

FCC Test Report

Product Name : peplink PEPWAVE Wireless Product

Brand Name : PEPWAVE / peplink

Model No. : MAX Transit Pro E, MAX-TST-PROE-DUO-LTEA-Q-T-PRM

FCC ID : U8G-P1AX09

Applicant : PISMO LABS TECHNOLOGY LIMITED

Address : A8, 5/F, HK Spinners Industrial Building, Phase 6, 481

Castle Peak Road, Cheung Sha Wan, Hong Kong

Date of Receipt : Jul. 06, 2022

Issued Date : Sep. 26, 2022

Report No. : 2270145R-RFUSWL2V01-A

Report Version : V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement. The test report shall not be reproduced except in full without the written approval of DEKRA Testing and Certification Co., Ltd.

TEL: +886-3-582-8001 Page Number : 1 of 70
FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022
Report Version : V1,0

Product Name : peplink PEPWAVE Wireless Product
Applicant : PISMO LABS TECHNOLOGY LIMITED

Address : A8, 5/F, HK Spinners Industrial Building, Phase 6, 481 Castle Peak

Road, Cheung Sha Wan, Hong Kong

Manufacturer : PISMO LABS TECHNOLOGY LIMITED

Address : A8, 5/F, HK Spinners Industrial Building, Phase 6, 481 Castle Peak

Road, Cheung Sha Wan, Hong Kong

Brand Name : PEPWAVE / peplink

Model No. : MAX Transit Pro E, MAX-TST-PROE-DUO-LTEA-Q-T-PRM

FCC ID : U8G-P1AX09

EUT Voltage : DC 12V for power port (adapter)

DC 12~56V for terminal block port

Applicable Standard : FCC CFR Title 47 Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

Laboratory Name : DEKRA Testing and Certification Co., Ltd.

Hsin Chu Laboratory

Address : No.372-2, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu

County 310, Taiwan, R.O.C.

Test Result : Complied

Documented By : Hailey Peng

(Hailey Peng / Senior Engineer)

Approved By : Rueyyan Lin

(Rueyyan Lin / Supervisor)

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of DEKRA Testing and Certification Co., Ltd.

TEL: +886-3-582-8001 Page Number : 2 of 70
FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022
Report Version : V1.0

Revision History

Version	Description	Issued Date
V1.0	Initial issue of report	Sep. 26, 2022

 TEL: +886-3-582-8001
 Page Number
 : 3 of 70

 FAX: +886-3-582-8958
 Issued Date
 : Sep. 26, 2022

TABLE OF CONTENTS

Descript	tion		Page
1.	General I	nformation	6
	1.1.	EUT Description	6
	1.2.	Test Mode	8
	1.3.	Comments and Remarks	9
	1.4.	Tested System Details	10
	1.5.	Configuration of Tested System	10
	1.6.	EUT Operation of during Test	
	1.7.	Test Facility	
	1.8.	List of Test Equipment	
	1.9.	Measurement Uncertainty	
	1.10.	Duty Cycle	
2.	AC Power	r Line Conducted Emission	
	2.1.	Test Setup	
	2.2.	Test Limit	
	2.3.	Test Procedure	
	2.4.	Test Specification	
	2.5.	Test Result of AC Power Line Conducted Emission	
3.		Conducted Output Power	
	3.1.	Test Setup	
	3.2.	Test Limit	
	3.3.	Test Procedures	
	3.4.	Test Specification	
	3.5.	Test Result of Maximum Conducted Output Power	
4.	Radiated	Emission	
	4.1.	Test Setup	
	4.2.	Test Limit	
	4.3.	Test Procedure	
	4.4.	Test Specification	
	4.5.	Test Result of Radiated Emissions (30 MHz ~ 1 GHz)	
	4.6.	Test Result of Radiated Emissions (1 GHz ~ 10 th Harmonic)	
5.		Port Conducted Emission	
	5.1.	Test Setup	
	5.2.	Test Limit	
	5.3.	Test Procedure	
	5.4.	Test Specification	
	5.5.	Test Result of Antenna Port Conducted Emission	
6.		Emission Band Edge	
	6.1.	Test Setup	
	6.2.	Test Limit	
	6.3.	Test Procedure	
	6.4.	Test Specification	
_	6.5.	Test Result of Radiated Emission Band Edge	
7.		Bandwidth & DTS Bandwidth	
	7.1.	Test Setup	
	7.2.	Test Limit	
	7.3.	Test Procedures	
	7.4.	Test Specification	
	7.5.	Test Result of Occupied Bandwidth	
	7.6.	Test Result of DTS Bandwidth	60

TEL: +886-3-582-8001 FAX: +886-3-582-8958 Page Number Issued Date Report Version

4 of 70 Sep. 26, 2022

V1.0

8.	Maximı	um Power Spectral Density	62
	8.1.		
	8.2.	Test Limit	62
	8.3.	Test Procedures	62
	8.4.	Test Specification	62
	8.5.	Test Result of Maximum Power Spectral Density	63
Appen	dix A		65
		Test Result of Radiated Emissions Co-location	65
Appen	dix B		67
• •		Test Setup Photograph	

TEL: +886-3-582-8001 FAX: +886-3-582-8958 Page Number : Issued Date :

: 5 of 70 : Sep. 26, 2022

1. **General Information**

1.1. **EUT Description**

Product Name	peplink PEPWAVE Wireless P	peplink PEPWAVE Wireless Product				
Brand Name	PEPWAVE / peplink	PEPWAVE / peplink				
Model No.	MAX Transit Pro E, MAX-TST-	PROE-DUO-LTEA-Q-T-PRM				
Frequency Range / Channel Number	IEEE 802.11b/g	2412 ~ 2462 MHz / 11 Channels				
Channel Number	IEEE 802.11n/ac/ax (20 MHz)	2412 ~ 2462 MHz / 11 Channels				
	IEEE 802.11n/ac/ax (40 MHz)	2422 ~ 2452 MHz / 7 Channels				
Type of Modulation	IEEE 802.11b DSSS					
	IEEE 802.11g/n/ac	OFDM				
	IEEE 802.11ax	OFDMA				
Data Rate	IEEE 802.11b	1, 2, 5.5, 11 Mbps				
	IEEE 802.11g	6, 9, 12, 18, 24, 36, 48, 54 Mbps				
	IEEE 802.11n	Support a subset of the combination of GI, MCS 0 ~ MCS 15 and bandwidth defined in 802.11n				
	IEEE 802.11ac	Support a subset of the combination of GI, MCS 0 ~ MCS 9 and bandwidth defined in 802.11ac				
	IEEE 802.11ax	Support a subset of the combination of GI, MCS 0 ~ MCS 11 and bandwidth defined in 802.11ax				

A	Accessories Information						
No	0.	Equipment Name	Brand Name	Model No.	Rating		
1		Adapter	DVE		INPUT: 100~240Vac, 50/60Hz, 0.8A OUTPUT: +12.0Vdc, 2.0A, 24.0W		

The brand name/model number in the following table are all refer to the identical product.

