

Product Digital Blood Pressure Monitor

Trade mark microlife

Model/Type reference WatchBP Home T(BP3MX1-3T)

Serial Number N/A

Report Number EED32M00333301

FCC ID U7I-BP3MX1-3T Date of Issue Dec. 01, 2020

Test Standards 47 CFR Part 15Subpart C

Test result **PASS**

Prepared for:

Microlife Corporation 9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by: Reviewed by: 5.11. Lu Sunlight Sun Sunlight Sun Lavon Ma Date: Dec. 01, 2020 Aaron Ma Report Seal

Bill Lu

Check No.:4538050193

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com

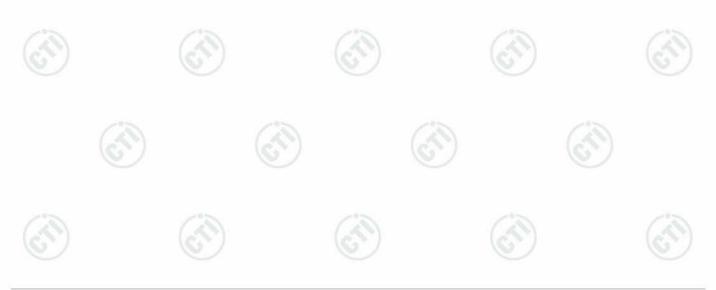
2 Version

Version No.	Date	Description
00	Dec. 01, 2020	Original

Report No.: EED32M00333301 Page 3 of 60

3 Test Summary

o rest ourinitially	3107	7.5		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	


Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

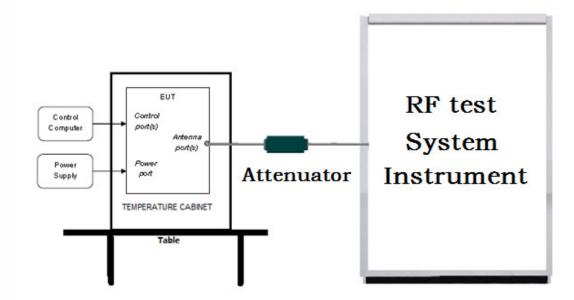
Model No.: WatchBP Home T(BP3MX1-3T)

Only the model WatchBP Home T(BP3MX1-3T) was tested. Their electrical circuit design, layout, components used, internal wiring, software and outer decoration are identical, only the model name are different, the tested product has two model names, WatchBP Home T is the market model name; BP3MX1-3T is the factory internal model name.

Page 4 of 60

4 Content

1 COVER PAGE				1
2 VERSION				2
3 TEST SUMMARY		•••••		3
4 CONTENT				
5 TEST REQUIREMENT	•			5
	test setup nissions test setup Emissions test setup.			
6 GENERAL INFORMATION	ON			
6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION 6.3 DESCRIPTION OF SUP 6.4 TEST LOCATION 6.5 ABNORMALITIES FROM 6.6 OTHER INFORMATION 6.7 MEASUREMENT UNCE	ON OF EUT PORT UNITS I STANDARD CONDITIO REQUESTED BY THE C	NSCUSTOMER		
7 EQUIPMENT LIST				
8 RADIO TECHNICAL RE				
Appendix B): Conducton Appendix C): Band-ed Appendix D): RF Conton Appendix E): Power Statement Appendix F): Antennate Appendix G): AC Power Appendix H): Restrict	ted Peak Output Pow dge for RF Conducted ducted Spurious Emi Spectral Density Requirement ver Line Conducted E ed bands around fund	/erd Emissionsssionsssions	Radiated)	
PHOTOGRAPHS OF TEST	Г SETUР			50
PHOTOGRAPHS OF EUT				53



Report No.: EED32M00333301 Page 5 of 60

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

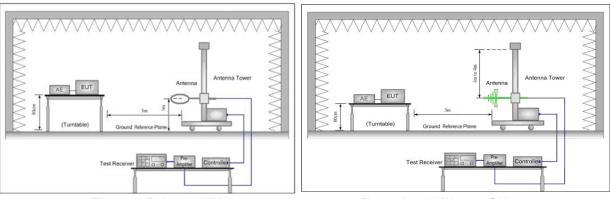


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

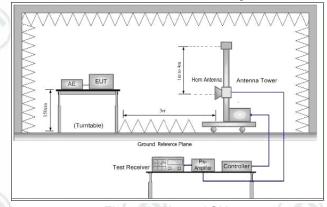
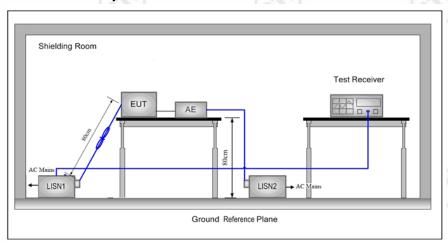



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	55 % RH	THE STATE OF THE S	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
Test Mode	TX/KX	Low(L)	Middle(M)	High(H)	
0501	0.400441 0.400441	Channel 0	Channel 19	Channel 39	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

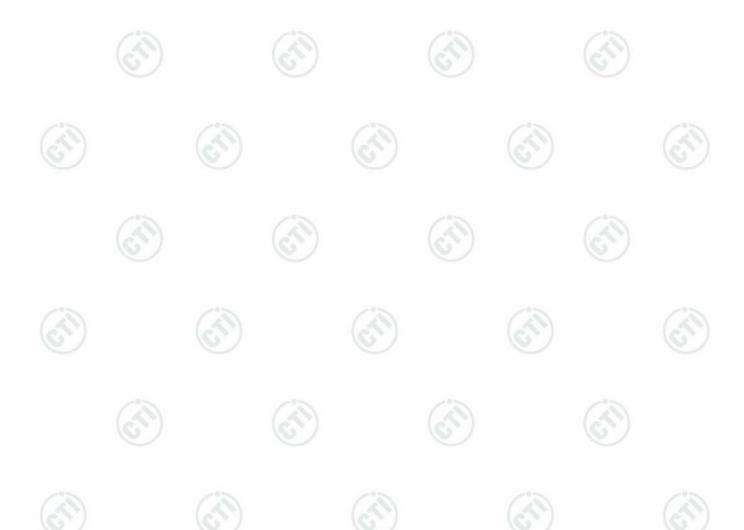
Report No.: EED32M00333301 Page 7 of 60

6 General Information

6.1 Client Information

Applicant:	Microlife Corporation
Address of Applicant:	9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan
Manufacturer:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Manufacturer:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China
Factory:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Factory:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China

