ Frequency (MHz)		Measured power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
			Product	Specific 1	0-g SAR (Di	stance 0mn	1)				
Back Side	standard	RMC 12.2K	9400/1880	24.50	23.45	0.145	0.317	-0.052	1.27	0.185	/
	standard	RMC 12.2K	9262/1852.4	24.50	23.26	0.331	0.749	0.039	1.33	0.440	/
Front Side	standard	RMC 12.2K	9400/1880	24.50	23.45	0.364	0.814	0.034	1.27	0.464	11
	standard	RMC 12.2K	9538/1907.6	24.50	23.83	0.338	0.771	0.077	1.17	0.394	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	RMC 12.2K	9400/1880	24.50	23.45	0.272	0.565	0.130	1.27	0.346	/
Top Edge	standard	RMC 12.2K	9400/1880	24.50	23.45	0.046	0.091	-0.082	1.27	0.059	/
Bottom Edge	standard	RMC 12.2K	9400/1880	24.50	23.45	0.023	0.048	0.011	1.27	0.029	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

Right Edge

Repeated

Table 11: UMTS Band IV

			a			L	imit of 10g	SAR 4 W/k	g (mW/g)		
Test Position	Cover Type	Channel Type	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)	Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.
			Product	Specific 1	0-g SAR (Di	stance 0mn	1)				
Back Side	standard	RMC 12.2K	1413/1732.6	25.00	24.22	0.481	1.020	0.028	1.20	0.576	/
Front Side	standard	RMC 12.2K	1413/1732.6	25.00	24.22	0.586	1.250	-0.013	1.20	0.701	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	standard	RMC 12.2K	1312/1712.4	25.00	24.13	1.830	3.890	0.036	1.22	2.236	12
Right Edge	standard	RMC 12.2K	1413/1732.6	25.00	24.22	1.740	3.710	0.110	1.20	2.082	/
	standard	RMC 12.2K	1513/1752.6	25.00	24.24	1.350	2.890	-0.020	1.19	1.608	/
Top Edge	standard	RMC 12.2K	1413/1732.6	25.00	24.22	0.057	0.123	0.024	1.20	0.068	/
Bottom Edge	standard	RMC 12.2K	1413/1732.6	25.00	24.22	0.095	0.204	-0.010	1.20	0.114	/

Note: 1. The value with blue color is the maximum SAR Value of each test band.

RMC 12.2K | 1312/1712.4

2. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

24.13

25.00

3.840

0.022

1.22

2.163

1.770

	Measurement Variability										
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{10g} (W/kg)	1 st Repeated SAR _{10g} (W/kg)	Ratio							
Right Edge	1312/1712.4	1.830	1.770	1.03							

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Top Edge

Bottom Edge

standard

standard

Table 12: UMTS Band V

<u> </u>	DIE 12. UW	13 Dallu V										
			Channel/		Measured - power (dBm)	Limit of 10gSAR 4 W/kg (mW/g)						
Test Position	Cover Type	Channel Type	Frequency (MHz)	Tune-up (dBm)		Measured SAR10g	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR10g	Plot No.	
			Product	Specific 1	0-g SAR (Di	stance 0mn	n)					
	standard	RMC 12.2K	4132/826.4	24.50	23.59	0.501	0.878	0.100	1.23	0.618	13	
Back Side	standard	RMC 12.2K	4183/836.6	24.50	23.58	0.431	0.707	0.100	1.24	0.533	/	
	standard	RMC 12.2K	4233/846.6	24.50	23.62	0.423	0.695	0.150	1.22	0.518	/	
Front Side	standard	RMC 12.2K	4183/836.6	24.50	23.58	0.052	0.096	-0.014	1.24	0.064	/	
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Right Edge	standard	RMC 12.2K	4183/836.6	24.50	23.58	0.103	0.175	0.022	1.24	0.127	/	

Note: 1.The value with blue color is the maximum SAR Value of each test band.

4183/836.6

4183/836.6

RMC 12.2K

RMC 12.2K

23.58

23.58

0.039

0.014

0.069

0.027

0.015

-0.035

1.24

1.24

0.048

0.017

24.50

24.50

^{2.} When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

FCC SAR Test Report Report No.: R1912A0704-S1

14.5.15	IJ. LIL D										\	
							Lim	nit of 10g	SAR 4 V	V/kg (mV	V/g)	
Test Position	Cover Type	RB allocati on	RB offset	Channel/ Frequency (MHz)	Tune-up (dBm)	Measured power (dBm)	Measu redSA R10g	Measu red SAR1 g	Power Drift (dB)	Scalin g Factor	Report SAR10 g	Plot No.
			P	roduct Speci	fic 10-g SA	R (Distance	0mm)					
	standard	1	50	18700/1860	24.00	23.00	0.283	0.560	0.08	1.26	0.356	/
Back Side	standard	1	50	18900/1880	24.00	23.06	0.239	0.472	-0.01	1.24	0.297	/
	standard	1	50	19100/1900	24.00	23.14	0.318	0.635	0.041	1.22	0.388	14
Front Side	standard	1	50	19100/1900	24.00	23.14	0.285	0.571	-0.035	1.22	0.347	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	1	50	19100/1900	24.00	23.14	0.262	0.525	0.177	1.22	0.319	/
Top Edge	standard	1	50	19100/1900	24.00	23.14	0.024	0.049	-0.085	1.22	0.029	/
Bottom Edge	standard	1	50	19100/1900	24.00	23.14	0.034	0.072	0.06	1.22	0.041	/
Back Side	standard	50%	0	19100/1900	23.00	22.25	0.212	0.435	0.01	1.19	0.252	/
Front Side	standard	50%	0	19100/1900	23.00	22.25	0.245	0.475	-0.018	1.19	0.291	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	50%	0	19100/1900	23.00	22.25	0.207	0.419	0.036	1.19	0.246	/
Top Edge	standard	50%	0	19100/1900	23.00	22.25	0.041	0.078	0.059	1.19	0.049	/
Bottom Edge	standard	50%	0	19100/1900	23.00	22.25	0.025	0.053	-0.017	1.19	0.030	/

Note: 1. The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 50% limit(10g).