

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

FCC REPORT

Certification

Applicant Name:

GS Instech Co., Ltd.

Address:

70, Gilpa-ro 71beon-gil, Nam-gu, Inchen, Korea

Date of Issue:

May 10, 2018

Location of test lab:

HCT CO., LTD.,

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-RF-1805-FC010-R1

FCC ID:

U88-EZDASS-L30

APPLICANT:

GS Instech Co., Ltd.

Model:

EZ-DASS-L30

EUT Type:

Analog Optic DAS

Frequency Range:

728 MHz ~ 756 MHz (DL)

Tx Output Power:

30 dBm (1 W)

Date of Test:

April 10, 2018 ~ May 02, 2018

FCC Rule Part(s):

CFR 47 Part 2, Part 27

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

Report prepared by : A Ram Han

Engineer of telecommunication testing center

Approved by : Jong Seok Lee

Manager of telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-1805-FC010	May 03, 2018	- First Approval Report
HCT-RF-1805-FC010-R1	May 10, 2018	- Modified for incorrect typing : EUT Type information error (1 page, 4 page) : Frequency information error (22 page) - Removed antenna gain information because manufacturer did not provide it. (4 page)

Report No.: HCT-RF-1805-FC010-R1

Table of Contents

1. GENERAL INFORMATION	4
1.1. APPLICANT INFORMATION	
1.2. PRODUCT INFORMATION	4
1.3. TEST INFORMATION	4
2. FACILITIES AND ACCREDITATIONS	5
2.1. FACILITIES	5
2.2. EQUIPMENT	
3. TEST SPECIFICATIONS	6
3.1. STANDARDS	6
3.2. MODE OF OPERATION DURING THE TEST	7
3.3. MAXIMUM MEASUREMENTUNCERTAINTY	8
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS	8
4. TEST EQUIPMENTS	9
5. RF OUTPUT POWER	10
6. OCCUPIED BANDWIDTH	15
7. OUT OF BAND REJECTION	20
8. UNWANTED CONDUCTED EMISSIONS	23
9. RADIATED EMISSIONS	33
10. FREQUENCY STABILITY	37

1. GENERAL INFORMATION

1.1. APPLICANT INFORMATION

Company Name	GS Instech Co., Ltd.
Company Address	70, Gilpa-ro 71beon-gil, Nam-gu, Inchen, Korea

1.2. PRODUCT INFORMATION

EUT Type	Analog Optic DAS
Power Supply	AC 110 V ~ 240 V
Frequency Range	728 MHz ~ 756 MHz (DL)
Tx Output Power	30 dBm (1 W)
Supporting Technologies	LTE 10 MHz
Antenna Specification	Manufacturer does not provide an antenna.

1.3. TEST INFORMATION

FCC Rule Parts	CFR 47 Part 2, Part 27
Measurement standards	ANSI C63.26-2015, KDB 971168 D01 v03r01, KDB 935210 D05 v01r02
Place of Test	HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

2. FACILITIES AND ACCREDITATIONS

2.1. FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA. The site is constructed in conformance with the requirements of ANSI C63.4 (Version: 2014) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated July 07, 2015 (Registration Number: 90661).

2.2. EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

3. TEST SPECIFICATIONS

3.1. STANDARDS

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 2, Part 27

Description	Reference	Results
RF Output Power	§2.1046, §27.50	Compliant
Occupied Bandwidth	§2.1049	Compliant
Out of Band Rejection	KDB 935210 D05 v01r02	Compliant
Unwanted Conducted Emissions	§2.1051, §27.53	Compliant
Radiated Emissions	§2.1053, §27.53	Compliant
Frequency Stability	§2.1055, §27.54	Compliant

3.2. MODE OF OPERATION DURING THE TEST

The EUT was operated in a manner representative of the typical usage of the equipment.

During all testing, system components were manipulated within the confines of typical usage to maximize each emission.

The device does not supply antenna(s) with the system, so the dummy loads were connected to the RF output ports for radiated spurious emission testing.

- * The test was carried out in conjunction with DU module (EZ-DASD-L23) provided by applicant.
- * The tests results in plots are already including the actual value of loss for the attenuator and cable combination. Please check correction factors below table.

■ Correction Factor

Freq(MHz)	Factor(dB)
30	30.015
100	28.826
200	29.218
300	29.281
400	26.649
500	29.775
600	29.874
700	29.896
800	29.996
900	30.159
1000	30.272
2000	31.154
3000	31.848
4000	32.447
5000	33.234
6000	33.586
7000	34.840
8000	33.689
9000	34.850
10000	36.207
20000	44.683
26000	49.206

3.3. MAXIMUM MEASUREMENTUNCERTAINTY

The value of the measurement uncertainty for the measurement of each parameter.

Coverage factor k = 2, Confidence levels of 95 %

Description	Condition	Uncertainty
RF Output Power	-	± 0.72 dB
Occupied Bandwidth	OBW ≤ 20 MHz	± 52 kHz
Out of Rand Rejection	Gain	± 0.89 dB
Out of Band Rejection	20 dB bandwidth	± 0.58 MHz
Unwanted Conducted Emissions	-	± 1.08 dB
Radiated Emissions	f≤1 GHz	± 4.80 dB
Radiated Effissions	f > 1 GHz	± 6.07 dB
Frequency Stability	-	± 1.22 x 10 ⁻⁶

3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS

Temperature :	+15 ℃ to +35 ℃
Relative humidity:	30 % to 60 %
Air pressure	860 mbar to 1 060 mbar

