

Test report No.: 2360237R-RFUSV01S-B

TEST REPORT

Product Name	Peplink Pepwave Wireless Product
Trademark	peplink PEPWAVE
Model and /or type reference	B One 5G
	B-ONE-5GN-T-PRM
	B One
	B-ONE-T-PRM
	B One Plus
	B-ONE-PLUS-LTE-US-T-PRM
FCC ID	U8G-P1AX23
Applicant's name / address	PISMO LABS TECHNOLOGY LIMITED
	A8, 5/F, HK Spinners Industrial Building, Phase 6, 481 Castle
	Peak Road, Cheung Sha Wan, Hong Kong
Manufacturer's name	PISMO LABS TECHNOLOGY LIMITED
Test method requested, standard	FCC CFR Title 47 Part 15 Subpart C
	ANSI C63.4: 2014, ANSI C63.10: 2013
Verdict Summary	IN COMPLIANCE
Documented By	Tda Tuna
(Project Specialist / Ida Tung)	Ida Tung
Tested By	Bill Lin
(Senior Engineer / Bill Lin)	
Approved By (Senior Engineer / Jack Hsu)	Jack Hsu
	2023/06/07
Date of Receipt	2023/00/07
Date of Issue	2024/03/06
Report Version	V1.0

INDEX

		Page
1. G	eneral Information	6
1.1.	EUT Description	6
1.2.	Tested System Details	8
1.3.	Configuration of Tested System	8
1.4.	EUT Exercise Software	8
1.5.	Test Facility	9
1.6.	List of Test Equipment.	10
1.7.	Uncertainty	11
2. Co	onducted Emission	12
2.1.	Test Setup	12
2.2.	Limits	12
2.3.	Test Procedure	13
2.4.	Test Result of Conducted Emission	14
3. Pe	eak Power Output	15
3.1.	Test Setup	15
3.2.	Limit	15
3.3.	Test Procedure	15
3.4.	Test Result of Peak Power Output	16
4. Ra	adiated Emission	18
4.1.	Test Setup	18
4.2.	Limits	19
4.3.	Test Procedure	20
4.4.	Test Result of Radiated Emission	22
5. RI	F Antenna Conducted Test	29
5.1.	Test Setup	29
5.2.	Limits	29
5.3.	Test Procedure	29
5.4.	Test Result of RF Antenna Conducted Test	30
6. Ba	and Edge	32
6.1.	Test Setup	32
6.2.	Limit	
6.3.	Test Procedure	33

6.4.	Test Result of Band Edge	35
7. 60	dB Bandwidth	41
7.1.	Test Setup	41
7.2.	Limits	41
7.3.	Test Procedure	41
7.4.	Test Result of 6 dB Bandwidth	42
8. Po	ower Density	44
8.1.	Test Setup	44
8.2.	Limits	44
8.3.	Test Procedure	44
8.4.	Test Result of Power Density	45
9. Dı	uty Cycle	47
9.1.	Test Setup	47
9.2.	Test Procedure	47
9.3.	Test Result of Duty Cycle	48
Appe	endix 1: EUT Test Photographs	
Appe	endix 2: Product Photos-Please refer to the file: 2360237R-Product Photos	

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General conditions

- 1. The test results relate only to the samples tested.
- 2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
- 3. This report must not be used to claim product endorsement by TAF or any agency of the government.
- 4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
- 5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Report No.: 2360237R-RFUSV01S-B

Revision History

Report No.	Version	Description	Issued Date
2360237R-RFUSV01S-B	V1.0	Initial issue of report.	2024/03/06

1. General Information

1.1. EUT Description

Product Name	Peplink Pepwave Wireless Product
Trademark	peplink PEPWAVE
Model and /or type	B One 5G
reference	B-ONE-5GN-T-PRM
	B One
	B-ONE-T-PRM
	B One Plus
	B-ONE-PLUS-LTE-US-T-PRM
EUT Rated Voltage	DC 10~30V
EUT Test Voltage	AC 120V/60Hz to DC 12V (power by adapter)
Frequency Range	2402 - 2480 MHz
Channel Number	40 CH
Type of Modulation	GFSK (1 Mbps, 2 Mbps)
Channel Control	Auto
Adapter #1	MFR: Zhuzhou Dachuan Electronic Technology Co., Ltd.
	M/N: DCT36W120300ZZ-D2
	Input: AC 100-240V~50/60Hz, 1.0A max.
	Output: 12.0V=3.0A, 36.0W
	Cable Out: Non-shielded, 1.5m
Adapter #2	MFR: FLYPOWER
	M/N: PS36LA120K3000UD
	Input: AC 100-240V~50/60Hz, 1.0A Max.
	Output: 12.0V=3.0A, 36.0W
	Cable Out: Non-shielded, 1.5m

Antenna List

No	Manufacturer	Part No.	Antenna Type	Peak Gain
1	Airgain	N01AKACE	Embedded	4.1 dBi for 2400 MHz

Note: 1. The antenna of EUT is conforming to FCC 15.203.

2. The antenna gain as by the manufacturer provided.

Center Frequency of Each Channel:

Channel	Frequency (MHz)						
00	2402	01	2404	02	2406	03	2408
04	2410	05	2412	06	2414	07	2416
08	2418	09	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

Note:

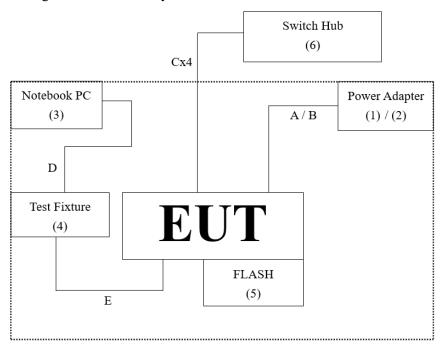
- 1. The EUT is a Peplink Pepwave Wireless Product with built-in Bluetooth and WLAN transceiver, this report for Bluetooth V5.0.
- 2. EUT only supports BLE.
- 3. Difference of Models

Model	WWAN module	WWAN function	WIFI function	BT function
B One 5G	Quectel	X 7	X 7	X 7
B-ONE-5GN-T-PRM	RM520N-GL	V	V	V
B One	21/4	21/4	T 7	T 7
B-ONE-T-PRM	N/A	N/A	V	V
B One Plus	Quectel	X 7	1 7	1 7
B-ONE-PLUS-LTE-US-T-PRM	EC25-AFXD	V	V	V

The EUT is available in different model names for marketing purposes. The identification of test sample is B One 5G.

- 4. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.
- 5. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 6. DEKRA has evaluated each test mode. Only the worst case is shown in the report.
- 7. For radiated emission below 1 GHz and AC power line conducted emission have performed all modes of operation were investigated and the worst-case emissions are reported.
- 8. These tests were conducted on a sample for the purpose of demonstrating compliance of transmitter with Part 15 Subpart C Paragraph 15.247 for spread spectrum devices.

