

Heng Sheng Universal Trading Limited

TEST REPORT

SCOPE OF WORK FCC TESTING- MODEL: 1012348

REPORT NUMBER GZHH00478678-001

ISSUE DATE February 23, 2023

PAGES 24

DOCUMENT CONTROL NUMBER FCC ID 249_C © 2017 INTERTEK

Heng Sheng Universal Trading Limited

Application for Certification

FCC ID: U7U1009537001

Toy RC Speed Bumper Road Rage

Model: 1012348 Additional Models: 1017317, 1012175, 1009537, 101XXXX (where XXXX can be digits 0000-9999 which represent different customers)

2.4GHz Transceiver

Report No.: GZHH00478678-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-21]

Prepared and Checked by:

Approved by:

Sign on file

Maura Wang Engineer Ryan Chen Project Engineer Date: February 23, 2023

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

Version: 01-November-2017

Page: 1 of 24

MEASUREMENT/TECHNICAL REPORT

This report concerns (che	eck one:)	Original Grant	X	Class II Ch	ange _	
Equipment Type: <u>DXX - I</u>	Part 15 Low P	ower Communicat	tion Devic	e Transmitte	<u>ər</u>	
Deferred grant requested	l per 47 CFR (_	
Company Name agrees to of the intended date of a date.				date	issued	on that
Transition Rules Reques If no, assumed Part 15 Edition] provision.	•	for intentional rad		ne new 47		
Report prepared by:	101, 201, I Community People's Re	g sting Services She Building B, No. 3 GuanHu Subdis epublic of China 6-755-8601 6288/8	308 Wuhe trict, Lon	e Avenue, 2 gHua Distri	Zhangk	

Table of Contents

1.0 Summary of Test Result	4
2.0 General Description	5
 2.1 Product Description 2.2 Related Submittal(s) Grants 2.3 Test Methodology 2.4 Test Facility 	5 5
3.0 System Test Configuration	6
 3.1 Justification	6
4.0 Emission Results	7
 4.1 Radiated Test Results	7 8 8
5.0 Equipment Photographs	15
6.0 Product Labelling	15
7.0 Technical Specifications	
8.0 Instruction Manual	15
9.0 Miscellaneous Information	
 9.1 Bandedge Plot 9.2 20dB Bandwidth 9.3 Discussion of Pulse Desensitization 9.4 Calculation of Average Factor 9.5 Emissions Test Procedures 	
10.0 Test Equipment List	24

1.0 <u>Summary of Test Result</u>

Applicant: Heng Sheng Universal Trading Limited Applicant Address: Rm 6, 3/F Lladro Centre, 72 Hoi Yuen Road, Kwun Tong, Hong Kong

Manufacturer: Heng Sheng Universal Trading Limited Manufacturer Address: Rm 6, 3/F Lladro Centre, 72 Hoi Yuen Road, Kwun Tong, Hong Kong

MODEL: 1012348

FCC ID: U7U1009537001

Test Specification	Reference	Results
Transmitter Radiated Emission	15.249 &15.209 &15.205	Pass
Bandedge		
20dB Bandwidth	15.215(c)	Pass

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

2.0 General Description

2.1 Product Description

The equipment under test (EUT) is an Toy RC Speed Bumper Road Rage operating at 2.4G Band. The EUT can be powered by DC 3.0V (2 x 1.5V AAA batteries). For more detail information pls. refer to the user manual.

Antenna Type: Integral antenna Modulation Type: GFSK Antenna Gain: 0dBi

The Models: 1017317, 1012175, 1009537, 101XXXX (where XXXX can be digits 0000-9999 which represent different customers) are the same as the Model: 1012348 in hardware aspect. The difference in appearance and model number serves as marketing strategy.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of controller unit for the Toy RC Speed Bumper Road Rage, and the corresponding receiver unit which associated with this EUT is subjected to FCC SDOC.

