

FCC TEST REPORT (15.407)

REPORT NO.: RF110728E04-1

MODEL NO.: Pismo335, Surf series, AP series, Air series, Mesh Connector series, MAX series

FCC ID: U8G-P1220

RECEIVED: July 18, 2011

TESTED: Aug. 11 to 16, 2011

- **ISSUED:** Aug. 31, 2011
- **APPLICANT:** Pismo Labs Technology Limited
- ADDRESS: 1703A, 17/F, Park Building 476 Castle Peak Road, Cheung Sha Wan, Kowloon, Hong Kong
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
- **LAB ADDRESS:** No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan
- **TEST LOCATION (1):** No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan
- **TEST LOCATION (2):** No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

This test report consists of 83 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

RELE	EASE CONTROL RECORD	4
1.	CERTIFICATION	5
2.	SUMMARY OF TEST RESULTS	6
2.1 M	IEASUREMENT UNCERTAINTY	
3.	GENERAL INFORMATION	8
3.1	GENERAL DESCRIPTION OF EUT	8
3.2	DESCRIPTION OF TEST MODES	
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	12
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	15
3.4	DESCRIPTION OF SUPPORT UNITS	16
3.5	CONFIGURATION OF SYSTEM UNDER TEST	
4.	TEST TYPES AND RESULTS	
4.1	CONDUCTED EMISSION MEASUREMENT	18
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
4.1.2	TEST INSTRUMENTS	
4.1.3		
4.1.4		19
4.1.5		
4.1.6	EUT OPERATING CONDITIONS	20
4.1.7		21
4.2		
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
	LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BAND	
4.2.3		
4.2.4	TEST PROCEDURES	26
	DEVIATION FROM TEST STANDARD	
	TEST SETUP	
	EUT OPERATING CONDITION	
	TEST RESULTS	
4.3	OUTPUT TRANSMIT POWER MEASUREMENT	
4.3.1	LIMITS OF OUTPUT TRANSMIT POWER MEASUREMENT	49
4.3.2	TEST INSTRUMENTS	49
	TEST PROCEDURE	
4.3.4	DEVIATION FROM TEST STANDARD	49
4.3.5	TEST SETUP	50
4.3.6	EUT OPERATING CONDITIONS	50
4.3.7	TEST RESULTS	51
4.4	PEAK POWER EXCURSION MEASUREMENT	57
	LIMITS OF PEAK POWER EXCURSION MEASUREMENT	
	TEST INSTRUMENTS	
4.4.3	TEST PROCEDURE	57
	DEVIATION FROM TEST STANDARD	
	TEST SETUP	
	EUT OPERATING CONDITIONS	
	TEST RESULTS	59
4.5		62

4.5.1	LIMITS OF PEAK POWER SPECTRAL DENSITY MEASUREMENT	62
4.5.2	TEST INSTRUMENTS	62
4.5.3	TEST PROCEDURES	62
4.5.4	DEVIATION FROM TEST STANDARD	62
4.5.5	TEST SETUP	62
4.5.6	EUT OPERATING CONDITIONS	62
4.5.7	TEST RESULTS	63
4.6	FREQUENCY STABILITY	66
4.6.1	LIMITS OF FREQUENCY STABILITY MEASUREMENT	66
4.6.2	TEST INSTRUMENTS	66
4.6.3	TEST PROCEDURE	66
4.6.4	DEVIATION FROM TEST STANDARD	67
4.6.5	TEST SETUP	
4.6.6	EUT OPERATING CONDITION	
4.6.7	TEST RESULTS	68
4.7	CONDUCTED OUT-BAND EMISSION MEASUREMENT	69
4.7.1	TEST INSTRUMENTS	69
4.7.2	TEST PROCEDURE	69
4.7.3	EUT OPERATING CONDITION	69
4.7.4	TEST RESULTS	69
5.	INFORMATION ON THE TESTING LABORATORIES	82
6.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING	
	CHANGES TO THE EUT BY THE LAB	83

RELEASE CONTROL RECORD

ISSUE NO. REASON FOR CHANGE		DATE ISSUED
RF110728E04-1	Original release	Aug. 31, 2011

1. CERTIFICATION

PRODUCT:	Pismo Labs Technology Limited	
BRAND NAME:	Pepwave	
MODEL NO.:	Pismo335, Surf series, AP series, Air series, Mesh Connector series, MAX series	
TEST SAMPLE:	R&D SAMPLE	
APPLICANT:	Pismo Labs Technology Limited	
TESTED:	Aug. 11 to 16, 2011	
STANDARDS:	FCC Part 15, Subpart E (Section 15.407)	
	ANSI C63.4-2003	
	ANSI C63.10-2009	

The above equipment (Model: Pismo335) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

(Claire Kuan, Specialist) , DATE: <u>Aug 31, 2011</u>

APPROVED BY

DATE: Aug 31, 2011

(May Chen, Deputy Manager)

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart E (Section 15.407)						
Standard Section	Test Type		Remark			
15.407(b)(5)	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -16.55dB at 0.252MHz			
15.407(b/1/2/3) (b)(5)	Electric Field Strength Spurious Emissions, 30MHz ~ 40000MHz	PASS	Meet the requirement of limit. Minimum passing margin is -0.6dB at 5150.00MHz			
15.407(a/1/2/3)	Output Transmit Power	PASS	Meet the requirement of limit.			
15.407(a)(6)	Peak Power Excursion	PASS	Meet the requirement of limit.			
15.407(a/1/2/3)	Peak Power Spectral Density	PASS	Meet the requirement of limit.			
15.407(g)	Frequency Stability	PASS	Meet the requirement of limit.			
15.203	5.203 Antenna Requirement		Antenna connector is RP SMA Plug not a standard connector.			

NOTE:

1. The EUT was operating in 2400 ~ 2483.5MHz, 5.15~5.25GHz and 5.725~5.850GHz frequencies band. This report was recorded the RF parameters including 5.15~5.25GHz. For the 2400 ~ 2483.5MHz and 5.725~5.850GHz RF parameters was recorded in another test report.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.45 dB
Radiated emissions (30MHz-1GHz)	3.89 dB
Radiated emissions (1GHz -18GHz)	2.19 dB
Radiated emissions (18GHz -40GHz)	2.56 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Pepwave Wireless Product
MODEL NO.	Pismo335, Surf series, AP series, Air series,
	Mesh Connector series, MAX series
FCC ID	U8G-P1220
POWER SUPPLY	DC 12V from power adapter
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS
MODULATION THE	64QAM, 16QAM, QPSK, BPSK for OFDM
MODULATION TECHNOLOGY	DSSS, OFDM
TRANSFER RATE	802.11b: up to11Mbps 802.11g: up to 54Mbps 802.11a: up to 54Mbps 802.11n (20MHz, 800ns GI): up to 65 Mbps(Nss=1); up to 130Mbps(Nss=2); up to 195Mbps(Nss=3); up to 260Mbps(Nss=4). 802.11n (40MHz, 800ns GI): up to135 Mbps(Nss=1); up to 270Mbps(Nss=2); up to 405Mbps(Nss=3); up to 540Mbps(Nss=4). 802.11n (20MHz, 400ns GI): up to 72.2Mbps(Nss=1); up to 144.4Mbps(Nss=2); up to 216.7Mbps (Nss=3); up to 288.9Mbps (Nss=4). 802.11n (40MHz, 400ns GI): up to 150 Mbps(Nss=1); up to 300Mbps(Nss=2), up to 450Mbps(Nss=3), up to 600Mbps(Nss=4) Note: NSS - Number of Spatial Streams
OPERATING FREQUENCY	For 15.407 802.11a: 5.18 ~ 5.24GHz For 15.247 802.11b & 802.11g: 2.412 ~ 2.462GHz 802.11a: 5.745 ~ 5.825GHz

	For 15.407
	4 for 802.11a, 802.11n (20MHz)
	2 for 802.11n (40MHz)
	For 15.247(2.4GHz)
NUMBER OF CHANNEL	11 for 802.11b, 802.11g, 802.11n (20MHz)
	7 for 802.11n (40MHz)
	For 15.247(5GHz)
	5 for 802.11a, 802.11n (20MHz)
	2 for 802.11n (40MHz)
	For 15.407
	802.11a: 15.8mW
	802.11n (20MHz): 28.9mW
	802.11n (40MHz): 46.4mW
	For 15.247(2.4GHz)
	802.11b: 317.7mW
MAXIMUM OUTPUT POWER	802.11g: 463.8mW
OWER	802.11n (20MHz): 491.5mW
	802.11n (40MHz): 219.4mW
	For 15.247(5GHz)
	802.11a: 386.8mW
	802.11n (20MHz): 386.8mW
	802.11n (40MHz): 386.1mW
ANTENNA TYPE	Please see note
DATA CABLE	NA
I/O PORTS	Ethernet port x 2
	USB port x 1
ASSOCIATED DEVICES	Adapter x 1

NOTE:

1. The EUT has six model names which are identical to each other in all aspects except for the following table:

Product Name	Model Name		
Demusica Windows Draduct	Pismo335		
	Surf series		
	AP series		
Pepwave Wireless Product	Air series		
	Mesh Connector series		
	MAX series		

From the above models, model: **Pismo335** was selected as representative model for the test and its data was recorded in this report.

2. There are two antennas provided to this EUT, please refer to the following table:

		•	<i>;</i>]		0
Transmitter	Antenna	Antenna	For 2.4~2.5GHz	For 5.15~5.35GHz	For 5.35~5.875GHz
Circuit	Туре	Connector	Gain (dBi)	Gain (dBi)	Gain (dBi)
Chain(0)	Omni Directional	RP SMA	3	5.5	6
Chain(1)	Directional (Dipole)	Plug	3	5.5	6

3. The EUT must be supplied with a power adapter as following table:

Brand	Model No.	Spec.
Ten Pao	S024EM1200200	AC Input: 100-240V 600mA, 50/60Hz
		DC Output: 12V, 2.0A
		DC output cable: Unshielded, 1.9m with one core

- 4. 2.4GHz and 5GHz technology cannot transmit at same time.
- 5. The EUT could be applied with one 3G dongle. The WLAN & 3G technology cannot transmit at same time.
- 6. The EUT incorporates CDD function with 802.11a, 802.11b, 802.11g.
- 7. The EUT is 2 * 2 spatial MIMO (2Tx & 2Rx) without beam forming function.
- 8. When the EUT operating in 802.11n, the software operation, which is defined by manufacturer, MCS (Modulation and Coding Schemes) from 0 to 15.
- 9. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Operated in 5150MHz ~ 5250MHz bands:

Four channels are provided for 802.11a and 802.11n (20MHz):

CHANNEL	FREQUENCY
36	5180 MHz
40	5200 MHz
44	5220 MHz
48	5240 MHz

Two channels are provided for 802.11n (40MHz):

CHANNEL	FREQUENCY
38	5190 MHz
46	5230 MHz

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT		AP	PLICABLE	то	DESCRIPTION			
CONFIGURE MODE	PLC	RE < 1G	RE ³ 1G	APCM	ОВ	DESCRIPTION		
-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-		

Where PLC: Power Line Conducted Emission

RE < 1G: Radiated Emission below 1GHz

APCM: Antenna Port Conducted Measurement

RE ³ 1G: Radiated Emission above 1GHz

OB: Conducted Out-Band Emission Measurement

ANTENNA COMBINATION MODE:

COMBINATION MODE	OPERATION MODE	TX CHAIN(0)	TX CHAIN(1)				
А	802.11 a	\checkmark	\checkmark				
В	802.11n(20MHz) for MCS0~15	\checkmark	\checkmark				
С	802.11n(40MHz) for MCS0~15	\checkmark	\checkmark				
	Note: 1. The above information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.						

