

FCC REPORT

Certification

Applicant Name:

GS Instech Co., Ltd.

Address: 70, Gilpa-ro 71beon-gil, Nam-gu, Inchen, Korea Date of Issue: December 06, 2018

Location of test lab: HCT CO., LTD., 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-RF-1812-FC012

FCC ID:	U88-B25K			
APPLICANT:	GS Instech Co., Ltd.			
Model:	B-25K			
EUT Type:	In-building RF repeater			
Frequency Range:	Band Name	Downlink (MHz)	Uplink (MHz)	
	Lower 700 MHz	734 ~ 746	704 ~ 716	
	Upper 700 MHz	746 ~ 756	777 ~ 787	
	Cellular	869 ~ 894	824 ~ 849	
	AWS-1	2 110 ~ 2 155	1 710 ~ 1 755	
	Broadband PCS	1 930 ~ 1 995	1 850 ~ 1 915	
Output Power:	10 dBm (DL) / 20 dBm (I	JL)		
Date of Test:	November 28, 2018 ~ D	ecember 4, 2018		
FCC Rule Parts:	CFR 47 Part 2, Part 22,	Part 24, Part 27		

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

Report prepared by : Kwang il Yooon Engineer of telecommunication testing center

Approved by : Jong Seok Lee Manager of telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

<u>Version</u>

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-1812-FC012	December 06, 2018	- First Approval Report

Table of Contents

1. GENERAL INFORMATION
1.1. APPLICANT INFORMATION
1.2. PRODUCT INFORMATION
1.3. TEST INFORMATION
2. FACILITIES AND ACCREDITATIONS
2.1. FACILITIES
2.2. EQUIPMENT
3. TEST SPECIFICATIONS
3.1. STANDARDS
3.2. ADDITIONAL DESCRIPTIONS ABOUT TEST7
3.3. MEASUREMENTUNCERTAINTY9
3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS
3.5. TEST DIAGRAMS 10
4. TEST EQUIPMENTS11
5. TEST RESULT
5.1. AGC THRESHOLD 12
5.2. OUT-OF-BAND REJECTION
5.3. INPUT-VERSUS-OUTPUT SIGNAL COMPARISON
5.4. MEAN OUTPUT POWER AND AMPLIFIER/BOOSTER GAIN
5.5. OUT-OF-BAND/OUT-OF-BLOCK EMISSIONS AND SPURIOUS EMISSIONS
5.6. RADIATED SPURIOUS EMISSIONS

1. GENERAL INFORMATION

1.1. APPLICANT INFORMATION

Company Name	GS Instech Co., Ltd.
Company Address	70, Gilpa-ro 71beon-gil, Nam-gu, Inchen, Korea

1.2. PRODUCT INFORMATION

EUT Туре	In-building RF repeater			
Power Supply	110 ~ 220 V AC, AC/DC Adaptor Output : 7.5 Vdc X 5.4 Amps			
Frequency Range	Band Name Downlink (MHz) Uplink (MHz)			
. , , ,	Lower 700 MHz	734 ~ 746	704 ~ 716	
	Upper 700 MHz	746 ~ 756	777 ~ 787	
	Cellular	869 ~ 894	824 ~ 849	
	AWS-1 2 110 ~ 2 155 1 710 ~ 1 755			
	Broadband PCS 1 930 ~ 1 995 1 850 ~ 1 915			
Tx Output Power	10 dBm (DL) / 20 dBm (UL)			
Antenna Specification	Service (DL) Panel Antenna : 7 dBi (698 ~ 960 MHz) / 10 dBi (1 710 ~ 2 700 MHz) Donor (UL) Yagi Antenna : 9 dBi (698 ~ 960 MHz) / 11 dBi (1 710 ~ 2 700 MHz)			

1.3. TEST INFORMATION

FCC Rule Parts	CFR 47 Part 2, Part 22, Part 24, Part 27
Measurement Standards	KDB 935210 D05 v01r02, ANSI C63.26-2015
Test Location	HCT CO., LTD. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

2. FACILITIES AND ACCREDITATIONS

2.1. FACILITIES

The SAC (Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4 (Version: 2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

2.2. EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

3. TEST SPECIFICATIONS

3.1. STANDARDS

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 2, Part 22, Part 24 and Part 27.

Description	Reference	Results
AGC threshold	KDB 935210 D05 v01r02 3.2	Compliant
Out-of-band rejection	KDB 935210 D05 v01r02 3.3	Compliant
Input-versus-output signal comparison	§2.1049	Compliant
Mean output power and amplifier/booster gain	§2.1046, §22.913, §24.232, §27.50(b),(c),(d)	Compliant
Out-of-band/out-of-block and spurious emissions	§2.1051, §22.917, §24.238, §27.53(c),(f),(g),(h)	Compliant
Spurious emissions radiated	§2.1053	Compliant

3.2. ADDITIONAL DESCRIPTIONS ABOUT TEST

Except for the following cases, EUT was tested under normal operating conditions.

: Out-of-band rejection test requires maximum gain condition without AGC

The test was generally based on the method of KDB 935210 D05 v01r02 and only followed ANSI C63.26-2015 if there was no test method in KDB standard.

EUT was tested with following modulated signals provide by applicant.

Band Name	Tested signals
Lower 700 MHz	LTE 10 MHz
Upper 700 MHz	LTE 10 MHz
Cellular	CDMA, 1xEV-DO, LTE 5 MHz
Broadband PCS	CDMA, 1xEV-DO, LTE 20 MHz
AWS-1	LTE 10 MHz

* We have done CDMA and 1xEVDO modulation test in technology. Test results are only attached worst cases.

The frequency stability measurement has been omitted in accordance with section 3.7 of KDB 935210 D05 v01r02.

: It can be confirmed through input-versus-output signal comparison test that EUT does not alter the input signal.

The tests results included actual loss value for attenuator and cable combination as shown in the table below.

	In	nut	Dath
•	111	pui	Path

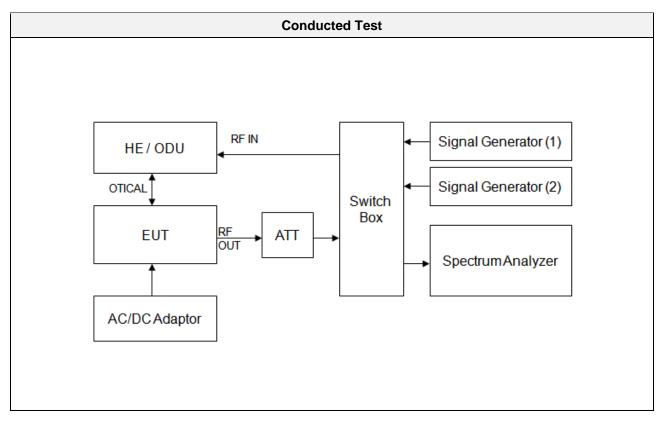
Correction factor table					
Frequency (MHz)	Factor (dB)	Frequency (MHz)	Factor (dB)	Frequency (MHz)	Factor (dB)
600	1.055	1 200	1.564	2 200	2.067
650	1.134	1 300	1.588	2 300	2.099
700	1.167	1 400	1.588	2 400	2.226
750	1.163	1 500	1.744	2 500	2.241
800	1.204	1 600	1.895	2 600	2.295
850	1.188	1 700	1.769	2 700	2.158
900	1.187	1 800	1.775	2 800	2.172
950	1.240	1 900	1.806	2 900	2.377
1 000	1.223	2 000	1.967	3 000	2.655
1 100	1.291	2 100	2.008	-	-

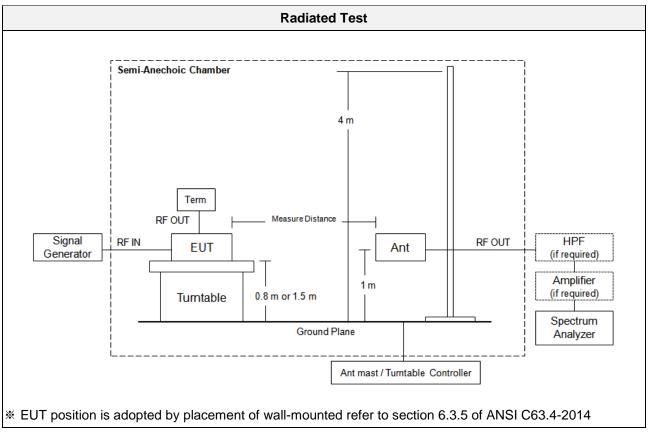
: Output Path

Correction factor table					
Frequency (MHz)Factor (dB)Frequency (MHz)Factor (dB)					
2	11.172	9 000	15.345		
10	10.651	9 500	15.631		
30	10.133	10 000	15.263		
50	10.110	10 500	15.858		
100	10.097	11 000	15.595		
200	10.319	11 500	16.205		
300	10.538	12 000	16.059		
400	10.761	12 500	15.613		
500	10.686	13 000	16.417		
600	10.818	13 500	16.348		
700	10.963	14 000	16.876		
750	10.983	14 500	17.087		
800	11.040	15 000	16.599		
850	11.040	15 500	16.833		
900	11.092	16 000	17.519		
1 000	11.193	16 500	18.511		
1 500	11.507	17 000	17.691		
2 000	11.871	17 500	18.295		
2 500	12.101	18 000	18.449		
3 000	12.273	19 000	17.880		
3 500	12.525	20 000	17.270		
4 000	13.069	21 000	18.257		
4 500	13.148	22 000	21.301		
5 000	13.886	23 000	19.942		
5 500	14.178	24 000	19.763		
6 000	14.123	25 000	21.146		
6 500	14.377	26 000	22.737		
7 000	14.529	26 500	18.589		
7 500	14.763	-	-		
8 000	14.508	-	-		
8 500	15.592	-	-		