4. TEST EQUIPMENTS

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Agilent	N9020A / Spectrum Analyzer	09/15/2017	Annual	MY46471250
Agilent	N5128A / Signal Generator	03/05/2018	Annual	MY50141649
Agilent	N5128A / Signal Generator	02/17/2018	Annual	MY46240523
Weinschel	WA67-30-33/ Fixed Attenuator	09/14/2017	Annual	WA67-30-33-2
Agilent	11636A / Power Divider	08/01/2018	Annual	09109
DEAYOUNG ENT	DFSS60 / AC Power Supply	04/05/2018	Annual	1003030-1
NANGYEUL CO., LTD.	NY-THR18750 / Temperature and Humidity Chamber	10/21/2017	Annual	NY-2009012201A
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Emco	2090 / Controller	N/A	N/A	060520
Ets	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	04/19/2017	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	04/06/2017	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	06/30/2017	Biennial	9120D-1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/25/2017	Biennial	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	09/21/2017	Annual	836650/016
Wainwright Instruments	WHKX10-900-1000-15000-40SS	07/21/2017	Annual	5
Wainwright Instruments	WHKX10-2700-3000-18000-40SS / High Pass Filter	08/01/2017	Annual	4
CERNEX	CBLU1183540 / Power Amplifier	01/03/2018	Annual	24613
CERNEX	CBL06185030 / Power Amplifier	01/03/2018	Annual	24615
CERNEX	CBL18265035 / Power Amplifier	01/10/2018	Annual	22966

5. RF OUTPUT POWER

FCC Rules

Test Requirements:

§ 2.1046 Measurements required: RF power output.

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.
- (b) For single sideband, independent sideband, and single channel, controlled carrier radiotelephone transmitters the procedure specified in paragraph (a) of this section shall be employed and, in addition, the transmitter shall be modulated during the test as specified and applicable in § 2.1046 (b) (1-5). In all tests, the input level of the modulating signal shall be such as to develop rated peak envelope power or carrier power, as appropriate, for the transmitter.
- (c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

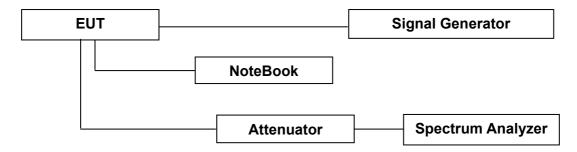
§ 27.50 Power limits and duty cycle.

- (b) The following power and antenna height limits apply to transmitters operating in the 746-758 MHz, 775-788 MHz and 805-806 MHz bands:
 - (4) Fixed and base stations transmitting a signal in the 746-757 MHz and 776-787 MHz bands with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 1000 watts/MHz ERP in accordance with Table 3 of this section.
 - (5) Fixed and base stations located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal in the 746-757 MHz and 776-787 MHz bands with an emission bandwidth greater than 1 MHz must not exceed an ERP of 2000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 2000 watts/MHz ERP in accordance with Table 4 of this section.

(c) The following power and antenna height requirements apply to stations transmitting in the 600 MHz band and the 698-746 MHz band:

- (4) Fixed and base stations located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 2000 watts/MHz and an antenna height of 305 m HAAT, except that antenna heights greater than 305 m HAAT are permitted if power levels are reduced below 2000 watts/MHz ERP in accordance with Table 4 of this section;
- (5) Licensees, except for licensees operating in the 600 MHz downlink band, seeking to operate a fixed or base station located in a county with population density of 100 or fewer persons per square mile, based upon the most recently available population statistics from the Bureau of the Census, and transmitting a signal at an ERP greater than 1000 watts must:
 - (i) Coordinate in advance with all licensees authorized to operate in the 698-758 MHz, 775-788, and 805-806 MHz bands within 120 kilometers (75 miles) of the base or fixed station;
 - (ii) coordinate in advance with all regional planning committees, as identified in §90.527 of this chapter, with jurisdiction within 120 kilometers (75 miles) of the base or fixed station.

Test Procedures:


Measurements were in accordance with the test methods section 3.5.2 of KDB 935210 D05 v01r02.

- a) Connect a signal generator to the input of the EUT.
- b) Configure to generate the AWGN (broadband) test signal.
- c) The frequency of the signal generator shall be set to the frequency f₀ as determined from 3.3.
- d) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation as necessary.
- e) Set the signal generator output power to a level that produces an EUT output level that is just below the AGC threshold (see 3.2), but not more than 0.5 dB below.
- f) Measure and record the output power of the EUT; use 3.5.3 or 3.5.4 for power measurement.
- g) Remove the EUT from the measurement setup. Using the same signal generator settings, repeat the power measurement at the signal generator port, which was used as the input signal to the EUT, and record as the input power. EUT gain may be calculated as described in 3.5.5.
- h) Repeat steps f) and g) with input signal amplitude set to 3 dB above the AGC threshold level.
- i) Repeat steps e) to h) with the narrowband test signal.
- j) Repeat steps e) to i) for all frequency bands authorized for use by the EUT.

Power measurement Method:

Guidance for performing input/output power measurements using a spectrum or signal analyzer is provided in 5.2 of KDB Publication 971168 D01 v03r01.

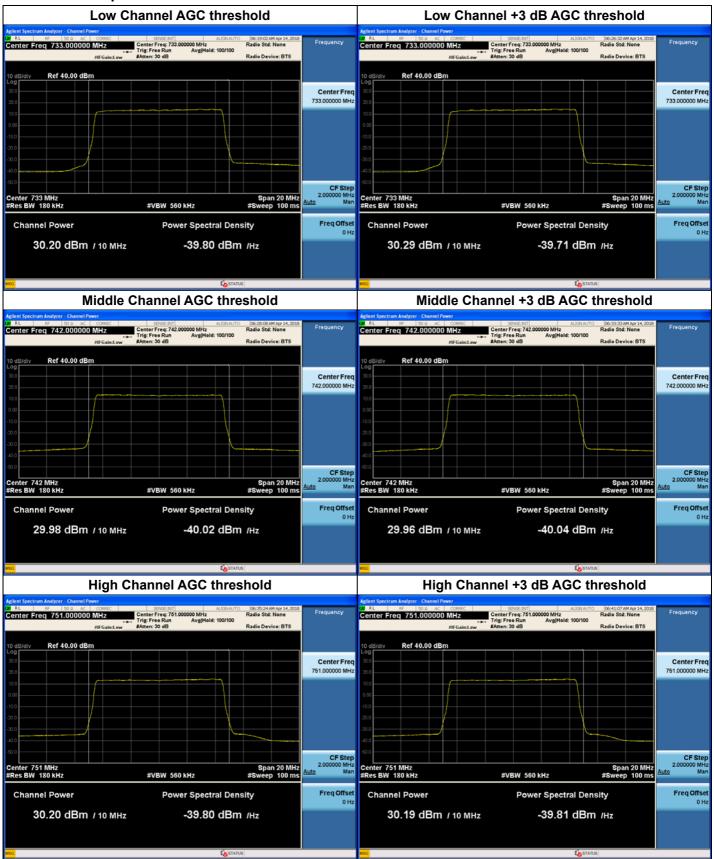
Block Diagram 1. RF Power Output Test Setup

Test Results:

Input Signal	Input Level (dBm)	Maximum Amp Gain (dB)
700	-60	90

^{*} Due to EUT's ALC function (Auto Level Control), even if input signal is increased, the same output power is transmit.