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE	COMBINATION
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)	MODE
For 5 GHz 802.11n (20MHz)	36 to 48	40	OFDM	BPSK	6.5	В

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, and antenna ports (if EUT with antenna diversity architecture).
- The EUT was pre-tested under the XY different axis placements and the worst case was recorded in this report. (X: laying-flat type; Y: wall-mount type)
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)	COMBINATION MODE	AXIS
For 5 GHz 802.11n (20MHz)	36 to 48	40	OFDM	BPSK	6.5	В	Y

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- The EUT was pre-tested under the XY different axis placements and the worst case was recorded in this report. (X: laying-flat type; Y: wall-mount type)

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATIO N TYPE	DATA RATE (Mbps)	COMBINATION MODE	AXIS
802.11a	36 to 48	36, 40, 48	OFDM	BPSK	6	А	Υ
For 5 GHz 802.11n (20MHz)	36 to 48	36, 40, 48	OFDM	BPSK	6.5	В	Y
For 5 GHz 802.11n (40MHz)	38 to 46	38, 46	OFDM	BPSK	13.5	С	Y

Following channel(s) was (were) selected for the final test as listed below.

CONDUCTED OUT-BAND EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)	COMBINATION MODE
802.11a	36 to 48	36, 48	OFDM	BPSK	6	А
For 5 GHz 802.11n (20MHz)	36 to 48	36, 48	OFDM	BPSK	6.5	В
For 5 GHz 802.11n (40MHz)	38 to 46	38, 46	OFDM	BPSK	13.5	С

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)	COMBINATION MODE
802.11a	36 to 48	36, 40, 48	OFDM	BPSK	6	А
For 5 GHz 802.11n (20MHz)	36 to 48	36, 40, 48	OFDM	BPSK	6.5	В
For 5 GHz 802.11n (40MHz)	38 to 46	38, 46	OFDM	BPSK	13.5	С

% After verification, bandwidth as show worst chain in report by investigations.

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE ³ 1G	25deg. C, 67%RH	120Vac, 60Hz	Frank Liu
RE<1G	29deg. C, 68%RH	120Vac, 60Hz	Nelson Teng
PLC	25deg. C, 68%RH	120Vac, 60Hz	Eagle Chen
APCM	25deg. C, 60%RH	120Vac, 60Hz	Rex Huang
ОВ	25deg. C, 60%RH	120Vac, 60Hz	Rex Huang

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart E (Section 15.407) ANSI C63.4-2003 ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK COMPUTER	DELL	PP32LA	FSLB32S	FCC DoC
2	NOTEBOOK COMPUTER	DELL	PP32LA	GSLB32S	FCC DoC
3	3G Dongle	ZTE	K3765-Z	NA	Q78-K3765-Z

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS					
1	10m UTP cable					
2	10m UTP cable					
3	NA					

NOTE: All power cords of the above support units are non shielded (1.8m).

3.5 CONFIGURATION OF SYSTEM UNDER TEST 3 D. EUT Adapter (On the test table) UTP cable(10m) -UTP cable(10m) **TEST TABLE** 1. NOTEBOOK 2. NOTEBOOK COMPUTER COMPUTER **CONTROL ROOM** Note: Item 3 is the 3G dongle.

4. TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

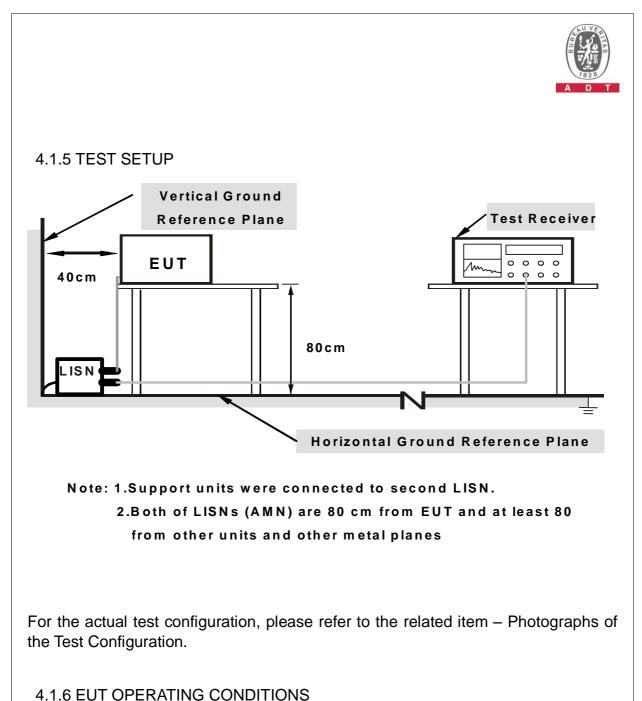
Test date: Aug. 10, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver	ESCS 30	100375	Mar. 09, 2011	Mar. 08, 2012
Line-Impedance Stabilization Network (for EUT)	NSLK 8127	8127-522	Sep. 08, 2010	Sep. 07, 2011
Line-Impedance Stabilization Network (for Peripheral)	ESH3-Z5	848773/004	Nov. 03, 2010	Nov. 02, 2011
RF Cable (JYEBAO)	5DFB	COCCAB-002	Aug. 30, 2010	Aug. 29, 2011
50 ohms Terminator	50	3	Oct. 07, 2010	Oct. 06, 2011
Software	BV ADT_Cond_V7.3.7	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. C.


3 The VCCI Con C Registration No. is C-3611.

4.1.3 TEST PROCEDURES

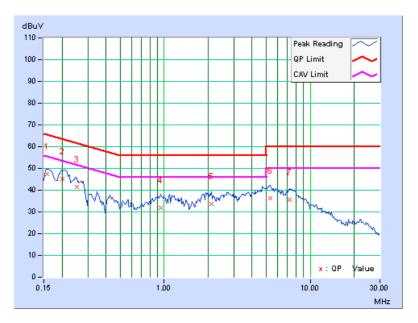
- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN.
- b. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- c. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- d. The frequency range from 150kHz to 30MHz was searched. Emission level under (Limit 20dB) was not recorded.
- 4.1.4 DEVIATION FROM TEST STANDARD

No deviation

- 1. Placed the EUT on testing table.
- 2. Prepared computer system (support units 1~2) to act as communication partner and placed it outside of testing area.
- 3. The communication partner ran test program "Art.exe R0.9B21" to enable EUT under transmission/receiving condition continuously at specific channel frequency.

4.1.7 TEST RESULTS

PHA	PHASE Line (L) 6dB BANDWIDTH 9 kHz) kHz				
	Freq. Corr. Reading Emission Lim				Limit		Mar	gin		
No		Factor	[dB	(uV)]	uV)] [dB (u\		[dB (uV)]		(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.158	0.11	47.16	37.51	47.27	37.62	65.58	55.5	8 -18.31	-17.96
2	0.201	0.13	45.02	36.72	45.15	36.85	63.58	53.5	8 -18.43	-16.73
3	0.252	0.13	41.34	35.03	41.47	35.16	61.71	51.7 [°]	1 -20.24	-16.55
4	0.947	0.14	31.72	22.45	31.86	22.59	56.00	46.0	0 -24.14	-23.41
5	2.098	0.16	33.68	28.08	33.84	28.24	56.00	46.0	0 -22.16	-17.76
6	5.336	0.26	35.97	30.78	36.23	31.04	60.00	50.00	0 -23.77	-18.96
7	7.199	0.35	35.04	30.05	35.39	30.40	60.00	50.00	0 -24.61	-19.60

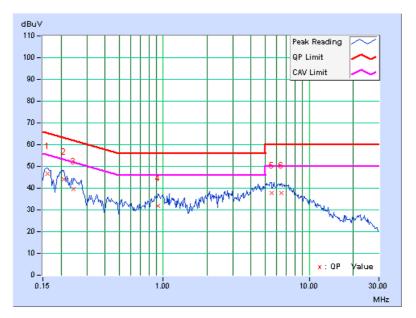

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value.



PHA	SE	Ne	eutral (N)	6dB BANDWIDTH 9 kHz		9 kHz
	Freq.	Corr.	Reading Value	Emission	Limit	Margin

	-		va	lue	Це	vei				
No		Factor	[dB (uV)] [dB (uV)] [dB (uV)]		[dB (uV)] [dB (uV)]		[dB (uV)]		B)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.162	0.12	46.67	38.20	46.79	38.32	65.38	55.38	-18.58	-17.05
2	0.209	0.14	43.94	34.84	44.08	34.98	63.26	53.26	-19.18	-18.28
3	0.244	0.14	39.47	30.40	39.61	30.54	61.97	51.97	-22.36	-21.43
4	0.923	0.16	31.80	24.81	31.96	24.97	56.00	46.00	-24.04	-21.03
5	5.504	0.42	37.48	32.52	37.90	32.94	60.00	50.00	-22.10	-17.06
6	6.434	0.50	37.36	32.67	37.86	33.17	60.00	50.00	-22.14	-16.83

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. The emission levels of other frequencies were very low against the limit.
 - 3. Margin value = Emission level Limit value
 - 4. Correction factor = Insertion loss + Cable loss
 - 5. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- 4. Section 15.205 restricted bands of operation shall compliance with the limits in Section 15.209.

4.2.2 LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS

Frequencies (MHz)	EIRP Limit (dBm)	Equivalent Field Strength at 3m (dBµV/m) *note 3
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
5725~5825	-27 *note 1	68.3
5725~5625	-17 *note 2	78.3

NOTE:

- 1. For frequencies 10MHz or greater above or below the band edge.
- 2. All emissions within the frequency range from the band edge to 10MHz above or below the band edge.
- 3. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength

 $E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts)}$

4.2.3 TEST INSTRUMENTS

Test date: Aug. 11 to 16, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250254	July 12, 2011	July 11, 2012
Agilent Pre-Selector	N9039A	MY46520311	July 12, 2011	July 11, 2012
Agilent Signal Generator	N5181A	MY49060517	July 12, 2011	July 11, 2012
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-03	Nov. 16, 2010	Nov. 15, 2011
Agilent Pre-Amplifier	8449B	3008A02578	July 04, 2011	July 03, 2012
Miteq Pre-Amplifier	AFS33-1800265 0-30-8P-44	881786	NA	NA
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-360	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	0000320091110	Nov. 12, 2010	Nov. 11, 2011
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 08, 2010	Oct. 07, 2011
RF CABLE	NA	RF104-201 RF104-203 RF104-204	Dec. 27, 2010	Dec. 26, 2011
RF Cable	NA	CHGCAB_001	NA	NA
Software	ADT_Radiated_ V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are

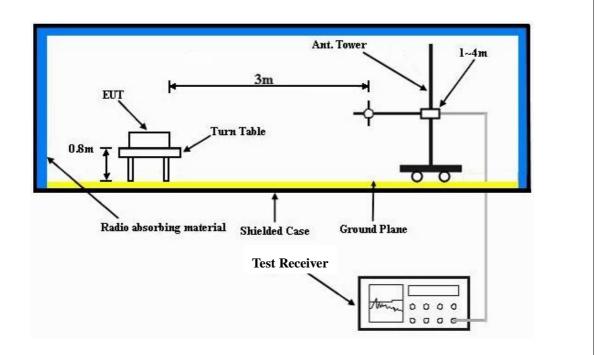
The calibration interval of the above test instruments is 12 months and the calibrations traceable to NML/ROC and NIST/USA.
 The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
 The test was performed in 966 Chamber No. G.
 The FCC Site Registration No. is 966073.
 The VCCI Site Registration No. is G-137.
 The CANADA Site Desistration No. is 10.745011.0

6. The CANADA Site Registration No. is IC 7450H-2.

4.2.4 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- **3.** The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

4.2.5 DEVIATION FROM TEST STANDARD

No deviation

4.2.6 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.7 EUT OPERATING CONDITION