Brand Name	Description
PEPWAVE	
peplink	
Model No.	There is nothing different of two models, just for different marketing use.
MAX Transit Pro E	1 400.
MAX-TST-PROE-DUO-LTEA-Q-T-PRM	

From the above models, model: MAX Transit Pro E was selected as representative model for the test and its data was recorded in this report.

Anter	Antenna Information						
Ant.	Brand Name	Model No.	Туре	Antenna Gain (dBi)			
0	Master Wave	98614PRSX000	Omni-directional	2.44			
1	Master Wave	98614PRSX000	Omni-directional	2.44			

For IEEE 802.11b/g/n/ac/ax Mode: (2TX, 2RX)

All of the antenna No. can be used as transmitting/receiving antennas, and them can transmit/receive signal simultaneously.

TEL: +886-3-582-8001 6 of 70 Page Number FAX: +886-3-582-8958 Issued Date Sep. 26, 2022

EUT Operational Condition					
Testing Voltage Power by adapter AC 120V/60H					
	Power by DC-Powered	DC 12V			

IEEE 802.11b/g & IEEE 802.11n/ac/ax (20 MHz)

Working Frequency of Each Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz	04	2427 MHz
05	2432 MHz	06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz	10	2457 MHz	11	2462 MHz	-	-

IEEE 802.11n/ac/ax (40 MHz)

Working Frequency of Each Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz	-	-

Note:

- Regards to the frequency band operation; the lowest, middle and highest frequency of channel were selected to perform the test, and then shown on this report.
- 2. The above EUT information is declared by the manufacturer.

TEL: +886-3-582-8001 Page Number 7 of 70 FAX: +886-3-582-8958 Issued Date Sep. 26, 2022 Report Version

V1.0

1.2. Test Mode

DEKRA has verified the construction and function in typical operation. The preliminary tests were performed in different data rate, and to find the worst condition, which was shown in this test report. The following table is the final test mode.

Test Mode 1: Transmit

Test Items	Test Mode	Modulation	Channel	Antenna	Result
AC Power Line Conducted Emission	Mode 1	11g	1	0+1	Pass
		11b	1/6/11	0+1	Pass
		11g	1/6/11	0+1	Pass
		11n (20 MHz)		Pass	
Maximum Conducted Output Power	Mode 1	11ac (20 MHz)	1/6/11	0+1	Pass
Waximum Conducted Output Power	ivioue i	11ax (20 MHz)	1/6/11	0+1	Pass
		11n (40 MHz)	3/6/9	0+1	Pass
		11ac (40 MHz)	3/6/9	0+1	Pass
		11ax (40 MHz)	3/6/9	0+1	Pass
Radiated Emission Below 1 GHz	Mode 1	11g	1	0+1	Pass
		11b	1/6/11	0+1	Pass
Radiated Emission Above 1 CHz	Mode 1	11g	1/6/11	0+1	Pass
Radiated Emission Above 1 GHz		11ax (20 MHz)	1/6/11	0+1	Pass
		11ax (40 MHz)	3/6/9	0+1	Pass
	Mode 1	11b	1/6/11	0+1	Pass
Antonno Dort Conducted Emission		11g	1/6/11	0+1	Pass
Antenna Port Conducted Emission		11ax (20 MHz)	1/6/11	0+1	Pass
		11ax (40 MHz)	3/6/9	0+1	Pass
		11b	1/6/11	0+1	Pass
Redicted Emission Road Edge		11g	1/6/11	0+1	Pass
Radiated Emission Band Edge	Mode 1	11ax (20 MHz)	1/6/11	0+1	Pass
		11ax (40 MHz)	3/6/9	0+1	Pass
		11b	1/6/11	0+1	Pass
Occupied Bandwidth &	Mode 1	11g	1/6/11	0+1	Pass
DTS Bandwidth	iviode i	11ax (20 MHz)	1/6/11	0+1	Pass
		11ax (40 MHz)	3/6/9	0+1	Pass
		11b	1/6/11	0+1	Pass
Maximum Dawar Spectral Danaiti	Mode 1	11g	1/6/11	0+1	Pass
Maximum Power Spectral Density	Density Mode 1 11	11ax (20 MHz)	1/6/11	0+1	Pass
		11ax (40 MHz)	3/6/9	0+1	Pass

Note:

- 1. Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. The worst case of data rate for 802.11b is 1 Mbps, for 802.11g is 6 Mbps, for 802.11ax (20 MHz)/802.11ax (40 MHz) are MCS 0, Nss1.