2.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in Semi-anechoic chamber. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The Semi-anechoic chamber used to collect the radiated data is **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: CN1188).

3.0 System Test Configuration

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT was powered by DC 3.0V (2 x 1.5V AAA batteries) during the test, only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the bottom of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section 4.

The EUT was operated standalone and placed in the central of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

There was no special software to exercise the device.

3.3 Special Accessories

No special accessories used.

3.4 Equipment Modification

Any modifications installed previous to testing by Heng Sheng Universal Trading Limited will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd Longhua Branch.

- 3.5 Measurement Uncertainty When determining the test conclusion, the Measurement Uncertainty of test has been considered.
- 3.6 Support Equipment List and Description

Description	Manufacturer	Model No.
N/A	N/A	N/A

4.0 Emission Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where FS = Field Strength in $dB\mu V/m$ RA = Receiver Amplitude (including preamplifier) in $dB\mu V$ CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB AG = Amplifier Gain in dB PD = Pulse Desensitization in dBAV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Assume a receiver reading of 62.0 dBµV is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dBµV/m. This value in dBµV/m was converted to its corresponding level in μ V/m.

RA = $62.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB FS = $62 + 7.4 + 1.6 - 29 + 0 = 42 \text{ dB}\mu\text{V/m}$

Level in μ V/m = Common Antilogarithm [(42 dB μ V/m)/20] = 125.9 μ V/m

4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

4.1.3 Radiated Emissions

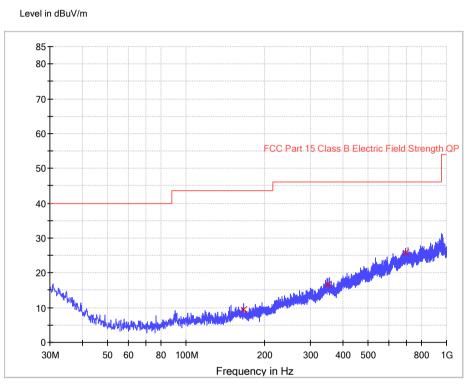
The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission at 695.240000 MHz

Judgement: Passed by 20.3 dB

TEST PERSONNEL:

Sign on file


Maura Wang, Engineer Typed/Printed Name

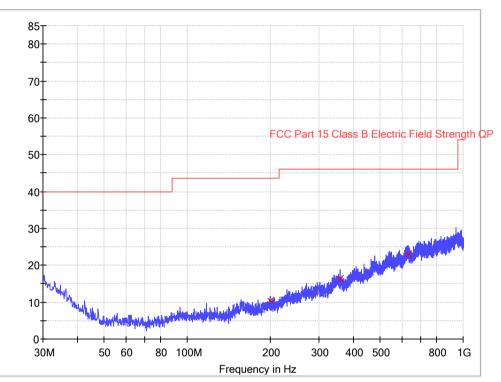
February 15, 2023 Date

Applicant: Heng Sheng Universal Trading Limited Date of Test: February 15, 2023 Model: 1012348 Worst Case Operating Mode: Transmitting(2407.000MHz)

ANT Polarity: Horizontal

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV/m)
166.163750	9.3	1000.0	120.000	Н	11.8	34.2	43.5
349.251250	16.6	1000.0	120.000	Н	18.4	29.4	46.0
695.240000	25.7	1000.0	120.000	Н	26.5	20.3	46.0

Remark:


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak ($dB\mu V/m$)= Corr. (dB/m)+ Read Level ($dB\mu V$)
- 3. Margin (dB) = Limit Line(dBµV/m) Level (dBµV/m)

Applicant: Heng Sheng Universal Trading Limited Date of Test: February 15, 2023 Model: 1012348 Worst Case Operating Mode: Transmitting(2407.000MHz)

ANT Polarity: Vertical

Level in dBuV/m

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
199.386250	10.3	1000.0	120.000	V	12.3	33.2	43.5
358.223750	16.4	1000.0	120.000	V	18.4	29.6	46.0
631.040000	23.0	1000.0	120.000	V	25.2	23.0	46.0