T M . 1.		Transmit - 1 Mbps
Test Mode	Mode 1	Transmit - 2 Mbps


1.2. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Proc	luct	Manufacturer	Model No.	Serial No.	Power Cord
1	1	Zhuzhou Dachuan Electronic Technology Co., Ltd.	DCT36W120300ZZ-D2	N/A	N/A
2	Power Adapter	FLYPOWER	PS36LA120K3000UD	N/A	N/A
3	Notebook PC	DELL	Latitude 5501	8JHGL13	N/A
4	Test Fixture	Askey	BBS tool Rev03	N/A	N/A
5	FLASH	Transcend	JetFlash 790C/64GB	N/A	N/A
6	Switch Hub	ZYXEL	GS-108B v3	N/A	N/A

Cab	le Type	Cable Description
A	Power Cable	Non-shielded, 1.5m
В	Power Cable	Non-shielded, 1.5m
C	LAN Cable	Non-shielded, 3m, four PCS.
D	USB TO MicroB Cable	Shielded, 1m
E	Signal Cable	Non-shielded, 0.1m

1.3. Configuration of Tested System

1.4. EUT Exercise Software

1	Setup the EUT as shown in Section 1.3.
2	Execute software 'Tera Term Version 4.101 (SVN#7288)' on the Notebook PC.
3	Configure the test mode, the test channel, and the data rate.
4	Verify that the EUT works properly.
5	Press "OK" to start the continuous transmit.

1.5. Test Facility

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual
G 1 (1F : :	Temperature (°C)	10~40 °C	27.3 °C
Conducted Emission	Humidity (%RH)	10~90 %	48.5 %
D 11 / 15 11	Temperature (°C)	10~40 °C	19.7 °C
Radiated Emission	Humidity (%RH)	10~90 %	60.6 %
	Temperature (°C)	10~40 °C	22.0 °C
Conductive	Humidity (%RH)	10~90 %	55.0 %

USA	FCC Registration Number: TW0033
Canada	CAB Identifier Number: TW3023 / Company Number: 26930

Site Description	Accredited by TAF
	Accredited Number: 3023

Test Laboratory	DEKRA Testing and Certification Co., Ltd.	
	Linkou Laboratory	
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C.	
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.	
Phone Number	+886-3-275-7255	
Fax Number	+886-3-327-8031	

1.6. List of Test Equipment

For Conduction Measurements / HY-SR01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	EMI Test Receiver	R&S	ESR7	101601	2023/06/20	2024/06/19
V	Two-Line V-Network	R&S	ENV216	101306	2023/03/16	2024/03/15
V	Two-Line V-Network	R&S	ENV216	102202	2022/08/08	2023/08/07
V	Coaxial Cable	SUHNER	RG400_BNC	RF001	2023/01/10	2024/01/09

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- Test Software Version: e3 230303 dekra V9. 3.

For Conducted Measurements / HY-SR02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Spectrum Analyzer	R&S	FSV30	103466	2022/12/22	2023/12/21
V	Peak Power Analyzer	KEYSIGHT	8990B	MY51000539	2023/05/15	2024/05/14
V	Power Sensor	KEYSIGHT	N1923A	MY59240002	2023/05/18	2024/05/17
V	Power Sensor	KEYSIGHT	N1923A	MY59240003	2023/05/18	2024/05/17

Note:

- All equipments are calibrated every one year. 1.
- The test instruments marked with "V" are used to measure the final test results. 2.
- Test Software Version: RF Conducted Test Tools R3 V3.0.0.14.

For Radiated Measurements /HY-CB03

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Loop Antenna	AMETEK	HLA6121	56736	2023/05/23	2024/05/22
V	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-0675	2023/08/09	2025/08/08
V	Horn Antenna	Com-Power	AH-840	101100	2023/10/02	2025/10/01
V	Horn Antenna	RF SPIN	DRH18-E	210507A18ES	2023/05/11	2024/05/10
V	Pre-Amplifier	SGH	SGH0301-9	20211007-11	2023/01/10	2024/01/09
V	Pre-Amplifier	SGH	PRAMP118	20200701	2023/01/10	2024/01/09
V	Pre-Amplifier	EMCI	EMC05820SE	980310	2023/01/10	2024/01/09
	Pre-Amplifier	EMCI	EMC184045SE	980369	2023/01/10	2024/01/09
	Coaxial Cable	EMCI	EMC102-KM-KM-	1160314		
V			600			
	Coaxial Cable	EMCI	EMC102-KM-KM-	170242		
			7000			
V	Filter	MICRO TRONICS	BRM50702	G269	2024/01/05	2025/01/04
	Filter	MICRO TRONICS	BRM50716	G196	2024/01/05	2025/01/04
V	EMI Test Receiver	R&S	ESR3	102793	2023/12/11	2024/12/10
V	Spectrum Analyzer	R&S	FSV3044	101114	2023/02/16	2024/02/15
	Coaxial Cable	SGH	SGH18	2021005-1	2023/01/10	2024/01/09
V	Coaxial Cable	SGH	HA800	GD20110222-8		
\ \ \	Coaxial Cable	SGH	SGH18	2021003-8		
	Coaxial Cable	EMCI	EMC106	151113		

Note:

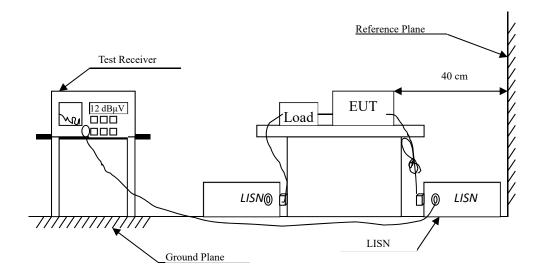
- Bi-Log Antenna and Horn Antenna (AH-840) is calibrated every two years, the other 1. equipments are calibrated every one year.

 The test instruments marked with "V" are used to measure the final test results.
- 2.
- 3. Test Software Version: e3 230303 dekra V9.

1.7. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.


Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system but are based on the results of the compliance measurement.

Test item Uncertainty		
Conducted Emission	±3.50 dB	
Deals Danier Outroot	Spectrum Analyzer: ±2.14 dB	
Peak Power Output	Power Meter: ±1.05 dB	
	9 kHz~30 MHz: ±3.88 dB	
Radiated Emission	30 MHz~1 GHz: ±4.42 dB	
Radiated Emission	1 GHz~18 GHz: ±4.28 dB	
	18 GHz~40 GHz: ±3.90 dB	
RF Antenna Conducted Test	±2.14 dB	
	9 kHz~30 MHz: ±3.88 dB	
Dand Edge	30 MHz~1 GHz: ±4.42 dB	
Band Edge	1 GHz~18 GHz: ±4.28 dB	
	18 GHz~40 GHz: ±3.90 dB	
6dB Bandwidth $\pm 1580.61 \text{ Hz}$		
Power Density	±2.14 dB	
Duty Cycle	±0.53 %	

2. Conducted Emission

2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBμV) Limit				
Frequency Limits				
MHz	QP	AV		
0.15 - 0.50	66-56	56-46		
0.50-5.0	56	46		
5.0 - 30	60	50		

Remarks: In the above table, the tighter limit applies at the band edges.