3.3. MEASUREMENTUNCERTAINTY

Description	Reference	Results	
AGC threshold	-	±0.87 dB	
Out-of-band rejection		±0.58 MHz	
Input-versus-output signal comparison	-	±0.56 MHZ	
Mean output power and amplifier/booster gain	-	±0.87 dB	
Out-of-band/out-of-block and spurious emissions	-	±1.08 dB	
Spurious amissions radiated	f ≤ 1 GHz	±4.80 dB	
Spurious emissions radiated	f > 1 GHz	±6.07 dB	


* Coverage factor k = 2, Confidence levels of 95 %


3.4. STANDARDS ENVIRONMENTAL TEST CONDITIONS

Temperature	+15 ℃ to +35 ℃
Relative humidity	30 % to 60 %
Air pressure	860 mbar to 1 060 mbar

3.5. TEST DIAGRAMS

4. TEST EQUIPMENTS

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Agilent	N9020A / Spectrum Analyzer	09/05/2018	Annual	MY46471250
Agilent	N5182A / Signal Generator	08/09/2018	Annual	MY50140312
Agilent	N5182A / Signal Generator	08/30/2018	Annual	MY46240523
Changwoo	18N-20 dB / Attenuator	09/13/2018	Annual	4
KEITHLEY	S46 / Switch	N/A	N/A	1088024
Deayoung ENT	DFSS60 / AC Power Supply	04/05/2018	Annual	1003030-1
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Emco	2090 / Controller	N/A	N/A	060520
Ets	- / Turn Table	N/A	N/A	N/A
Rohde&Schwarz	- / Loop Antenna	04/19/2017	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	04/06/2017	Biennial	760
Schwarzbeck	BBHA 9120D / Horn Antenna	06/30/2017	Biennial	9120D-1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	04/25/2017	Biennial	BBHA9170124
Rohde&Schwarz	FSP / Spectrum Analyzer	09/19/2018	Annual	836650/016
Wainwright Instruments	WHKX10-900-1000-15000-40SS / High Pass Filter	07/20/2018	Annual	5
Wainwright Instruments	WHKX10-2700-3000-18000-40SS / High Pass Filter	07/20/2018	Annual	3
CERNEX	CBLU1183540 / Power Amplifier	01/03/2018	Annual	24613
CERNEX	CBL06185030 / Power Amplifier	01/03/2018	Annual	24615
CERNEX	CBL18265035 / Power Amplifier	01/10/2018	Annual	22966

5. TEST RESULT

5.1. AGC THRESHOLD

Test Requirement:

KDB 935210 D05 v01r02

Testing at and above the AGC threshold is required.

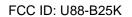
Test Procedures:

Measurements were in accordance with the test methods section 3.2 of KDB 935210 D05 v01r02.

In the case of fiber-optic distribution systems, the RF input port of the equipment under test (EUT) refers to the RF input of the supporting equipment RF to optical convertor; see also descriptions and diagrams for typical DAS booster systems in KDB Publication 935210 D02

Devices intended to be directly connected to an RF source (donor port) only need to be evaluated for any over-the-air transmit paths.

- a) Connect a signal generator to the input of the EUT.
- b) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation as necessary.
- c) The signal generator should initially be configured to produce either of the required test signals.
- d) Set the signal generator frequency to the center frequency of the EUT operating band.
- e) While monitoring the output power of the EUT, measured using the methods of ANSI C63.26-2015 subclause 5.2.4.4.1, increase the input level until a 1 dB increase in the input signal power no longer causes a 1 dB increase in the output signal power.
- f) Record this level as the AGC threshold level.
- g) Repeat the procedure with the remaining test signal.


Output power measurement in subclause 5.2.4.4.1 of ANSI C63.26

- a) Set span to $2 \times to 3 \times the OBW$.
- b) Set RBW = 1% to 5% of the OBW.
- c) Set VBW \ge 3 × RBW.
- d) Set number of measurement points in sweep $\ge 2 \times \text{span} / \text{RBW}$.
- e) Sweep time: auto-couple
- f) Detector = power averaging (rms).

g) If the EUT can be configured to transmit continuously, then set the trigger to free run.

h) Omit

i) Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To

accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.

j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

Test Band	Link	Signal	Center Frequency (MHz)	AGC Threshold Level (dBm)	Output Level (dBm)
Lower	Uplink	LTE 10 MHz	710.00	-40	20.21
700 MHz	Downlink	LTE 10 MHz	740.00	-50	10.11
Upper	Uplink	LTE 10 MHz	782.00	-40	19.61
700 MHz	Downlink	LTE 10 MHz	751.00	-50	10.04
	Liplink	CDMA	836.50	-40	19.65
Cellular	Uplink	LTE 5 MHz	836.50	-40	19.59
Cellular	Downlink	CDMA	881.50	-50	9.97
	DOWNIINK	LTE 5 MHz	881.50	-50	10.07
AWS-1	Uplink	LTE 10 MHz	1732.50	-45	19.53
AVV 5-1	Downlink	LTE 10 MHz	2132.50	-55	9.56
	Linlink	CDMA	1882.50	-45	19.56
Broadband	Uplink	LTE 20 MHz	1882.50	-45	20.05
PCS	Downlink	CDMA	1962.50	-55	10.34
	DOWININK	LTE 20 MHz	1962.50	-55	9.88

Test Results:

5.2. OUT-OF-BAND REJECTION

Test Requirement:

KDB 935210 D05 v01r02

Out-of-band rejection required.

Test Procedures:

Measurements were in accordance with the test methods section 3.3 of KDB 935210 D05 v01r02.

Adjust the internal gain control of the EUT to the maximum gain for which equipment certification is sought.

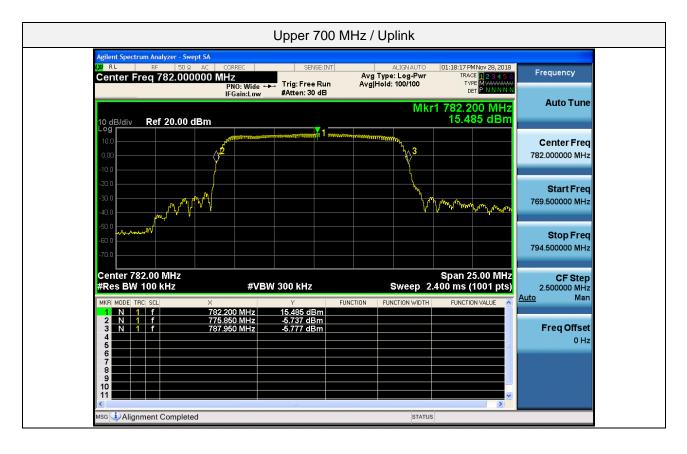
- a) Connect a signal generator to the input of the EUT.
- b) Configure a swept CW signal with the following parameters:
 - 1) Frequency range = ± 250 % of the passband, for each applicable CMRS band.

2) Level = a sufficient level to affirm that the out-of-band rejection is > 20 dB above the noise floor and will not engage the AGC during the entire sweep.

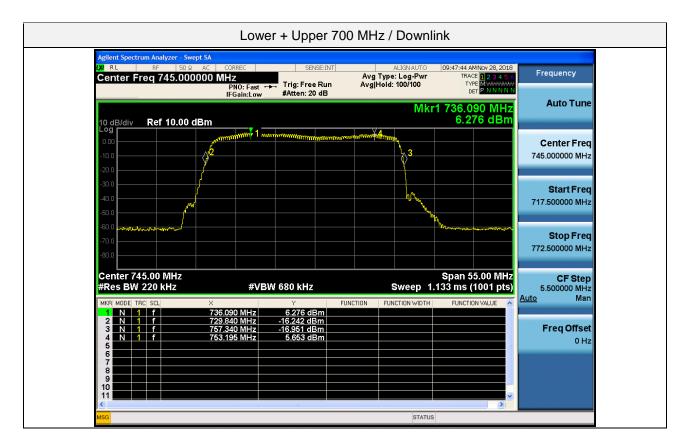
- 3) Dwell time = approximately 10 ms.
- 4) Number of points = SPAN/(RBW/2).
- c) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
- d) Set the span of the spectrum analyzer to the same as the frequency range of the signal generator.
- e) Set the resolution bandwidth (RBW) of the spectrum analyzer to be 1 % to 5 % of the EUT passband,

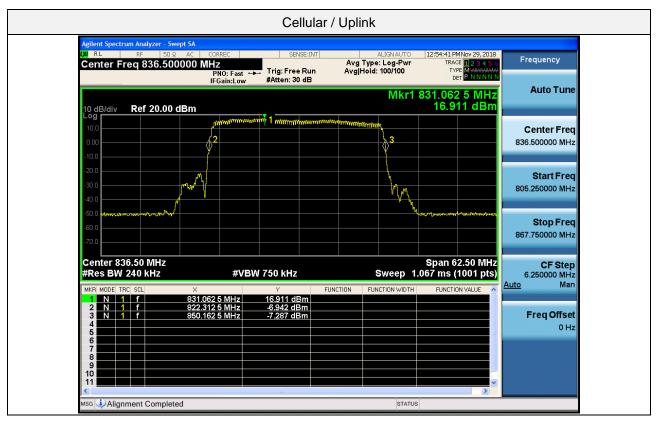
and the video bandwidth (VBW) shall be set to \geq 3 × RBW.