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dB μ V/m) Level (dB μ V/m)

4.1.4 Transmitter Spurious Emissions (Radiated)

Worst Case Radiated Emission at 2400.000 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 6.5 dB

TEST PERSONNEL:

Sign on file

Maura Wang, Engineer Typed/Printed Name

February 15, 2023 Date

Applicant: Heng Sheng Universal Trading Limited Date of Test: February 15, 2023 Model: 1012348 Worst Case Operating Mode: Transmitting

Table 1

	(2407 MHz)												
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)						
Horizontal	2407.000	98.0	36.7	28.1	89.4	114.0	-24.6						
Horizontal	4814.000	43.9	36.7	35.5	42.7	74.0	-31.3						

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2407.000	98.0	36.7	28.1	14.3	75.1	94.0	-18.9
Horizontal	4814.000	43.9	36.7	35.5	14.3	28.4	54.0	-25.6

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Applicant: Heng Sheng Universal Trading Limited Date of Test: February 15, 2023 Model: 1012348 Worst Case Operating Mode: Transmitting

Table 2

Radiated Emissions (2440 MHz) Reading Pre-Polarization Frequency Antenna Net Peak Limit Margin Factor (MHz) (dBµV) Amp at 3m at 3m (dB) Gain (dB) (dBµV/m) (dBµV/m) (dB) 2440.000 36.7 114.0 Horizontal 96.1 28.3 87.7 -26.3 36.7 Horizontal 4880.000 42.9 35.7 41.9 74.0 -32.1

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2440.000	96.1	36.7	28.3	14.3	73.4	94.0	-20.6
Horizontal	4880.000	42.9	36.7	35.7	14.3	27.6	54.0	-26.4

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

Applicant: Heng Sheng Universal Trading Limited Date of Test: February 15, 2023 Model: 1012348 Worst Case Operating Mode: Transmitting

Table 3

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)						
Horizontal	2477.000	99.1	36.7	28.5	90.9	114.0	-23.1						
Horizontal	4954.000	44.6	36.7	35.9	43.8	74.0	-30.2						

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2477.000	99.1	36.7	28.5	14.3	76.6	94.0	-17.4
Horizontal	4954.000	44.6	36.7	35.9	14.3	29.5	54.0	-24.5

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

5.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

6.0 Product Labelling

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

7.0 <u>Technical Specifications</u>

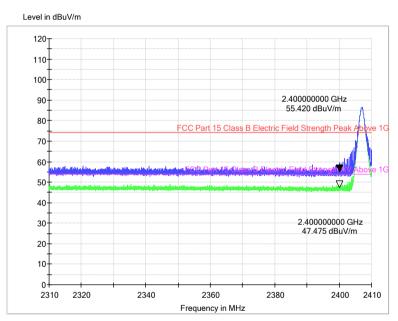
For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

9.0 <u>Miscellaneous Information</u>


This miscellaneous information includes details of the measured bandedge, 20dB Bandwidth, the test procedure and calculation of factor such as pulse desensitization.

9.1 Bandedge Plot

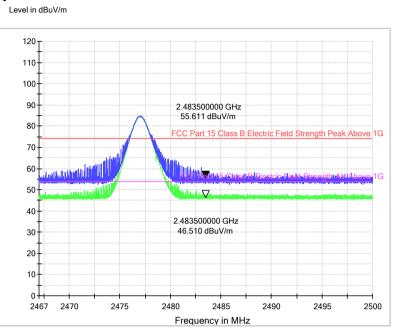
The test plots are attached as below. From the plot, the field strength of any emissions outside of the specified frequency band are attenuated to the general radiated emission limits in section 15.209. It fulfils the requirement of 15.249(d).

Peak Measurement

Restricted-band band-edge tests shall be performed as radiated measurements, i.e (Band-edge Plot).