TEL: +886-3-582-8001 Page Number : 8 of 70
FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022
Report Version : V1.0

- The modulation and bandwidth are similar for 802.11n mode for HT20/HT40, 802.11ac mode for VHT20/VHT40 and 802.11ax mode for HE20/HE40, therefore investigated worst case to representative mode in test report. (Please refer to the test result of RF output power for detail.)
- 4. There are two modes of EUT, one is power by adapter, and the other is power by DC-Powered.
 - (1) For radiated emission below 1 GHz test: Both power by adapter, and power by DC-Powered were to test and record in this test report.
 - (2) For AC power line conducted emission test: The power by adapter was to test and record in this test report, and the power by DC-Powered is not necessary to apply to AC power line conducted emission test.
 - (3) For other test: Power by adapter generated the worst test result for radiated emission below 1 GHz test, thus the measurement for other test will follow this same test configuration.
- 5. For radiated emission below 1 GHz and AC power line conducted emission have performed all modes of operation were investigated and the worst-case emissions are reported.
- 6. The EUT could be applied with 1. WiFi 2.4 GHz function + WiFi 5 GHz function + WWAN WCDMA function and 2. WiFi 2.4 GHz function + WiFi 5 GHz function + WWAN LTE function; therefore Co-location Maximum Permissible Exposure (Please refer to DEKRA Report No.: 2270145R-RFUSMPEV02-A) and Radiated Emission Co-location (Please refer to Appendix A) tests are added for simultaneously transmit with 1. WiFi 2.4 GHz function + WiFi 5 GHz function + WWAN WCDMA function and 2. WiFi 2.4 GHz function + WiFi 5 GHz function + WWAN LTE function.
- 7. The EUT contains two of the same WWAN modules (brand name: Telit, model: LN920A12-WW, FCC ID: RI7LN920).

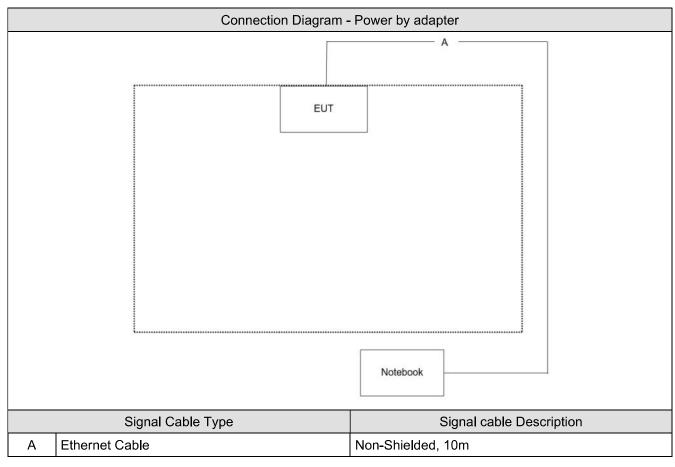
1.3. Comments and Remarks

The product specification and testing instructions for the EUT declared in the report are provided by the manufacturer who will take all responsibilities for the accuracy.

TEL: +886-3-582-8001 Page Number : 9 of 70 FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022

1.4. Tested System Details

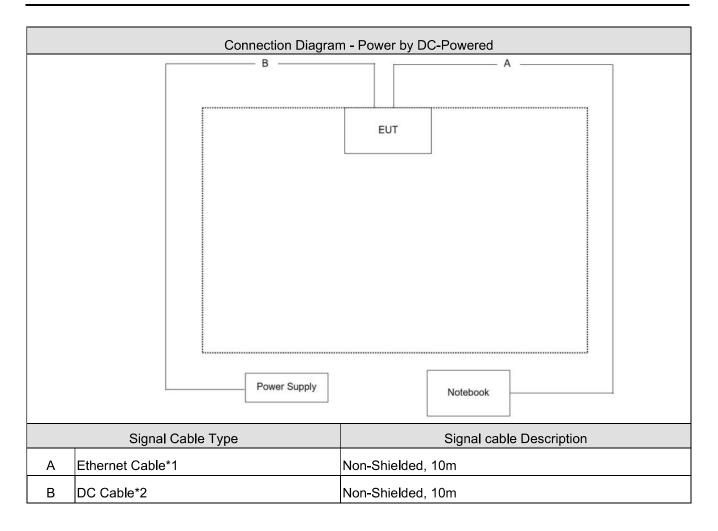
The types for all equipment, plus descriptions of all cables used in the tested system.


<Power by adapter>

Product		Manufacturer	Model No.	Serial No.
1	Notebook	Lenovo	Ideapad 110 15IBR	PF0MEEB0

<Power by DC-Powered>

Product		Manufacturer	Model No.	Serial No.	
1	Notebook	Lenovo	Ideapad 110 15IBR	PF0MEEB0	
2	Power Supply	Topward	6303D	8095908	


1.5. Configuration of Tested System

 TEL: +886-3-582-8001
 Page Number
 : 10 of 70

 FAX: +886-3-582-8958
 Issued Date
 : Sep. 26, 2022

1.6. EUT Operation of during Test

1	Execute control command by software "QSPR v5.0-00197".
2	Configure the test mode, the test channel, and the data rate.
3	Press "Start TX" to start the continuous transmitting.
4	Verify that the EUT works properly.

TEL: +886-3-582-8001 Page Number : 11 of 70 FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022

1.7. Test Facility

Ambient conditions in the laboratory:

Items	Test Item	Actually	Tested by	Test Date	Test Site
Temperature (°C)	AC Power Line Conducted Emission	24.1	Ling Chan	2022/08/11	HC-SR02
Humidity (%RH)	AC Power Line Conducted Emission	66	Ling Chen	2022/00/11	nc-sku2
Temperature (°C)	Maximum Canduated Output Bower	21 ~ 25.6	Scott Chang	2022/07/20 ~	HC-SR12
Humidity (%RH)	Maximum Conducted Output Power	61	Clemens Fang	2022/08/03	NC-3K12
Temperature (°C)	Radiated Emission	22 ~ 24	Couril Chana	2022/07/28 ~	HC-CB04
Humidity (%RH)	Radiated Effission	59 ~ 61	Cyril Chen	2022/08/10	
Temperature (°C)	Antenna Port Conducted Emission	21	Clamana Fana	2022/08/03	HC-SR12
Humidity (%RH)	Antenna Port Conducted Emission	67	Clemens Fang	2022/06/03	
Temperature (°C)	Radiated Emission Band Edge	24	Couril Chann	2022/07/28	HC-CB04
Humidity (%RH)	Radiated Effission Band Edge	61	Cyril Chen	2022/01/20	HC-CB04
Temperature (°C)	Occupied Bandwidth &	21	01	2022/00/02	LIC CD40
Humidity (%RH)	DTS Bandwidth	67	Clemens Fang	2022/08/03	HC-SR12
Temperature (°C)	Maximum Power Spectral Density	21	Clomone Fena	2022/08/03	UC SD12
Humidity (%RH)	Maximum Fower Spectral Density	67	Clemens Fang	2022/00/03	HC-SR12

Note: Test site information refers to Laboratory Information.