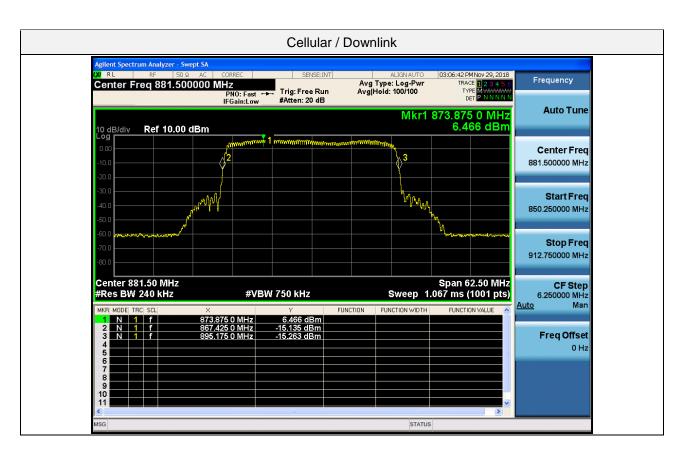

- f) Set the detector to Peak Max-Hold and wait for the spectrum analyzer's spectral display to fill.
- g) Place a marker to the peak of the frequency response and record this frequency as f_0 .

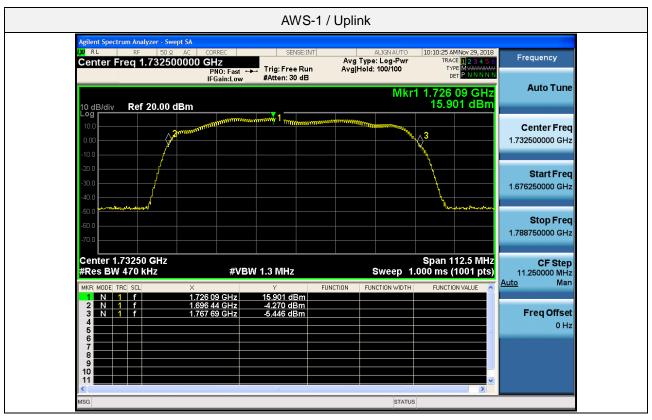

h) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the −20 dB down amplitude, to determine the 20 dB bandwidth.

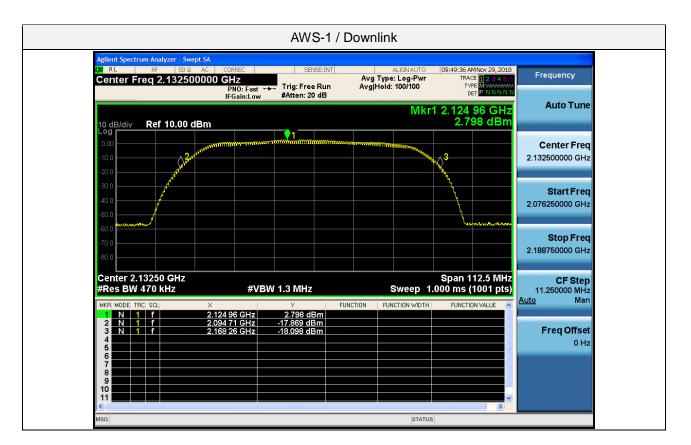
- i) Capture the frequency response of the EUT.
- j) Repeat for all frequency bands applicable for use by the EUT.

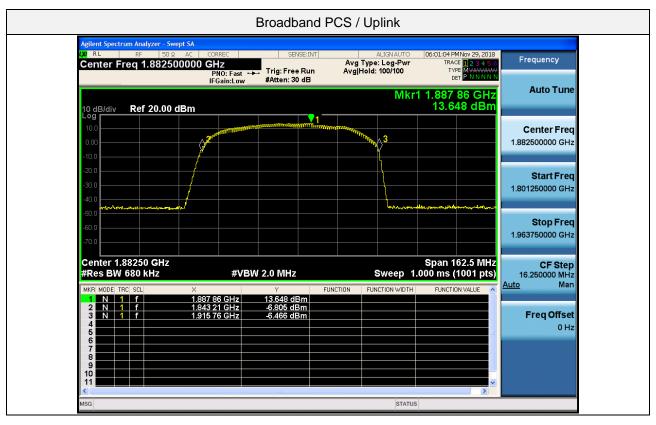


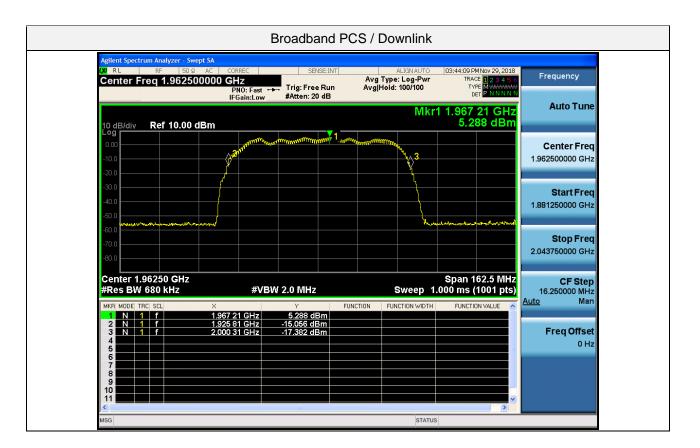

Test Results:











18/243

5.3. INPUT-VERSUS-OUTPUT SIGNAL COMPARISON

Test Requirement:

§2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the specified conditions of § 2.1049 (a) through (i) as applicable.

Test Procedures:

Measurements were in accordance with the test methods section 3.4 of KDB 935210 D05 v01r02.

a) Connect a signal generator to the input of the EUT.

b) Configure the signal generator to transmit the AWGN signal.

c) Configure the signal amplitude to be just below the AGC threshold level (see 3.2), but not more than 0.5 dB below.

d) Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.

e) Set the spectrum analyzer center frequency to the center frequency of the operational band under test.

The span range of the spectrum analyzer shall be between 2 times to 5 times the emission bandwidth (EBW) or alternatively, the OBW.

f) The nominal RBW shall be in the range of 1 % to 5 % of the anticipated OBW, and the VBW shall be ≥ 3 x RBW.

g) Set the reference level of the instrument as required to preclude the signal from exceeding the maximum spectrum analyzer input mixer level for linear operation. In general, the peak of the spectral envelope must be more than [10 log (OBW / RBW)] below the reference level.

Steps f) and g) may require iteration to enable adjustments within the specified tolerances.

h) The noise floor of the spectrum analyzer at the selected RBW shall be at least 36 dB below the reference level.

i) Set spectrum analyzer detection function to positive peak.

j) Set the trace mode to max hold.

k) Determine the reference value: Allow the trace to stabilize. Set the spectrum analyzer marker to the highest amplitude level of the displayed trace (this is the reference value) and record the associated frequency as f₀.

I) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the -26 dB down amplitude. The 26 dB EBW (alternatively OBW) is the positive frequency difference between the two markers. If the spectral envelope crosses the -26 dB down amplitude at multiple points, the lowest or highest frequency shall be selected as the frequencies that are the furthest removed from the center frequency at which the spectral envelope crosses the -26 dB down amplitude point.

m) Repeat steps e) to I) with the input signal connected directly to the spectrum analyzer (i.e., input signal measurement).

n) Compare the spectral plot of the input signal (determined from step m) to the output signal (determined from step I) to affirm that they are similar (in passband and rolloff characteristic features and relative spectral locations), and include plot(s) and descriptions in test report.

o) Repeat the procedure [steps e) to n)] with the input signal amplitude set to 3 dB above the AGC threshold.

p) Repeat steps e) to o) with the signal generator set to the narrowband signal.

q) Repeat steps e) to p) for all frequency bands authorized for use by the EUT.