(i) Lower channel 2407.000 MHz:

(ii)


Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2400.000	64.0	36.7	28.1	55.4	74.0	-18.6

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m	Margin (dB)
Horizontal	2400.000	56.1	36.7	28.1	47.5	54.0	-6.5

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).


(ii) Upper channel 2477.000 MHz:

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	2483.500	63.3	36.8	29.1	55.6	74.0	-18.4

Polarizati	on Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m	Margin (dB)
Horizont	al 2483.500	54.2	36.8	29.1	46.5	54.0	-7.5

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).

9.2 20dB Bandwidth

Pursuant to FCC part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered. The test plots are reported as below.

Spectrun	L L	For Children							
Ref Level Att				3W 100 Hz 3W 300 Hz Mo	de Auto FFT				
1Pk View									
					D1[1]				0.41 dB 6.5990 kHz
80 dBµV			-	_	M1[1]				44.25 dBµV
								2.4069	976130 GHz
70 dBµV			-	MP					-
60 dBµV					\				
50 UBPV									
50 dBµV			M1 /		AL	-			-
	D1 44.	490 dBµV	and	$\gamma \rightarrow$	VIA	A			-
40 dBµV-	nr	MA	VV	V	4 1	M	VIC	MA	INA
-Vulsto os		VVV	V			V	VV	VV	VVV
o den o									
20 dBµV								-	-
l0 dBµV									-
) dBµV									
CF 2.4070	0097 G	Hz	1	691 pt	s			Spa	an 20.0 kHz
larker									
Type Re	f Trc	X-valu			Function	1	Eun	ction Resu	1+
				Y-value	Function	_	1 dil	LUON Resu	it.
M1 D1 M	1	2.406997	613 GHz	44.25 dBµV	Function		1 dil	ction Resu	iit.
D1 M M2 pectrum		2.406997 6. 2.407000	613 GHz 599 kHz 898 GHz	44.25 dBµV 0.41 dB 66.52 dBµV					
D1 M M2 Spectrum Ref Level	91.00 d	2.406997 6. 2.407000 8µV	613 GHz 599 kHz 898 GHz	44.25 dBμV 0.41 dB 66.52 dBμV W 100 Hz	nde Auto FFT				
D1 M M2 pectrum tef Level	91.00 d	2.406997 6. 2.407000 8µV	613 GHz 599 kHz 898 GHz	44.25 dBμV 0.41 dB 66.52 dBμV W 100 Hz	ode Auto FFT				
D1 M M2 pectrum tef Level	91.00 d	2.406997 6. 2.407000 8µV	613 GHz 599 kHz 898 GHz	44.25 dBμV 0.41 dB 66.52 dBμV W 100 Hz					(Щ ⊽ 0.05 d
D1 M M2 pectrum Ref Level Att 1Pk Max	91.00 d	2.406997 6. 2.407000 8µV	613 GHz 599 kHz 898 GHz	44.25 dBµV 0.41 dB 66.52 dBµV	ode Auto FFT				0.05 di -4.7180 kH 52.62 dBµ
D1 M M2 pectrum tef Level ttt IPk Max	91.00 d	2.406997 6. 2.407000 8µV	613 GHz 599 kHz 898 GHz	44.25 dBμV 0.41 dB 66.52 dBμV W 100 Hz	Dde Auto FFT				0.05 di -4.7180 kH 52.62 dBµ
D1 M M2 pectrum tef Level ttt IPk Max	91.00 d	2.406997 6. 2.407000 8µV	613 GHz 599 kHz 898 GHz	44.25 dBµV 0.41 dB 66.52 dBµV	Dde Auto FFT				0.05 di -4.7180 kH 52.62 dBµ
D1 M M2 pectrum tef Level ttt LPk Max 0 dBµV	91.00 d	2.406997 6. 2.407000 8µV	613 GHz 599 kHz 898 GHz	44.25 dBµV 0.41 dB 66.52 dBµV	D1[1]				0.05 di -4.7180 kH 52.62 dBµ