6.2 General Description of EUT


Product Name:	Digital Blood Pressure Monitor					
Model No.(EUT):	WatchBP	WatchBP Home T(BP3MX1-3T)				
Trade mark:	microlife			- 1000		
Power Supply:	MODEL:DSA-6E-05 Adapter INPUT:100-240 V~50/60Hz 0.3A OUTPUT:+6V0.6A					(31)
	Battery	4*AA Battery	6.0V			
Operation Frequency:	2402MHz~	~2480MHz	(30)		(3)	
Bluetooth Version:	4.2 (BLE))	(6)		(6)	
Modulation Technique:	DSSS					
Modulation Type:	GFSK					
Number of Channel:	40	(3)		13		7.3
Test Power Grade:	Default	(85)		(65)		(0,7)
Test Software of EUT:	Default					
Antenna Type and Gain:	Type: Cera Gain: 3dBi	amic Antenna	- 12 to		-115	
Test Voltage:	DC 6.0V	.)			(41)	
Sample Received Date:	Nov. 16, 2	020	0		0	
Sample tested Date:	Nov. 16, 2	020 to Nov. 20	, 2020			

Page 8 of 60

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Report No.: EED32M00333301 Page 9 of 60

6.3 Description of Support Units

The EUT has been tested independently

6.4 Test Location

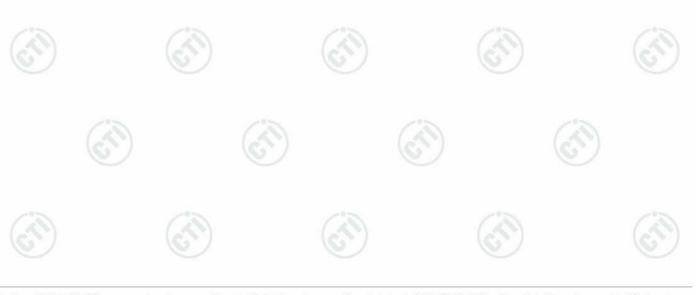
All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.5 Abnormalities from Standard Conditions


None.

6.6 Other Information Requested by the Customer

None.

6.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE nower conducted	0.46dB (30MHz-1GHz)		
	RF power, conducted	0.55dB (1GHz-18GHz)		
3	Dadiated Churique emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
1	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

Page 10 of 60

7 Equipment List

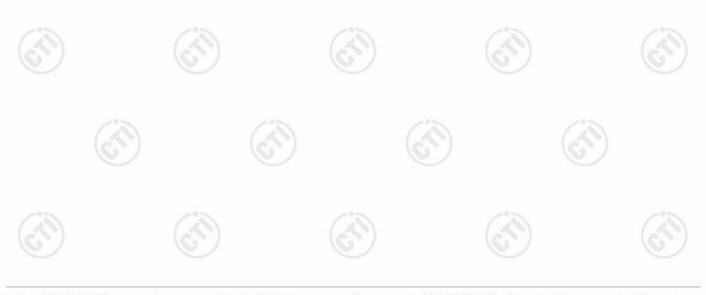
		3M full-anechoid	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3	(6,7)	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	<u> </u>	(41)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	- 6.	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	- 00	70
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(T)	(4)

Page	11	_ f	CO
Page	-11	OT	กเม

	31/1	Semi/full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/107 11112	-63		(4)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A	X	

Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021
Temperature/ Humidity Indicator	Defu	TH128	1		
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021
Barometer	changchun	DYM3	1188	<i>y</i>	(20)

Report No.: EED32M00333301 Page 12 of 60

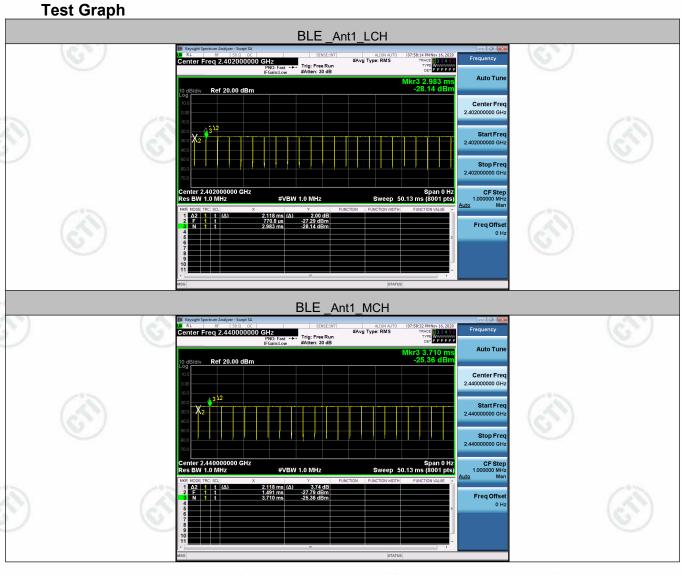

8 Radio Technical Requirements Specification

Reference documents for testing:

	- 1010-01100 00-0110110 101 100 1110 110				
No.	Identity	Document Title			
1	FCC Part15C	Subpart C-Intentional Radiators			
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices			

Test Results List:

i est ivesuits Fist	•			
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

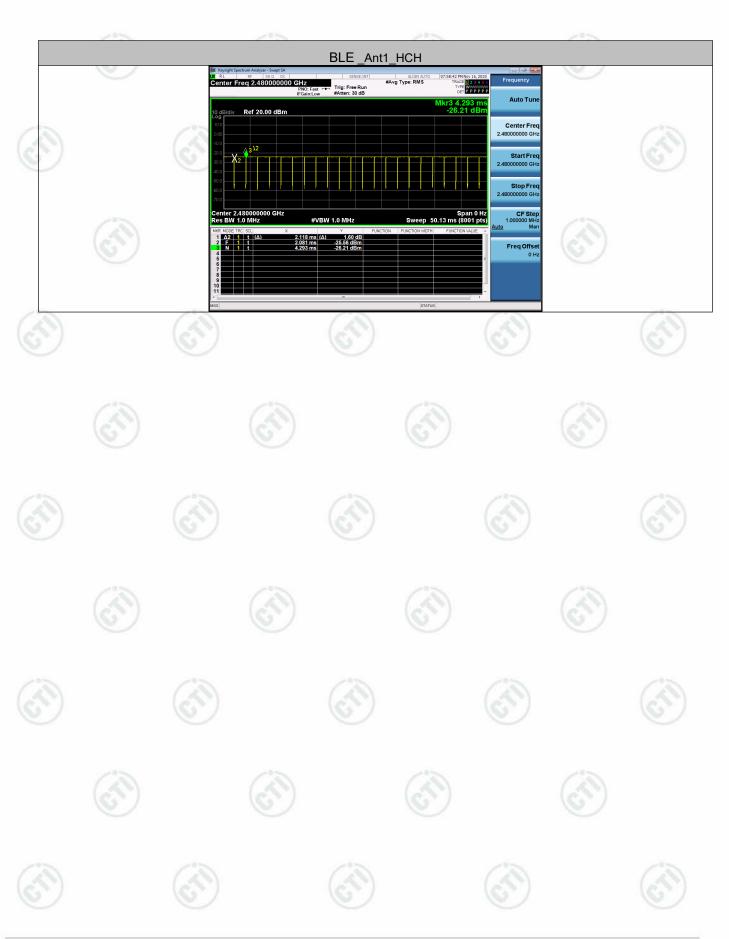


Page 13 of 60 Report No.: EED32M00333301

Duty Cycle

Result Table

Mode	Channel	Duty Cycle [%]	Limit	Verdict
BLE	LCH	95.75%		PASS
BLE	MCH	95.48%		PASS
BLE	нсн	95.75%	(65)	PASS



Report No.: EED32M00333301 Page 15 of 60

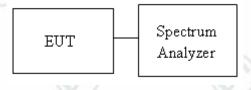
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

			1.67
2	Limit	Shall be at least 500kHz	100


Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

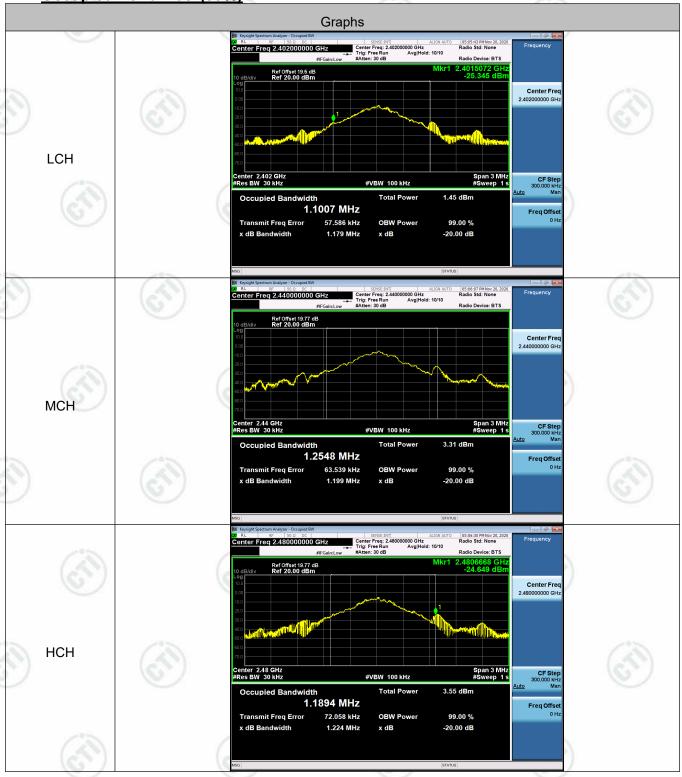
Page 16 of 60

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.5095	1.1007	PASS
BLE	MCH	0.5065	1.2548	PASS
BLE	НСН	0.5218	1.1894	PASS

Page 17 of 60

Test Graphs 6 dB Bandwidth



Page 18 of 60

Report No.: EED32M00333301 Page 19 of 60

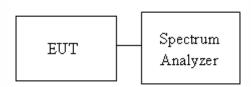
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


		6
Limit	☐ Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]	
	Point-to-point operation	

Test Procedure

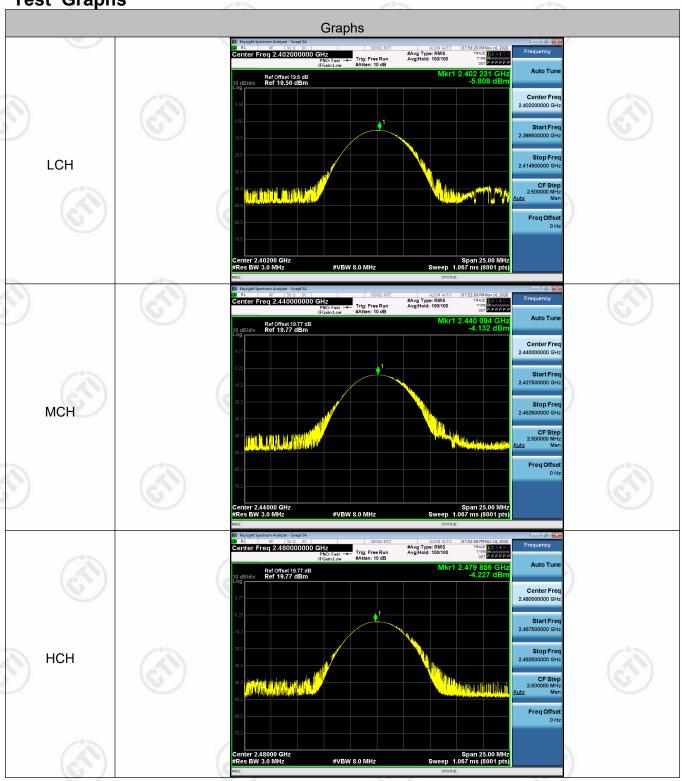
Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥ [3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-5.808	PASS
BLE	MCH	-4.132	PASS
BLE	НСН	-4.227	PASS



Page 21 of 60

Test Graphs

Report No.: EED32M00333301 Page 22 of 60

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Page 23 of 60

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-5.882	-57.967	-25.88	PASS
BLE	HCH	-4.306	-48.658	-24.31	PASS