Test Results:

Tabular data of Output Occupied Bandwidth

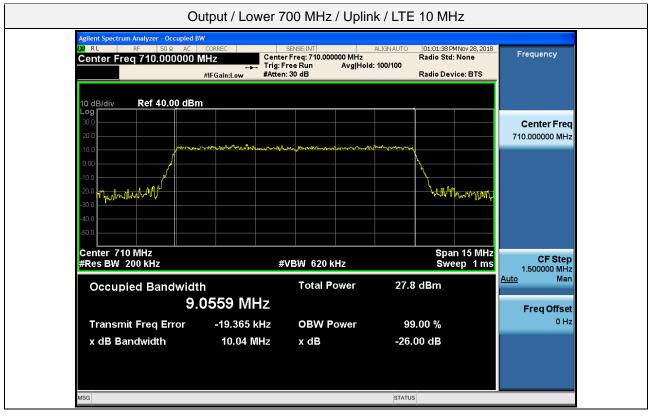
Test Band	Link	Signal	Center Frequency (MHz)	99 % OBW (MHz)	26 dB OBW (MHz)
Lower	Uplink	LTE 10 MHz	710.00	9.0559	10.04
700 MHz	Downlink	LTE 10 MHz	740.00	8.9943	9.955
Upper	Uplink	LTE 10 MHz	782.00	8.9832	9.909
700 MHz	Downlink	LTE 10 MHz	751.00	8.9905	10.00
	Liplink	CDMA	836.50	1.2386	1.372
Cellular	Uplink	LTE 5 MHz	836.50	4.5133	5.021
Cellular	Downlink	CDMA	881.50	1.2446	1.370
	DOWININK	LTE 5 MHz	881.50	4.5042	5.026
AWS-1	Uplink	LTE 10 MHz	1732.50	9.0342	10.03
AVV 5-1	Downlink	LTE 10 MHz	2132.50	8.9880	9.927
	Liplink	CDMA	1882.50	1.2449	1.376
Broadband	Uplink	LTE 20 MHz	1882.50	17.938	19.53
PCS	Downlink	CDMA	1962.50	1.2434	1.367
	DOWININK	LTE 20 MHz	1962.50	17.930	19.96

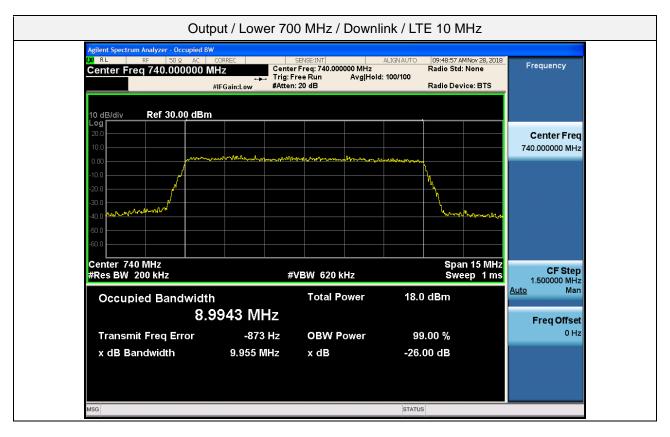
Test Band	Link	Signal	Center Frequency (MHz)	99 % OBW (MHz)	26 dB OBW (MHz)
Lower	Uplink	LTE 10 MHz	710.00	9.0201	9.984
700 MHz	Downlink	LTE 10 MHz	740.00	9.0013	9.907
Upper	Uplink	LTE 10 MHz	782.00	8.9946	9.950
700 MHz	Downlink	LTE 10 MHz	751.00	9.0017	10.00
	Liplink	CDMA	836.50	1.2396	1.360
Cellular	Uplink	LTE 5 MHz	836.50	4.5141	5.028
Cellular		CDMA	881.50	1.2390	1.367
	Downlink	LTE 5 MHz	881.50	4.5161	5.030
AWS-1	Uplink	LTE 10 MHz	1732.50	9.0151	9.984
AVV 5-1	Downlink	LTE 10 MHz	2132.50	9.0129	9.953
	Liplink	CDMA	1882.50	1.2367	1.367
Broadband	Uplink	LTE 20 MHz	1882.50	17.968	19.87
PCS	Downlink	CDMA	1962.50	1.2422	1.363
	DOMUIUK	LTE 20 MHz	1962.50	18.022	20.01

Tabular data of Input Occupied Bandwidth

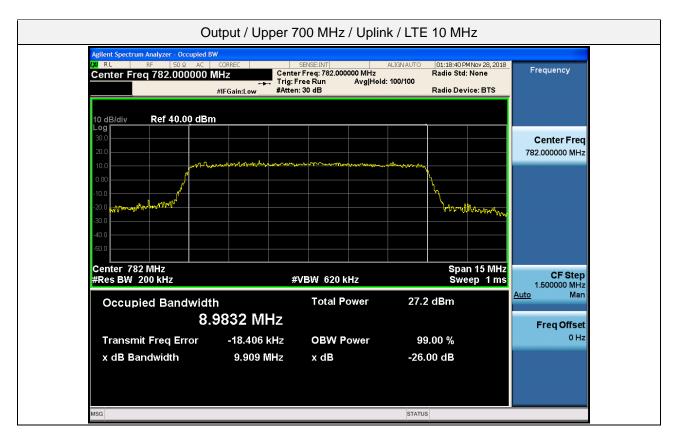
Test Band	Link	Signal	Center Frequency (MHz)	99 % OBW (MHz)	26 dB OBW (MHz)
Lower	Uplink	LTE 10 MHz	710.00	9.0311	10.06
700 MHz	Downlink	LTE 10 MHz	740.00	9.0073	9.936
Upper	Uplink	LTE 10 MHz	782.00	8.9945	9.917
700 MHz	Downlink	LTE 10 MHz	751.00	8.9688	9.945
	Liplink	CDMA	836.50	1.2394	1.362
Cellular	Uplink	LTE 5 MHz	836.50	4.5115	5.021
Cellular	Downlink	CDMA	881.50	1.2416	1.368
	DOWNIINK	LTE 5 MHz	881.50	4.5043	5.031
AWS-1	Uplink	LTE 10 MHz	1732.50	9.0206	10.02
AVV 5-1	Downlink	LTE 10 MHz	2132.50	9.0037	9.936
	Liplink	CDMA	1882.50	1.2385	1.368
Broadband	Uplink	LTE 20 MHz	1882.50	17.967	19.88
PCS	Downlink	CDMA	1962.50	1.2400	1.369
	DOMININK	LTE 20 MHz	1962.50	17.956	19.81

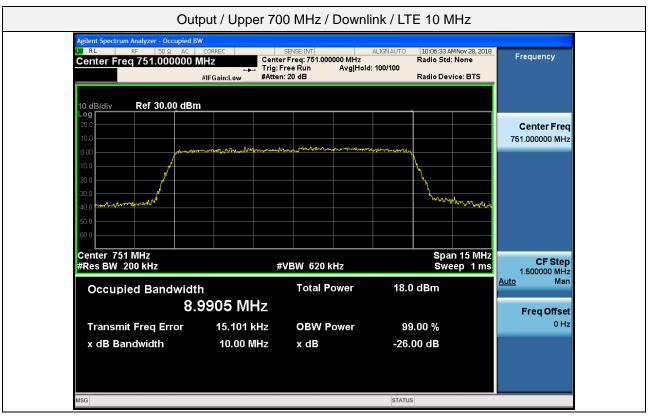
Tabular data of 3 dB above the AGC threshold Output Occupied Bandwidth

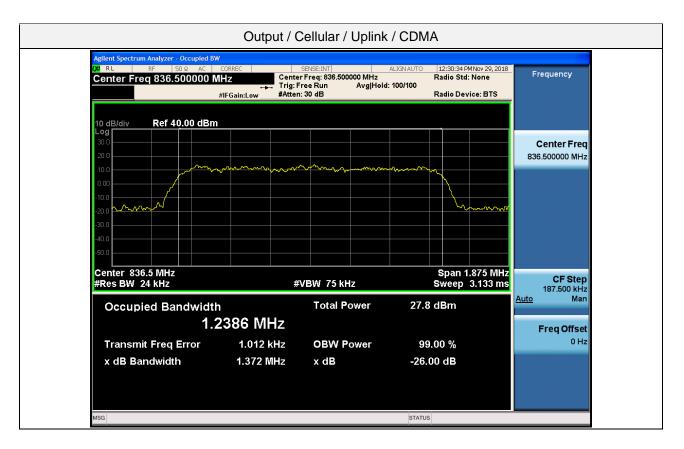

Test Band	Link	Signal	Variant of Input and output Occupied Bandwidth (%)	Variant of Input and 3 dB above the AGC threshold output Occupied Bandwidth (%)
Lower	Uplink	LTE 10 MHz	0.521	0.791
700 MHz	Downlink	LTE 10 MHz	0.485	0.293
Upper	Uplink	LTE 10 MHz	-0.412	-0.332
700 MHz	Downlink	LTE 10 MHz	0.030	-0.560
	Lipliak	CDMA	0.882	0.147
Callular	Uplink	LTE 5 MHz	-0.139	-0.139
Cellular	Downlink	CDMA	0.219	0.073
	DOWNIINK	LTE 5 MHz	-0.080	0.020
	Uplink	LTE 10 MHz	0.451	0.341
AWS-1	Downlink	LTE 10 MHz	-0.261	-0.171
	l la la la	CDMA	0.658	0.073
Broadband	Uplink	LTE 20 MHz	-1.711	0.050
PCS	Downlink	CDMA	0.293	0.440
	DOWININK	LTE 20 MHz	-0.250	-1.000