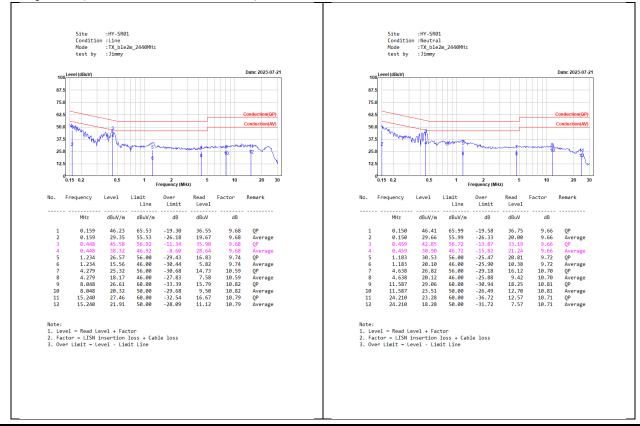
2.3. Test Procedure

The EUT and Peripherals are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.

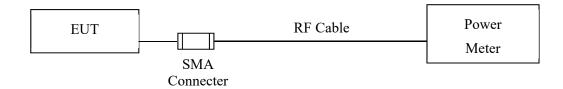
Conducted emissions were invested over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz.

The EUT was setup to ANSI C63.4, 2014; tested to DTS test procedure of FCC KDB-558074 for compliance to FCC 47CFR Subpart C requirements.



2.4. Test Result of Conducted Emission

Adapter #1 (M/N: DCT36W120300ZZ-D2)


Adapter #2 (M/N: PS36LA120K3000UD)

3. Peak Power Output

3.1. Test Setup

3.2. Limit

The maximum peak power shall be less 1Watt.

3.3. Test Procedure

The EUT was tested according to C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. The maximum peak conducted output power using C63.10:2013 Section 11.9.1.3 PKPM1 Peak power meter method.

3.4. Test Result of Peak Power Output

Product : Peplink Pepwave Wireless Product

Test Item : Peak Power Output Test Mode : Transmit - 1 Mbps

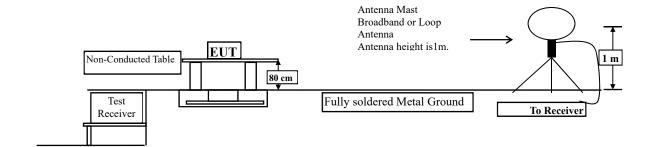
Test Date : 2023/07/14

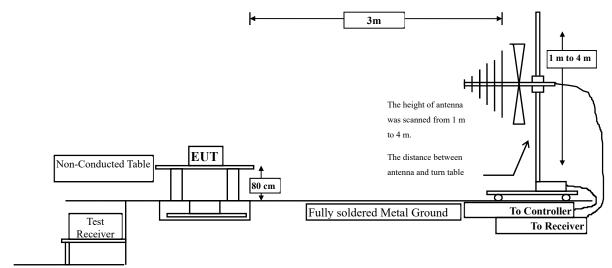
Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
00	2402	6.87	1 Watt = 30 dBm	Pass
19	2440	5.86	1 Watt = 30 dBm	Pass
39	2480	6.17	1 Watt = 30 dBm	Pass

Product : Peplink Pepwave Wireless Product

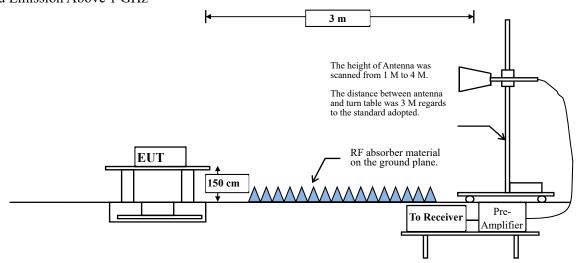
Test Item : Peak Power Output Test Mode : Transmit - 2 Mbps

Test Date : 2023/07/14


Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
00	2402	6.88	1 Watt = 30 dBm	Pass
19	2440	6.59	1 Watt = 30 dBm	Pass
39	2480	6.21	1 Watt = 30 dBm	Pass


4. Radiated Emission

4.1. Test Setup


Radiated Emission Under 30 MHz

Radiated Emission Below 1 GHz

Radiated Emission Above 1 GHz

4.2. Limits

➤ General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20 dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency	Field strength	Measurement distance			
MHz	(microvolts/meter)	(meter)			
0.009-0.490	2400/F(kHz)	300			
0.490-1.705	24000/F(kHz)	30			
1.705-30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			

Remarks:

- 1. RF Voltage $(dB\mu V) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

Measuring the frequency range below 1 GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1 GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30 MHz setting on the field strength meter is 9 kHz and 30 MHz~1 GHz is 120 kHz and above 1 GHz is 1 MHz.

Radiated emission measurements below 30 MHz are made using Loop Antenna and 30 MHz~1 GHz are made using broadband Bilog antenna and above 1 GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range form 9 kHz - 10th Harmonic of fundamental was investigated.

RBW and **VBW** Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1 —RBW as a function of frequency

Frequency	RBW			
9-150 kHz	200-300 Hz			
0.15-30 MHz	9-10 kHz			
30-1000 MHz	100-120 kHz			
> 1000 MHz	1 MHz			

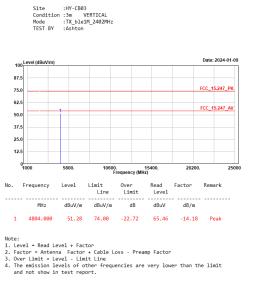
According to C63.10 Section 11.12.2.5 Average measurement procedure.

RBW = 1 MHz.

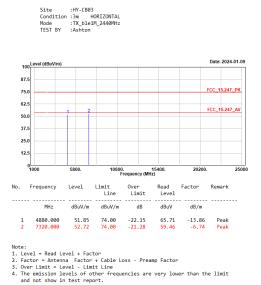
VBW = 10 Hz, when duty cycle \geq 98 %

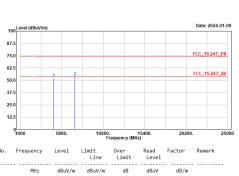
VBW \geq 1/T, when duty cycle \leq 98 %

(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)


2.4 GHz band	Duty Cycle	Т	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
BLE (1 Mbps)	49.88	2.1200	472	500
BLE (2 Mbps)	50.47	1.0700	935	1000

Note: Duty Cycle Refer to Section 9.