Page 24 of 60

Report No.: EED32M00333301 Page 25 of 60

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

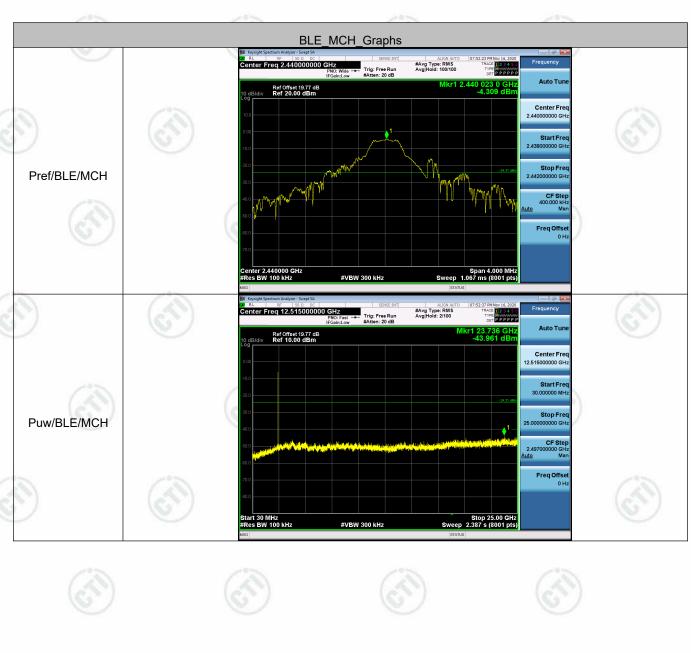
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

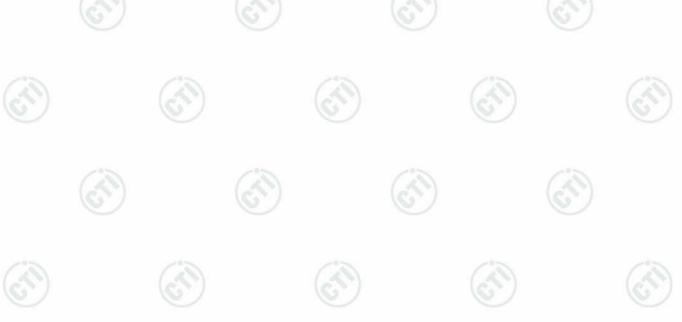
Test Setup

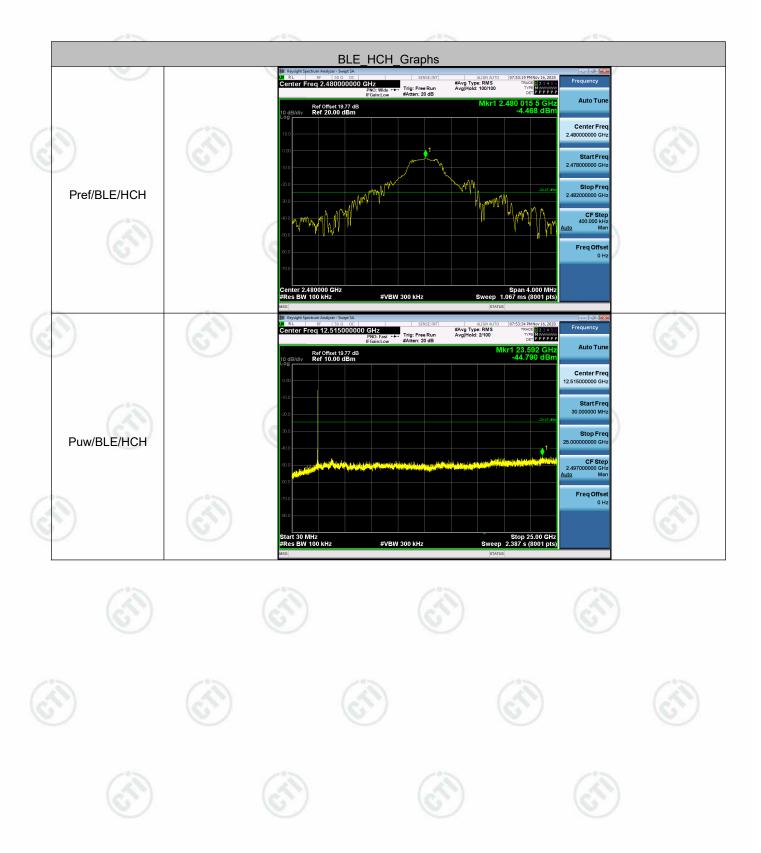
Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-6.01	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-4.309	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-4.468	<limit< td=""><td>PASS</td></limit<>	PASS

Page 27 of 60






Page 28 of 60

Page 29 of 60

Report No.: EED32M00333301 Page 30 of 60

Appendix E): Power Spectral Density

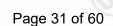
Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit 6	 ✓ Antenna not exceed 6 dBi : 8dBm ☐ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ☐ Point-to-point operation :

Test Procedure

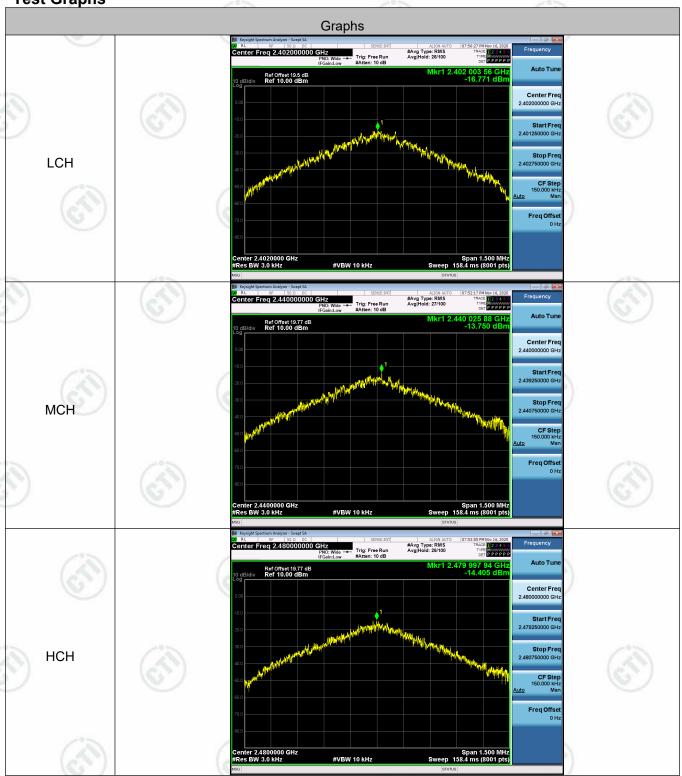

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-16.771	PASS
BLE	MCH	-13.750	PASS
BLE	HCH	-14.405	PASS