USA : FCC Registration Number: TW3024

Canada : CAB identifier : TW3024

The address and introduction of DEKRA Testing and Certification Co., Ltd. laboratories can be founded in our Web site: http://www.dekra.com.tw

If you have any comments, please don't hesitate to contact us. Our test sites as below:

Test Laboratory	DEKRA Testing and Certification Co., Ltd.
Address	 No.372-2, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County 31061, Taiwan, R.O.C. No.372, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County 31061, Taiwan, R.O.C.
Phone number	1. +886-3-582-8001 2. +886-3-582-8001
Fax number	1. +886-3-582-8958 2. +886-3-582-8958
E mail address	info.tw@dekra.com
Website	http://www.dekra.com.tw
Note: Took site would on fe	ar address 1 includes LIC CD02. Test site number for address 2 includes LIC CD02

Note: Test site number for address 1 includes HC-SR02. Test site number for address 2 includes HC-CB02, HC-CB03, HC-CB04, SR10-H and HC-SR12.

TEL: +886-3-582-8001 Page Number : 12 of 70 FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022

1.8. List of Test Equipment

HC-SR02

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Artificial Mains Network	R&S	ENV4200	848411/010	2021/12/27	2022/12/26
EMI Test Receiver	R&S	ESR3	102608	2022/05/30	2023/05/29
LISN	R&S	ENV216	100092	2022/04/29	2023/04/28
Coaxial Cable(9m)	Harbour	RG-400	HC-SR02	2021/08/15	2022/08/14
DEKRA Testing System	DEKRA	Version 2.0	HC-SR02	N/A	N/A

HC-SR12

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
High Speed Peak Power Meter Dual Input	Anritsu	ML2496A	1602004	2021/11/12	2022/11/11
Pulse Power Sensor	Anritsu	MA2411B	1531043	2021/11/12	2022/11/11
EXA Signal Analyzer	Keysight	N9010A	MY51440132	2022/01/07	2023/01/06
Pulse Power Sensor	Anritsu	MA2411B	1531044	2021/11/12	2022/11/11
Signal and Spectrum Analyzer	R&S	FSVA40	101435	2022/05/30	2023/05/29

HC-CB04

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Signal Analyzer	R&S	FSVA40	101455	2021/10/22	2022/10/21
EXA Signal Analyzer	Keysight	N9010A	MY51440132	2022/01/07	2023/01/06
Trilog Broadband Antenna	Schwarzbeck	VULB 9168	1209	2022/06/14	2023/06/13
Horn Antenna	Schwarzbeck	BBHA 9120D	639	2022/05/06	2023/05/05
Horn Antenna	Schwarzbeck	BBHA 9170	203	2022/02/23	2023/02/22
Pre-Amplifier	EMCI	EMC01820I	980365	2022/04/15	2023/04/14
Pre-Amplifier	EMEC	EM01G18GA	060741	2022/05/06	2023/05/05
Pre-Amplifier	DEKRA	AP-400C	201801231	2021/12/24	2022/12/23
EMI Test Receiver	R&S	ESR7	102260	2021/12/22	2022/12/21
Magnetic Loop Antenna	Teseq	HLA 6121	44287	2021/09/06	2022/09/05
Coaxial Cable(10m)	Suhner	SF102_SF104	HC-CB04	2021/08/09	2022/08/08
Coaxial Cable(10m)	Suhner	SF102_SF104	HC-CB04	2022/08/08	2023/08/07
Coaxial Cable(3m)	Suhner,Rosnol	SF102_Rosnol	HC-CB04_1	2021/08/17	2022/08/16
Radiated Software	AUDIX	e3 V9	HC-CB04_1	N/A	N/A

Note: All equipment upon which need to calibrated are with calibration period of 1 year.

TEL: +886-3-582-8001 Page Number: 13 of 70
FAX: +886-3-582-8958 Issued Date: Sep. 26, 2022
Page Number: 14 of 70
FAX: +886-3-582-8958 Issued Date: Sep. 26, 2022

1.9. Measurement Uncertainty

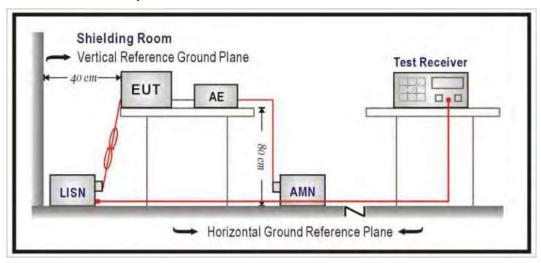
Uncertainties have been calculated according to the DEKRA internal document with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).


Test Item	Uncertainty
AC Power Line Conducted Emission	± 2.10 dB
Maximum Conducted Output Power	± 1.16 dB
Radiated Emission	± 3.25 dB below 1 GHz ± 3.32 dB above 1 GHz
Antenna Port Conducted Emission	± 1.60 dB
Radiated Emission Band Edge	± 3.32 dB above 1GHz
DTS Bandwidth	± 282.55 Hz
Occupied Bandwidth	± 282.55 Hz
Maximum Power Spectral Density	± 1.60 dB

TEL: +886-3-582-8001 Page Number : 14 of 70 FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022

1.10. Duty Cycle

Madulatian	On Times	On+Off Times	Duty Cycle	Duty Factor	1/T Minimum
Modulation	(ms)	(ms)	(%)	(dB)	VBW (kHz)
802.11b	0.640	1.240	51.61	2.872	1.563
802.11g	1.420	1.570	90.45	0.436	0.704
802.11ax (20 MHz)	5.440	5.780	94.12	0.263	0.184
802.11ax (40 MHz)	5.440	5.720	95.10	0.218	0.184


 TEL: +886-3-582-8001
 Page Number
 : 15 of 70

 FAX: +886-3-582-8958
 Issued Date
 : Sep. 26, 2022

2. AC Power Line Conducted Emission

2.1. Test Setup

2.2. Test Limit

Frequency (MHz)	QP (dBuV)	AV (dBuV)		
0.15 - 0.50	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30	60	50		

Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

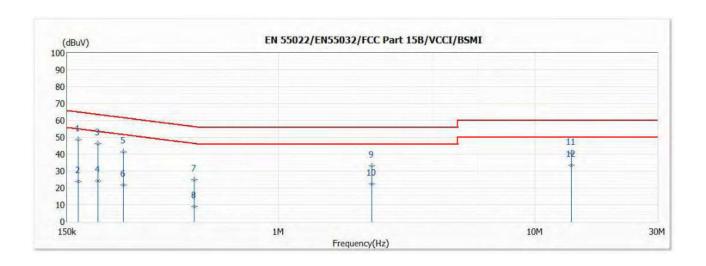
The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm/50 uH coupling impedance with 50 ohm termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.