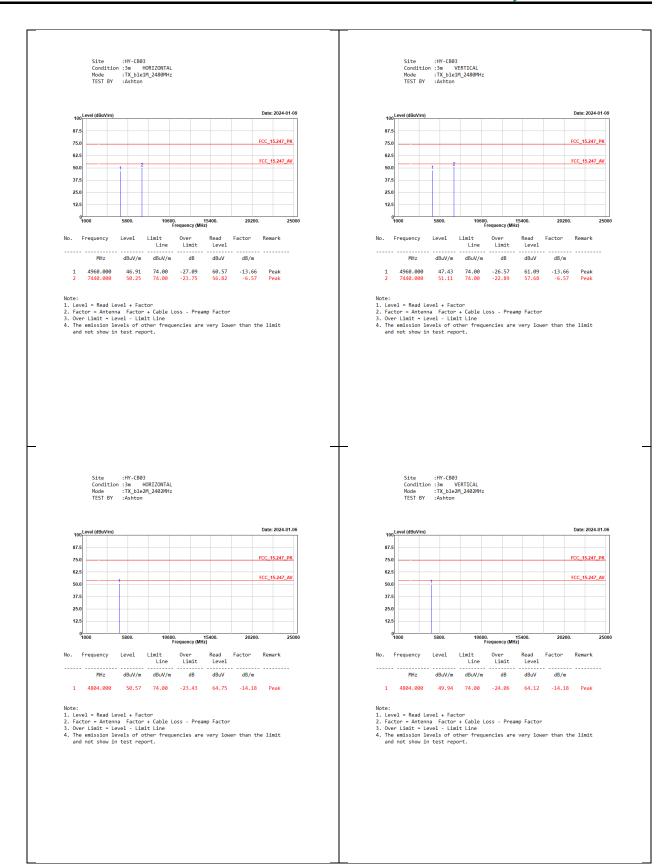



Test Result of Radiated Emission

Site :HY-CB03
Condition :3m VERTICAL
Mode :TX_ble1M_2440MHz
TEST BY :Ashton

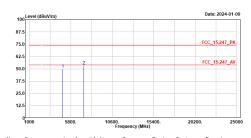
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
1	4880.000	51.97	74.00	-22.03	65.83	-13.86	Peak
2	7320.000	53.77	74.00	-20.23	60.51	-6.74	Peak

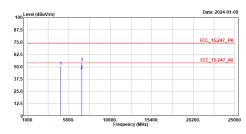
- Note:


 1. Level = Read Level + Factor

 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit Level Limit Line


 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



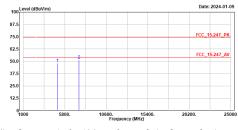
110.	rrequency	rever	Line	Limit	Level	accor	ivellar K
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
1	4880.000	49.98	74.00	-24.02	63.84	-13.86	Peak
2	7320 000	53 03	74 00	-20 97	59 77	-6 74	Peak

- Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit = Level Limit Line
 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site :HY-CB03
Condition :3m VERTICAL
Mode :TX_ble2M_2440MHz
TEST BY :Ashton

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
1	4880.000	50.69	74.00	-23.31	64.55	-13.86	Peak
2	7320.000	46.26	54.00	-7.74	53.00	-6.74	Average
3	7320.000	54.37	74.00	-19.63	61.11	-6.74	Peak

- Note:


 1. Level = Read Level + Factor

 2. Factor = Antenna Factor + Cable Loss Preamp Factor

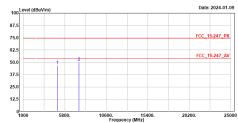
 3. Over Limit = Level Limit Line

 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site :HY-CB03
Condition :3m HORIZONTAL
Mode :TX_ble2M_2480MHz
TEST BY :Ashton

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	
1	4960.000	47.81	74.00	-26.19	61.47	-13.66	Peak
2	7440.000	51.47	74.00	-22.53	58.04	-6.57	Peak

- Note:


 1. Level = Read Level + Factor

 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Listi Level Listi Line

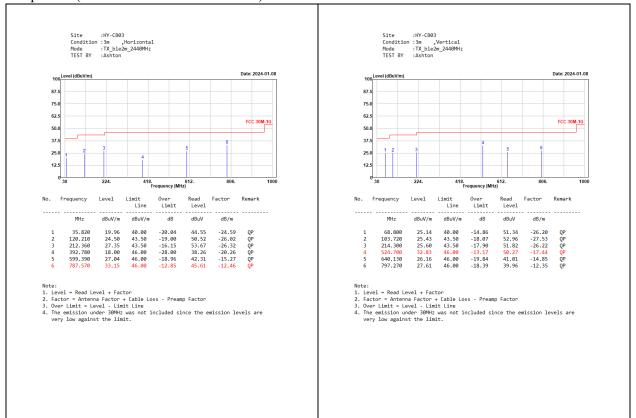
 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site :HY-CB03
Condition :3m VERTICAL
Mode :TX_ble2M_2480MHz
TEST BY :Ashton

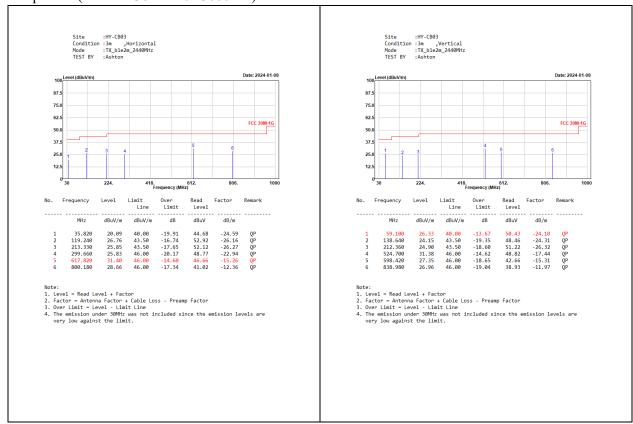
1000		5800.	10600. 15400. Frequency (MHz)			20200.	250	250	
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m			
1	4960.000	46.89	74.00	-27.11	60.55	-13.66	Peak		
2	7440.000	50.15	74.00	-23.85	56.72	-6.57	Peak		

- Note:

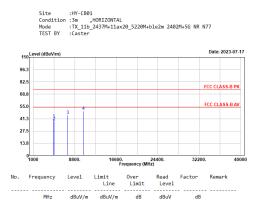
 1. Level = Read Level + Factor


 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Listi Level Listi Line

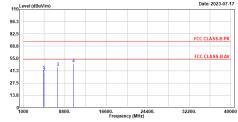

 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Adapter #1 (M/N: DCT36W120300ZZ-D2)



Adapter #2 (M/N: PS36LA120K3000UD)

Test Result of Radiated Emission co-location


-32.73 -35.66 -28.65 -24.28

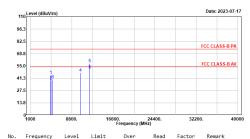
54.82 51.68 54.56 58.70

4804.000 4874.000 7500.000 10440.000

- Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Listi Level Limit Line
 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

NO.	rrequency	rever	Line	Limit	Level	ractor	Remark	
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		
1	4804.000	41.87	74.00	-32.13	55.42	-13.55	Peak	
2	4874.000	39.44	74.00	-34.56	52.78	-13.34	Peak	
3	7500.000	45.14	74.00	-28.86	54.35	-9.21	Peak	
4	10440.000	49.27	74.00	-24.73	58.25	-8.98	Peak	

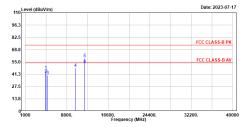
- Note:


 1. Level = Read Level + Factor

 2. Factor = Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit Level Limit Line

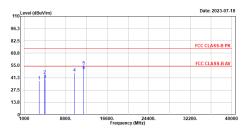
 4. The emission levels of other frequencies are very lower than the limit and not show in test report.