D1 M M2 pectrum tef Level ttt D dBµV D dBµV D dBµV	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	Dde Auto FFT				0.05 di -4.7180 kH 52.62 dBµ
D1 N M2 Image: Constraint of the second se	91.00 d	2.406997 6. 2.407000 8µV	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]				0.05 di -4.7180 kH 52.62 dBµ
D1 N M2 Pectrum pectrum Image: Additional state of the	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]				0.05 di -4.7180 kH 52.62 dBµ
D1 N M2 Pectrum pectrum Image: Additional state of the	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]				0.05 di -4.7180 kH 52.62 dBµ
DI M2 pectrum ref Level tit D dBµV d dBµV d dBµV d dBµV d dBµV d dBµV	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]				0.05 di -4.7180 kH 52.62 dBµ
D1 M M2 M2 ppectrum dspot dspot dspot	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]		VV		0.05 di -4.7180 kH 52.62 dBµ
D1 M M2 M2 Spectrum Getal Getal Getal IPk Max Getal D dBµV Getal	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]				0.05 di -4.7180 kH 52.62 dBµ
DI M2 m2 m2 Spectrum	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]				0.05 di -4.7180 kH 52.62 dBµ'
DI M2 m2 m2 Spectrum	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]				0.05 di -4.7180 kH 52.62 dBµ'
DI M2 M2 M2 Spectrum Edited Level Ltt IPk Max D dBµV	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]				0.05 di -4.7180 kH 52.62 dBµ
D1 M2 M2 M2 pectrum edited and an	91.00 d	2.406997 6. 2.407000 8µV 0 dB SWT 19	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	D1[1]				0.05 di -4.7180 kH 52.62 dBµ
DI M2 m2 m2 spectrum spectrum spectrum spec	91.00 d ()	2.406997 6. 2.407000 b B SWT 19 50 dBµV	613 GHz 599 kHz 898 GHz ● ms ● VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma	Difii			2.477)	0.05 dl -4.7180 kH 52.62 dBµ' 0032700 GH
DI M2 M2 M2 Spectrum Get Level M1 MAX D dBµV		2.406997 6. 2.407000 9 dB SWT 19 50 dBµV 50 dBµV	GHZ GHZ S99 KHZ S99 KHZ S998 GHZ RB ms VB	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Mo	de Auto FFT D1[1] M1[1] M1 S	ÂV		2.477	0.05 dt -4.7180 kH 52.62 dBµ 0032700 GH
D1 M M2 Spectrum Ref Level Mt IPk Max 0 dBµV 0 dBµV		2.406997 6. 2.407000 bb/V 0 dB SWT 19 50 dBµV	e	44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Ma M2 M2 M2 691 pt Y-value	Difii	ÂV		2.477)	0.05 dt -4.7180 kH 52.62 dBµ 0032700 GH
D1 M M2 M2 Spectrum Spectrum tet Level M3 J BBµV J BµV		2.406997 6. 2.407000 0 dB SWT 19 50 dBµV 50 dBµV		44.25 dBµV 0.41 dB 66.52 dBµV W 100 Hz W 300 Hz Mo	de Auto FFT D1[1] M1[1] M1 S	Â		2.477	0.05 d -4.7180 kH 52.62 dBµ 0032700 GH