AC Power Line Conducted Emissions were invested over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz.

2.4. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247.


 TEL: +886-3-582-8001
 Page Number
 : 16 of 70

 FAX: +886-3-582-8958
 Issued Date
 : Sep. 26, 2022

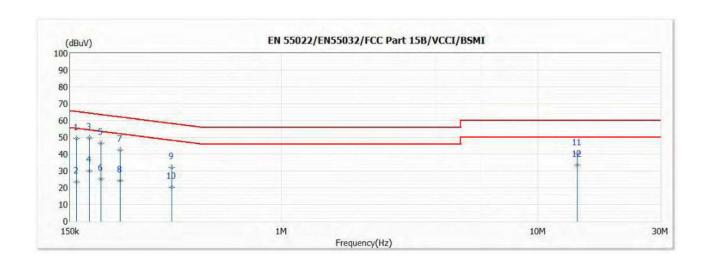
2.5. Test Result of AC Power Line Conducted Emission

Test Condition 802.11g / Ant. 0 + Ant. 1 / 2412 MHz	Phase	Line
---	-------	------

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dB)	Type
1	0.166	48.48	65.16	-16.68	38.86	9.62	QP
2	0.166	23.68	55.16	-31.48	14.06	9.62	AV
3	0.198	46.17	63.70	-17.53	36.56	9.61	QP
4	0.198	24.18	53.70	-29.52	14.57	9.61	AV
5	0.249	41.42	61.79	-20.37	31.80	9.62	QP
6	0.249	21.81	51.79	-29.98	12.19	9.62	AV
7	0.470	24.96	56.52	-31.56	15.31	9.65	QP
8	0.470	8.83	46.52	-37.69	-0.82	9.65	AV
9	2.312	33.17	56.00	-22.83	23.41	9.76	QP
10	2.312	22.52	46.00	-23.48	12.76	9.76	AV
11	13.895	40.78	60.00	-19.22	30.58	10.20	QP
*12	13.895	33.50	50.00	-16.50	23.30	10.20	AV

Note:

1. All Reading Levels are Quasi-Peak and average value.


2. " * ", means this data is the worst emission level.

3. Measurement Level = Reading Level + Correct Factor.

TEL: +886-3-582-8001 Page Number : 17 of 70
FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022
Report Version : V1.0

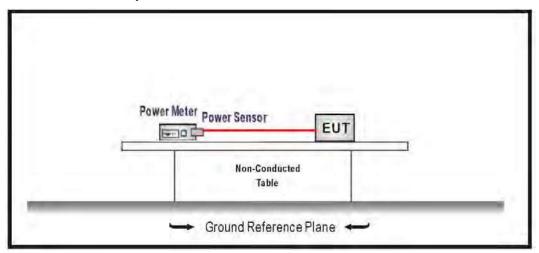
Test Condition	802.11g / Ant. 0 + Ant. 1 / 2412 MHz	Phase	Neutral
----------------	--------------------------------------	-------	---------

No	Frequency	Emission Level	Limit	Margin	Reading Level	Correct Factor	Detector
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dB)	Type
1	0.159	49.22	65.52	-16.30	39.60	9.62	QP
2	0.159	23.35	55.52	-32.17	13.73	9.62	AV
*3	0.178	49.53	64.56	-15.03	39.92	9.61	QP
4	0.178	29.84	54.56	-24.72	20.23	9.61	AV
5	0.197	46.45	63.72	-17.27	36.84	9.61	QP
6	0.197	25.25	53.72	-28.47	15.64	9.61	AV
7	0.234	42.39	62.29	-19.90	32.77	9.62	QP
8	0.234	24.07	52.29	-28.22	14.45	9.62	AV
9	0.374	31.92	58.42	-26.50	22.29	9.63	QP
10	0.374	20.45	48.42	-27.97	10.82	9.63	AV
11	14.215	40.18	60.00	-19.82	29.87	10.31	QP
12	14.215	33.40	50.00	-16.60	23.09	10.31	AV

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. " * ", means this data is the worst emission level.


3. Measurement Level = Reading Level + Correct Factor.

TEL: +886-3-582-8001 Page Number : 18 of 70
FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022
Report Version : V1.0

3. Maximum Conducted Output Power

3.1. Test Setup

3.2. Test Limit

The maximum conducted output power shall be less 30 dBm (1 Watt).

3.3. Test Procedures

The EUT was setup according to ANSI C63.10: 2013; tested according to DTS test procedure of KDB 558074 D01 v05r02 for compliance to FCC 47CFR 15.247 requirements.

3.4. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247.

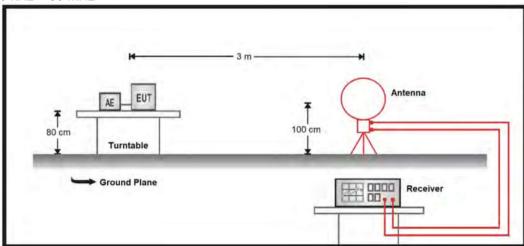
 TEL: +886-3-582-8001
 Page Number
 : 19 of 70

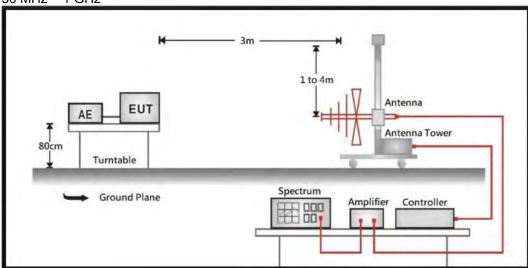
 FAX: +886-3-582-8958
 Issued Date
 : Sep. 26, 2022

Test Result of Maximum Conducted Output Power 3.5.