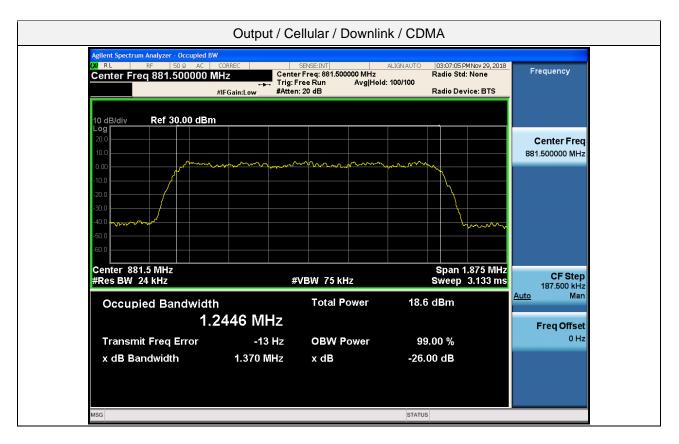

Measured Occupied Bandwidth Comparison

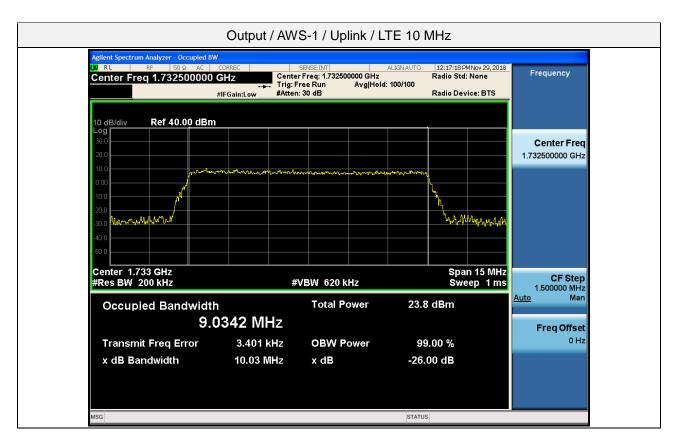
* Change in input-output OBW is less than \pm 5 %.

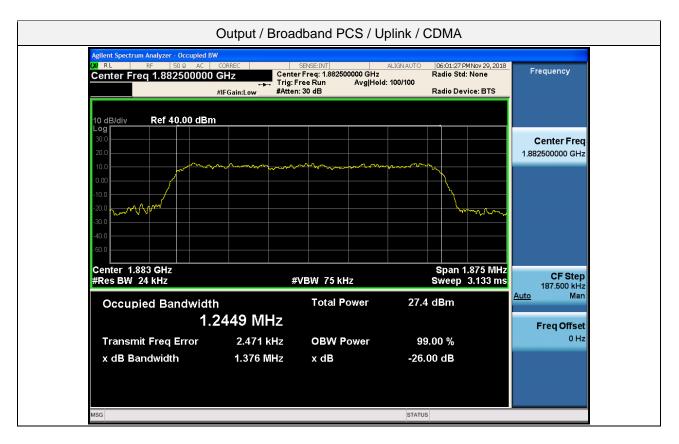


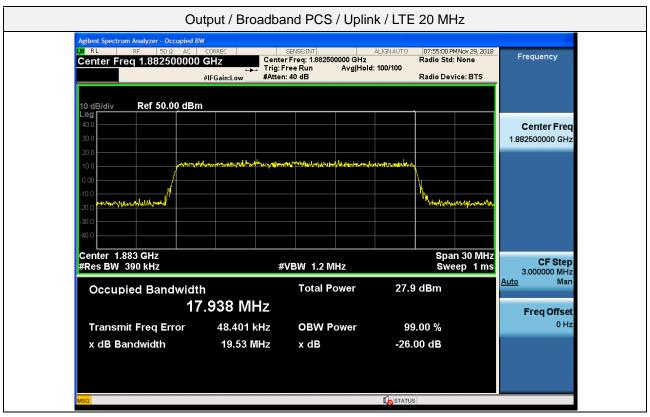

Plot data of Occupied Bandwidth

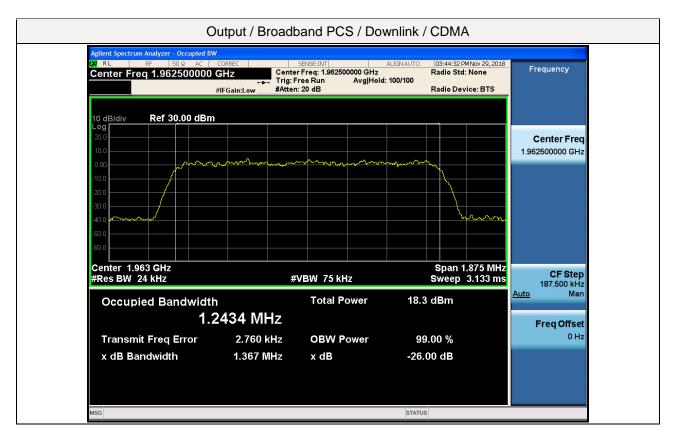


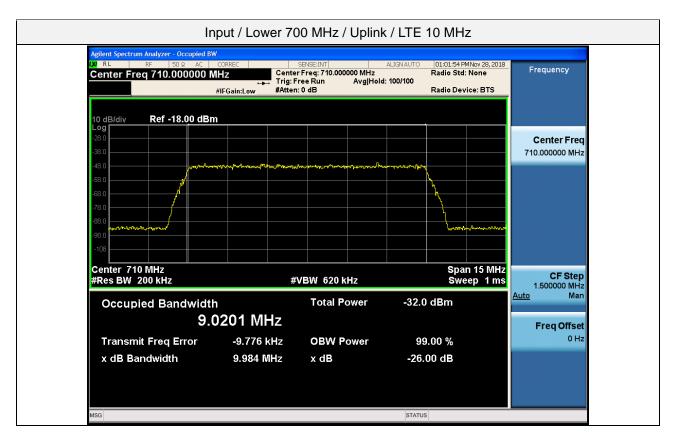


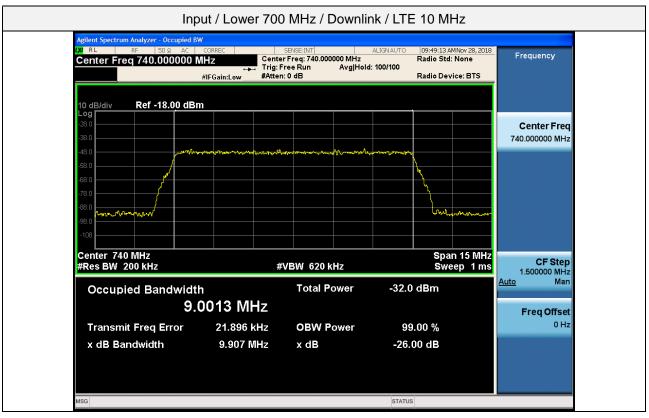

Agilent Spectrum Analyzer - Occupied BW Μ RL RF 50 Ω AC CC Center Freq 836.500000 MH		SENSE:INT	ALIGN AUTO	12:58:49 PM Nov 29, 2018 Radio Std: None	Frequency
	Trig: F		d: 100/100	Radio Device: BTS	
#II	-Gam:Low written			Radio Device. B15	
10 dB/div Ref 40.00 dBm					
Log 30.0					Center Freq
20.0					836.500000 MHz
10.0	mar and the start	and have also and the for a farmer all and	and inter-		
0.00				ι	
-10.0				N.	
-20.0				- <u>\</u>	
-40.0 Jonhuman Maple Mart				Wath and human	
-50.0					
Center 836.5 MHz				Span 7.5 MHz	
#Res BW 100 kHz	#	VBW 300 kHz		Sweep 3.8 ms	CF Step 750.000 kHz
Occupied Bandwidth		Total Power	22.3	dBm	<u>Auto</u> Man
	133 MHz				
					Freq Offset
Transmit Freq Error	2.092 kHz	OBW Power	99.	00 %	0 Hz
x dB Bandwidth	5.021 MHz	x dB	-26.0	0 dB	