^{*} Amp gain is the result of combination with DU module (EZ-DASD-L23)



Data of Output Power

	Channel	Frequency (MHz)	Measured Output Power	
			(dBm)	(W)
LTE 10 MHz AGC threshold	Low	733.00	30.20	1.047
	Middle	742.00	29.98	0.995
	High	751.00	30.20	1.047
LTE 10 MHz +3 dB above the AGC threshold	Low	733.00	30.29	1.069
	Middle	742.00	29.96	0.991
	High	751.00	30.19	1.045

Plot of Output Power for LTE 10 MHz

6. OCCUPIED BANDWIDTH

FCC Rules

Test Requirements:

§ 2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the specified conditions of § 2.1049 (a) through (i) as applicable.

Test Procedures:

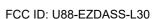
Measurements were in accordance with the test methods section 3.4 of KDB 935210 D05 v01r02 and section 4.2 of KDB 971168 D01 v03r01.

Test is 99% OBW measured and used.

- a) Connect a signal generator to the input of the EUT.
- b) Configure the signal generator to transmit the AWGN signal.
- c) Configure the signal amplitude to be just below the AGC threshold level (see 3.2), but not more than 0.5 dB below.
- d) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
- e) Set the spectrum analyzer center frequency to the center frequency of the operational band under test. The span range of the spectrum analyzer shall be between 2 times to 5 times the emission bandwidth (EBW) or alternatively, the OBW.
- f) The nominal RBW shall be in the range of 1 % to 5 % of the anticipated OBW, and the VBW shall be \geq 3 \times RBW.
- g) Set the reference level of the instrument as required to preclude the signal from exceeding the maximum spectrum analyzer input mixer level for linear operation. In general, the peak of the spectral envelope must be more than [10 log (OBW / RBW)] below the reference level.
- Steps f) and g) may require iteration to enable adjustments within the specified tolerances.
- h) The noise floor of the spectrum analyzer at the selected RBW shall be at least 36 dB below the reference level.
- i) Set spectrum analyzer detection function to positive peak.
- j) Set the trace mode to max hold.
- k) Determine the reference value: Allow the trace to stabilize. Set the spectrum analyzer marker to the highest amplitude level of the displayed trace (this is the reference value) and record the associated frequency as f₀.
- I) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the −26 dB down amplitude. The 26 dB EBW (alternatively OBW) is the positive frequency difference between the two

markers. If the spectral envelope crosses the -26 dB down amplitude at multiple points, the lowest or highest frequency shall be selected as the frequencies that are the furthest removed from the center frequency at which the spectral envelope crosses the -26 dB down amplitude point.

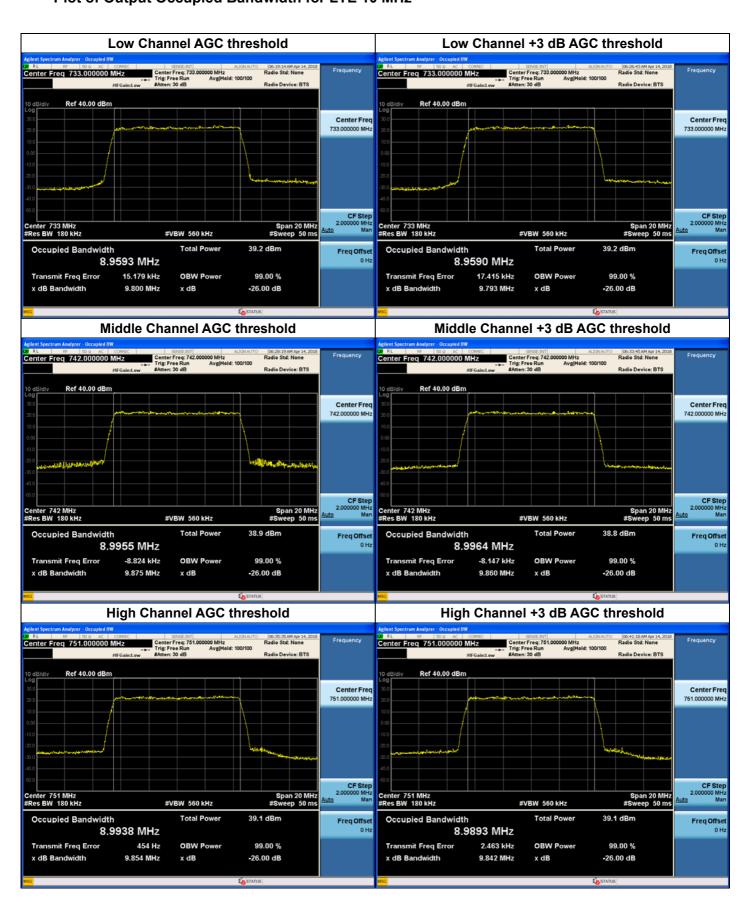
- m) Repeat steps e) to I) with the input signal connected directly to the spectrum analyzer (i.e., input signal measurement).
- n) Compare the spectral plot of the input signal (determined from step m) to the output signal (determined from step I) to affirm that they are similar (in passband and rolloff characteristic features and relative spectral locations), and include plot(s) and descriptions in test report.
- o) Repeat the procedure [steps e) to n)] with the input signal amplitude set to 3 dB above the AGC threshold.
- p) Repeat steps e) to o) with the signal generator set to the narrowband signal.
- q) Repeat steps e) to p) for all frequency bands authorized for use by the EUT.