Site :HY-CB01
Condition :3m ,HORIZONTAL
Mode :TX_1ib_2437M+11ax20_5226M+ble2m 2402M+LTE 838
TEST BY :Caster

			Line	Limit	Level		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4804.000	44.22	74.00	-29.78	57.77	-13.55	Peak
2	4874.000	38.76	74.00	-35.24	52.10	-13.34	Peak
3	5200.000	39.69	74.00	-34.31	52.85	-13.16	Peak
4	10440.000	47.18	74.00	-26.82	56.16	-8.98	Peak
5	12185.000	57.60	74.00	-16.40	64.43	-6.83	Peak
6	12185.000	50.53	54.00	-3.47	57.36	-6.83	Average

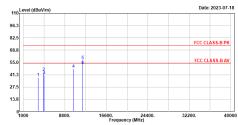
- Note:
 1. Level Read Level + Factor
 2. Factor Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit Level Limit Line
 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site :HY-CB01
Condition :3m ,VERTICAL
Mode :TX_1ib_2437M+11ax20_5226M+ble2m 2402M+LTE 838
TEST BY :Caster


No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4804.000	45.54	74.00	-28.46	59.09	-13.55	Peak
2	4874.000	41.56	74.00	-32.44	54.90	-13.34	Peak
3	5200.000	39.94	74.00	-34.06	53.10	-13.16	Peak
4	10440.000	48.22	74.00	-25.78	57.20	-8.98	Peak
5	12185.000	58.95	74.00	-15.05	65.78	-6.83	Peak
6	12185.000	52.41	54.00	-1.59	59.24	-6.83	Average

- Note:

 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit = Level Limit Line
 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



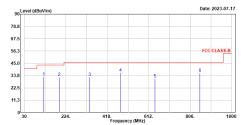
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	3760.000	37.95	74.00	-36.05	53.99	-16.04	Peak
2	4804.000	44.47	74.00	-29.53	58.02	-13.55	Peak
3	4874.000	39.38	74.00	-34.62	52.72	-13.34	Peak
4	10440.000	46.97	74.00	-27.03	55.95	-8.98	Peak
5	12185.000	54.94	74.00	-19.06	61.77	-6.83	Peak
6	12185 000	49 30	54 00	-4 70	56 13	-6.83	Average

- Note:
 1. Level Read Level + Factor
 2. Factor Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit Level Limit Line
 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site :HY-CB01
Condition :3m ,VERTICAL
Mode :TK_11b_2437M+11ax20_5220M+ble2m 2402M+WCDMA
TEST BY :Sam

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	3760.000	38.31	74.00	-35.69	54.35	-16.04	Peak
2	4804.000	43.98	74.00	-30.02	57.53	-13.55	Peak
3	4874.000	40.70	74.00	-33.30	54.04	-13.34	Peak
4	10440.000	47.70	74.00	-26.30	56.68	-8.98	Peak
5	12185.000	57.32	74.00	-16.68	64.15	-6.83	Peak
6	12185.000	51.80	54.00	-2.20	58.63	-6.83	Average

- Note:


 1. Level = Read Level + Factor

 2. Factor = Antenna Factor + Cable Loss Preamp Factor

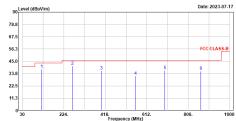
 3. Over Limit = Level Limit Line

 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site :HY-CB01
Condition :3m ,HORIZONTAL
Mode :TX_11b_2437M+11ax20_5220M+51e2m 2402M+5G NR N77
TEST BY :Sam

lo.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	119.240	32.69	43.50	-10.81	58.67	-25.98	QP
2	192.960	32.37	43.50	-11.13	59.04	-26.67	QP
3	335.550	32.27	46.00	-13.73	54.51	-22.24	QP
4	480.080	36.47	46.00	-9.53	55.28	-18.81	QP
5	640.130	30.96	46.00	-15.04	46.22	-15.26	QP
6	850.620	35.95	46.00	-10.05	48.55	-12.60	ÕР

- Note:


 1. Level = Read Level + Factor

 2. Factor = Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit = Level Limit Line

 4. The emission under 30MMz was not included since the emission levels are very low against the limit.

Site :HY-CB01 Condition :3m ,VERTICAL Mode :TX_11b_2437M+11ax20_5220M+ble2m 2402M+5G NR N77 TEST BY :Sample

		F	requency (MHz	z)		
Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
120.210	37.60	43.50	-5.90	63.56	-25.96	QP
263.770	40.66	46.00	-5.34	65.46	-24.80	QP
399.570	36.41	46.00	-9.59	57.20	-20.79	QP
559.620	31.71	46.00	-14.29	48.93	-17.22	QP
696.390	36.81	46.00	-9.19	51.38	-14.57	QP
865.170	35.86	46.00	-10.14	48.36	-12.50	QP
	MHz 120.210 263.770 399.570 559.620 696.390	MHz dBuV/m 120.210 37.60 263.770 40.66 399.570 36.41 559.620 31.71 696.390 36.81	Frequency Level Limit Line MHz dBuV/m dBuV/m 120.210 37.60 43.50 263.770 40.66 46.00 359.500 31.71 46.60 569.620 31.71 46.60	Frequency Level Limit Over Limit №1z dBuV/m dBuV/m dB 120.210 37.60 43.50 -5.90 263.770 40.66 46.90 -5.34 399.570 36.41 46.00 -9.59 559.620 31.71 46.00 14.29 696.390 36.81 46.00 -9.17	Line Limit Level	Frequency Level Limit Line Over Limit Read Level Factor MHz dBuV/m dBuV/m dB dBuV dB 120.210 37.60 43.50 -5.96 63.56 -25.96 203.770 40.66 46.00 -5.34 65.46 -24.80 399.570 36.41 46.00 -9.59 77.20 -20.97 599.620 31.71 46.00 14.29 48.93 -17.22 696.390 36.81 46.00 -9.19 51.38 -13.51 51.38 -15.51 51.38 -15.51 51.38 -14.29 40.93 -17.22 -10.00<

- Note:

 1. Level Read Level + Factor

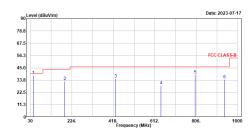
 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit = Level Limit Line

 4. The emission under 30MMz was not included since the emission levels are very low against the limit.

			Line	Limit	Level		
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	43.580	26.26	40.00	-13.74	49.88	-23.62	QP
2	173.560	32.59	43.50	-10.91	56.83	-24.24	QP
3	345.250	38.48	46.00	-7.52	60.63	-22.15	QP
4	480.080	36.39	46.00	-9.61	55.20	-18.81	QP
5	643.040	30.47	46.00	-15.53	45.66	-15.19	QP
6	857.410	34.74	46.00	-11.26	47.31	-12.57	OP

- Note:


 1. Level = Read Level + Factor

 2. Factor = Antenna Factor + Cable Loss Preamp Factor

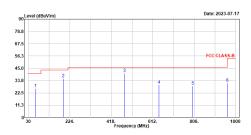
 3. Over Limit t = Level Limit Line

 4. The emission under 30MMz was not included since the emission levels are very low against the limit.

Site :HY-CB01
Condition :3m ,VERTICAL
Mode :TX_11b_2437M+11ax20_5220M+ble2m 2402M+LTE 838
TEST BY :Sam

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	43.580	38.14	40.00	-1.86	61.76	-23.62	QP
2	191.990	32.44	43.50	-11.06	59.02	-26.58	QP
3	428.670	34.96	46.00	-11.04	54.93	-19.97	QP
4	640.130	28.94	46.00	-17.06	44.20	-15.26	QP
5	800.180	38.63	46.00	-7.37	51.72	-13.09	QP
6	937.920	34.40	46.00	-11.60	45.99	-11.59	QP

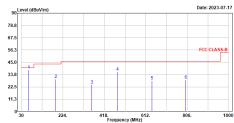
- Note:


 1. Level = Read Level + Factor

 2. Factor = Antenna Factor + Cable loss Preamp Factor

 3. Over Limit = Level Limit Line

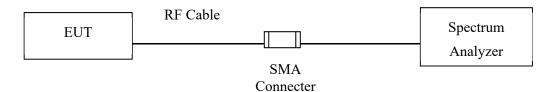
 4. The emission under 30MPU was not included since the emission levels are very low against the limit.