9.3 Discussion of Pulse Desensitization

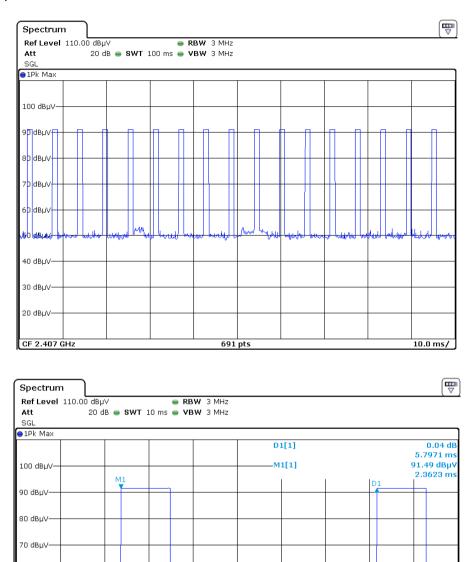
Pulse desensitivity is not applicable for this device. The effective period (T_{eff}) is approximately 1115.9µs for a digital "1" bit, as shown in the plots of Section 9.4 With a resolution bandwidth (3 dB) of 100 kHz, the pulse desensitivity factor was 0 dB

9.4 Calculation of Average Factor

Averaging factor in $dB = 20 \log (duty cycle)$

The specification for output field strengths in accordance with the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.


The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 5.7971ms Effective period of the cycle = 1115.9μ s x1 = 1.1159ms DC =1.1159ms / 5.7971ms =0.1925 or 19.25%

Therefore, the averaging factor is found by $20 \log_{10} (0.1925) = -14.3 dB$

The test plots are attached as below.

hunder president som attender and the finder of the finder of the first of the second of

60 dBµV

40 dBµV-30 dBµV-20 dBµV-

CF 2.407 GHz

SP. BUKING WANTER HAL

691 pts

Ularbory

1.0 ms/

				Inter	tek Report	No.: GZHH0	0478678-
Spectrum							
Ref Level 110.00		👄 RBW 31					
	20 dB 👄 SWT :	LO ms 👄 VBW 31	MHz				
SGL 1Pk Max							
				D1[1]		0.02 dB	
						1.1159 ms	
100 dBµV				M1[1]		91.49 dBµV	
	M1	D1		1	1 1	2.3623 ms	
90 dBµV							
80 dBµV							
70 dBuV							
60 dBµV							
50 dBuly							
SP. BULLING	waray	handrondrage	Mundellywood		And the analysis of the second second	Ungraphy	
40 dBµV							
io appi							
30 dBµV							
50 GDPV							
20 dBµV							
20 μαμν							
CF 2.407 GHz			691 pts			1.0 ms/	

9.5 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10 - 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter and approximately 0.8 meter up to 1GHz and 1.5 meter above 1GHz in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Section 9.4.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

9.5 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Section 9.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used, RBW 1MHz used for fundamental emission.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

Total Quality. Assured. Test Report

Intertek Report No.: GZHH00478678-001

10.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-13	BiConiLog Antenna	ETS	3142E	00217919	13-Jul-2022	13-Jul-2025
SZ185-04	EMI Receiver	R&S	ESR7	102466	14-Nov-2022	14-Nov-2023
SZ061-09	Horn Antenna	ETS	3115	00092346	14-Oct-2022	14-Oct-2025
SZ061-06	Active Loop Antenna	Electro- Metrics	EM-6876	217	18-May-2021	18-May-2023
SZ061-15	Double- Ridged Waveguide Horn Antenna	ETS	3116C-PA	00224718	06-Jul-2021	06-Jul-2024
SZ056-06	Spectrum Analyzer	R&S	FSV40	101101	19-Dec-2022	19-Dec-2023
SZ181-04	Preamplifier	Agilent	8449B	3008A024 74	16-May-2022	16-May-2023
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	12-Dec-2021	12-Dec-2024
SZ062-02	RF Cable	RADIALL	RG 213U		1-Nov-2022	1-May-2023
SZ062-05	RF Cable	RADIALL	0.04- 26.5GHz		1-Nov-2022	1-May-2023
SZ062-12	RF Cable	RADIALL	0.04- 26.5GHz		1-Nov-2022	1-May-2023
SZ067-04	Notch Filter	Micro-Tronics	BRM5070 2-02		17-May-2022	17-May-2023