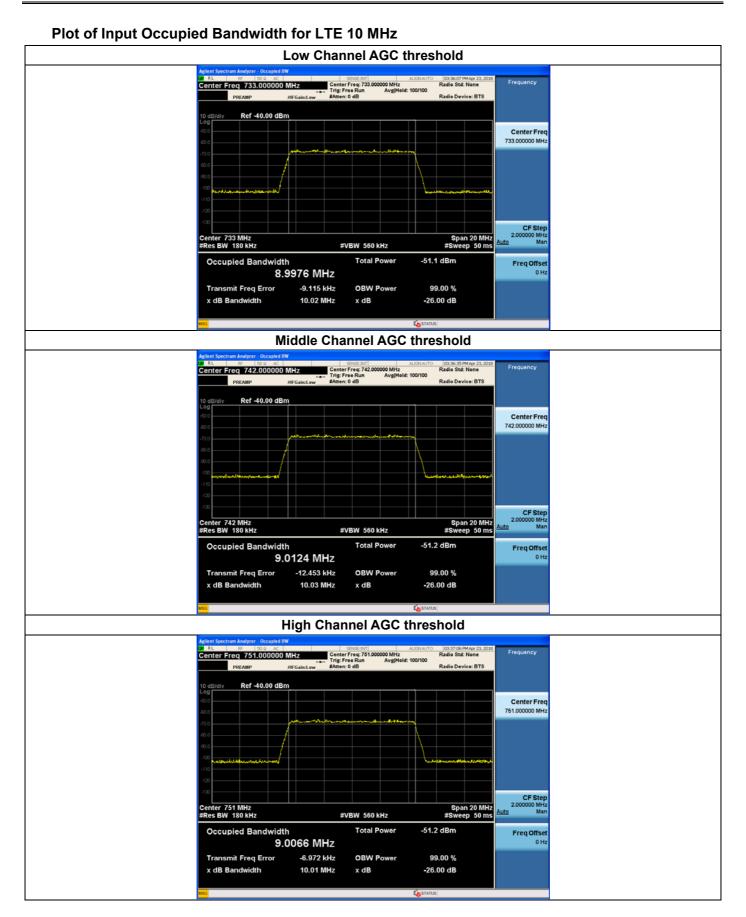

Test Results:

Data of Output Occupied bandwidth

	Channel	Frequency (MHz)	Measured OBW (MHz)
	Low	733.00	8.9593
LTE 10 MHz AGC threshold	Middle	742.00	8.9955
	High	751.00	8.9938
LTE 10 MHz	Low	733.00	8.9590
+3 dB above the	Middle	742.00	8.9964
AGC threshold	High	751.00	8.9893

Data of Input Occupied bandwidth


	Channel	Frequency (MHz)	Measured OBW (MHz)
LTE 10 MHz AGC threshold	Low	733.00	8.9976
	Middle	742.00	9.0124
	High	751.00	9.0066



Report No.: HCT-RF-1805-FC010-R1

Plot of Output Occupied Bandwidth for LTE 10 MHz

7. OUT OF BAND REJECTION

FCC Rules

Test Requirement(s):

KDB 935210 D05 v01r02

Out of Band Rejection – Test for rejection of out of band signals. Filter freq. response plots are acceptable.

Test Procedures:

Measurements were in accordance with the test methods section 3.3, 4.3 of KDB 935210 D05 v01r02.

- 3.3 EUT out-of-band rejection
 - a) Connect a signal generator to the input of the EUT.
 - b) Configure a swept CW signal with the following parameters:
 - 1) Frequency range = \pm 250 % of the passband from the center of the passband.
 - 2) Level = a sufficient level to affirm that the out-of-band rejection is > 20 dB above the noise floor and will not engage the AGC during the entire sweep.
 - 3) Dwell time = approx. 10 ms.
 - 4) Number of points = SPAN/(RBW/2).
 - c) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
 - d) Set the span of the spectrum analyzer to the same as the frequency range of the signal generator.
 - e) Set the resolution bandwidth of the spectrum analyzer to be 1 % to 5 % of the passband and the video bandwidth shall be set to \geq 3 × RBW.
 - f) Set the detector to Peak Max-Hold and wait for the spectrum analyzer's spectral display to fill.
 - g) Place a marker to the peak of the frequency response and record this frequency as f0.
 - h) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the -20 dB down amplitude to determine the 20 dB bandwidth. Capture the frequency response of the EUT.

4.3 PLMRS device out-of-band rejection

Adjust the internal gain control of the equipment under test to the maximum gain for which equipment certification is sought.

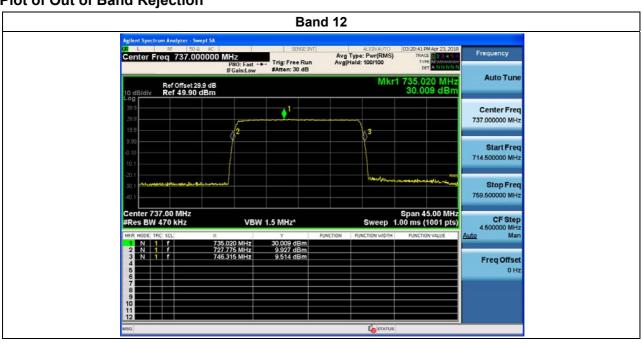
- a) Connect a signal generator to the input of the EUT.
- b) Configure a swept CW signal with the following parameters:
- c) Frequency range = \pm 250 % of the manufacturer's pass band.
- d) The CW amplitude will be 3 dB below the AGC threshold (see 4.2) and but not activate the AGC threshold throughout the test.