Site :HY-CB81
Condition :3m ,HORIZOWTAL
Mode :TX_11b_Z437%+11ax20_5226M+b1e2m 2482M+WCDMA
TEST BY :5m

0.	Frequency	Level	Limit	Limit	Level	Factor	Kemark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	62.980	26.37	40.00	-13.63	51.34	-24.97	QP
2	192.960	35.78	43.50	-7.72	62.45	-26.67	QP
3	480.080	40.40	46.00	-5.60	59.21	-18.81	QP
4	640.130	29.92	46.00	-16.08	45.18	-15.26	QP
5	799.210	28.72	46.00	-17.28	41.79	-13.07	QP
6	960.230	31.55	54.00	-22.45	42.79	-11.24	OP

- Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit = Level Limit Line
 4. The emission under 30MMz was not included since the emission levels are very low against the limit.

Site :HY-CB01
Condition :3m ,VERTICAL
Mode :TX_11b_2437M+11ax20_5220M+b1e2m 2402M+WCDMA
TEST BY :5m


		Frequency (MHz)					
No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	63.950	38.01	40.00	-1.99	63.10	-25.09	QP
2	191.020	29.49	43.50	-14.01	55.98	-26.49	QP
3	359.800	24.32	46.00	-21.68	46.07	-21.75	QP
4	480.080	36.24	46.00	-9.76	55.05	-18.81	QP
5	640.130	28.11	46.00	-17.89	43.37	-15.26	QP
6	799.210	28.98	46.00	-17.02	42.05	-13.07	QP

- Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit = Level Limit Line
 4. The emission under 30MMiz was not included since the emission levels are very low against the limit.

5. RF Antenna Conducted Test

5.1. Test Setup

5.2. Limits

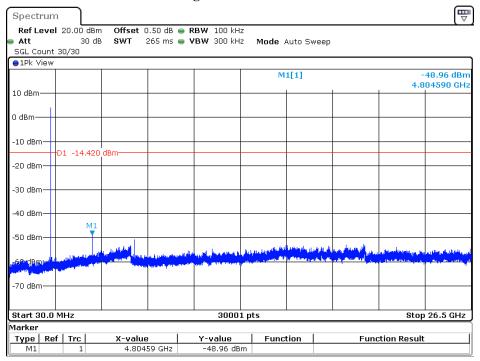
According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.3. Test Procedure

The EUT was tested according to C63.10:2013 Section 11.11 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.4. Test Result of RF Antenna Conducted Test


Product : Peplink Pepwave Wireless Product

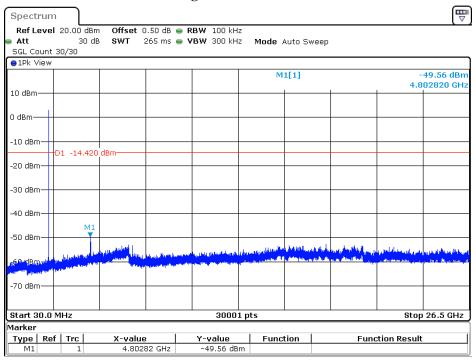
Test Item : RF Antenna Conducted Test

Test Mode : Transmit - 1 Mbps

Test Date : 2023/07/14

Figure Channel 00:

Date: 14.JUL.2023 14:41:32

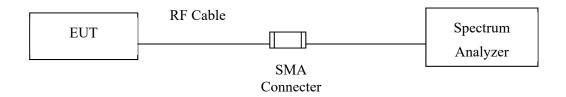

Product : Peplink Pepwave Wireless Product

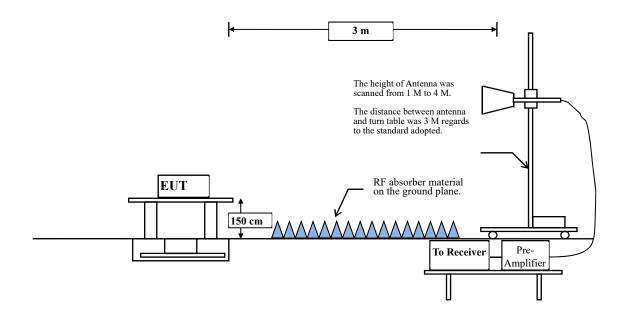
Test Item : RF Antenna Conducted Test

Test Mode : Transmit - 2 Mbps

Test Date : 2023/07/14

Figure Channel 00:


Date: 14.JUL.2023 14:58:20


6. Band Edge

6.1. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.2. Limit

According to FCC Section 15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

6.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to C63.10:2013 Section 11.12.1 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

RBW and **VBW** Parameter setting:

According to C63.10 Section 11.12.2.4 Peak measurement procedure.

RBW = as specified in Table 1.

 $VBW \ge 3 \times RBW$.

Table 1 —RBW as a function of frequency

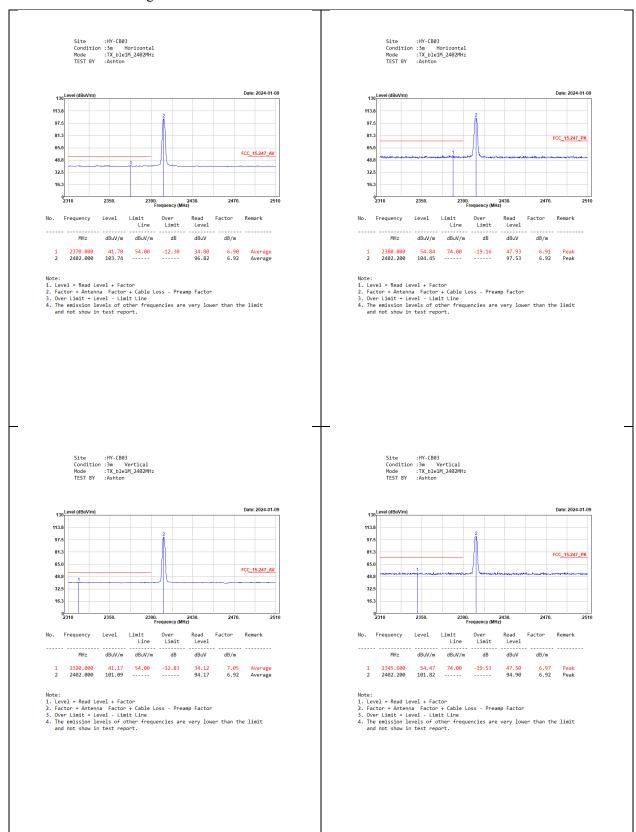
Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

According to C63.10 Section 11.12.2.5 Average measurement procedure.