Same as 4.1.6

4.2.8 TEST RESULTS

BELOW 1GHz WORST-CASE DATA : 802.11n (20MHz) OFDM MODULATION

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL Channel 40		FREQUENCY RANGE	Below 1000MHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak		
ENVIRONMENTAL CONDITIONS	29deg. C, 68%RH	TESTED BY	Nelson Tseng		

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	142.69	33.9 QP	43.5	-9.6	1.50 H	79	19.46	14.42
2	159.62	34.3 QP	43.5	-9.2	1.50 H	115	19.67	14.66
3	374.65	30.4 QP	46.0	-15.6	2.00 H	20	13.32	17.04
4	624.98	34.6 QP	46.0	-11.4	1.50 H	339	12.34	22.27
5	849.77	36.5 QP	46.0	-9.5	1.00 H	339	10.63	25.87
6	874.99	39.6 QP	46.0	-6.4	1.00 H	334	13.46	26.18
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	36.77	33.4 QP	40.0	-6.6	1.00 V	10	19.68	13.70
2	87.12	30.2 QP	40.0	-9.8	1.37 V	12	21.24	8.95
3	147.89	34.4 QP	43.5	-9.1	1.00 V	350	19.76	14.65
4	426.50	34.3 QP	46.0	-11.7	1.50 V	159	16.03	18.27
5	624.82	35.9 QP	46.0	-10.1	1.00 V	77	13.62	22.27
6	874.88	40.1 QP	46.0	-5.9	1.00 V	69	13.95	26.18

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

ABOVE 1GHz WORST-CASE DATA

802.11a OFDM MODULATION

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 36	FREQUENCY RANGE	1 ~ 40GHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY	Frank Liu	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	5150.00	56.3 PK	74.0	-17.7	1.00 H	130	15.90	40.40
2	5150.00	45.0 AV	54.0	-9.0	1.00 H	130	4.60	40.40
3	*5180.00	95.8 PK			1.03 H	247	55.35	40.45
4	*5180.00	85.4 AV			1.03 H	247	44.95	40.45
5	#10360.00	54.6 PK	68.3	-13.7	1.00 H	59	7.79	46.81
6	15540.00	60.2 PK	74.0	-13.8	1.00 H	39	9.03	51.17
7	15540.00	49.4 AV	54.0	-4.6	1.00 H	39	-1.77	51.17
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	5150.00	61.4 PK	74.0	-12.6	1.33 V	188	21.00	40.40
2	5150.00	47.6 AV	54.0	-6.4	1.33 V	188	7.20	40.40
3	*5180.00	110.6 PK			1.33 V	188	70.15	40.45
4	*5180.00	100.1 AV			1.33 V	188	59.65	40.45
5	#10360.00	54.1 PK	68.3	-14.2	1.00 V	26	7.29	46.81
6	15540.00	60.1 PK	74.0	-13.9	1.00 V	54	8.93	51.17
7	15540.00	49.3 AV	54.0	-4.7	1.00 V	54	-1.87	51.17

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. " * ": Fundamental frequency.

6. "#":The radiated frequency is out the restricted band.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 40	FREQUENCY RANGE	1 ~ 40GHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY	Frank Liu	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	*5200.00	96.2 PK			1.07 H	260	55.71	40.49
2	*5200.00	85.9 AV			1.07 H	260	45.41	40.49
3	#10400.00	55.0 PK	68.3	-13.3	1.00 H	53	8.15	46.85
4	15600.00	60.5 PK	74.0	-13.5	1.01 H	42	9.22	51.28
5	15600.00	50.0 AV	54.0	-4.0	1.01 H	42	-1.28	51.28
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	*5200.00	110.3 PK			1.33 V	184	69.81	40.49
2	*5200.00	100.4 AV			1.33 V	184	59.91	40.49
3	#10400.00	54.6 PK	68.3	-13.7	1.06 V	38	7.75	46.85
4	15600.00	59.9 PK	74.0	-14.1	1.05 V	51	8.62	51.28
5	15600.00	49.2 AV	54.0	-4.8	1.05 V	51	-2.08	51.28

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

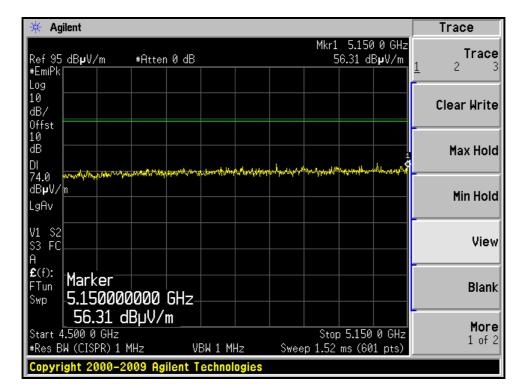
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

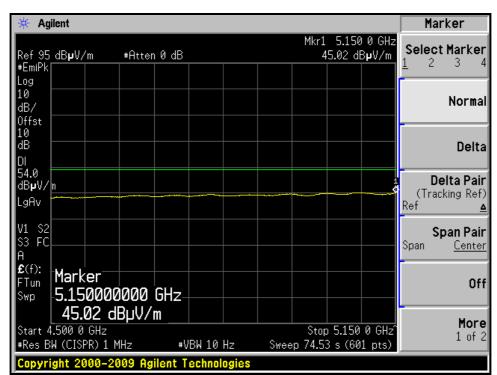
4. Margin value = Emission level – Limit value.

5. " * ": Fundamental frequency.

6. "#":The radiated frequency is out the restricted band.


EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 48	FREQUENCY RANGE	1 ~ 40GHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY	Frank Liu	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)									
1	*5240.00	96.5 PK			1.03 H	247	55.94	40.56									
2	*5240.00	86.2 AV			1.03 H	247	45.64	40.56									
3	5350.00	58.8 PK	74.0	-15.2	1.04 H	243	18.03	40.77									
4	5350.00	47.5 AV	54.0	-6.5	1.04 H	243	6.73	40.77									
5	#10480.00	55.1 PK	68.3	-13.2	1.05 H	67	8.19	46.91									
6	15720.00	60.8 PK	74.0	-13.2	1.00 H	32	9.18	51.62									
7	15720.00	50.0 AV	54.0	-4.0	1.00 H	32	-1.62	51.62									
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)									
1	*5240.00	110.9 PK			1.31 V	179	70.34	40.56									
2	*5240.00	100.6 AV			1.31 V	179	60.04	40.56									
3	5350.00	58.2 PK	74.0	-15.8	1.34 V	173	17.43	40.77									
4	5350.00	47.5 AV	54.0	-6.5	1.34 V	173	6.73	40.77									
5	#10480.00	54.7 PK	68.3	-13.6	1.02 V	30	7.79	46.91									
6	15720.00	60.3 PK	74.0	-13.7	1.00 V	61	8.68	51.62									
7	15720.00	49.6 AV	54.0	-4.4	1.00 V	61	-2.02	51.62									


REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. "#":The radiated frequency is out the restricted band.

RESTRICTED BANDEDGE (802.11a MODE, CH36, HORIZONTAL)

🔆 Agilent							Peak Search
Ref 95 dB µ V/m #EmiPk	#Atten 0 dE	3			. 5.150 61.44 dB		Next Peak
Log 10							Next Pk Right
dB/ Offst 10 dB						1	
DI 74.0 Withward American	haden for the state of the stat	and an all and a second	n ann ann an ann an an ann an an an an a	Munanahanahanahanahanahanahanahanahanahan	montre	Mar Mar	Next Pk Left
dBµV/n LgAv							Min Search
V1 S2 S3 FC							Pk-Pk Search
A £(f): Marker FTun 5.150000	000 CU-						Mkr → Cl
Swp 5.150000 61.44 d Start 4.500 0 GHz					- E 1 E A		More
#Res BW (CISPR) 1 N	1Hz		Hz ogies	Sweep 1.52	p 5.150 ms (60:		1 of 2

RESTRICTED BANDEDGE (802.11a MODE, CH36, VERTICAL)

🔆 Agilent		Peak Search
Ref95 dB µ V/m ≉Atten 0 dB #EmiPk	Mkr1 5.150 0 GHz 47.58 dB µ V/m	Next Peak
Log 10 dB/ 0ffst		Next Pk Right
10 dB DI		Next Pk Left
54.0 dB µ V/n LgAv		Min Search
V1 S2 S3 FC A		Pk-Pk Search
£(f): FTun Swp 5.150000000 GHz		Mkr → CF
47.58 dBµV/m Start 4.500 0 GHz #Res BW (CISPR) 1 MHz	Stop 5.150 0 GHz Sweep 74.53 s (601 pts)	More 1 of 2
Copyright 2000–2009 Agilent Technologies		

🔆 Agilent						Marker
Ref 95 dB µ V/m #EmiPk	#Atten 0 dB				50 00 GHz 3 dB µ V/m	Select Marker
Log 10 dB/						Norma
Offst 10 dB 1 DI Markin nationalistation	un trib trib					Delta
or 74.0 dBµV∕n LgAv	Malanda yakila kumu Ama	Harran Maray Childynau Harran Maray Childynau	.Andrewskielige	htter and the second	Yprylygyddyn yn yr ar	Delta Pai (Tracking Ref Ref
V1 S2						Span Pai Span <u>Cente</u>
A £(f): Marker FTun 5.350000	0000 GHz-					Of
58.83 d Start 5.350 00 GHz	BµV/m				60 00 GHz	More 1 of 3
#Res BW (CISPR) 1 Copyright 2000-2				ep I ms	(601 pts)	

RESTRICTED BANDEDGE (802.11a MODE, CH48, HORIZONTAL)

🔆 Agilent			Marker
Ref95 dB µ V/m ≉Atten 0 dB •EmiPk		5.350 00 GHz 47.50 dBµV/m	Select Marker <u>1</u> 2 3 4
.og LØ JB/ Dffst			Normal
LØ HB DI			Delta
54.0 1 ∃BµV/♠ _gAv		 	Delta Pair (Tracking Ref) Ref ▲
V1 S2 53 FC A			Span Pair Span <u>Center</u>
E(f): Tun Swp 5.350000000 GHz			Off
	BW 10 Hz	5.460 00 GHzî 51 s (601 pts)	More 1 of 2
Copyright 2000–2009 Agilent T	echnologies		

🔆 Agilent					Marker
Ref 95 dB µ V/m #EmiPk	#Atten Ø dB			5.351 28 GHz 58.17 dBµV/m	Select Marker <u>1</u> 2 3 4
Log 10 dB/ Offst					Norma
10 dB 1	ump, seen of the state of the s	hin music many	ngal-matery-de-grapal-producted graped	ymafai,Majmi ⁿ adainya	Delta
dBµV/n LgAv					Delta Pair (Tracking Ref) Ref
V1 S2 S3 FC A £(f): -M					Span Pair Span <u>Center</u>
FTun Fiarker Swp - 5.35128 6	0000 GHz				Off
5 8.17 d Start 5.350 00 GHz #Res BW (CISPR) 1 N		W 1 MHz		5.460 00 GHz ms (601 pts)	More 1 of 2
Copyright 2000-20	009 Agilent Te	chnologies			

RESTRICTED BANDEDGE (802.11a MODE, CH48, VERTICAL)

🔆 Agilent			Peak Search
Ref 95 dB µ V/m #EmiPk	#Atten 0 dB	Mkr1 5.350 47.45)00 GHz dBµV/m NextPeak
Log 10 dB/ Offst			Next Pk Right
10 dB DI 54.0 1			Next Pk Left
54.0 1 dB µ V/¶ LgAv			Min Search
V1 S2 S3 FC A			Pk-Pk Search
£(f): FTun Marker Swp 5.350000			Mkr → CF
47.45 d Start 5.350 00 GHz #Res BW (CISPR) 1 M	·	Stop 5.460 Sweep 12.61 s (6	
Copyright 2000-20	09 Agilent Technolo	es	

802.11n (20MHz) OFDM MODULATION

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 36	FREQUENCY RANGE	1 ~ 40GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY	Frank Liu		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	5150.00	56.1 PK	74.0	-17.9	1.00 H	134	15.70	40.40		
2	5150.00	45.1 AV	54.0	-8.9	1.00 H	134	4.70	40.40		
3	*5180.00	96.3 PK			1.04 H	253	55.85	40.45		
4	*5180.00	86.4 AV			1.04 H	253	45.95	40.45		
5	#10360.00	55.1 PK	68.3	-13.2	1.00 H	56	8.29	46.81		
6	15540.00	61.4 PK	74.0	-12.6	1.06 H	48	10.23	51.17		
7	15540.00	50.6 AV	54.0	-3.4	1.06 H	48	-0.57	51.17		
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)		
1	5150.00	58.7 PK	74.0	-15.3	1.27 V	316	18.30	40.40		
2	5150.00	48.0 AV	54.0	-6.0	1.27 V	316	7.60	40.40		
3	*5180.00	110.7 PK			1.31 V	182	70.25	40.45		
4	*5180.00	100.4 AV			1.31 V	182	59.95	40.45		
5	#10360.00	54.5 PK	68.3	-13.8	1.11 V	52	7.69	46.81		
6	15540.00	60.3 PK	74.0	-13.7	1.05 V	63	9.13	51.17		
7	15540.00	49.9 AV	54.0	-4.1	1.05 V	63	-1.27	51.17		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. " * ": Fundamental frequency.

