## RF Exposure Report

Report No.: SA150825E05
FCC ID: U8G-P1811
Test Model: MAX 700
Series Model: Pismo 811
Received Date: Aug. 25, 2015
Test Date: Sep. 14, 2015
Issued Date: Sep. 25, 2015

Applicant: Pismo Labs Technology Limited
Address: FLAT/RM A5, 5/F, HK SPINNERS IND BLDG PHASE 6, 481 CASTLE PEAK ROAD, CHEUNG SHA WAN, HONG KONG.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address: No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.

Test Location (1): No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.

Test Location (3): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

## Table of Contents

Release Control Record ..... 3
1 Certificate of Conformity ..... 4
2 RF Exposure ..... 5
2.1 Limits for Maximum Permissible Exposure (MPE) ..... 5
2.2 MPE Calculation Formula ..... 5
2.3 Classification ..... 5
2.4 Antenna Gain ..... 6
3 Calculation Result of Maximum Conducted Power ..... 7

## Release Control Record

| Issue No. | Description | Date Issued |
| :--- | :--- | :--- |
| SA150825E05 | Original release. | Sep. 25, 2015 |

1 Certificate of Conformity

Product: Pepwave / Peplink / Pismo Wireless Product
Brand: Pepwave / Peplink / Pismo
Test Model: MAX 700
Series Model: Pismo 811
Sample Status: ENGINEERING SAMPLE
Applicant: Pismo Labs Technology Limited
Test Date: Sep. 14, 2015
Standards: FCC Part 2 (Section 2.1091)
KB 447498 D03
IEEE C95.1

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : $\qquad$ , Date: Sep. 25, 2015 Phoenix Huang / Specialist -

Approved by : $\qquad$ , Date: $\qquad$

## 2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

| Frequency Range <br> $(\mathrm{MHz})$ | Electric Field <br> Strength (V/m) | Magnetic Field <br> Strength (A/m) | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Average Time <br> $($ minutes $)$ |
| :---: | :---: | :---: | :---: | :---: |
| Limits For General Population / Uncontrolled Exposure |  |  |  |  |
| $300-1500$ | $\ldots$ | $\ldots$ | F/1500 | 30 |
| $1500-100,000$ | $\ldots$ | $\ldots$ | 1.0 | 30 |

$\mathrm{F}=$ Frequency in MHz
2.2 MPE Calculation Formula
$\mathrm{Pd}=\left(\right.$ Pout $\left.{ }^{\star} \mathrm{G}\right) /\left(4^{\star} \mathrm{pl}^{\star}{ }^{\star}{ }^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
G = gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$R=$ distance between observation point and center of the radiator in cm

### 2.3 Classification

The antenna of this product, under normal use condition, is at least 22 cm away from the body of the user. So, this device is classified as Mobile Device.

This product could be applied with four Cellular USB Dongle devices, and the safe distance is 70 cm for collocated radio.

### 2.4 Antenna Gain

The antennas provided to the EUT, please refer to the following table:

| For WIFI 1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Transmitter Circuit | Brand | Model | Ant. Gain (dBi) <Excluding cable loss> | Frequency range <br> (GHz to GHz) | Antenna Type | Connecter Type |
| 1 | Chain (0) | SmartAnt | SAA06-220690 | 3 | 2.4~2.4835 | Dipole | RP-SMA |
|  |  |  |  | 4~5.5 | 5.15~5.25 |  |  |
|  |  |  |  | 5.5~6 | 5.725~5.85 |  |  |
| 2 | Chain (1) | SmartAnt | SAA06-220690 | 3 | 2.4~2.4835 | Dipole | RP-SMA |
|  |  |  |  | 4~5.5 | 5.15~5.25 |  |  |
|  |  |  |  | 5.5~6 | 5.725~5.85 |  |  |
| For WIFI 2 |  |  |  |  |  |  |  |
| No. | Transmitter Circuit | Brand | Model | Ant. Gain (dBi) <Excluding cable loss> | Frequency range (GHz to GHz) | Antenna Type | Connecter Type |
| 3 | Chain (0) | SmartAnt | SAA06-220690 | 3 | 2.4~2.4835 | Dipole | RP-SMA |
|  |  |  |  | 4~5.5 | 5.15~5.25 |  |  |
|  |  |  |  | 5.5~6 | 5.725~5.85 |  |  |
| 4 | Chain (1) | SmartAnt | SAA06-220690 | 3 | 2.4~2.4835 | Dipole | RP-SMA |
|  |  |  |  | 4~5.5 | 5.15~5.25 |  |  |
|  |  |  |  | 5.5~6 | 5.725~5.85 |  |  |