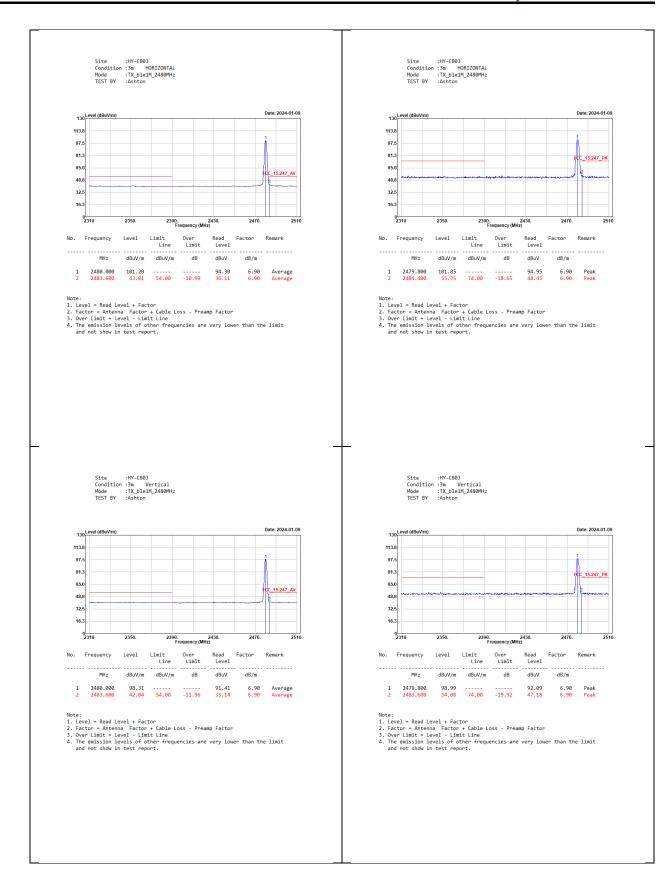
RBW = 1 MHz.

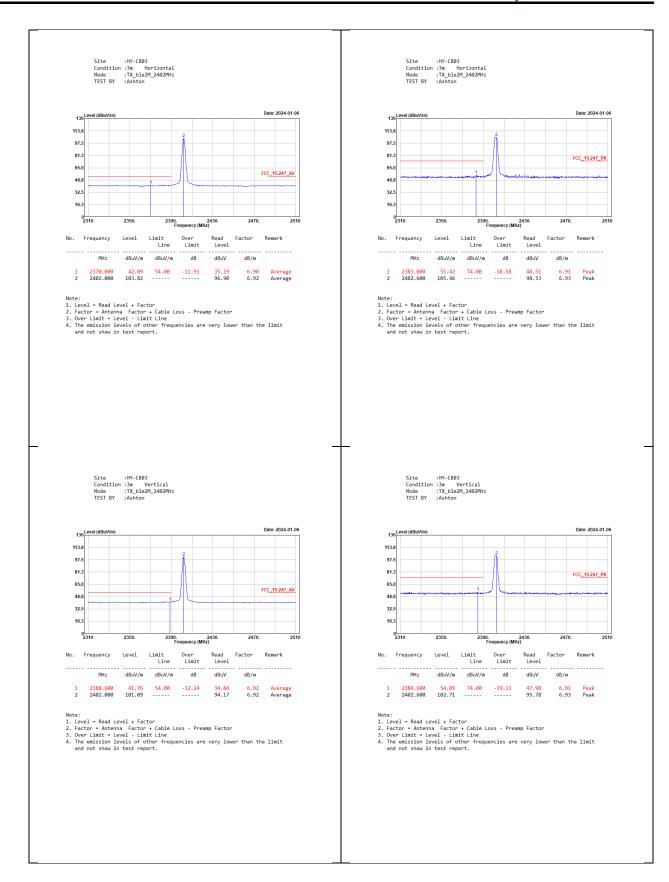
VBW = 10 Hz, when duty cycle \geq 98 %

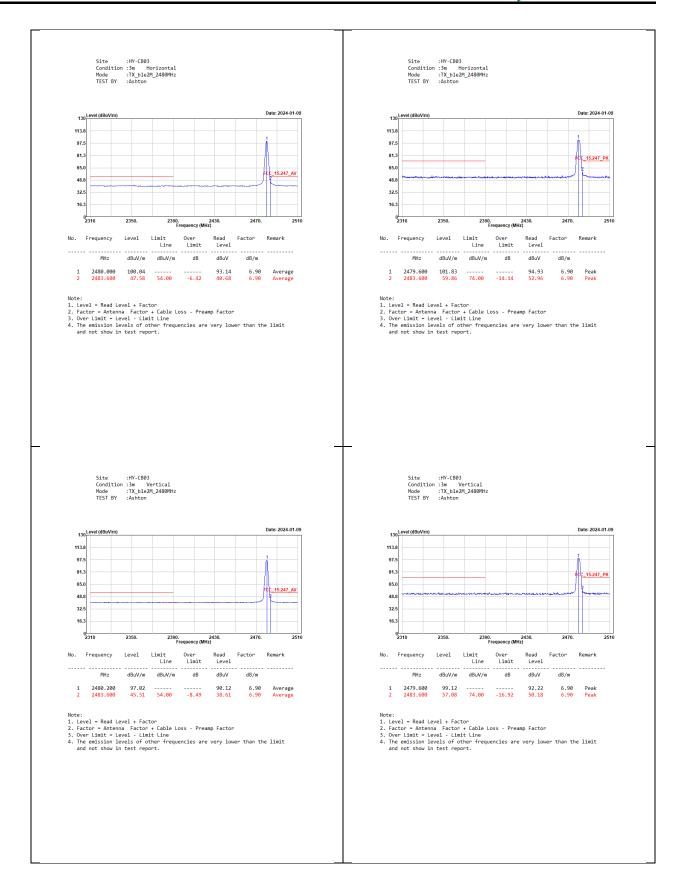
VBW \geq 1/T, when duty cycle \leq 98 %


(T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

2.4 GHz band	Duty Cycle	T	1/T	VBW
	(%)	(ms)	(Hz)	(Hz)
BLE (1 Mbps)	49.88	2.1200	472	500
BLE (2 Mbps)	50.47	1.0700	935	1000


Note: Duty Cycle Refer to Section 9.