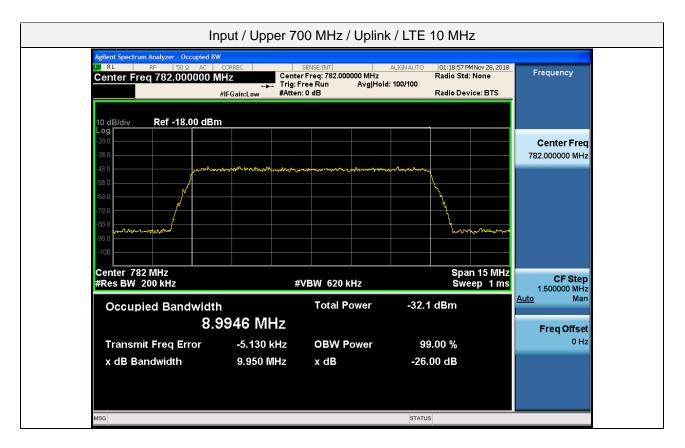

-30.0 -40.0 m-4nise-homes-Alent	mana market
Solution	ter 881 5 MHz Snan Z 5 MHz

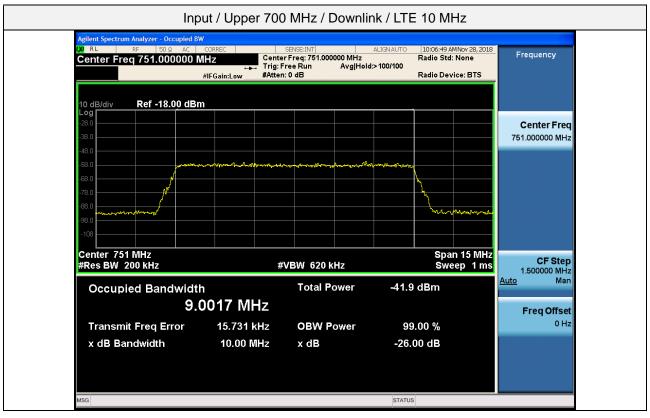


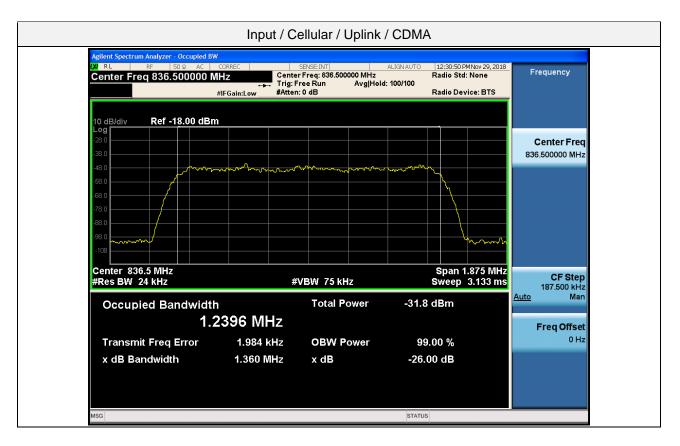

Center Freq 2.132500000 0		SENSE:INT Freq: 2.132500000 GHz	Radio	59 AMNov 29, 2018 Std: None	Frequency
	trig: i	FreeRun Avg Hol n:20 dB	d: 100/100 Radio	Device: BTS	
10 dB/div Ref 30.00 dBm					
10.0					Center Freq 2.132500000 GHz
0.00	manthall	dra-2.11. marcal marcaned	m human		
-10.0					
-20.0					
-40.0			<u>\</u>	Perturbative days with the set	
-50.0				and a substantiant fulf-up of a	
-60.0					
Center 2.133 GHz #Res BW 200 kHz	#	VBW 620 kHz		Span 15 MHz Sweep 1 ms	CF Step 1.500000 MHz
Occupied Bandwidth		Total Power	17.5 dBm	1	Auto Man
	880 MHz				Freq Offset
Transmit Freq Error	9.455 kHz	OBW Power	99.00 %	, o	0 Hz
x dB Bandwidth	9.927 MHz	x dB	-26.00 dE	3	

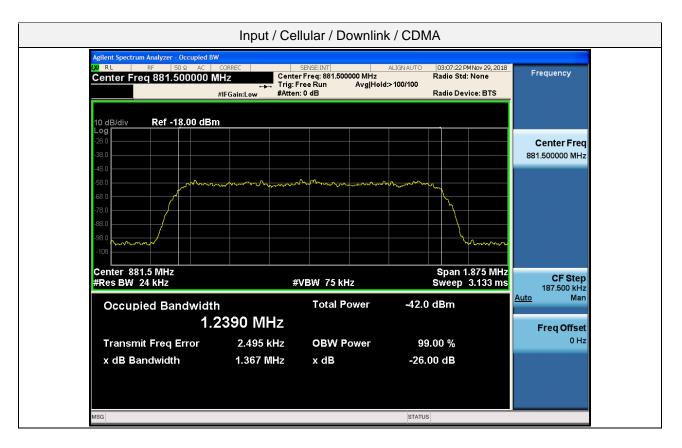


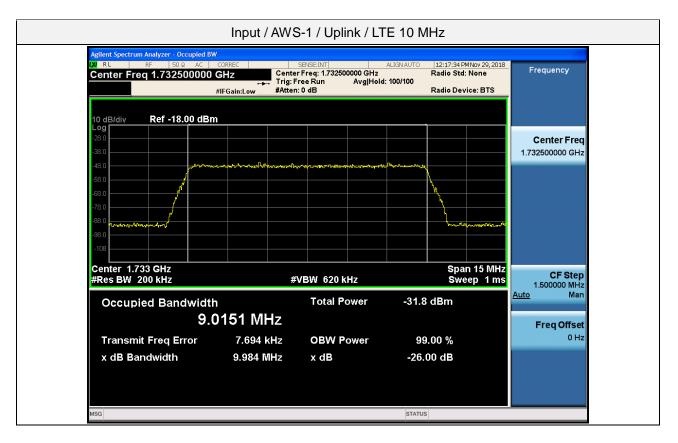


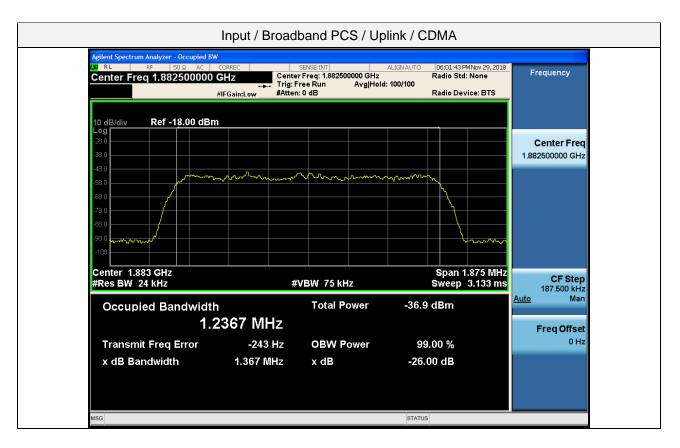

	IFGain:Low #Atte	FreeRun Avg n:20 dB	lold:>100/100	Radio Std: None Radio Device: BTS	Frequency
10 dB/div Ref 30.00 dBm					
10.0		(M			Center Freq 1.962500000 GHz
-10.0	and the second resolution of the second s	Linden of Aller and A			
-30.0				handersteresteres	
-50.0					
Center 1.963 GHz #Res BW 390 kHz	#	≠VBW 1.2 MHz		Span 30 MHz Sweep 1 ms	CF Step 3.000000 MHz
Occupied Bandwidth 17.	930 MHz	Total Power	18.	1 dBm	<u>Auto</u> Man Freq Offset
Transmit Freq Error	50.067 kHz	OBW Power		9.00 %	0 Hz
x dB Bandwidth	19.96 MHz	x dB	-26	.00 dB	