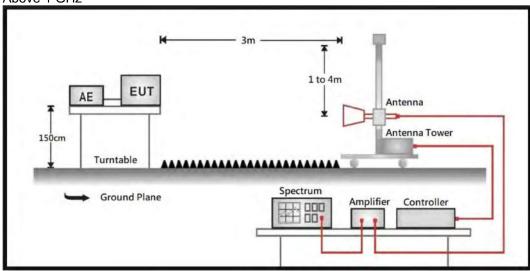
Modulation	Channel	Frequency	Maximum (Conducted Ou (dBm)	Limit	Result	
		(MHz)	Ant. 0 Ant. 1 Total		(dBm)	. 1000	
	1	2412	22.47	22.80	25.65	≦30.00	Pass
802.11b	6	2437	22.42	22.94	25.70	≦30.00	Pass
	11	2462	22.37	22.79	25.60	≦30.00	Pass
	1	2412	22.54	22.78	25.67	≦30.00	Pass
802.11g	6	2437	22.55	22.85	25.71	≦30.00	Pass
	11	2462	20.22	20.41	23.33	≦30.00	Pass
	1	2412	22.17	22.40	25.30	≦30.00	Pass
802.11n (20 MHz)	6	2437	22.51	22.63	25.58	≦30.00	Pass
	11	2462	19.14	19.27	22.22	≦30.00	Pass
	1	2412	22.12	22.35	25.25	≦30.00	Pass
802.11ac (20 MHz)	6	2437	22.94	22.10	25.55	≦30.00	Pass
	11	2462	19.25	19.31	22.29	≦30.00	Pass
	1	2412	22.25	22.46	25.37	≦30.00	Pass
802.11ax (20 MHz)	6	2437	22.54	22.68	25.62	≦30.00	Pass
	11	2462	19.18	19.43	22.32	≦30.00	Pass
	3	2422	21.38	21.67	24.54	≦30.00	Pass
802.11n (40 MHz)	6	2437	21.72	21.81	24.78	≦30.00	Pass
	9	2452	17.19	17.82	20.53	≦30.00	Pass
	3	2422	21.34	21.62	24.49	≦30.00	Pass
802.11ac (40 MHz)	6	2437	21.68	21.77	24.74	≦30.00	Pass
	9	2452	17.16	17.81	20.51	≦30.00	Pass
	3	2422	21.47	21.73	24.61	≦30.00	Pass
802.11ax (40 MHz)	6	2437	21.76	21.88	24.83	≦30.00	Pass
	9	2452	17.42	17.83	20.64	≦30.00	Pass

TEL: +886-3-582-8001 20 of 70 Page Number Issued Date FAX: +886-3-582-8958 Sep. 26, 2022 Report Version


V1.0


4. Radiated Emission

4.1. Test Setup


9 kHz ~ 30 MHz

30 MHz ~ 1 GHz

Above 1 GHz

TEL: +886-3-582-8001 FAX: +886-3-582-8958 Page Number Issued Date : 21 of 70 : Sep. 26, 2022 : V1.0

4.2. Test Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 30dB below the level of the fundamental or to the general radiated emission limit in paragraph 15.209, whichever is the lesser attenuation.

Frequency (MHz)	Field strength (uV/m)	Field strength (dBuV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	20 log (2400/F(kHz))	300
0.490 — 1.705	24000/F(kHz)	20 log (24000/F(kHz))	30
1.705 - 30	30	29.5	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

Remarks:

- 1. Field strength (dBuV/m) = 20 log Field strength (uV/m)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

4.3 Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB 558074 D01V05r02 for compliance to FCC 47CFR 15.247 requirements.

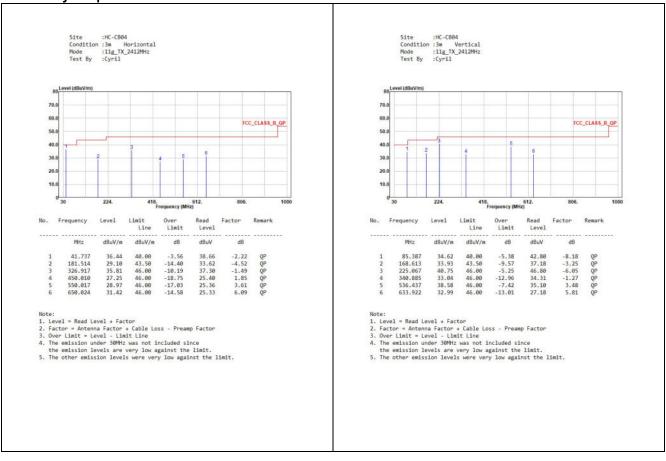
The EUT and its simulators are placed on a turn table which is 0.8 or 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

On any frequency or frequencies form 9 kHz(inculde The the lowest oscillator frequency generated within the device up to the 10th harmonic) to 1000 MHz, the limit shown are based on measuring equipment employing a quasi-peak detector function and on any frequency or frequencies above 1000 MHz the radiated limit shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

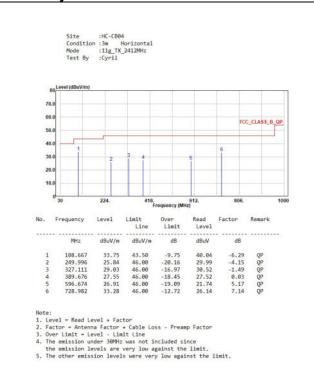
The bandwidth below 1 GHz setting on the field strength meter is 120 kHz and above 1 GHz is 1 MHz.

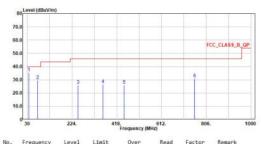
4.4. Test Specification


According to FCC Part 15 Subpart C Paragraph 15.247.