Page 32 of 60

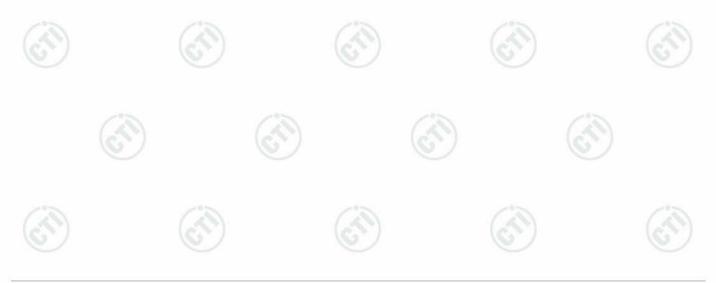
Test Graphs

Report No.: EED32M00333301 Page 33 of 60

Appendix F): Antenna Requirement

15.203 requirement:

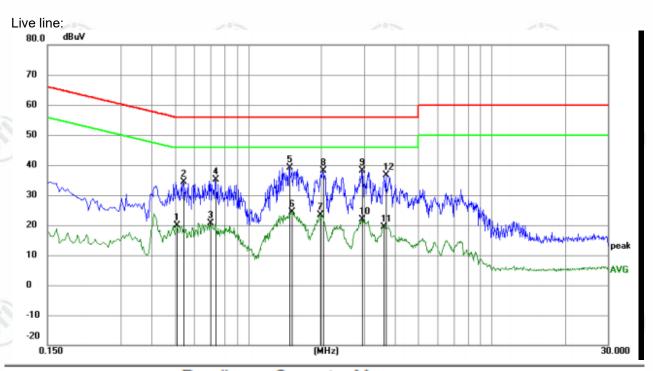
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

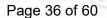
EUT Antenna:

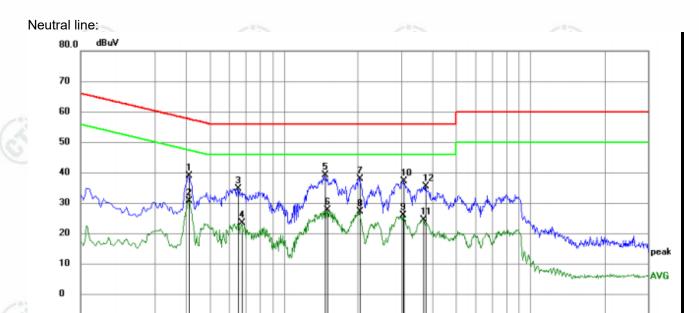
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.


Page 34 of 60 Report No.: EED32M00333301

	 The mains terminal disturbance The EUT was connected to A Stabilization Network) which power cables of all other unwhich was bonded to the greater for the unit being measured multiple power cables to a single exceeded. The tabletop EUT was placed reference plane. And for floor horizontal ground reference The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be all other units of the EUT are 	AC power source three provides a 50Ω/50 points of the EUT were bound reference planed. A multiple socket of the LISN provided to the horizontal ground reference plane, as a vertical ground reference boundary of the unit of the horizontal ground reference boundary of the unit to the horizontal ground reference boundary of the unit to the horizontal ground reference boundary of the unit to the horizontal ground reference boundary of the unit to the horizontal ground reference boundary of the unit to the horizontal ground reference boundary of the unit to the horizontal ground reference to the horizontal g	ough a LISN 1 (Line a) H + 5Ω linear imponented to a second in the same way a coullet strip was use the rating of the LIS ic table 0.8m above tent, the EUT was preference plane. The rence plane. The vertical reference plane in top of the ground reference plane in top of the ground.	e Impedance bedance. The cond LISN 2, as the LISN 1 ed to connect N was not be the ground placed on the ertical ground he. The LISN bonded to and reference
	Stabilization Network) which power cables of all other unwhich was bonded to the grofor the unit being measured multiple power cables to a siexceeded. 3)The tabletop EUT was placed reference plane. And for flood horizontal ground reference. 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be	n provides a 50Ω/50µ nits of the EUT were bund reference plane. A multiple socket of ingle LISN provided to upon a non-metall present of a vertical ground reference boundary of the upon the closest potential provided to the horizontal ground reference boundary of the upon the closest potential provided to the horizontal groundary of the upon the closest potential ground reference boundary of the upon the closest potential ground reference boundary of the upon the closest potential ground reference plane.	uH + 5Ω linear imp connected to a sec in the same way a putlet strip was use he rating of the LIS ic table 0.8m above tent, the EUT was p reference plane. The rence plane. The ver bound reference plara unit under test and in top of the ground	pedance. The cond LISN 2, as the LISN 1 and to connect N was not the ethe ground placed on the ertical ground he. The LISN bonded to and reference
	power cables of all other unwhich was bonded to the grofor the unit being measured multiple power cables to a si exceeded. 3)The tabletop EUT was placed reference plane. And for flood horizontal ground reference. 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be	nits of the EUT were bound reference plane ound reference plane of the EUSN provided to the LISN provided to the horizontal ground reference boundary of the uralless mounted of tween the closest potential process.	connected to a section the same way a putlet strip was use the rating of the LIS ic table 0.8m above the table 0.8m above the table 0.8m above the EUT was preference plane. The rence plane. The vertical reference plane in top of the ground reference plane in top of the ground reference plane.	cond LISN 2, as the LISN 1 and to connect N was not the ground placed on the ertical ground the the LISN bonded to a not reference
	which was bonded to the ground for the unit being measured multiple power cables to a sinexceeded. 3) The tabletop EUT was placed reference plane. And for floor horizontal ground reference. 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be	ound reference plane I. A multiple socket of ingle LISN provided to d upon a non-metall or-standing arrangem plane, n a vertical ground refer d to the horizontal ground re boundary of the u r LISNs mounted of tween the closest po	e in the same way a putlet strip was use he rating of the LIS ic table 0.8m above tent, the EUT was perference plane. The rence plane. The verbund reference plane in top of the ground notice the strip of the ground reference plane.	es the LISN 1 ed to connect N was not e the ground placed on the er rear of the ertical ground ne. The LISN bonded to a nd reference
	multiple power cables to a si exceeded. 3)The tabletop EUT was placed reference plane. And for floor horizontal ground reference. 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be	d upon a non-metall or-standing arrangem plane, a vertical ground refer to the horizontal groundary of the upon the closest potential process of the closest potentia	he rating of the LIS ic table 0.8m above tent, the EUT was perference plane. The rence plane. The vertical reference plane init under test and in top of the ground	N was not e the ground placed on the e rear of the ertical ground ne. The LISN bonded to a nd reference
	reference plane. And for floor horizontal ground reference 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be	or-standing arrangement plane, on a vertical ground reserved to the horizontal ground the LISNs mounted of tween the closest po	eent, the EUT was peference plane. The vector of the cound reference plar init under test and in top of the ground reference plar in top of the ground reference plar in top of the ground rest and in top of the ground reference plant in top of the ground reference plant in the	e rear of the ertical ground ne. The LISN bonded to a nd reference
	4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be	n a vertical ground revertical ground related to the horizontal ground solution to the Lor LISNs mounted of tween the closest po	rence plane. The ve bund reference plar init under test and n top of the grour	ertical ground ne. The LISN bonded to a nd reference
	EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be	e vertical ground refer of to the horizontal ground ne boundary of the u r LISNs mounted of tween the closest po	rence plane. The ve bund reference plar init under test and n top of the grour	ertical ground ne. The LISN bonded to a nd reference
	1 was placed 0.8 m from the ground reference plane for plane. This distance was be	ne boundary of the u r LISNs mounted of tween the closest po	init under test and notice to the top of the ground	bonded to a nd reference
	ground reference plane for plane. This distance was be	r LISNs mounted of tween the closest po	n top of the grour	nd reference
	plane. This distance was be	tween the closest po		
				and the EUT.
	LISN 2.	nd associated equipn		
- 100	5) In order to find the maximum	emission, the relativ	e positions of equir	oment and all
(cfl)	of the interface cables m conducted measurement.			
Limit:	_ Limit (dBµV)			
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	- (0.)
	5-30	60	50	
	* The limit decreases linearly w MHz to 0.50 MHz.			e range 0.15
(83)	NOTE : The lower limit is applic	able at the transition	frequency	