6. "#":The radiated frequency is out the restricted band.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	HANNEL Channel 40 FREQUEN		1 ~ 40GHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY	Frank Liu	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	*5200.00	96.3 PK			1.07 H	266	55.81	40.49				
2	*5200.00	86.6 AV			1.07 H	266	46.11	40.49				
3	#10400.00	55.2 PK	68.3	-13.1	1.01 H	56	8.35	46.85				
4	15600.00	60.7 PK	74.0	-13.3	1.03 H	52	9.42	51.28				
5	15600.00	50.1 AV	54.0	-3.9	1.03 H	52	-1.18	51.28				
		ANTENNA		Y & TEST DI	STANCE: V	ERTICAL A	T 3 M					
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)				
1	*5200.00	110.9 PK			1.29 V	182	70.41	40.49				
2	*5200.00	100.7 AV			1.29 V	182	60.21	40.49				
3	#10400.00	54.6 PK	68.3	-13.7	1.00 V	45	7.75	46.85				
4	15600.00	59.9 PK	74.0	-14.1	1.01 V	56	8.62	51.28				
5	15600.00	49.2 AV	54.0	-4.8	1.01 V	56	-2.08	51.28				

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

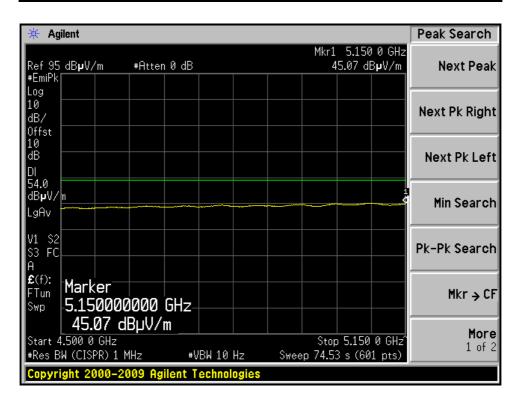
4. Margin value = Emission level – Limit value.

5. " * ": Fundamental frequency.

6. "#":The radiated frequency is out the restricted band.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 48 FREQ		FREQUENCY RANGE	1 ~ 40GHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY	Frank Liu	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)										
1	*5240.00	96.7 PK			1.01 H	253	56.14	40.56										
2	*5240.00	86.6 AV			1.01 H	253	46.04	40.56										
3	5350.00	57.5 PK	74.0	-16.5	1.01 H	253	16.73	40.77										
4	5350.00	48.3 AV	54.0	-5.7	1.01 H	253	7.53	40.77										
5	#10480.00	55.8 PK	68.3	-12.5	1.00 H	67	8.89	46.91										
6	15720.00	62.0 PK	74.0	-12.0	1.05 H	38	10.38	51.62										
7	15720.00	51.2 AV	54.0	-2.8	1.05 H	38	-0.42	51.62										
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)										
1	*5240.00	111.0 PK			1.21 V	179	70.44	40.56										
2	*5240.00	100.6 AV			1.21 V	179	60.04	40.56										
3	5350.00	57.2 PK	74.0	-16.8	1.31 V	189	16.43	40.77										
4	5350.00	47.7 AV	54.0	-6.3	1.31 V	189	6.93	40.77										
5	#10480.00	54.8 PK	68.3	-13.5	1.11 V	47	7.89	46.91										
6	15720.00	59.9 PK	74.0	-14.1	1.06 V	46	8.28	51.62										
7	15720.00	49.3 AV	54.0	-4.7	1.06 V	46	-2.32	51.62										


REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. "#":The radiated frequency is out the restricted band.

🔆 Agilent					Trace
Ref 95 dB µ V/m #EmiPk	#Atten 0 dB			1 5.150 0 GHz 56.06 dB µ V/m	
Log 10 dB/ Offst					Clear Write
10 dB DI	Unterviert right Annalescope	. Wertelen geschandt and	harrostantian and the and	human	Max Hold
74.0 NMYUWWWWWW dBµV/n LgAv	A to constrain dialog A constraints	Induit of cardinal cards of			Min Hold
V1 S2 S3 FC A					View
£(f): Marker ^{FTun} 5.150000 Swp 5.150000					Blank
56.06 dl Start 4.500 0 GHz #Res BW (CISPR) 1 M		BW 1 MHz		p 5.150 0 GHz ms (601 pts)	More 1 of 2
Copyright 2000-20	09 Agilent Te	echnologies			

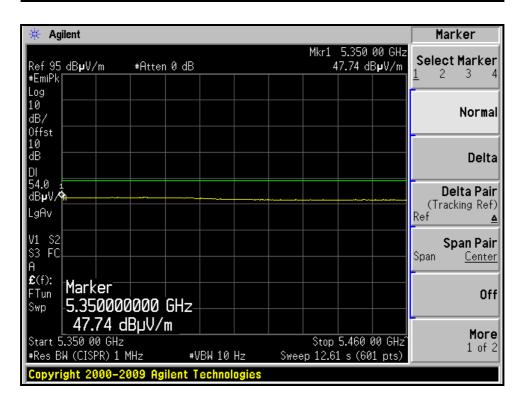
RESTRICTED BANDEDGE (802.11n (20MHz) MODE,CH36, HORIZONTAL)

🔆 Agilent					Trace
#EmiPk	en 0 dB			5.150 0 GHz 3.65 dB µ V/m	Trace <u>1</u> 2 3
Log 10 dB/ 0ffst					Clear Write
10 dB DI	un lander and a state of the st	e.mataintermitielly	mound	hallowed the second	Max Hold
74.0 How the second sec					Min Hold
V1 S2 S3 FC A					View
£(f): FTun Swp 74.00 dBµV/	′m				Blank
Start 4.500 0 GHz #Res BW (CISPR) 1 MHz	VBW 1 M	MHz Sw		5.150 0 GHz ns (601 pts)	More 1 of 2
Copyright 2000-2009 (ailent Techno	Indies			

RESTRICTED BANDEDGE (802.11n (20MHz) MODE,CH36, VERTICAL)

🔆 Agilent					Peak Search
Ref 95 dB µ V/m #Att #EmiPk	ten 0 dB		Mkr1 5.15 48.02 d	00GHz 38 µ V/m	Next Peak
Log 10 dB/ Offst					Next Pk Right
10 dB DI					Next Pk Left
54.0 dBµV/n LgAv					Min Search
V1 S2 S3 FC					Pk-Pk Search
£(f): FTun Swp - 5.15000000					Mkr→CF
48.02 dBµV Start 4.500 0 GHz #Res BW (CISPR) 1 MHz	/m #VBW 10 F	z Swee	Stop 5.15 p 74.53 s (6		More 1 of 2
Copyright 2000-2009 (Agilent Technolo	gies			

🔆 Agilent					Trace
Ref 95 dB µ V/m #EmiPk	#Atten 0 dB			5.350 18 57.54 dBµ\	Trace 2 3
Log 10 dB/ Offst					Clear Write
10 dB 1 DI Xunh Johnson	lanufaltan likulahada	Walut same des	war man dana	17.040.091	 Max Hold
74.0 dB µ V/n LgAv		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ather on ather at		Min Hold
V1 S2 S3 FC					Viev
£(f): Marker FTun Swp 5.350180					Blanl
57.54 d Start 5.350 00 GHz #Res BW (CISPR) 1 M		W 1 MHz		5.460 00 L ms (601 p	More 1 of 2
Copyright 2000-20					


RESTRICTED BANDEDGE (802.11n (20MHz) MODE, CH 48, HORIZONTAL)

🔆 Agilent				Marker
Ref 95 dB µ V/m #EmiPk	#Atten 0 dB		Mkr1 5.350 0 48.25 dB	Soloot Morko
Log 10 dB/				Norma
Offst 10 dB DI				Delta
54.0 1 dBµV/¶ LgAv		•		Delta Pai (Tracking Ref Ref
V1 S2 S3 FC				Span Pai Span <u>Cente</u>
£(f): Marker FTun 5.350000	000 GHz			Of
48.25 dE Start 5.350 00 GHz #Res BW (CISPR) 1 M	<u> </u>	Hz Sweep	Stop 5.460 00 12.61 s (601	
*Res DW (CISPR) I M Copyright 2000–20			12.01 5 (001	pts)

🔆 Agilent				Trace
Ref 95 dB µ V/m #Atten #EmiPk	0 dB		5.350 18 GHz 7.19 dB µ V/m	Trace <u>1</u> 2 3
Log 10 dB/ 0ffst				Clear Write
10 dB DI & March Mart Marty Marty Marty	hall your market market	www.antherstrants/hyp	18/1000da.organizativa.org	Max Hold
74.0 dB µ V/n LgAv				Min Hold
V1 S2 S3 FC A				View
£(f): FTun Swp 5.350180000 (Blank
57.19 dBµV/n Start 5.350 00 GHz #Res BW (CISPR) 1 MHz	N VBW 1 MHz		5.460 00 GHz ns (601 pts)	More 1 of 2
Copyright 2000-2009 Agil	ent Technologies			

RESTRICTED BANDEDGE (802.11n (20MHz) MODE,CH 48, VERTICAL)

802.11n (40MHz) OFDM MODULATION

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 38	FREQUENCY RANGE	1 ~ 40GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY	Frank Liu		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	5150.00	55.5 PK	74.0	-18.5	1.00 H	136	15.10	40.40			
2	5150.00	45.4 AV	54.0	-8.6	1.00 H	136	5.00	40.40			
3	*5190.00	90.7 PK			1.01 H	244	50.23	40.47			
4	*5190.00	80.3 AV			1.01 H	244	39.83	40.47			
5	#10380.00	55.0 PK	68.3	-13.3	1.04 H	48	8.17	46.83			
6	15570.00	61.0 PK	74.0	-13.0	1.06 H	51	9.78	51.22			
7	15570.00	50.4 AV	54.0	-3.6	1.06 H	51	-0.82	51.22			
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)			
1	5150.00	65.6 PK	74.0	-8.4	1.33 V	191	25.20	40.40			
2	5150.00	53.4 AV	54.0	-0.6	1.33 V	191	13.00	40.40			
3	*5190.00	105.1 PK			1.34 V	188	64.63	40.47			
4	*5190.00	94.1 AV			1.34 V	188	53.63	40.47			
5	#10380.00	54.8 PK	68.3	-13.5	1.01 V	37	7.97	46.83			
6	15570.00	59.6 PK	74.0	-14.4	1.00 V	66	8.38	51.22			
7	15570.00	49.0 AV	54.0	-5.0	1.00 V	66	-2.22	51.22			

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

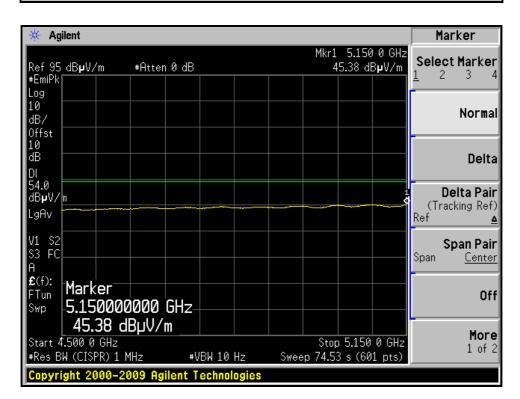
4. Margin value = Emission level – Limit value.