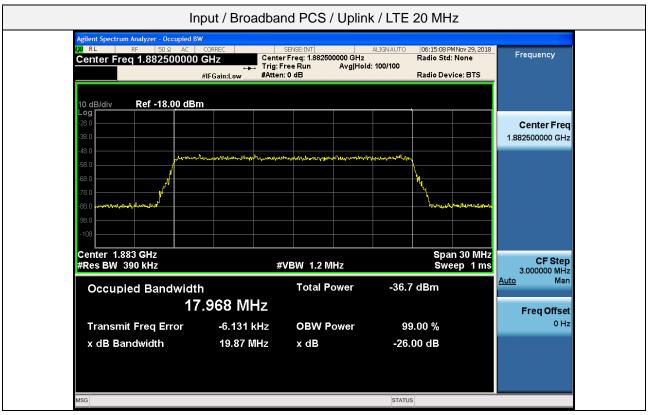


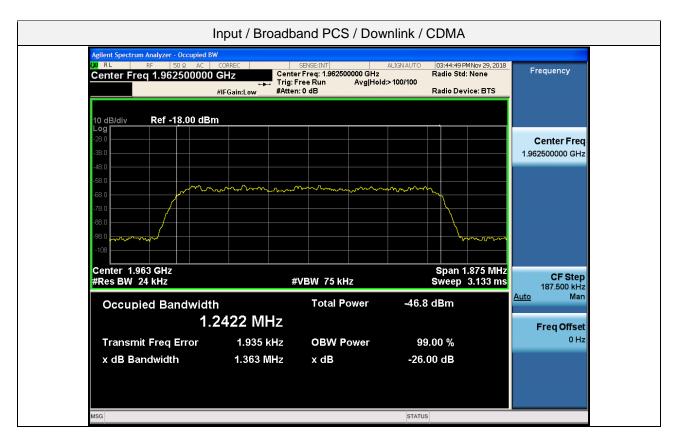


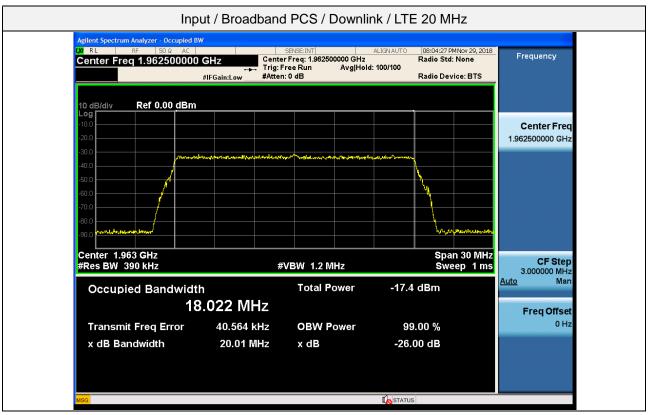


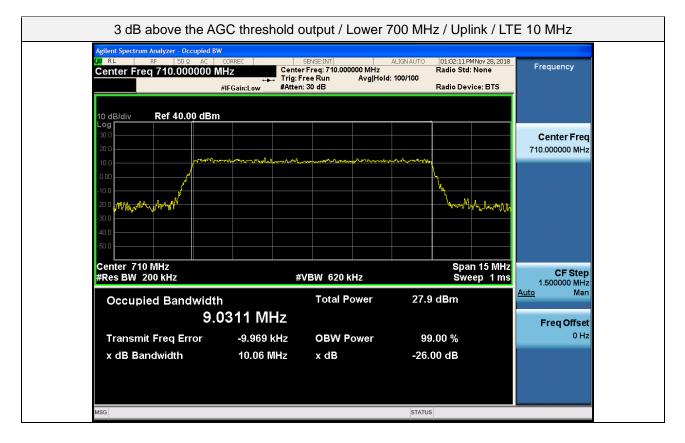

IX RL RF 50 Ω AC Center Freq 836.500000 N	IHz Cente →→ Trig:F	SENSE:INT r Freq: 836.500000 MHz Free Run Avg Hol 1: 0 dB	ALIGN AUTO	12:59:05 PMNov 29, 2018 Radio Std: None Radio Device: BTS	Frequency
10 dB/div Ref -18.00 dBm Log -28.0	1				Center Freq 836.500000 MHz
-48.0 -58.0 -68.0 -78.0 -88.0 -98.0 -108 -108					
Center 836.5 MHz #Res BW 100 kHz	#	VBW 300 kHz		Span 7.5 MHz Sweep 3.8 ms	CF Step 750.000 kHz
Occupied Bandwidth	5141 MHz	Total Power	-32.4	dBm	<u>Auto</u> Man Freq Offset
Transmit Freq Error x dB Bandwidth	3.475 kHz 5.028 MHz	OBW Power x dB		9.00 % 00 dB	0 Hz
Transmit Freq Error	3.475 kHz			00 dB	

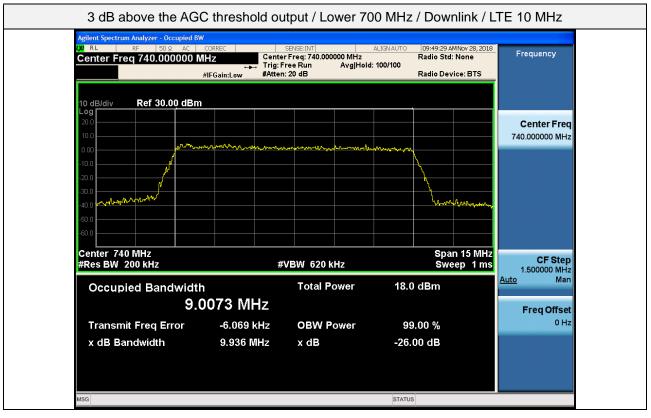

Agilent Spectrum Analyzer - Occupied BW LXI RF 50 Q AC Cr		SENSE:INT	ALIGNAUTO 03:21:19 PMNov 2 Radio Std: None	
Center Freq 881.500000 MH	Trig: f		d: 100/100 Radio Device: B	
#1	FGain:Low#Atter	h: U dB	Radio Device: B	
10 dB/div Ref -18.00 dBm				
-28.0				Center Freq
-38.0				881.500000 MHz
-48.0				
-58.0	and a start and a second and a second se	weihand and the second s	n mar and a second s	
-78.0			La Ve	
-88.0			<u>}</u>	
-98.0 Konghander Marken			Control Contro	al Mart
-108				
Center 881.5 MHz #Res BW 100 kHz	#	VBW 300 kHz	Span 7.5 Sweep 3.3	CF Step
	"			Auto Man
Occupied Bandwidth		Total Power	-42.4 dBm	
4.5	161 MHz			Freq Offset
Transmit Freq Error	6.457 kHz	OBW Power	99.00 %	0 Hz
x dB Bandwidth	5.030 MHz	x dB	-26.00 dB	