			_	Reading	Correct	Measure-			
	10.	Mk.	Freq.	Level	Factor	ment	Limit	Margin	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.5100	10.00	9.96	19.96	46.00	-26.04	AVG
	2		0.5415	24.43	10.00	34.43	56.00	-21.57	QP
	3		0.6990	10.72	9.88	20.60	46.00	-25.40	AVG
	4		0.7350	25.34	9.87	35.21	56.00	-20.79	QP
	5	*	1.4730	29.44	9.81	39.25	56.00	-16.75	QP
	6		1.5090	14.55	9.81	24.36	46.00	-21.64	AVG
	7		1.9725	13.56	9.79	23.35	46.00	-22.65	AVG
	8		2.0264	28.40	9.79	38.19	56.00	-17.81	QP
_	9		2.9445	28.40	9.79	38.19	56.00	-17.81	QP
_	10		2.9445	12.15	9.79	21.94	46.00	-24.06	AVG
_	11		3.6195	9.70	9.78	19.48	46.00	-26.52	AVG
•	12		3.6870	26.74	9.78	36.52	56.00	-19.48	QP





-10 -20 0.150

30.000

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.4110	29.02	9.97	38.99	57.63	-18.64	QP
2	0.4110	20.61	9.97	30.58	47.63	-17.05	AVG
3	0.6540	24.75	9.97	34.72	56.00	-21.28	QP
4	0.6765	13.40	9.92	23.32	46.00	-22.68	AVG
5 *	1.4685	29.20	9.81	39.01	56.00	-16.99	QP
6	1.5000	17.78	9.81	27.59	46.00	-18.41	AVG
7	2.0310	28.06	9.79	37.85	56.00	-18.15	QP
8	2.0310	17.38	9.79	27.17	46.00	-18.83	AVG
9	3.0570	16.16	9.79	25.95	46.00	-20.05	AVG
10	3.0615	27.43	9.79	37.22	56.00	-18.78	QP
11	3.6915	14.64	9.78	24.42	46.00	-21.58	AVG
12	3.7500	25.63	9.78	35.41	56.00	-20.59	QP

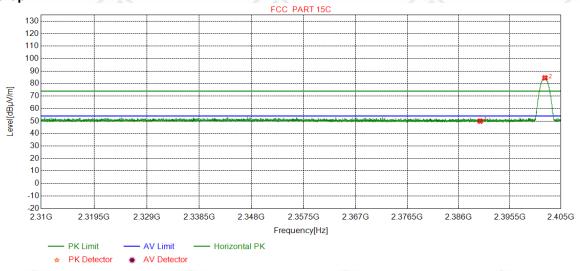
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32M00333301 Page 37 of 60