## 3 Calculation Result of Maximum Conducted Power

For WLAN:

| Frequency Band <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2412-2462$ | 889.322 | 9.97 | 22 | 0.58345 | 1 |
| $5180-5240$ | 235.977 | 8.51 | 22 | 0.27530 | 1 |
| $5745-5825$ | 22.47 | 8.76 | 22 | 0.21829 | 1 |

NOTE:

1. 2.4 GHz : Directional gain $=3 \mathrm{dBi}+10 \log (2)=9.97 \mathrm{dBi}$
$5 \mathrm{GHz}(5150 \sim 5250 \mathrm{MHz})$ : Directional gain $=5.5 \mathrm{dBi}+10 \log (2)=8.51 \mathrm{dBi}$
$5 \mathrm{GHz}(5725 \sim 5850 \mathrm{MHz})$ : Directional gain $=6 \mathrm{dBi}+10 \log (2)=8.76 \mathrm{dBi}$

For WLAN + Cellular USB Dongle

| Condition | Combination | Technology |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | WLAN only | WLAN <br> $(2.4 G H z)$ | WLAN <br> $(5 G H z)$ | - | - | - | - |
| 2 | WLAN + one <br> Cellular USB <br> Dongle | WLAN <br> $(2.4 G H z)$ | WLAN <br> $(5 G H z)$ | WWAN(2G/3G) <br> or LTE(4G) | - | - | - |
| 3 | WLAN + two <br> Cellular USB <br> Dongles | WLAN <br> $(2.4 G H z)$ | WLAN <br> $(5 G H z)$ | WWAN(2G/3G) <br> or LTE(4G) | WWAN(2G/3G) <br> or LTE(4G) | - | - |
| 4 | WLAN + three <br> Cellular USB <br> Dongles | WLAN <br> $(2.4 G H z)$ | WLAN <br> $(5 G H z)$ | WWAN(2G/3G) <br> or LTE(4G) | WWAN(2G/3G) <br> or LTE(4G) | WWAN(2G/3G) <br> or LTE(4G) | - |
| 5 | WLAN + four <br> Cellular USB <br> Dongles | WLAN <br> $(2.4 G H z)$ | WLAN <br> $(5 G H z)$ | WWAN(2G/3G) <br> or LTE(4G) |

## Condition 1

| Frequency Band (MHz) | Max Power (mW) | Antenna Gain (dBi) | $\begin{aligned} & \text { Distance } \\ & \text { (cm) } \end{aligned}$ | Power Density ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | $\begin{gathered} \text { Limit } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2412-2462 | 889.322 | 9.97 | 22 | 0.58345 | 1 |
| 5180-5240 | 235.977 | 8.51 | 22 | 0.27530 | 1 |
| Condition 2 |  |  |  |  |  |
| Frequency Band (MHz) | Max Power ( mW ) | Antenna Gain (dBi) | $\begin{gathered} \text { Distance } \\ (\mathrm{cm}) \\ \hline \end{gathered}$ | Power Density ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | $\begin{gathered} \text { Limit } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{gathered}$ |
| 2412-2462 | 889.322 | 9.97 | 40 | 0.17649 | 1 |
| 5180-5240 | 235.977 | 8.51 | 40 | 0.08328 | 1 |
| Frequency Band (MHz) | $\begin{aligned} & \text { Max Power } \\ & (\mathrm{mW}) \end{aligned}$ |  | $\begin{aligned} & \text { Distance } \\ & (\mathrm{cm}) \end{aligned}$ | Power Density ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | $\begin{gathered} \text { Limit } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{gathered}$ |
| 824-849 | 7000 |  | 40 | 0.34815 | 0.5495 (Note 1) |