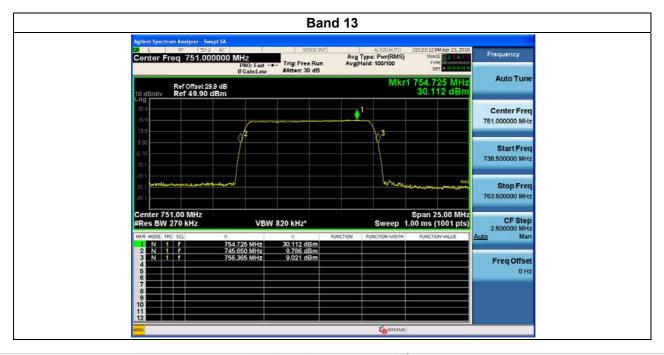
- e) Dwell time = approx. 10 ms.
- f) Frequency step = 50 kHz.
- g) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
- h) Set the resolution bandwidth of the spectrum analyzer between 1 % and 5 % of the manufacturer's pass band with the video bandwidth set to 3 × RBW.
- i) Set the detector to Peak and the trace to Max-Hold.
- j) After the trace is completely filled, place a marker at the peak amplitude, which is designated as f0, and with two additional markers (use the marker-delta method) at the 20 dB bandwidth (i.e., at the points where the gain has fallen by 20 dB).
- k) Capture the frequency response plot and for inclusion in the test report.

Test Results:

Input Signal	Input Level (dBm)	Maximum Amp Gain (dB)		
Sinusoidal	-60	90		

^{* 700} MHz out of band rejection is measured in bands 12 and 13, respectively.


^{*} Amp gain is the result of combination with DU module (EZ-DASD-L23)



Data of Out of Band Rejection

	point of 20 dB below (MHz)		Output power (dBm)	Gain (dB)	
Band 12	Left	727.775	30.009	90.009	
Band 12	Right	746.315	30.009		
Band 13	Left	745.650	30.112	90.112	
Ballu 13	Right	756.365	30.112	90.112	

Plot of Out of Band Rejection

8. UNWANTED CONDUCTED EMISSIONS

FCC Rules

Test Requirements:

§ 2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

§ 27.53 Emission limits

- (c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
 - (1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
 - (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
 - (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;
 - (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;
 - (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.
- (f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to −70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and −80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.
- (g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter

power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Test Procedures:

Measurements were in accordance with the test methods section 3.6 and 4.7 of KDB 935210 D05 v01r02.

3.6.1 General

Refer to the applicable rule part(s) for specified limits on unwanted (out-of-band/out-of-block and spurious) emissions.

Spurious emissions shall be measured using a single test signal sequentially tuned to the low, middle, and high channels or frequencies within each authorized frequency band of operation. Out-of-band/out-of-block emissions (including intermodulation products) shall be measured under each of the following two stimulus conditions:

- a) two adjacent test signals sequentially tuned to the lower and upper frequency band/block edges;
- b) a single test signal, sequentially tuned to the lowest and highest frequencies or channels within the frequency band/block under examination.
 - NOTE—Single-channel boosters that cannot accommodate two simultaneous signals within the passband may be excluded from the test stipulated in step a).
- 3.6.2 Out-of-band/out-of-block emissions conducted measurements
 - a) Connect a signal generator to the input of the EUT.
 - If the signal generator is not capable of generating two modulated carriers simultaneously, then two discrete signal generators can be connected with an appropriate combining network to support this two-signal test.
 - b) Set the signal generator to produce two AWGN signals as previously described (e.g., 4.1 MHz OBW).
 - c) Set the center frequencies such that the AWGN signals occupy adjacent channels, as defined by industry standards such as 3GPP or 3GPP2, at the upper edge of the frequency band or block under test.
 - d) Set the composite power levels such that the input signal is just below the AGC threshold (see 3.2), but not more than 0.5 dB below. The composite power can be measured using the procedures provided in KDB Publication 971168, but it will be necessary to expand the power integration bandwidth so as to include both of the transmit channels. Alternatively, the composite power can be measured using an average power meter as described in KDB Publication 971168.
 - e) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation as

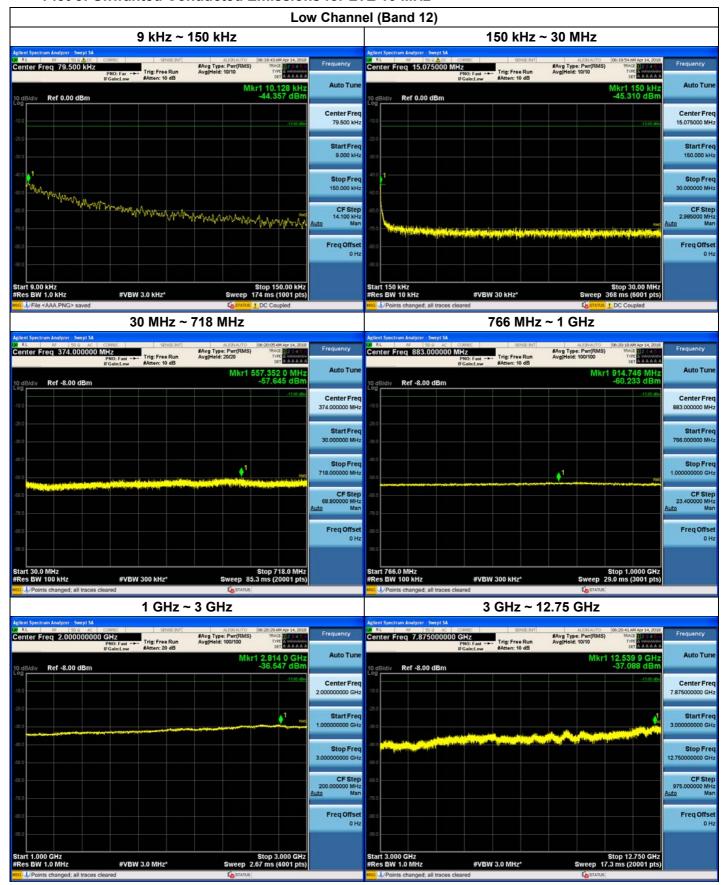
necessary.