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	<
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test proced Test method Refer as KD a. The EUT was placed at a 3 meter semi-and determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximu polarizations of the ar d. For each suspected e the antenna was tune was turned from 0 deg	B 558074 D01, Son the top of a rocchoic camber. The of the highest raceters away from op of a variable-howaried from one aum value of the fintenna are set to demission, the EUT d to heights from	Section 12. Intating table table was adiation. It interfer to formate the relation that the interfer to formake the relation of the relation o	1 e 0.8 meter as rotated 3 ence-recei nna tower. our meters n. Both hor neasurement ged to its v	rs above the 360 degrees iving antenna above the grizontal and vent. worst case a and the rotat	to a, which cound to vertica nd the able
	e. The test-receiver syst	em was set to Pe	eak Detect	Function a	nd Specified	
	f. Place a marker at the frequency to show conbands. Save the spector lowest and highest	end of the restric mpliance. Also m trum analyzer plo	easure any	emission	s in the restri	
	f. Place a marker at the frequency to show conbands. Save the spec	end of the restrict impliance. Also more intrum analyzer plot to channel intrumed as below: It we as below:	e, change fin table 0.8 le is 1.5 me the Highes rmed in X, kis position	remissions for each por form Semi- meter to 1 ter). t channel Y, Z axis p	s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca	dulation nambe ove
imit:	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abotto fully Anechoic Chain 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, an	end of the restrict impliance. Also more intrum analyzer plot to channel intrumed as below: It we as below:	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me	remissions for each por for Semi- meter to 1 ter). t channel Y, Z axis points ing which in easured wa	s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca	dulation nambe ove
mit:	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test procect g. Different between abot to fully Anechoic Chai 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above proced	end of the restrict impliance. Also more intrum analyzer plot to channel intrumed as below: It we as below:	easure any ot. Repeat to e, change find table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Ch .5 meter(Ab positioning fo t is worse ca as complete.	dulation nambe ove r
imit:	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about to fully Anechoic Chain 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced Frequency 30MHz-88MHz	end of the restrice impliance. Also more intrum analyzer plot to channel intrumed as below: It was below: It	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me (/m @3m)	remissions for each por for each por for each por form Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete.	dulation nambe ove
imit:	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Char 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, at j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	end of the restrict impliance. Also more intrum analyzer plot to channel intrumed as below: Sove is the test site imber change forms 1 meter and table lowest channel, interest in the implies are performed found the X as ures until all frequences until all frequences. Limit (dBµV) 40.6 43.6	easure any ot. Repeat for table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies med/m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Ch .5 meter(Ab cositioning fo t is worse ca as complete. mark eak Value	dulation nambe ove r
imit:	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	end of the restrice impliance. Also more intrum analyzer plot to channel in the state in the sta	e, change fin table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me //m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulation nambe ove
imit:	Bandwidth with Maxin f. Place a marker at the frequency to show corbands. Save the spector lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Charanse is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	end of the restrice impliance. Also more intrum analyzer plot to channel intrumed in the channel interest in the test site in the change form is 1 meter and table in the channel of the c	e, change fin table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me (/m @3m)	remissions for each por for eac	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value eak Value	nambe ove
imit:	Bandwidth with Maxin f. Place a marker at the frequency to show con bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the i. The radiation measure Transmitting mode, and j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	end of the restrice impliance. Also more intrum analyzer plot to channel in the state in the sta	easure any ot. Repeat to table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me the me (m @3m)	remissions for each por for eac	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulation nambe ove



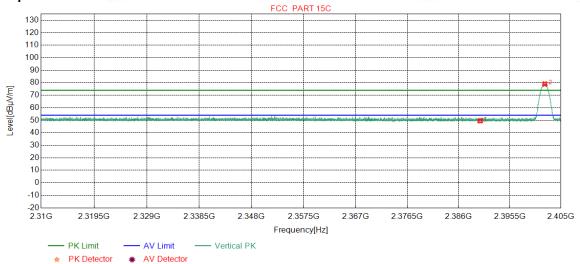
Report No.: EED32M00333301 Page 38 of 60

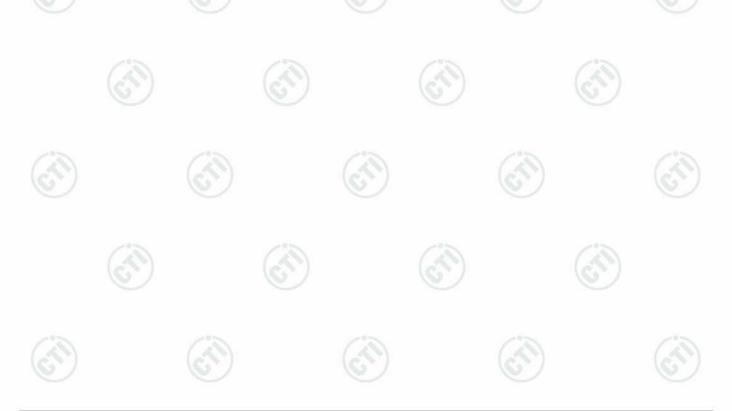
Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	47.45	49.95	74.00	24.05	Pass	Horizontal
1	2	2402.0358	32.26	13.31	-43.12	82.10	84.55	74.00	-10.55	Pass	Horizontal

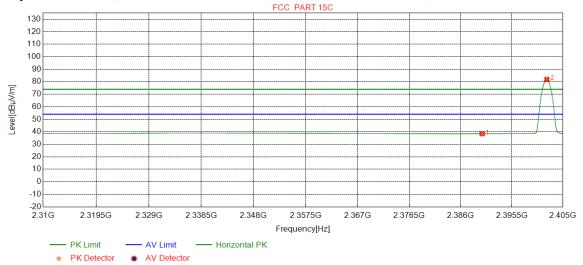


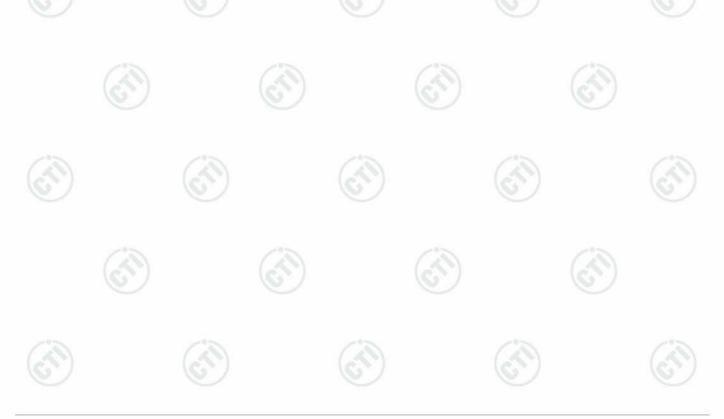

Page 3	39 of	60
--------	-------	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.02	49.52	74.00	24.48	Pass	Vertical
2	2402.0105	32.26	13.31	-43.12	76.53	78.98	74.00	-4.98	Pass	Vertical