5. " * ": Fundamental frequency.

6. "#":The radiated frequency is out the restricted band.

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 46	FREQUENCY RANGE	1 ~ 40GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	25deg. C, 67%RH	TESTED BY	Frank Liu		

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*5230.00	96.3 PK			1.04 H	241	55.76	40.54
2	*5230.00	86.2 AV			1.04 H	241	45.66	40.54
3	5350.00	59.4 PK	74.0	-14.6	1.00 H	317	18.63	40.77
4	5350.00	47.6 AV	54.0	-6.4	1.00 H	317	6.83	40.77
5	#10460.00	55.0 PK	68.3	-13.3	1.00 H	68	8.10	46.90
6	15690.00	61.3 PK	74.0	-12.7	1.01 H	45	9.76	51.54
7	15690.00	50.5 AV	54.0	-3.5	1.01 H	45	-1.04	51.54
		ANTENNA	POLARIT	Y & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*5230.00	110.6 PK			1.31 V	179	70.06	40.54
2	*5230.00	100.2 AV			1.31 V	179	59.66	40.54
3	5350.00	58.0 PK	74.0	-16.0	1.31 V	186	17.23	40.77
4	5350.00	47.5 AV	54.0	-6.5	1.31 V	186	6.73	40.77
5	#10460.00	55.0 PK	68.3	-13.3	1.00 V	41	8.10	46.90
6	15690.00	60.1 PK	74.0	-13.9	1.00 V	54	8.56	51.54
7	15690.00	49.4 AV	54.0	-4.6	1.00 V	54	-2.14	51.54


REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.
- 6. "#":The radiated frequency is out the restricted band.

🔆 Agilent							Trace
Ref 95 dB µ V/m #EmiPk	#Atten 0 dB				5.150 5.54 dB		Trace <u>1</u> 2 3
Log 10 dB/ 0ffst							Clear Write
10 dB				- du - J - J - D	dar ad Hetuda 14		Max Hold
74.0 dB µ V/m LgAv	. Marintan yana wilan walan	14 4 11° 140 1 40 14	a Malautanin n	ny ny marina	nolo al'a madoi	uning 1994/18	Min Hold
V1 S2 S3 FC A							Viev
	0000 GHz-						Blani
55.54 d Start 4.500 0 GHz #Res BW (CISPR) 1		BW 1 MHz	Swee	Stop p 1.52) 5.150 ms (601		More 1 of 2
Copyright 2000-2	009 Aailent T	echnologie	s				

RESTRICTED BANDEDGE (802.11n (40MHz) MODE, CH38, HORIZONTAL)

🔆 Agilent						Peak Search
Ref 95 dB µ V/m #EmiPk	#Atten 0 dB				.148 9 GHz 9 dB µ V/m	Next Peak
Log 10 dB/						Next Pk Right
Offst 10 dB DI	whenwer	Jodnised Harmonia	a se	an a	uthrappy and	Next Pk Left
74.0 Mayana and Angel and Ang Angel and Angel and Ang Angel and Angel and Angel and Angel ang						Min Search
V1 S2 S3 FC A						Pk-Pk Search
)000 GHz-					Mkr → CF
65.59 d Start 4.500 0 GHz #Res BW (CISPR) 1 M	•	W 1 MHz	Sweep		150 0 GHz (601 pts)	More 1 of 2
Copyright 2000-20	009 Agilent Te	chnologies	_	_		

RESTRICTED BANDEDGE (802.11n (40MHz) MODE,CH38, VERTICAL)

* Agilent		Peak Search
Ref 95 dB µ V/m #Atten 0 dB #EmiPk	Mkr1 5.148 9 GHz 53.42 dB µ V/m	Next Peak
Log 10 dB/ Offst		Next Pk Right
10 dB DI		Next Pk Left
54.0 dB µ V/n LgAv		Min Search
V1 S2 S3 FC		Pk-Pk Search
£(f): FTun Swp 5.148900000 GHz		Mkr → CF
_ 53.42 dBµV/m Start 4.500 0 GHz #Res BW (CISPR) 1 MHz	Stop 5.150 0 GHz Sweep 74.53 s (601 pts)	More 1 of 2
Copyright 2000–2009 Agilent Technologies		

🔆 Agilent					Trace
#EmiPk	#Atten 0 dB			.350 00 GHz .43 dBµV/m	Trace <u>1</u> 2 3
Log 10 dB/ 0ffst					Clear Write
10 dB 1 DI Mahaman Mahada	managemeter	when have all and	us ann ann ann ann ann ann ann ann ann an	htunet and many the days for	Max Hold
74.0 dBµV/n LgAv					Min Hold
V1 S2 S3 FC A					View
£(f): FTun Swp 74.00 dBL					Blank
Start 5.350 00 GHz #Res BW (CISPR) 1 MH	lz VBW	 1 MHz		.460 00 GHz s (601 pts)	More 1 of 2
Copyright 2000-20	99 Agilent Tec	hnningies			

RESTRICTED BANDEDGE (802.11n (40MHz) MODE, CH46, HORIZONTAL)

🔆 Agilent				Marker
Ref 95 dB µ V/m #EmiPk	#Atten 0 dB	Mkr1	5.350 00 GHz 47.58 dB µ V/m	Select Marker
Log				
10 dB/				Normal
Offst 10 dB				- Delta
DI 🛛				Dente
54.0 1 dB µ V/¶				Delta Pair (Tracking Ref)
LgAv				Ref <u>4</u>
V1 S2 S3 FC				Span Pair Span Center
A				-
£(f): Marker FTun 5.350000	1000 GHz			Off
47.58 dl				
Start 5.350 00 GHz #Res BW (CISPR) 1 M	·		p 5.460 00 GHz 61 s (601 pts)	More 1 of 2
Copyright 2000-20	09 Agilent Technolo	gies		

🔆 Agilent					Marker
Ref 95 dB µ V/m #EmiPk	#Atten 0 dB			5.350 55 GHz 57.95 dBµV/m	Select Marker <u>1</u> 2 3 4
Log 10 dB/ Offst					Norma
10 dB 1	Dilana manghamikaka	NAMIN MANANANANANANANANANANANANANANANANANANA	wpersysmetry	han berefer	Delta
dBµV/n LgAv					Delta Pair (Tracking Ref) Ref <u>4</u>
V1 S2 S3 FC A					Span Pair Span <u>Center</u>
	0000 GHz-				Of
5 7.95 (Start 5.350 00 GHz #Res BW (CISPR) 1	2	3W 1 MHz		5.460 00 GHz ms (601 pts)	More 1 of 2
Copyright 2000-2		echnologies			

RESTRICTED BANDEDGE (802.11n (40MHz) MODE, CH46, VERTICAL)

Ref 95 dB µ V/m #Atten 0 dB	Mkr1 5.350 00 GHz	
ŧEmiPk	47.54 dBµV/m	Select Marker <u>1</u> 2 3 4
Log LØ dB/		Normal
LØ HB DI		Delta
54.0 ± HBµV/Man		Delta Pair (Tracking Ref) Ref <u>≜</u>
/1 S2 S3 FC A E(f): -Manuface		Span Pair Span <u>Center</u>
Etr): Marker Tun -5.350000000 GHz 47.54 dBµV/m		0ff
Start 5.350 00 GHz	Stop 5.460 00 GHz eep 12.61 s (601 pts)	More 1 of 2

4.3 OUTPUT TRANSMIT POWER MEASUREMENT

4.3.1 LIMITS OF OUTPUT TRANSMIT POWER MEASUREMENT

Frequency Band	Limit
5.15 – 5.25GHz	The lesser of 50mW (17dBm) or 4dBm + 10logB
5.25 – 5.35GHz	The lesser of 250mW (24dBm) or 11dBm + 10logB
5.47 – 5.725GHz	The lesser of 250mW (24dBm) or 11dBm + 10logB
5.725 – 5.825GHz	The lesser of 1W (30dBm) or 17dBm + 10logB

NOTE: Where B is the 26dB emission bandwidth in MHz.

4.3.2 TEST INSTRUMENTS

Test date: Aug. 16, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP 40	100060	May 11, 2011	May 10, 2012

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set span to encompass the entire emission bandwidth of the signal.
- 3. Set RBW to 1MHz, VBW to 3MHz.
- 4. Using the spectrum analyzer's channel power measurement function to measure the output power.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP EUT Spectrum Analyzer

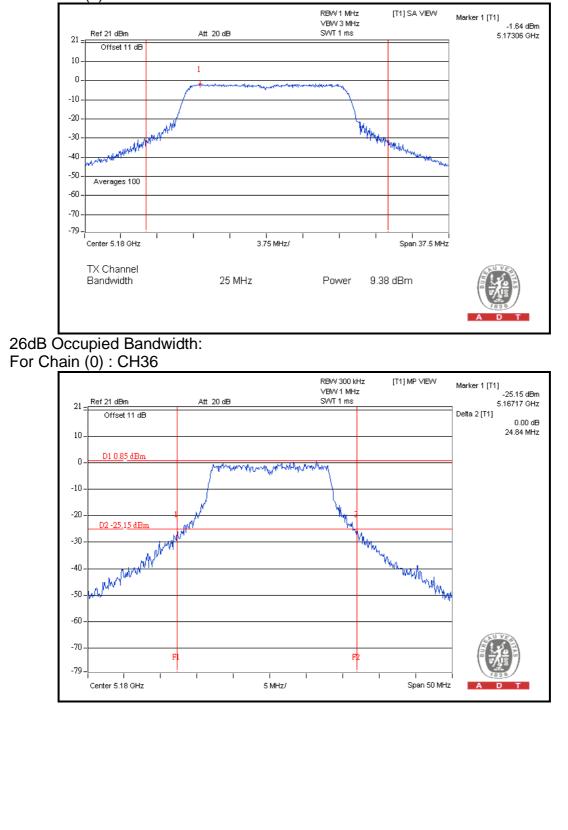
4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.3.7 TEST RESULTS

802.11a OFDM MODULATION:

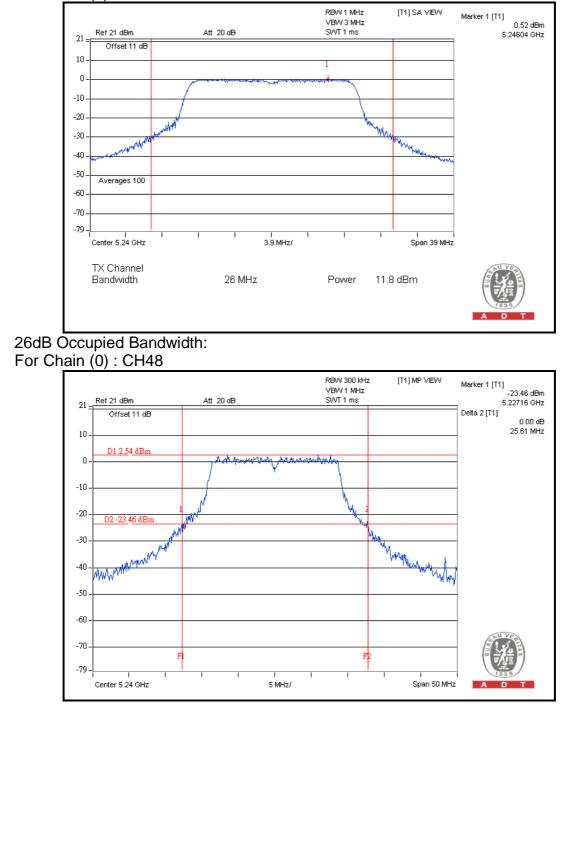
CHANNEL	CHANNEL FREQUENCY	OUTPUT (de	POWER 3m)		TOTAL OUTPUT	OUTPUT POWER	26dBc OCCUPIED BANDWIDTH (MHz)		PASS / FAIL
	(MHz)	CHAIN(0)		LIMIT (dBm)	CHAIN(0)	CHAIN(1)			
36	5180	9.4	8.5	15.8	12.0	14.5	24.84	23.63	PASS
40	5200	9.1	8.5	15.2	11.8	14.5	24.33	23.47	PASS
48	5240	9.2	8.7	15.7	12.0	14.5	24.13	23.85	PASS


NOTE: The 26dBc Occupied Bandwidth plot, please refer to the following pages.