- f) Set the RBW = reference bandwidth in the applicable rule section for the supported frequency band (typically 1 % of the EBW or 100 kHz or 1 MHz)
- g) Set the VBW = $3 \times RBW$.
- h) Set the detector to power averaging (rms) detector.
- i) Set the Sweep time = auto-couple.
- j) Set the spectrum analyzer start frequency to the upper block edge frequency, and the stop frequency to the upper block edge frequency plus 300 kHz or 3 MHz, for frequencies below and above 1 GHz, respectively.
- k) Trace average at least 100 traces in power averaging (rms) mode.
- I) Use the marker function to find the maximum power level.
- m) Capture the spectrum analyzer trace of the power level for inclusion in the test report.
- n) Repeat steps k) to m) with the composite input power level set to 3 dB above the AGC threshold.
- o) Reset the frequencies of the input signals to the lower edge of the frequency block or band under test.
- p) Reset the spectrum analyzer start frequency to the lower block edge frequency minus 300 kHz or 3 MHz, for frequencies below and above 1 GHz, respectively, and the stop frequency to the lower band or block edge frequency.
- q) Repeat steps k) to n).
- r) Repeat steps a) to q) with the signal generator configured for a single test signal tuned as close as possible to the block edges.
- s) Repeat steps a) to r) with the narrowband test signal.
- t) Repeat steps a) to s) for all authorized frequency bands or blocks used by the EUT.
- 3.6.3 Spurious emissions conducted measurements
 - a) Connect a signal generator to the input of the EUT.
 - b) Set the signal generator to produce the broadband test signal as previously described (i.e.,
 - 4.1 MHz OBW AWGN).
 - c) Set the center frequency of the test signal to the lowest available channel within the frequency band or block.
 - d) Set the EUT input power to a level that is just below the AGC threshold (see 3.2), but not more than 0.5 dB below.
 - e) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation as necessary.
 - f) Set the RBW = reference bandwidth in the applicable rule section for the supported frequency band of operation (e.g., reference bandwidth is typically 100 kHz or 1 MHz).
 - g) Set the VBW \geq 3 × RBW.
 - h) Set the Sweep time = auto-couple.

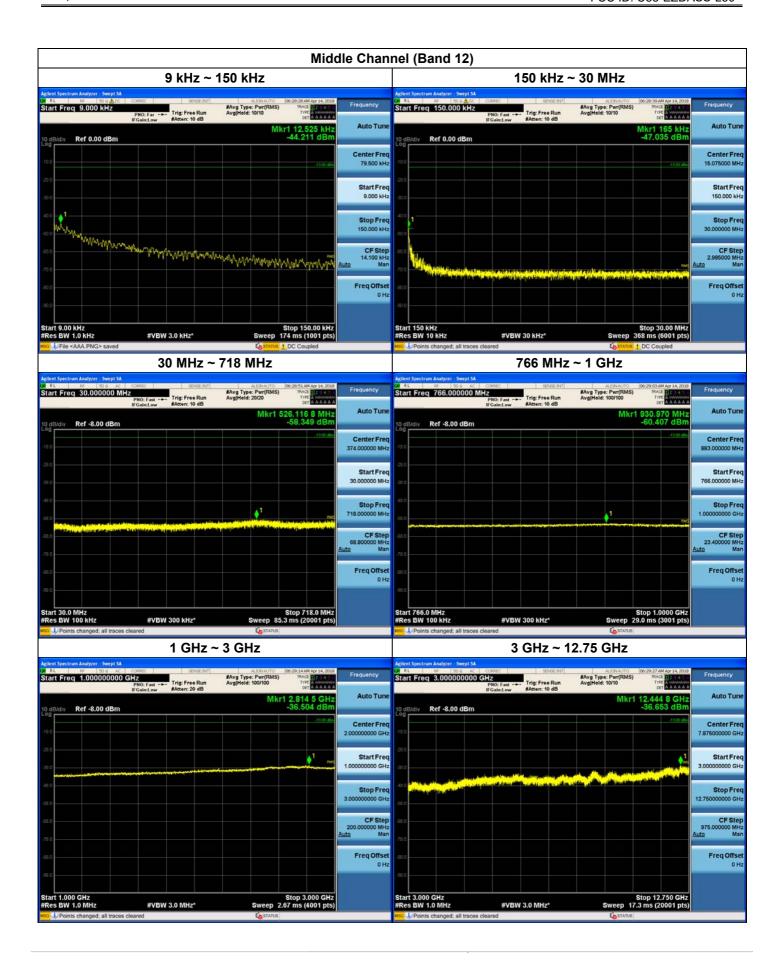
i) Set the spectrum analyzer start frequency to the lowest RF signal generated in the equipment, without going below 9 kHz, and the stop frequency to the lower band/block edge frequency minus 100 kHz or 1 MHz, as specified in the applicable rule part.

The number of measurement points in each sweep must be ≥ (2 × span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided, depending on the available number of measurement points provided by the spectrum analyzer.2