| Condition 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency Band (MHz) | $\begin{aligned} & \text { Max Power } \\ & (\mathrm{mW}) \\ & \hline \end{aligned}$ | Antenna Gain (dBi) | $\begin{gathered} \hline \text { Distance } \\ (\mathrm{cm}) \\ \hline \end{gathered}$ | Power Density ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | $\begin{gathered} \text { Limit } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{gathered}$ |
| 2412-2462 | 889.322 | 9.97 | 50 | 0.11296 | 1 |
| 5180-5240 | 235.977 | 8.51 | 50 | 0.05330 | 1 |
| Frequency Band (MHz) | Max Power ( mW ) |  | $\begin{gathered} \text { Distance } \\ \text { (cm) } \end{gathered}$ | Power Density ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | $\begin{gathered} \text { Limit } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{gathered}$ |
| 824-849 | 7000 |  | 50 | 0.22282 | 0.5495 (Note 1) |
| 824-849 | 7000 |  | 50 | 0.22282 | 0.5495 (Note 1) |
| Condition 4 |  |  |  |  |  |
| Frequency Band (MHz) | $\begin{aligned} & \text { Max Power } \\ & (\mathrm{mW}) \end{aligned}$ | Antenna Gain (dBi) | $\begin{gathered} \text { Distance } \\ \text { (cm) } \\ \hline \end{gathered}$ | Power Density ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | $\begin{gathered} \text { Limit } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$ |
| 2412-2462 | 889.322 | 9.97 | 60 | 0.07844 | 1 |
| 5180-5240 | 235.977 | 8.51 | 60 | 0.03701 | 1 |
| Frequency Band (MHz) | Max Power (mW) |  | $\begin{gathered} \text { Distance } \\ (\mathrm{cm}) \end{gathered}$ | Power Density ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | $\begin{gathered} \text { Limit } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{gathered}$ |
| 824-849 | 7000 |  | 60 | 0.15473 | 0.5495 (Note 1) |
| 824-849 | 7000 |  | 60 | 0.15473 | 0.5495 (Note 1) |
| 824-849 | 7000 |  | 60 | 0.15473 | 0.5495 (Note 1) |
| Condition 5 |  |  |  |  |  |
| Frequency Band (MHz) | $\begin{aligned} & \text { Max Power } \\ & (\mathrm{mW}) \end{aligned}$ | Antenna Gain (dBi) | $\begin{aligned} & \text { Distance } \\ & (\mathrm{cm}) \\ & \hline \end{aligned}$ | Power Density ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) | Limit ( $\mathrm{mW} / \mathrm{cm}^{2}$ ) |
| 2412-2462 | 889.322 | 9.97 | 70 | 0.05763 | 1 |
| 5180-5240 | 235.977 | 8.51 | 70 | 0.02719 | 1 |
| Frequency Band (MHz) | $\begin{gathered} \text { Max Power } \\ (\mathrm{mW}) \end{gathered}$ |  | $\begin{gathered} \text { Distance } \\ (\mathrm{cm}) \\ \hline \end{gathered}$ | Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | $\begin{gathered} \text { Limit } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \end{gathered}$ |
| 824-849 | 7000 |  | 70 | 0.11368 | 0.5495 (Note 1) |
| 824-849 | 7000 |  | 70 | 0.11368 | 0.5495 (Note 1) |
| 824-849 | 7000 |  | 70 | 0.11368 | 0.5495 (Note 1) |
| 824-849 | 7000 |  | 70 | 0.11368 | 0.5495 (Note 1) |

## NOTE:

1. Limit of Electric field=F/1500
2. This product can operate with plug-in Cellular USB Dongle device which has maximum of 7 W output power.

## Conclusion:

All of the WLAN and Cellular USB Dongles can transmit simultaneously, the formula of calculated the MPE is:
$\mathrm{CPD}_{1} / \mathrm{LPD}_{1}+\mathrm{CPD}_{2} / \mathrm{LPD}_{2}+$ $\qquad$ etc. < 1

CPD = Calculation power density
LPD = Limit of power density

## Condition 1:

Therefore, the worst-case situation is $0.58345 / 1+0.27530 / 1=0.859$, which is less than " 1 ". This confirmed that the device comply with FCC 1.1310 MPE limit.

## Condition 2:

Therefore, the worst-case situation is $0.17649 / 1+0.08328 / 1+0.34815 / 0.5495=0.893$, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

## Condition 3:

Therefore, the worst-case situation is $0.11296 / 1+0.05330 / 1+0.22282 / 0.5495+0.22282 / 0.5495=0.977$, which is less than " 1 ". This confirmed that the device comply with FCC 1.1310 MPE limit.

## Condition 4:

Therefore, the worst-case situation is $0.07844 / 1+0.03701 / 1+0.15473 / 0.5495+0.15473 / 0.5495+$ $0.15473 / 0.5495=0.960$, which is less than " 1 ". This confirmed that the device comply with FCC 1.1310 MPE limit.

## Condition 5:

Therefore, the worst-case situation is $0.05763 / 1+0.02719 / 1+0.11368 / 0.5495+0.11368 / 0.5495+$ $0.11368 / 0.5495+0.11368 / 0.5495=0.912$, which is less than " 1 ". This confirmed that the device comply with FCC 1.1310 MPE limit.
--- END ---