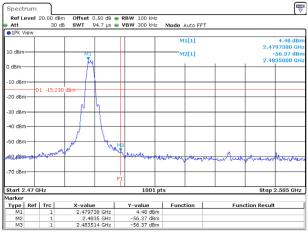

6.4. Test Result of Band Edge



Date: 14.JUL.2023 14:40:55

Product : Peplink Pepwave Wireless Product

Test Item : Band Edge


Test Mode : Transmit - 1 Mbps

Test Date : 2023/07/14

Measurement Level	Result
Δ (dB)	
> 20	PASS

Channel 00 ▽ Spectrum Ref Level 20.00 Mode Auto FFT M1[1] M2[1] dBm--10 dBm-D1 -14.42 -20 dBm--30 dBm -40 dBm--50 dBm-.6Q.4B00₩ -70 dBm Type Ref Trc Function Result

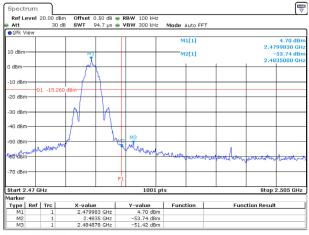
Channel 39

Date: 14.JUL.2023 15:18:36

Date: 14.JUL.2023 14:57:42

Product : Peplink Pepwave Wireless Product

Test Item : Band Edge

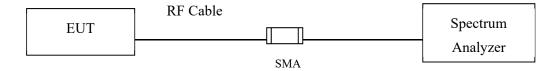

Test Mode : Transmit - 2 Mbps

Test Date : 2023/07/14

Measurement Level	Result
Δ (dB)	
> 20	PASS

Channel 00 Spectrum Ref Level 20.00 Mode Auto FFT M1[1] M2[1] dBm--10 dBm-D1 -14.42 -20 dBm--30 dBm -40 dBm--50 dBm-160,dBM~ Type Ref Trc Function Result

Channel 39



Date: 14.JUL.2023 15:06:08

7. 6 dB Bandwidth

7.1. Test Setup

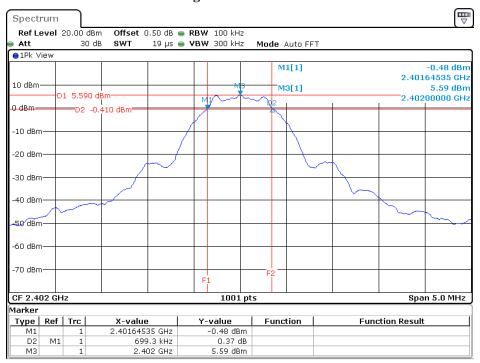
7.2. Limits

The minimum bandwidth shall be at least 500 kHz.

7.3. Test Procedure

The EUT was setup according to ANSI C63.4, 2014; tested according to ANSI C63.10 Section 11.8 for compliance to FCC 47CFR 15.247 requirements.

7.4. Test Result of 6 dB Bandwidth


Product : Peplink Pepwave Wireless Product

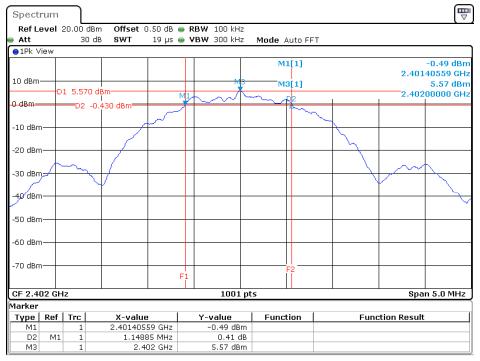
Test Item : 6 dB Bandwidth Data Test Mode : Transmit - 1 Mbps

Test Date : 2023/07/14

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	699	>500	Pass
19	2440	714	>500	Pass
39	2480	714	>500	Pass

Figure Channel 00:

Date: 14.JUL.2023 14:40:19

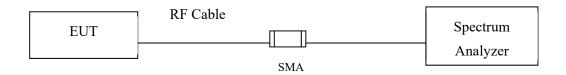

Product : Peplink Pepwave Wireless Product

Test Item : 6 dB Bandwidth Data Test Mode : Transmit - 2 Mbps

Test Date : 2023/07/14

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
00	2402	1148	>500	Pass
19	2440	1148	>500	Pass
39	2480	1128	>500	Pass

Figure Channel 00:



Date: 14.JUL.2023 14:57:06

8. Power Density

8.1. Test Setup

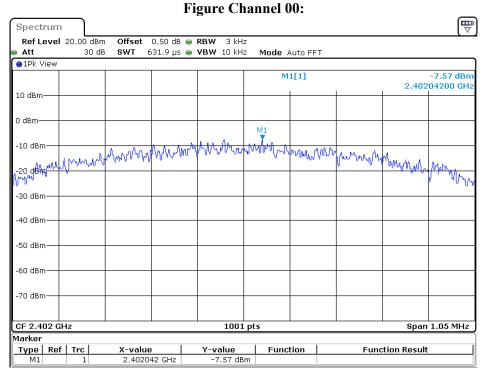
8.2. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3 kHz bandwidth.

8.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

The maximum power spectral density using C63.10 Section 11.10.2 Method PKPSD (peak PSD)


8.4. Test Result of Power Density

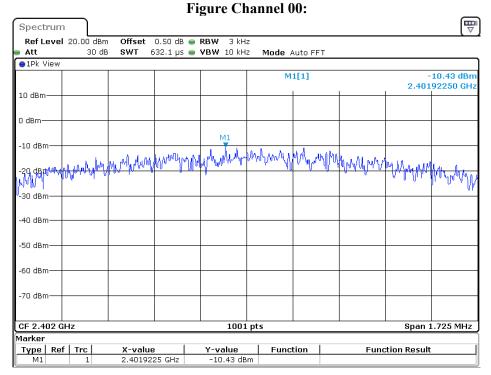
Product : Peplink Pepwave Wireless Product

Test Item : Power Density Data Test Mode : Transmit - 1 Mbps

Test Date : 2023/07/14

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	-7.57	≦8 dBm	Pass
19	2440	-8.63	≦8 dBm	Pass
39	2480	-7.70	≦8 dBm	Pass

Date: 14.JUL.2023 14:40:37

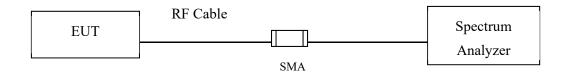


Product : Peplink Pepwave Wireless Product

Test Item : Power Density Data Test Mode : Transmit - 2 Mbps

Test Date : 2023/07/14

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
00	2402	-10.43	≦8 dBm	Pass
19	2440	-10.66	≦8 dBm	Pass
39	2480	-11.89	≦8 dBm	Pass



Date: 14.JUL.2023 14:57:25

9. Duty Cycle

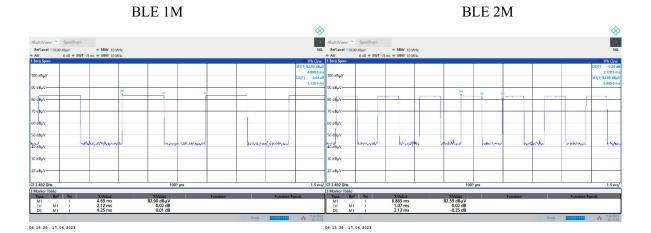
9.1. Test Setup

9.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to ANSI C63.10 2013 for compliance to FCC 47CFR 15.247 requirements.

9.3. Test Result of Duty Cycle

Product : Peplink Pepwave Wireless Product


Test Item : Duty Cycle Test Mode : Transmit

Formula:

Duty Cycle = Ton / (Ton + Toff)

Duty Factor = 10 Log (1/Duty Cycle)

2.4 GHz Band	Ton	Ton + Toff	Duty Cycle	Duty Factor
	(ms)	(ms)	(%)	(dB)
BLE (1 Mbps)	2.1200	4.2500	49.88	3.02
BLE (2 Mbps)	1.0700	2.1200	50.47	2.97