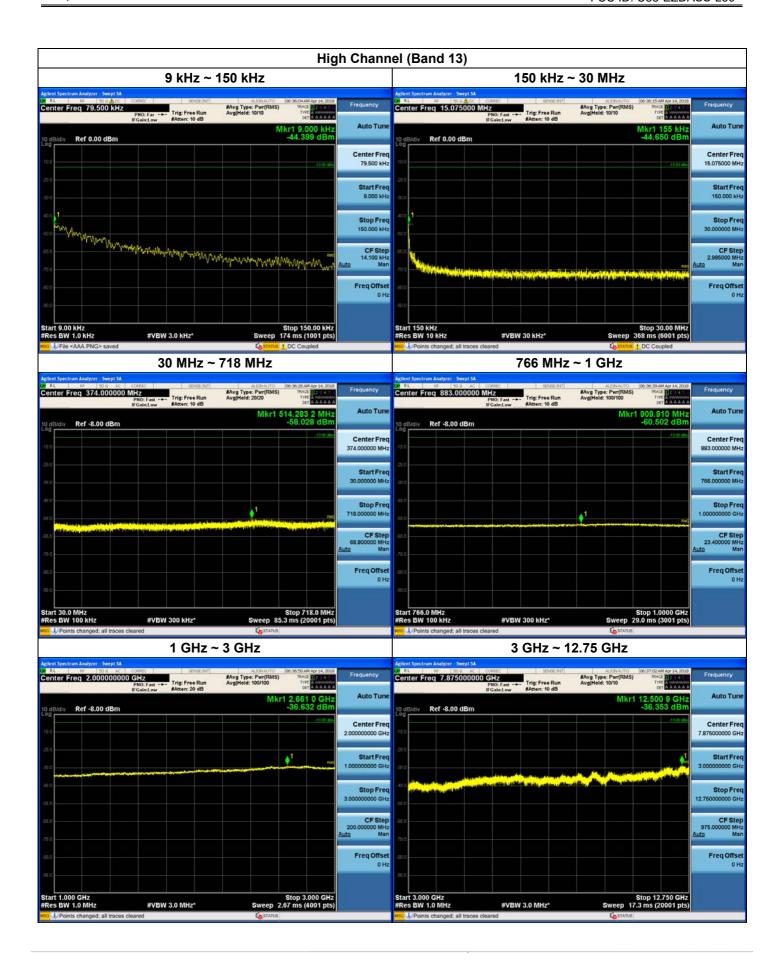
- j) Select the power averaging (rms) detector function.
- k) Trace average at least 10 traces in power averaging (rms) mode.
- I) Use the peak marker function to identify the highest amplitude level over each measured frequency range. Record the frequency and amplitude and capture a plot for inclusion in the test report.
- m) Reset the spectrum analyzer start frequency to the upper band/block edge frequency plus 100 kHz or 1 MHz, as specified in the applicable rule part, and the spectrum analyzer stop frequency to 10 times the highest frequency of the fundamental emission (see § 2.1057). The number of measurement points in each sweep must be \geq (2 × span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided, depending on the available number of measurement points provided by the spectrum analyzer.
- n) Trace average at least 10 traces in power averaging (rms) mode.
- o) Use the peak marker function to identify the highest amplitude level over each of the measured frequency ranges. Record the frequency and amplitude and capture a plot for inclusion in the test report; also provide tabular data, if required.
- p) Repeat steps i) to o) with the input test signals firstly tuned to a middle band/block frequency/channel, and then tuned to a high band/block frequency/channel.
- q) Repeat steps b) to p) with the narrowband test signal.
- r) Repeat steps b) to q) for all authorized frequency bands/blocks used by the EUT.

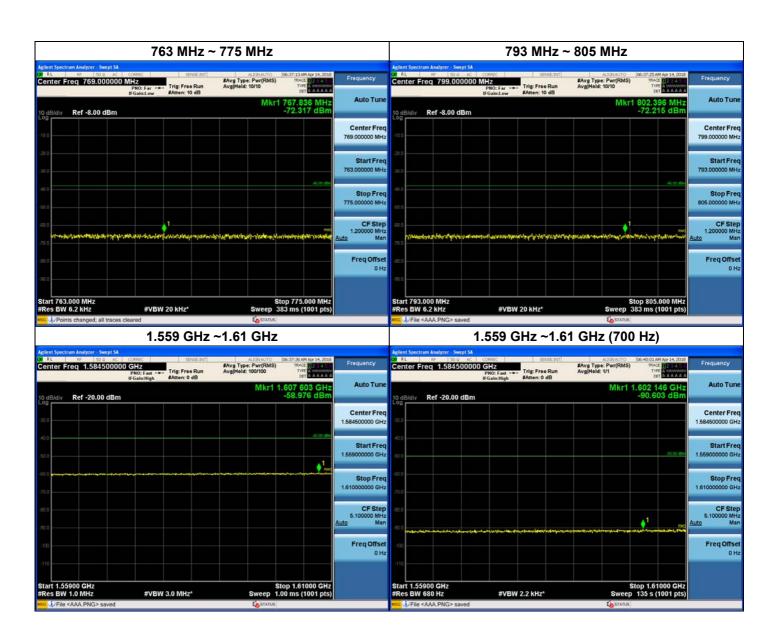

Note:

 In 9 kHz to 150 kHz and 150 kHz to 30 MHz bands, RBW was reduced to 1 % and 10 % of the reference bandwidth for measuring unwanted emission level(typically, 100 kHz if the authorized frequency band is below 1 GHz) and power was integrated. (1 % = +20 dB, 10 % = +10 dB)


Test Results:

Plot of Unwanted Conducted Emissions for LTE 10 MHz




Report No.: HCT-RF-1805-FC010-R1

Report No.: HCT-RF-1805-FC010-R1

Plot of Band Edge for LTE 10 MHz

Plot of Intermodulation for LTE 10 MHz

9. RADIATED EMISSIONS

FCC Rules

Test Requirements:

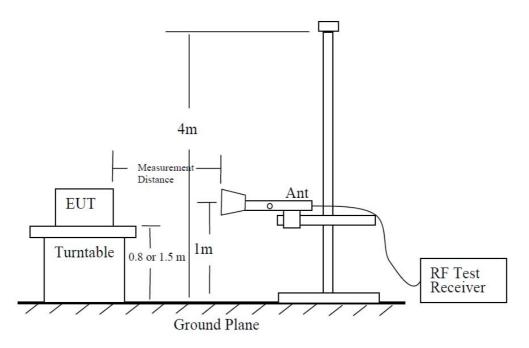
§ 2.1053 Measurements required: Field strength of spurious radiation.

- (a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.
- (b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:
 - (1) Those in which the spurious emissions are required to be 60 dB or more below the mean power of the transmitter.
 - (2) All equipment operating on frequencies higher than 25 MHz.
 - (3) All equipment where the antenna is an integral part of, and attached directly to the transmitter.
 - (4) Other types of equipment as required, when deemed necessary by the Commission.

Test Procedures:

The measurement is performed in accordance with Section 5.5.3.2 of ANSI C63.26.

- a) Place the EUT in the center of the turntable. The EUT shall be configured to transmit into the standard non-radiating load (for measuring radiated spurious emissions), connected with cables of minimal length unless specified otherwise. If the EUT uses an adjustable antenna, the antenna shall be positioned to the length that produces the worst case emission at the fundamental operating frequency.
- b) Each emission under consideration shall be evaluated:
 - 1) Raise and lower the measurement antenna in accordance 5.5.2, as necessary to enable



detection of the maximum emission amplitude relative to measurement antenna height.