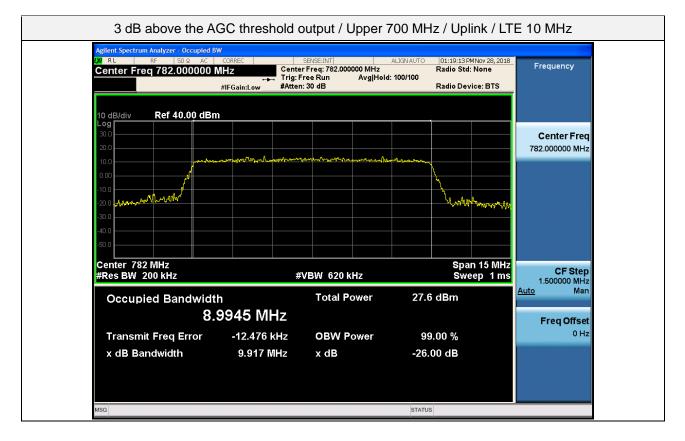


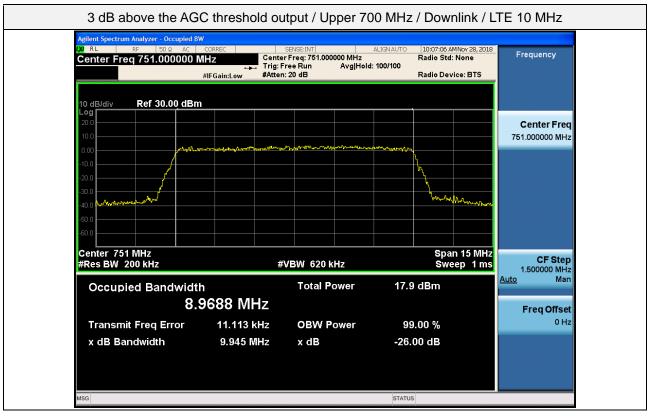

requency
Center Freq 32500000 GHz
CF Step
1.500000 MHz Man
Freq Offset
0 Hz

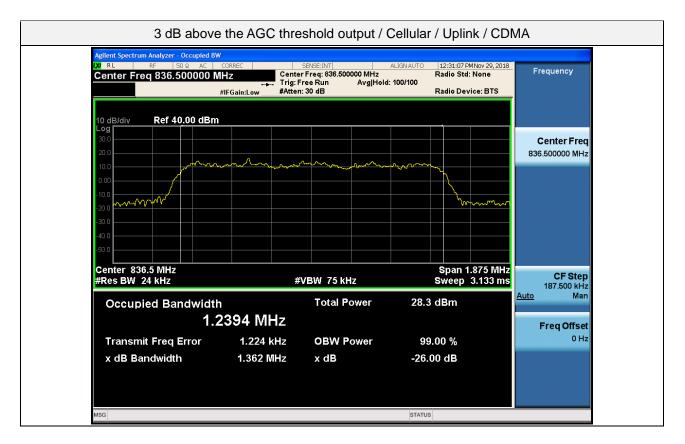


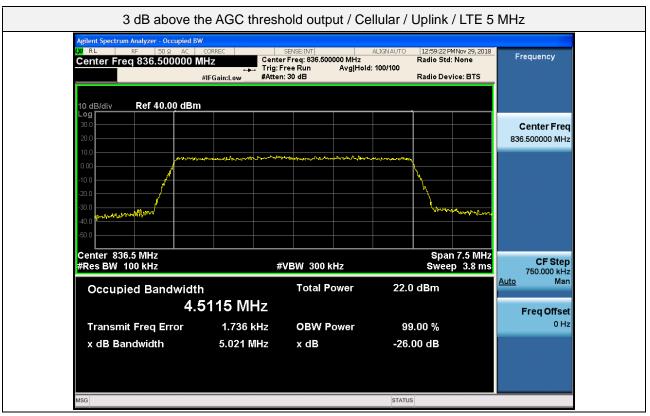


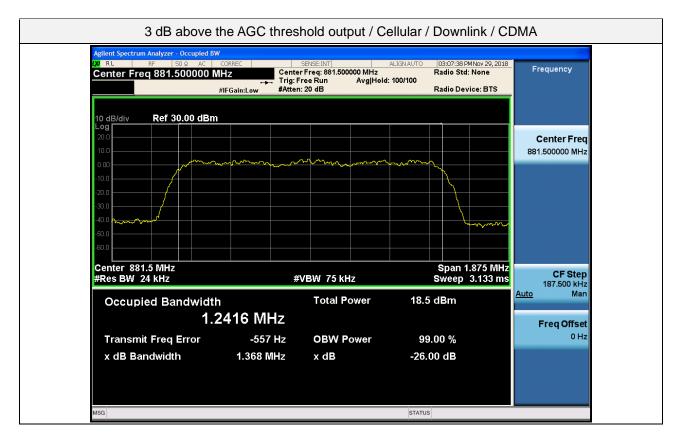


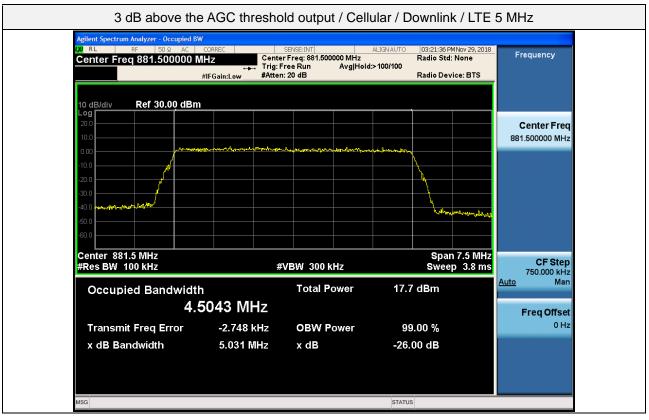


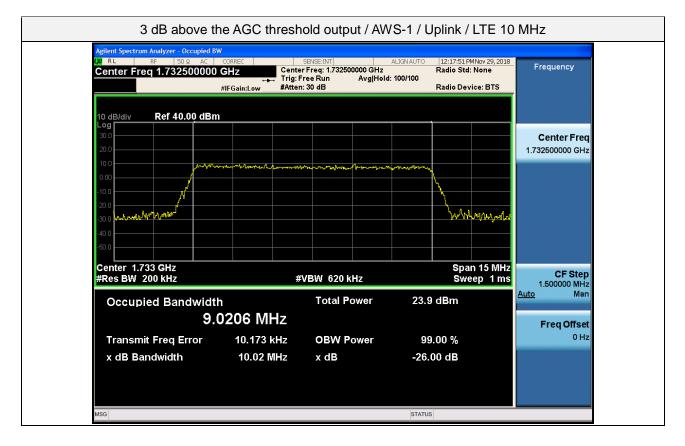


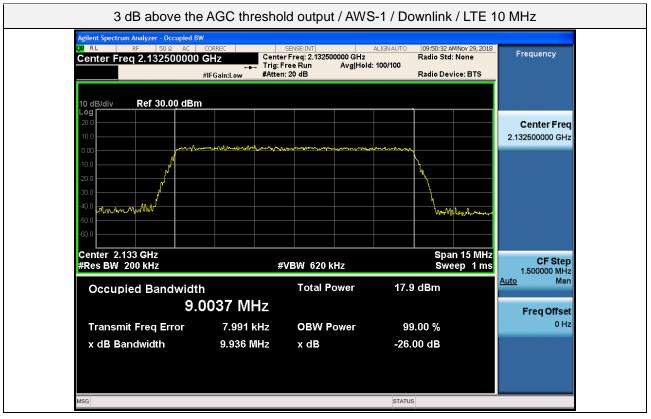


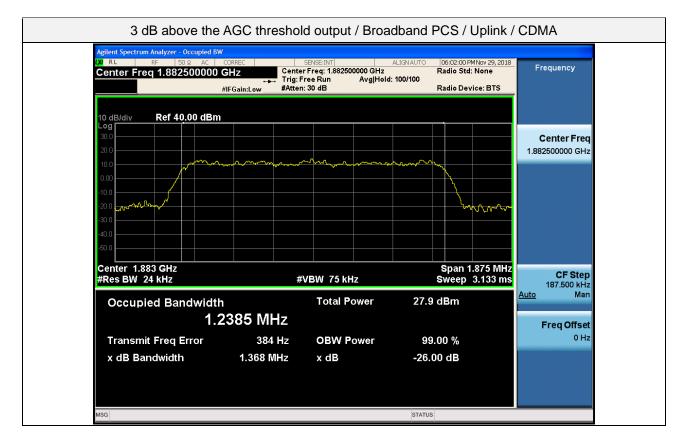


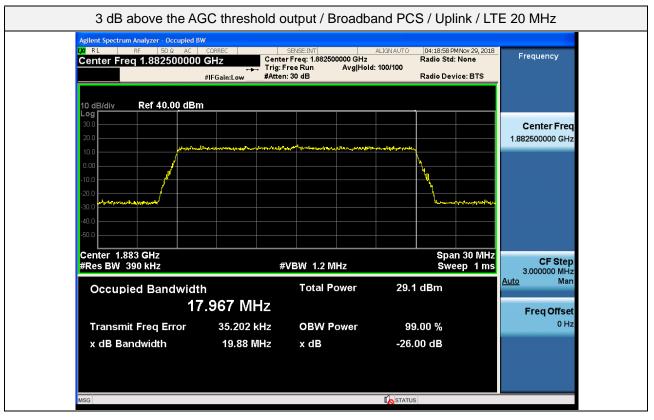


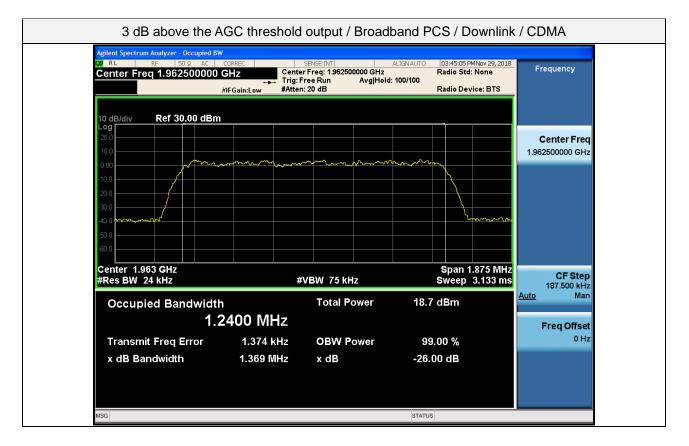


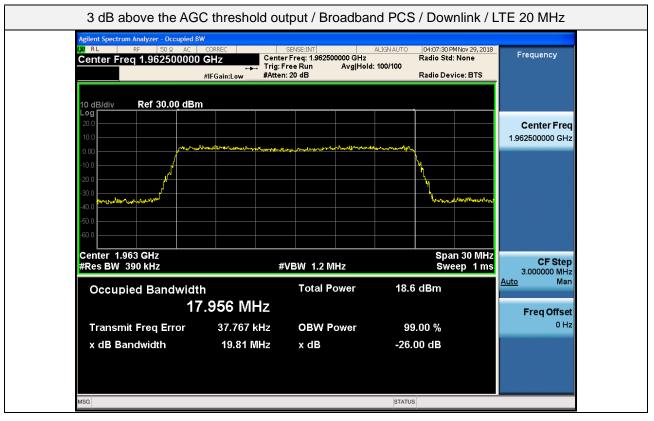












5.4. MEAN OUTPUT POWER AND AMPLIFIER/BOOSTER GAIN

Test Requirement:

§2.1046 Measurements required: RF power output.

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

(b) For single sideband, independent sideband, and single channel, controlled carrier radiotelephone transmitters the procedure specified in paragraph (a) of this section shall be employed and, in addition, the transmitter shall be modulated during the test as specified and applicable in § 2.1046 (b) (1-5). In all tests, the input level of the modulating signal shall be such as to develop rated peak envelope power or carrier power, as appropriate, for the transmitter.

(c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

§22.913 Effective radiated power limits.

Licensees in the Cellular Radiotelephone Service are subject to the effective radiated power (ERP) limits and other requirements in this Section. See also §22.169.

(a) *Maximum ERP*. The ERP of transmitters in the Cellular Radiotelephone Service must not exceed the limits in this section.

(1) Except as described in paragraphs (a)(2), (3), and (4) of this section, the ERP of base stations and repeaters must not exceed—

(i) 500 watts per emission; or

(ii) 400 watts/MHz (PSD) per sector.

(d) Power measurement. Measurement of the ERP of Cellular base transmitters and repeaters must be made using an average power measurement technique. The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB. Power measurements for base transmitters and repeaters must be made in accordance with either of the following:

(1) A Commission-approved average power technique (see FCC Laboratory's Knowledge Database); or

(2) For purposes of this section, peak transmit power must be measured over an interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited

Report No.: HCT-RF-1812-FC012

resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

§24.232 Power and antenna height limits.

(2) Base stations with an emission bandwidth greater than 1 MHz are limited to 1640 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph (b) below.

(3) Base station antenna heights may exceed 300 meters HAAT with a corresponding reduction in power; see Tables 2 of this section.

Table 2—Reduced Power for Base Station Antenna Heights Over 300 Meters, With Emission Bandwidth

HAAT in meters	Maximum EIRP (watts/MHz)
≤300	1640
≤500	1070
≤1000	490
≤1500	270
≤2000	160

Greater Than 1 MHz

(2) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, with an emission bandwidth greater than 1 MHz are limited to 3280 watts/MHz equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

(3) Base station antenna heights may exceed 300 meters HAAT with a corresponding reduction in power; see Tables 4 of this section.

Table 4—Reduced Power for Base Station Antenna Heights Over 300 Meters, With Emission Bandwidth

HAAT in meters	Maximum EIRP (watts/MHz)
≤300	3280
≤500	2140
≤1000	980
≤1500	540
≤2000	320

Greater Than 1 MHz

(d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

(e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.