TEL: +886-3-582-8001 Page Number : 22 of 70 FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022

4.5. Test Result of Radiated Emissions (30 MHz ~ 1 GHz)


<Power by adapter>


TEL: +886-3-582-8001 Page Number : 23 of 70 FAX: +886-3-582-8958 Issued Date : Sep. 26, 2022

<Power by DC-Powered>

110.	. requestey	20122	Line	Limit	Level	1 00 001	Tichiai K	
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		
1	36.887	35.34	40.00	-4.66	38.18	-2.84	QP	
2	74.135	29.55	40.00	-10.45	35.09	-5.54	QP	
3	249.996	26.05	46.00	-19.95	30.20	-4.15	QP	
4	357.569	26.42	46.00	-19.58	27.37	-0.95	QP	
5	450.010	26.00	46.00	-20.00	24.15	1.85	QP	
6	755.269	30.73	46.00	-15.27	22.88	7.85	QP	

- Note:

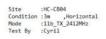
 1. Level = Read Level + Factor

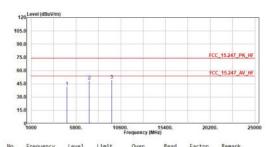
 2. Factor = Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit Level Limit Line

 4. The emission under 30MHz was not included since the emission levels are very low against the limit.

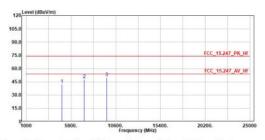
 5. The other emission levels were very low against the limit.


TEL: +886-3-582-8001 FAX: +886-3-582-8958


Page Number 24 of 70 Issued Date Sep. 26, 2022

V1.0

Test Result of Radiated Emissions (1 GHz ~ 10th Harmonic) 4.6.



NO.	rrequency	rever	Line	Limit	Level	Pactor	richar K
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4824,000	41.67	74.00	-32.33	56.38	-14.71	Peak
2	7236.000	48.53	74.00	-25.47	55.29	-6.76	Peak
3	9648.000	49.37	74.00	-24.63	52.27	-2.90	Peak

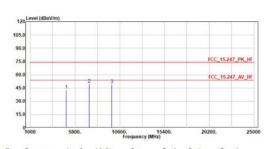
- Note:
 1. Level = Read Level + Factor
 2. Factor Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit Level Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

Site :HC-CB04 Condition :3m ,Vertical Mode :11b_TX_2412MHz Test By :Cyril

No.	Frequency	Level	Limit Line	Over	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4824,000	42.86	74.00	-31.94	56.77	-14.71	Peak
2	7236.000	47.64	74.00	-26.36	54.40	-6.76	Peak
3	9648 999	50 01	74 00	-23 99	52 91	-2 99	Pook

- Note:

 1. Level = Read Level + Factor

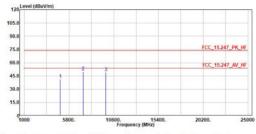

 2. Factor = Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit = Level Limit Line

 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.

 5. The other emission levels were very low against the limit.

Site :HC-CB04 Condition :3m ,Horizontal Mode :11b_TX_2437MHz Test By :Cyril

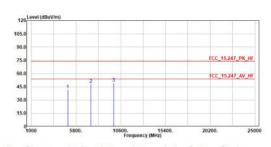


No.	Frequency	Level	Limit	Limit	Level	Factor	Kemark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	42.58	74.00	-31.42	57.07	-14.49	Peak
2	7311.000	49.58	74.00	-24.42	56.09	-6.51	Peak
3	9748 888	48 89	74 99	-25 11	51 51	-2 62	Pook

- Note:

 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Linit = Level Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

Site :HC-CB04
Condition :3m ,Vertical
Mode :11b_TX_2437MHz
Test By :Cyril


No.	Frequency	Level	Limit Line	Over	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	41.43	74.00	-32.57	55.92	-14.49	Peak
2	7311.000	49.73	74.00	-24.27	56.24	-6.51	Peak
3	9748.000	49.06	74.00	-24.94	51.68	-2.62	Peak

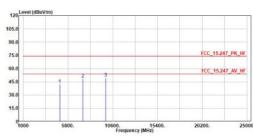
- Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit = Level Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

TEL: +886-3-582-8001 Page Number 25 of 70 FAX: +886-3-582-8958 Sep. 26, 2022 Issued Date

Line Limit Le	
MHz dBuV/m dBuV/m dB dB	BuV dB
1 4924.000 41.44 74.00 -32.56 55	.71 -14.27 Peak
2 7386.000 48.22 74.00 -25.78 54	.47 -6.25 Peak
3 9848.000 49.22 74.00 -24.78 51	.62 -2.40 Peak

- Note:

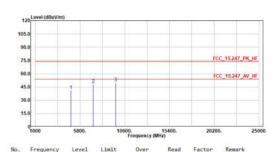
 1. Level = Read Level + Factor


 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit = Level Limit Line

 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.

 5. The other emission levels were very low against the limit.


Site :HC-CB04
Condition :3m ,Vertical
Mode :11b_TX_2462MHz
Test By :Cyril

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924,000	42.05	74.00	-31.95	56.32	-14.27	Peak
2	7386.000	48.47	74.00	-25.53	54.72	-6.25	Peak
3	9848.000	49.57	74.00	-24.43	51.97	-2.40	Peak

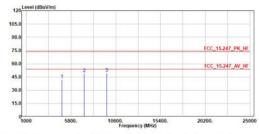
- Note:
 1. Level = Read Level + Factor
 2. Factor Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit Level Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

Site :HC-CB04 Condition :3m ,Horizontal Mode :11g_TX_2412MHz Test By :Cyril

	- adame,		Line	Limit	Level		TOO TOO TOO
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4824,000	41.19	74.00	-32.81	55.90	-14.71	Peak
2	7236.000	48.04	74.00	-25.96	54.80	-6.76	Peak
3	9648.000	49.73	74.00	-24.27	52.63	-2.90	Peak

- Note:

 1. Level = Read Level + Factor

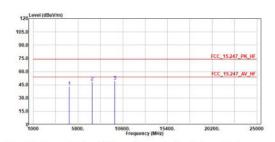

 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit = Level Limit Lime

 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.