Directional gain = gain of antenna element + 10 log (# of TX antenna elements) Effective Legacy Gain (dBi) = 8.5

The effective legacy gain is 8.5dBi, therefore the limit needs to reduce.

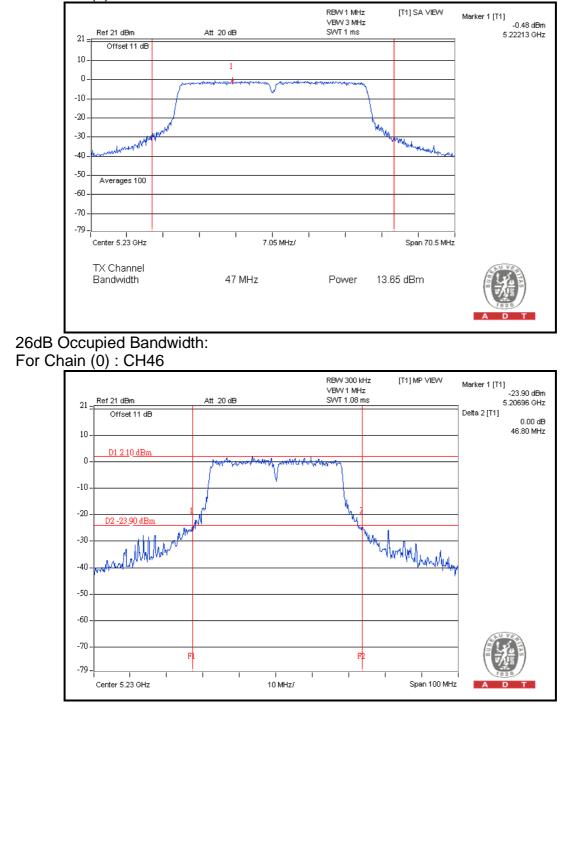
Peak Power Output: For Chain (0) : CH36


CHANNEL	CHANNEL	OUTPUT POWER (dBm)				OUTPUT POWER	26dBc OCCUPIED BANDWIDTH (MHz)		PASS / FAIL
	(MHz)	CHAIN(0)	CHAIN(1)	POWER (mW)	POWER (dBm)	LIMIT (dBm)	CHAIN(0)	CHAIN(1)	
36	5180	11.3	11.2	26.7	14.3	17	25.60	25.22	PASS
40	5200	11.7	11.5	28.9	14.6	17	25.72	24.55	PASS
48	5240	11.8	11.3	28.6	14.6	17	25.61	24.59	PASS

802.11n (20MHz) OFDM MODULATION:

NOTE: The 26dBc Occupied Bandwidth plot, please refer to the following pages.

Peak Power Output: For Chain (0) : CH48


CHANNEL	CHANNEL FREQUENCY	OUTPUT (de	POWER 3m)			OUTPUT POWER		CCUPIED TH (MHz)	PASS / FAIL
	(MHz)	CHAIN(0)	CHAIN(1)	POWER (mW)	POWER (dBm)	LIMIT (dBm)	CHAIN(0)	CHAIN(1)	
38	5190	8.8	8.9	15.3	11.8	17	47.86	47.42	PASS
46	5230	13.7	13.6	46.4	16.7	17	46.80	48.15	PASS

802.11n (40MHz) OFDM MODULATION:

NOTE: The 26dBc Occupied Bandwidth plot, please refer to the following pages.

Peak Power Output: For Chain (0) : CH46

4.4 PEAK POWER EXCURSION MEASUREMENT

4.4.1 LIMITS OF PEAK POWER EXCURSION MEASUREMENT

Frequency Band	Limit
5.15 – 5.25 GHz	13dB
5.25 – 5.35 GHz	13dB
5.47 – 5.725GHz	13dB
5.725 – 5.825 GHz	13dB

4.4.2 TEST INSTRUMENTS

Test date: Aug. 16, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP 40	100060	May 11, 2011	May 10, 2012

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.4.3 TEST PROCEDURE

- 1. Connect the cable from the spectrum analyzer to the EUT antenna port using an appropriate RF attenuator.
- 2. Verify the antenna port selected is the active one if the system has more then one antenna.
- 3. Verify the unlicensed wireless device is set to operate at 100 % duty cycle at the maximum allowed power for operation.
- 4. Testing shall be done on the center frequency of each U-NII band.
- 5. Set the spectrum analyzer span to view the entire emission bandwidth. The largest difference between the following two traces must be 13 dB for all frequencies across the emission bandwidth.
- a. First trace: set RBW = 1 MHz, VBW = 3 MHz with peak detector and max hold settings.
- b. Second trace: set RBW = 1 MHz, VBW = 3 MHz with sample detector and trace average across 100 traces in power averaging mode.

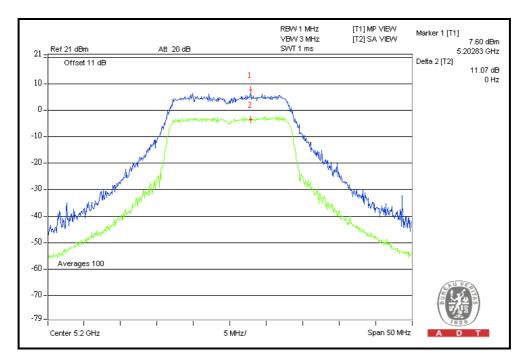
4.4.4 DEVIATION FROM TEST STANDARD

No deviation

4.4.5 TEST SETUP

4.4.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

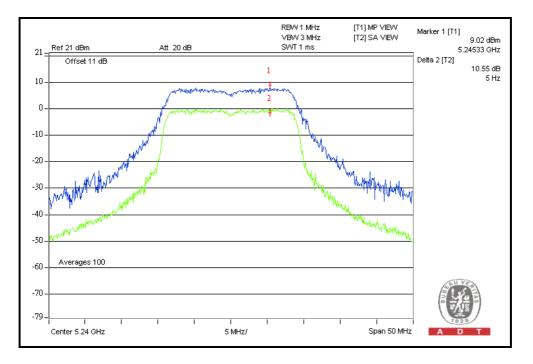


4.4.7 TEST RESULTS

802.11a OFDM MODULATION

CHANNEL	CHANNEL FREQUENCY	PEAK POWER EXCURSION (dB)		PEAK to AVERAGE EXCURSION LIMIT	PASS/FAIL	
	(MHz)	Chain(0)	Chain(1)			
36	5180	8.4 10.0		13	PASS	
40	5200	8.6	11.1	13	PASS	
48	5240	9.2	9.1	13	PASS	

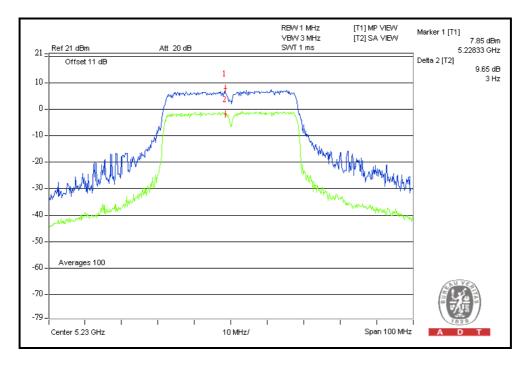
For Chain (1) : CH40



802.11n (20MHz) OFDM MODULATION:

CHANNEL	CHANNEL FREQUENCY	PEAK POWER EXCURSION (dB)		PEAK to AVERAGE EXCURSION LIMIT	PASS/FAIL	
	(MHz)	Chain(0)	Chain(1)			
36	5180	8.7	9.1	13	PASS	
40	5200	9.3	8.6	13	PASS	
48	5240	8.1	10.6	13	PASS	

For Chain (1) : CH48



802.11n (40MHz) OFDM MODULATION:

CHANNEL	CHANNEL FREQUENCY			XCURSION PEAK to	
	(MHz)		Chain(1)		
38	5190	9.0	9.0	13	PASS
46	5230	9.4	9.7	13	PASS

For Chain (1) : CH46

4.5 PEAK POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF PEAK POWER SPECTRAL DENSITY MEASUREMENT

Frequency Band	Limit
5.15 ~ 5.25GHz	4dBm
5.25 ~ 5.35GHz	11dBm
5.47 – 5.725GHz	11dBm
5.725 ~ 5.825GHz	17dBm

4.5.2 TEST INSTRUMENTS

Test date: Aug. 16, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250254	July 12, 2011	July 11, 2012

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURES

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set RBW=1MHz, VBW=3MHz. The PPSD is the highest level found across the emission in any 1MHz band.

4.5.4 DEVIATION FROM TEST STANDARD

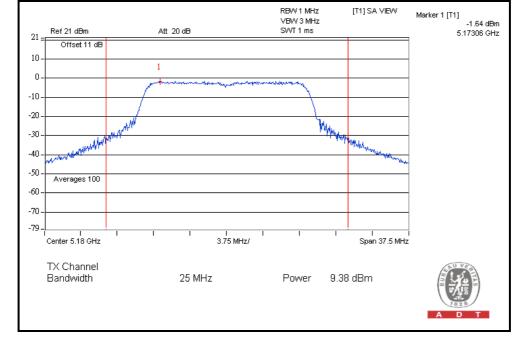
No deviation

4.5.5 TEST SETUP

4.5.6 EUT OPERATING CONDITIONS

Same as 4.3.6

4.5.7 TEST RESULTS

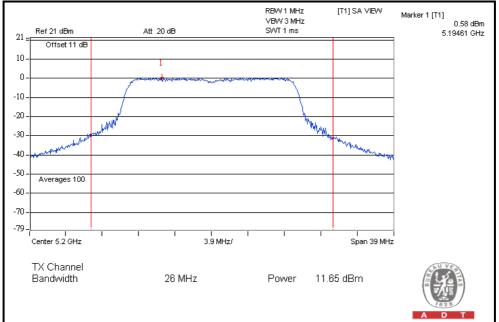

802.11a OFDM MODULATION

CHANNEL	CHANNEL FREQUENCY	QUENCY (dBm) TOTAL POV				PASS / FAIL
	(MHz)	CHAIN(0)	CHAIN(1)	DENSITY (dBm)	(dBm)	
36	5180	-1.6	-2.1	1.2	1.5	PASS
40	5200	-2.0	-2.2	0.9	1.5	PASS
48	5240	-1.8	-2.3	1.0	1.5	PASS

Directional gain = gain of antenna element + 10 log (# of TX antenna elements) Effective Legacy Gain (dBi) = 8.5

The effective legacy gain is 8.5dBi, therefore the limit needs to reduce.