- 2) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
- 3) Return the turntable to the azimuth where the highest emission amplitude level was observed.
- 4) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
- 5) Record the measured emission amplitude level and frequency using the appropriate RBW.
- c) Repeat step b) for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- d) ~ j) Omitted
- k) Provide the complete measurement results as a part of the test report.

Test Setup:

Note:

- 1) According to SVSWR requirement in ANSI 63.4 (2014), we performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor (reference distance: 3 m).
- 2) Distance extrapolation factor = 20 log (test distance / specific distance) (dB)
- 3) Position of EUT for testing below 1 GHz test is 80 cm, and above 1 GHz is 1.5 m

Test Result:

Ch.	Frequency (MHz)	Measured Level (dBuV/m)	Measured Power (dBm)	Ant. Factor (dB/m)	C.L (dB)	A.G. (dB)	D.F. (dB)	Pol.	Result (dBm)
	No Critical Peaks Found								

^{*} C.L.: Cable Loss / A.G.: Ant. Gain / D.F.: Distance Factor (3.75 m)

10. FREQUENCY STABILITY

FCC Rules

Test Requirements:

§ 2.1055 Measurements required: Frequency stability.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
 - (1) From -30° to + 50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

§ 27.54 Frequency stability.

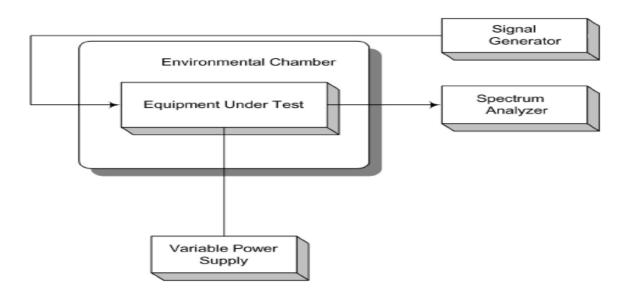
The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Test Procedures:

The measurement is performed in accordance with Section 5.6.4 and 5.6.5 of ANSI C63.26.

- 5.6.4 Frequency stability over variations in temperature
- a) Supply the EUT with a nominal 60 Hz ac voltage, dc voltage, or install a new or fully charged battery in the EUT.
- b) If possible a dummy load should be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, the EUT should be placed in the center of the chamber with the antenna adjusted to the shortest length possible.
- c) Turn on the EUT, and tune it to the center frequency of the operating band.
- d) Couple the transmitter output to the measuring instrument through a suitable attenuator and coaxial cable. If connection to the EUT output is not possible, make the measurement by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away).
 - NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory authority is the recommended measuring instrument.
- e) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument, but is strong enough to allow measurement of the operating or fundamental frequency of the EUT). Adjust the detector bandwidth and span settings to achieve a resolution capable of accurate frequency measurements over the applicable frequency stability limits.
- f) Turn the EUT off, and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.
- g) Set the temperature control on the chamber to the highest temperature specified in the regulatory requirements for the type of device, and allow the oscillator heater and the chamber

temperature to stabilize. Unless otherwise instructed by the regulatory authority, this temperature should be 50 $^{\circ}$ C.


- h) While maintaining a constant temperature inside the environmental chamber, turn on the EUT and allow sufficient time for the EUT temperature to stabilize.
- i) Measure the frequency.
- j) Switch off the EUT, but do not switch off the oscillator heater.
- k) Lower the chamber temperature to the next level that is required by the standard and allow the temperature inside the chamber to stabilize. Unless otherwise instructed by the regulators, this temperature step should be 10 °C.
- I) Repeat step h) through step k) down to the lowest specified temperature. Unless otherwise instructed by the regulators, this temperature should be $-30\,^{\circ}$ C. When the frequency stability limit is stated as being sufficient such that the fundamental emissions stay within the authorized bands of operation, a reference point shall be established at the applicable unwanted emissions limit using a RBW equal to the RBW required by the unwanted emissions specification of the applicable regulatory standard. These reference points measured using the lowest and highest channel of operation shall be identified as f_L and f_H respectively. The worst-case frequency offset determined in the above methods shall be added or subtracted from the values of f_L and f_H and the resulting frequencies must remain within the band.
- m) Omitted
- 5.6.5 Frequency stability when varying supply voltage
- a) Couple the transmitter output to the measuring instrument through a suitable attenuator and coaxial cable. If connection to the EUT output is not possible make the measurement by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away)
- b) Supply the EUT with nominal ac or dc voltage. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- c) Turn on the EUT, and couple its output to a frequency counter or other frequency-measuring instrument.
- d) Tune the EUT to the center frequency of the operating band. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument, but is strong enough to allow measurement of the operating or fundamental frequency of the EUT). Adjust the detector bandwidth and span settings to achieve a resolution capable of accurate frequency measurements over the applicable frequency stability limits.

NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory authority is the recommended measuring instrument.

- e) Measure the frequency.
- f) Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.
- g) For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.
- h) Repeat the frequency measurement.
 NOTE—For band-edge compliance, it can be required to make these measurements at the low and high channel of the operating band.

Test Setup:

Note:

1) The results of the frequency stability test shown above the frequency deviation measured values are very small and similar trend for each port, so we are attached only the worst case data.

Test Results:

Reference: voltage = -48 Vdc at 20°C, frequency = 742 MHz

Voltage (%)	Temp.(℃)	Frequency (Hz)	Frequency Error (Hz)	Deviation (Hz)	ppm	
	+20(Ref)	742 000 000	0.265	0.000	0.00000	
	-30	742 000 001	0.904	0.638	0.00086	
	-20	742 000 001	0.691	0.425	0.00057	
	-10	741 999 999	-0.840	-1.105	-0.00149	
100%	0	742 000 001	0.708	0.442	0.00060	
	+10	742 000 000	0.104	-0.161	-0.00022	
	+30	742 000 001	0.635	0.370	0.00050	
	+40	742 000 001	0.659	0.393	0.00053	
	+50	742 000 000	-0.422	-0.688	-0.00093	
115%	+20	742 000 000	-0.064	-0.330	-0.00044	
85%	+20	742 000 001	0.941	0.675	0.00091	