 5. The other emission levels were very low against the limit.

Site :HC-CB04
Condition :3m ,Vertical
Mode :11g_TX_2412MHz
Test By :Cyril


No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4824,000	42.02	74.00	-31.98	56.73	-14.71	Peak
2	7236.000	48.82	74.00	-25.18	55.58	-6.76	Peak
3	9648.000	49.40	74.00	-24.68	52.30	-2.90	Peak

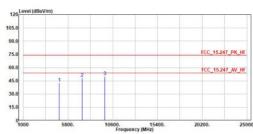
- Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit = Level Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

TEL: +886-3-582-8001 Page Number 26 of 70 FAX: +886-3-582-8958 Issued Date Sep. 26, 2022

No.	Frequency	Level	Line	Limit	Level	Factor	Kemark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874.000	42.97	74.00	-31.03	57.46	-14.49	Peak
2	7311.000 9748.000	48.62	74.00 74.00	-25.38 -24.50	55.13 52.12	-6.51 -2.62	Peak Peak

- Note:

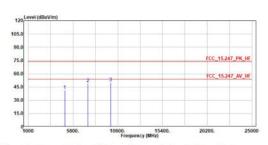
 1. Level = Read Level + Factor


 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit = Level Limit Line

 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.

 5. The other emission levels were very low against the limit.


Site :HC-CB04
Condition :3m ,Vertical
Mode :11g_TX_2437MHz
Test By :Cyril

No.	Frequency	Level	Limit Line	Over	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874,000	42.70	74.00	-31.30	57.19	-14.49	Peak
2	7311.000	48.03	74.00	-25.97	54.54	-6.51	Peak
3	9748.000	49.70	74.00	-24.30	52.32	-2.62	Peak

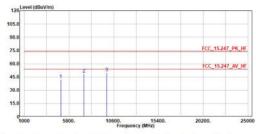
- Note:
 1. Level = Read Level + Factor
 2. Factor Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit Level Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

Site :HC-CB04 Condition :3m ,Horizontal Mode :11g_TX_2462MHz Test By :Cyril

No.	Frequency	Level	Limit Line	Over	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924,000	41.25	74.00	-32.75	55.52	-14.27	Peak
2	7386.000	48.77	74.00	-25.23	55.02	-6.25	Peak
3	9848 999	49 91	74 99	-24 89	52 31	-2 40	Pook

- Note:

 1. Level = Read Level + Factor

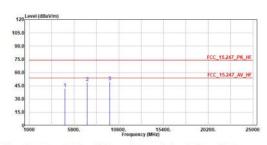

 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit = Level Limit Lime

 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.

 5. The other emission levels were very low against the limit.

Site :HC-CB04
Condition :3m ,Vertical
Mode :11g_TX_2462MHz
Test By :Cyril


No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4924.000	41.93	74.00	-32.07	56.20	-14.27	Peak
2	7386.000	48.59	74.00	-25.41	54.84	-6.25	Peak
3	9848.000	49.79	74.00	-24.21	52.19	-2.40	Peak

- Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit = Level Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

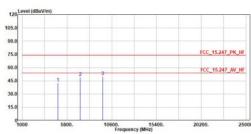
TEL: +886-3-582-8001 Page Number 27 of 70 FAX: +886-3-582-8958 Issued Date Sep. 26, 2022

Site :HC-CB04 Condition :3m ,Horizontal Mode :11ax20_TX_2412MHz Test By :Cyril

No		Frequency	Level	Limit Line	Over	Read Level	Factor	Remark
7.5	5555	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
	1	4824,000	42.13	74.00	-31.87	56.84	-14.71	Peak
	2	7236.000	48.93	74.00	-25.07	55.69	-6.76	Peak
	3	9648.000	49.66	74.00	-24.34	52.56	-2.90	Peak

- Note:

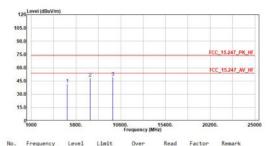
 1. Level = Read Level + Factor


 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit = Level Limit Line

 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.

 5. The other emission levels were very low against the limit.


Site :HC-CB04 Condition :3m ,Vertical Mode :11ax20_TX_2412MHz Test By :Cyril

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4824.000	42.36	74.00	-31.64	57.07	-14.71	Peak
2	7236.000	48.71	74.00	-25.29	55.47	-6.76	Peak
3	9648.000	49.90	74.00	-24.10	52.80	-2.90	Peak

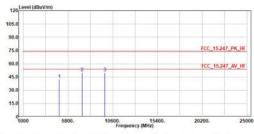
- Note:
 1. Level = Read Level + Factor
 2. Factor Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit Level Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

Site :HC-CB04 Condition :3m ,Horizontal Mode :11ax20_TX_2437MHz Test By :Cyril

		Line	Limit	Level		
	MHz dBu\	//m dBuV/m	dB	dBuV	dB	
1 487	74.000 41.	82 74.00	-32.18	56.31	-14.49	Peak
2 731	11.000 48	49 74.00	-25.51	55.00	-6.51	Peak
3 974	18.000 49	.16 74.00	-24.84	51.78	-2.62	Peak

- Note:

 1. Level = Read Level + Factor


 2. Factor Antenna Factor + Cable Loss Preamp Factor

 3. Over Limit = Level Limit Lime

 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.

 5. The other emission levels were very low against the limit.

Site :HC-CB04 Condition :3m ,Vertical Mode :11ax20_TX_2437MHz Test By :Cyril

No.	Frequency	Level	Limit Line	Over Limit	Read Level	Factor	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	
1	4874,000	41.99	74.00	-32.01	56.48	-14.49	Peak
2	7311.000	49.63	74.00	-24.37	56.14	-6.51	Peak
3	9748.000	50.04	74.00	-23.96	52.66	-2.62	Peak

- Note:
 1. Level = Read Level + Factor
 2. Factor = Antenna Factor + Cable Loss Preamp Factor
 3. Over Limit = Level Limit Line
 4. The peak result complies with AVG limit, AVG result is deemed to comply with AVG limit.
 5. The other emission levels were very low against the limit.

TEL: +886-3-582-8001 Page Number 28 of 70 FAX: +886-3-582-8958 Issued Date Sep. 26, 2022