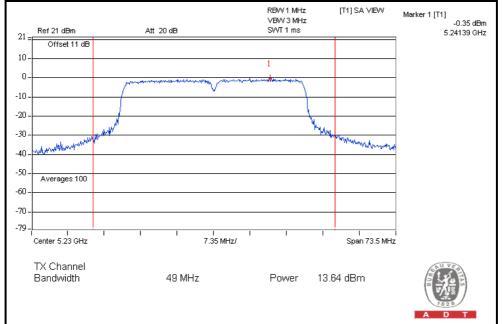
For Chain (0) : CH36



802.11n (20MHz) OFDM MODULATION:

CHANNEL	CHANNEL FREQUENCY	FREQUENCY (dBm)				PASS / FAIL
	(MHz)	CHAIN(0) CHAIN(1)	CHAIN(1)	DENSITY (dBm)	(dBm)	
36	5180	0.4	0.0	3.2	4	PASS
40	5200	0.6	0.3	3.5	4	PASS
48	5240	0.5	0.2	3.4	4	PASS

For Chain (0): CH40



802.11n (40MHz) OFDM MODULATION:

CHANNEL	CHANNEL FREQUENCY	-	/EL IN 3kHz BW 3m)	TOTAL POWER DENSITY (dBm)		PASS / FAIL
	(MHz) CH		CHAIN(1)	DENSITY (UBIII)	(dBm)	
38	5190	-5.4	-5.0	-2.2	4	PASS
46	5230	-0.5	-0.4	2.6	4	PASS

For Chain (1): CH46

4.6 FREQUENCY STABILITY

4.6.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

The frequency tolerance of the carrier signal shall be maintained within the band of the operating frequency over a temperature variation of -30 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

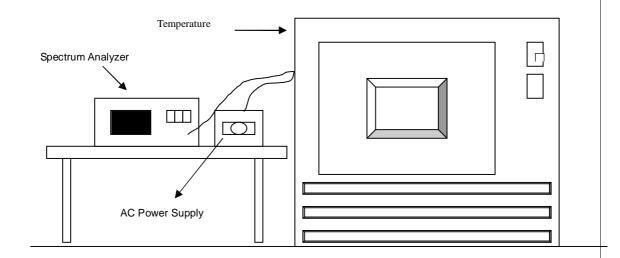
4.6.2 TEST INSTRUMENTS

Test date: Aug. 16, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP 40	100060	May 11, 2011	May 10, 2012

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURE


- 1. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

4.6.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.6.7 TEST RESULTS

	Operating frequency: 5240MHz								
Temp. (°C) Power supply (VAC)				2 minute		5 minute		10 minute	
	(MHz)	ppm	(MHz)	ppm	(MHz)	ppm	(MHz)	ppm	
50	138	5239.9942	-1.1069	5239.9942	-1.1069	5239.998	-0.3817	5239.9981	-0.3626
	120	5239.9941	-1.1260	5239.9933	-1.2786	5239.9974	-0.4962	5239.9964	-0.6870
	102	5239.9935	-1.2405	5239.9935	-1.2405	5239.9972	-0.5344	5239.9975	-0.4771
40	138	5239.9997	-0.0573	5240.0018	0.3435	5239.9979	-0.4008	5240.0008	0.1527
	120	5239.9988	-0.2290	5240.0024	0.4580	5239.9982	-0.3435	5240.0011	0.2099
	102	5239.9984	-0.3053	5240.0009	0.1718	5239.9986	-0.2672	5240.001	0.1908
30	138	5239.9851	-2.8435	5239.9881	-2.2710	5239.9887	-2.1565	5239.9876	-2.3664
	120	5239.9842	-3.0153	5239.988	-2.2901	5239.9893	-2.0420	5239.9872	-2.4427
	102	5239.9851	-2.8435	5239.9868	-2.5191	5239.9886	-2.1756	5239.9873	-2.4237
20	138	5239.9979	-0.4008	5240.0018	0.3435	5240.0026	0.4962	5240.0051	0.9733
	120	5239.9976	-0.4580	5240.003	0.5725	5240.0026	0.4962	5240.0051	0.9733
	102	5239.9978	-0.4198	5240.003	0.5725	5240.002	0.3817	5240.0042	0.8015
10	138	5240.0084	1.6031	5240.0041	0.7824	5240.0067	1.2786	5240.0048	0.9160
	120	5240.0081	1.5458	5240.0049	0.9351	5240.0056	1.0687	5240.0052	0.9924
	102	5240.0092	1.7557	5240.0046	0.8779	5240.0068	1.2977	5240.0048	0.9160
	138	5240.0188	3.5878	5240.0208	3.9695	5240.0197	3.7595	5240.0149	2.8435
0	120	5240.0201	3.8359	5240.0211	4.0267	5240.0198	3.7786	5240.0149	2.8435
	102	5240.0187	3.5687	5240.0211	4.0267	5240.0194	3.7023	5240.0143	2.7290
-10	138	5239.9861	-2.6527	5239.9838	-3.0916	5239.984	-3.0534	5239.9872	-2.4427
	120	5239.987	-2.4809	5239.9824	-3.3588	5239.9845	-2.9580	5239.9856	-2.7481
	102	5239.986	-2.6718	5239.9826	-3.3206	5239.9842	-3.0153	5239.9859	-2.6908
-20	138	5240.0055	1.0496	5240.0051	0.9733	5240.0024	0.4580	5240.0016	0.3053
	120	5240.0048	0.9160	5240.004	0.7634	5240.0033	0.6298	5240.0019	0.3626
	102	5240.0063	1.2023	5240.0043	0.8206	5240.0025	0.4771	5240.0013	0.2481
	138	5240.0064	1.2214	5240.0105	2.0038	5240.0146	2.7863	5240.0133	2.5382
-30	120	5240.0061	1.1641	5240.0099	1.8893	5240.0142	2.7099	5240.0143	2.7290
	102	5240.0072	1.3740	5240.0093	1.7748	5240.0134	2.5573	5240.0143	2.7290

4.7 CONDUCTED OUT-BAND EMISSION MEASUREMENT

4.7.1 TEST INSTRUMENTS

Test date : Aug. 16, 2011

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 08, 2010	Dec. 07, 2011

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

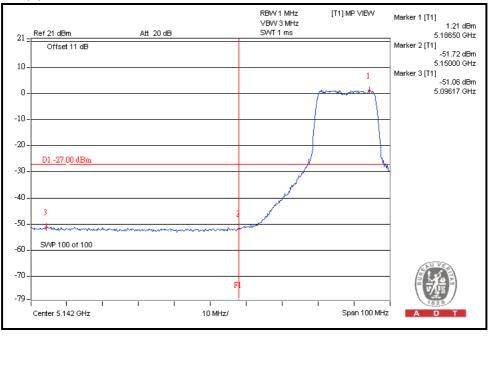
4.7.2 TEST PROCEDURE

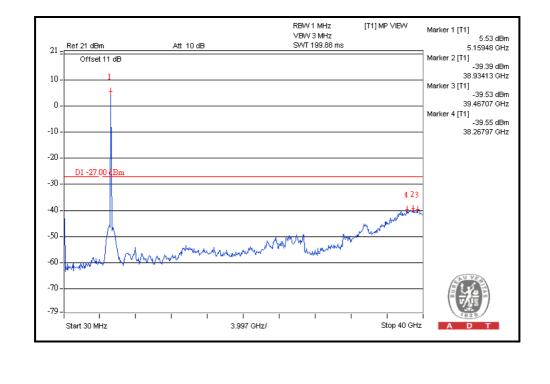
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set RBW of spectrum analyzer to 1MHz with suitable frequency span including 100 MHz or 200 MHz bandwidth from band edge. The band edges was measured and recorded.

4.7.3 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

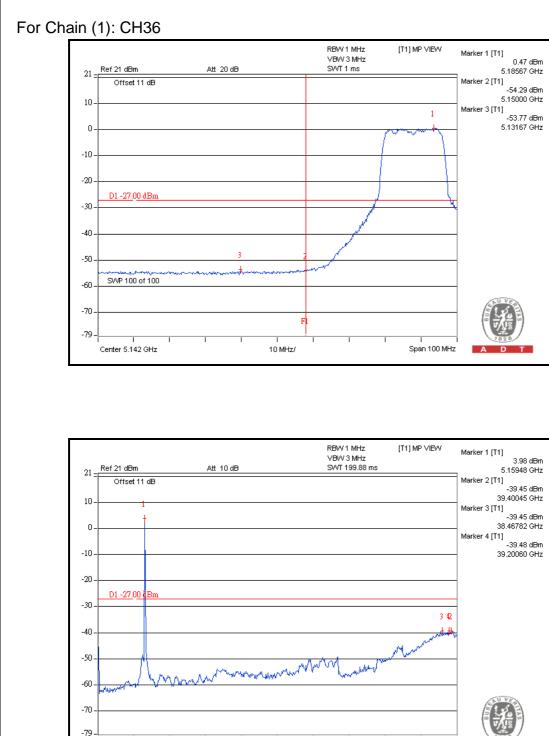
4.7.4 TEST RESULTS


For 5.15 to 5.25GHz band:


The spectrum plots (Peak RBW=1MHz, VBW=3MHz) are attached on the following pages.

802.11a OFDM MODULATION

For Chain (0): CH36



For Chain (0): CH48 RBW 1 MHz VBW 3 MHz SWT 1 ms [T1] MP VIEW Marker 1 [T1] 0.86 dBm 21 _ Ref 21 dBm Att 20 dB 5.23300 GHz Marker 2 [T1] -52.89 dBm 5.35000 GHz Offset 11 dB 10 Marker 3 [T1] -51.52 dBm 5.42433 GHz 1 0. -10 -20 D1 -27.00 dBm -30 -40 -50 SVVP 100 of 100 -60 -70 F -79. . Center 5.327 GHz . 20 MHz/ Span 200 MHz A D RBW 1 MHz VBW 3 MHz SWT 199.88 ms [T1] MP VIEW Marker 1 [T1] 5.69 dBm 5.22610 GHz Ref 21 dBm Att 10 dB 21 -Marker 2 [T1] Offset 11 dB -39.33 dBm 39.46707 GHz 10 Marker 3 [T1] -39.37 dBm 38.80090 GHz 0 Marker 4 [T1] -39.53 dBm 39.33383 GHz -10 -20 D1 -27.00 d -30 342 -40 Lawrend Construction March 199 -50 Maynamanananan -60 -70 -79 Stop 40 GHz Start 30 MHz 3.997 GHz/ п

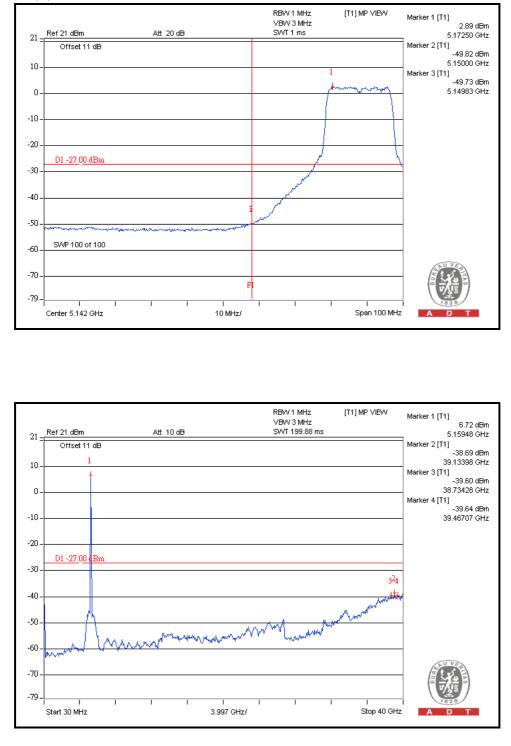
Report No.: RF110728E04-1

Start 30 MHz

Stop 40 GHz

D

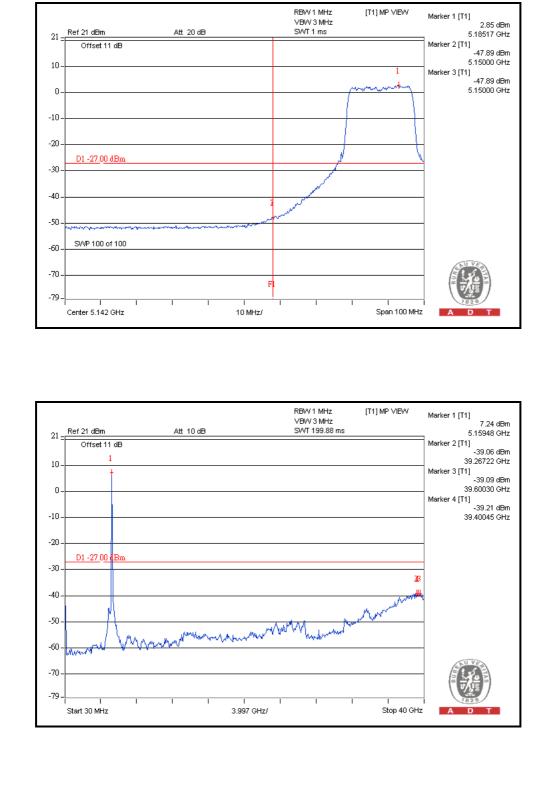
3.997 GHz/


RBW 1 MHz VBW 3 MHz SWT 1 ms [T1] MP VIEW Marker 1 [T1] 0.48 dBm 5.24533 GHz 21 = Ref 21 dBm Att 20 dB Marker 2 [T1] -53.51 dBm 5.35000 GHz Offset 11 dB 10 Marker 3 [T1] -52.83 dBm 5.35300 GHz 1 0. -10 -20 D1 -27.00 dBm -30 -40 -50 SVVP 100 of 100 -60 -70 F -79. . Center 5.327 GHz . 20 MHz/ Span 200 MHz A D RBW 1 MHz VBW 3 MHz SWT 199.88 ms [T1] MP VIEW Marker 1 [T1] 5.33 dBm 5.22610 GHz Ref 21 dBm Att 10 dB 21 -Marker 2 [T1] Offset 11 dB -39.41 dBm 38.60105 GHz 10 Marker 3 [T1] -39.57 dBm 39.00075 GHz 0 Marker 4 [T1] -39.57 dBm 39.26722 GHz -10 -20 D1 -27.00 -30 234 -40 M Au -50 MŴ Mapanoninana ليحدر -60 -70 -79 . Stop 40 GHz Start 30 MHz 3.997 GHz/ п

For Chain (1): CH48

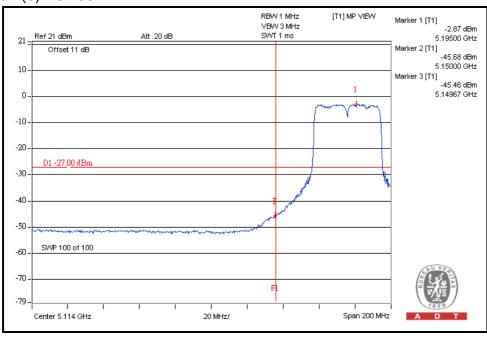
802.11n (20MHz) OFDM MODULATION:

For Chain(0) : CH36

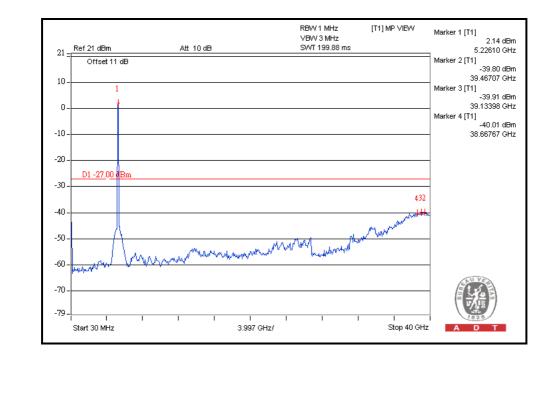


For Chain(0) : CH48 RBW 1 MHz VBW 3 MHz SWT 1 ms [T1] MP VIEW Marker 1 [T1] 3.19 dBm 5.23367 GHz 21 _ Ref 21 dBm Att 20 dB Marker 2 [T1] -52.56 dBm 5.35000 GHz Offset 11 dB 10 Marker 3 [T1] -51.73 dBm 5.40400 GHz 0 -10 -20 D1 -27.00 dBr -30 -40 3 -50 SVVP 100 of 100 -60 -70 F -79. . Center 5.327 GHz . 20 MHz/ Span 200 MHz A D RBW 1 MHz VBW 3 MHz SWT 199.88 ms [T1] MP VIEW Marker 1 [T1] 7.71 dBm 5.22610 GHz Ref 21 dBm Att 10 dB 21 -Marker 2 [T1] Offset 11 dB -38.36 dBm 39.20060 GHz 1 10 Marker 3 [T1] -38.62 dBm 39.60030 GHz 0 Marker 4 [T1] -38.89 dBm 39.46707 GHz -10 -20 D1 -27.00 dBm -30 -40 -50 Manganamananananan north -60 -70 -79 . Stop 40 GHz Start 30 MHz 3.997 GHz/ п

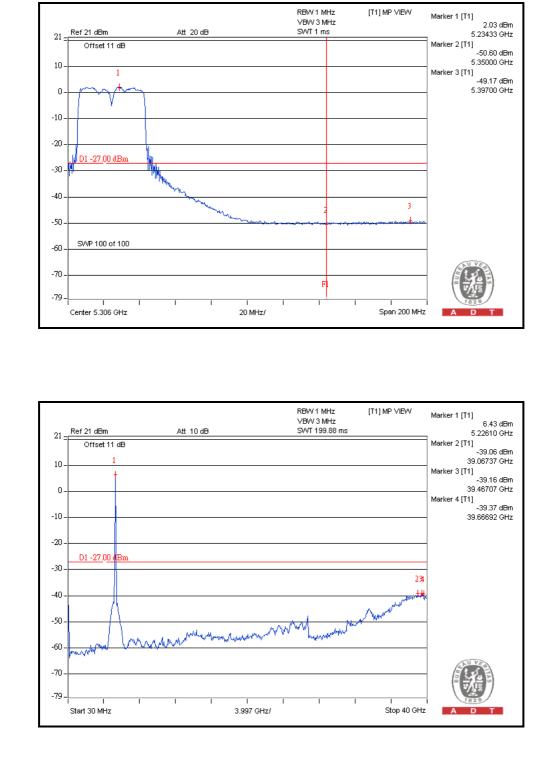
For Chain(1) : CH36



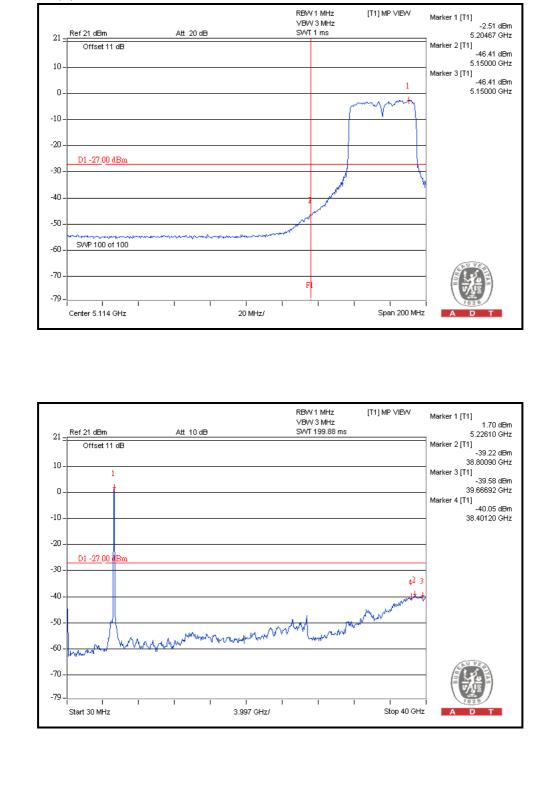
For Chain(1) : CH48 RBW 1 MHz VBW 3 MHz SWT 1 ms [T1] MP VIEW Marker 1 [T1] 1] 2.75 dBm 5.23300 GHz 21 _ Ref 21 dBm Att 20 dB Marker 2 [T1] -53.49 dBm 5.35000 GHz Offset 11 dB 10 Marker 3 [T1] -52.99 dBm 5.35267 GHz 0. non -10 -20 D1 -27.00 dBi -30 -40 -50 SVVP 100 of 100 -60 -70 F -79. . Center 5.327 GHz . 20 MHz/ Span 200 MHz A D RBW 1 MHz VBW 3 MHz SWT 199.88 ms [T1] MP VIEW Marker 1 [T1] 6.93 dBm 5.22610 GHz Ref 21 dBm Att 10 dB 21 -Marker 2 [T1] Offset 11 dB -37.97 dBm 38.80090 GHz 1 10 Marker 3 [T1] -39.73 dBm 39.40045 GHz 0 Marker 4 [T1] -39.82 dBm 39.53368 GHz -10 -20 D1 -27.00 d -30 -40 m -50 NW لعريهمهم Mappanantantan Same -60 -70 -79 . Stop 40 GHz Start 30 MHz 3.997 GHz/ п


Report No.: RF110728E04-1

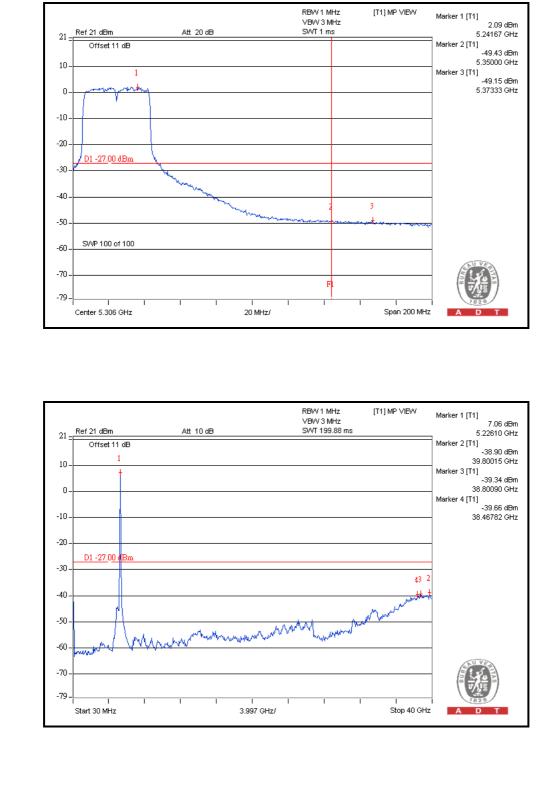
802.11n (40MHz) OFDM MODULATION:



For Chain(0) : CH38



For Chain(0) : CH46


For Chain(1) : CH38

Report No.: RF110728E04-1

For Chain(1) : CH46

5. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service.adt@tw.bureauveritas.com Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

6.APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---- END ----