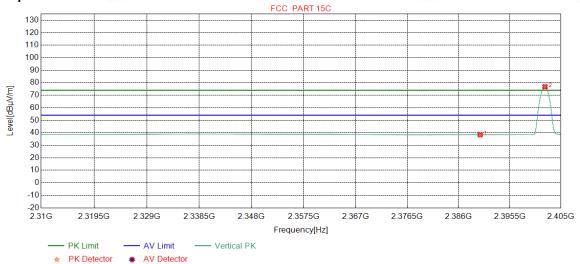


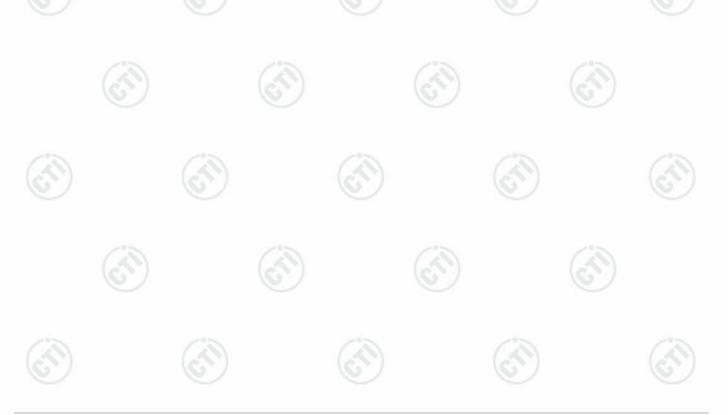

Page 40 of 60

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	35.96	38.46	54.00	15.54	Pass	Horizontal
	2	2402.0041	32.26	13.31	-43.12	79.36	81.81	54.00	-27.81	Pass	Horizontal

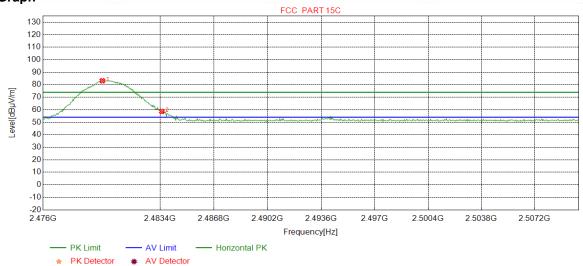


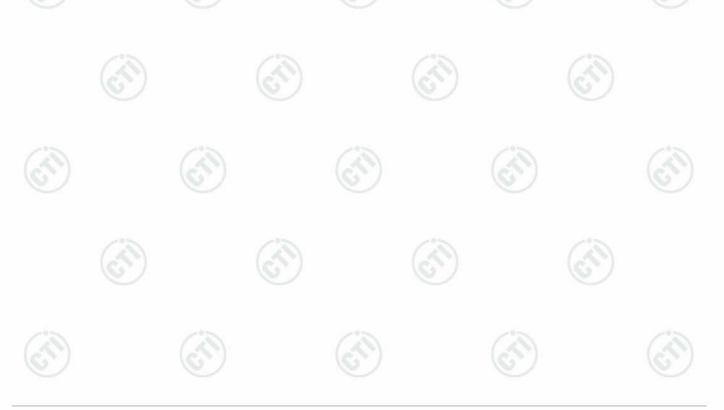

Page 41 of 60	Page	41	of	60
---------------	------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

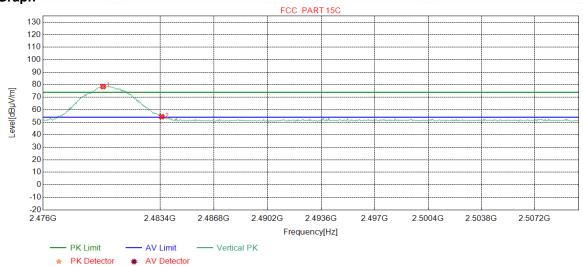
N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.95	38.45	54.00	15.55	Pass	Vertical
2	2402.0295	32.26	13.31	-43.12	74.33	76.78	54.00	-22.78	Pass	Vertical

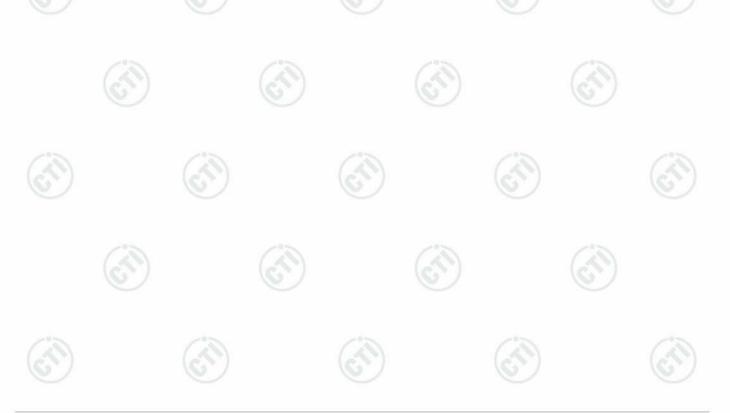



Page 42 of 60	0
---------------	---

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

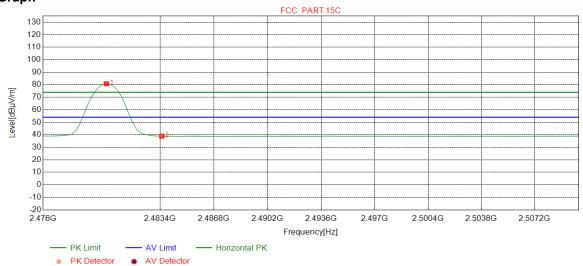

N	Ю	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.7447	32.37	13.39	-43.10	80.48	83.14	74.00	-9.14	Pass	Horizontal
	2	2483.5000	32.38	13.38	-43.11	56.00	58.65	74.00	15.35	Pass	Horizontal

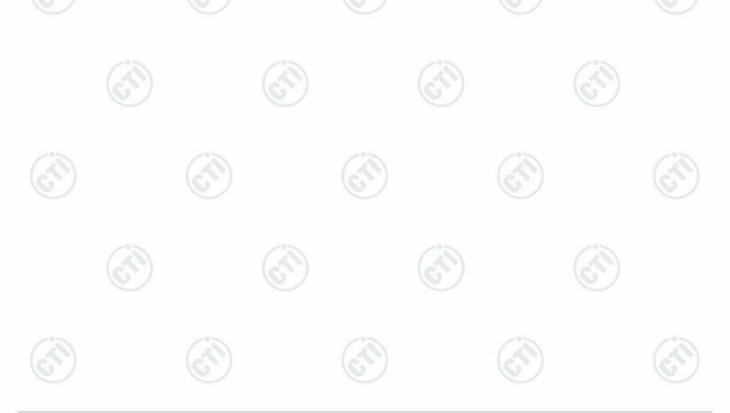


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	75.87	78.53	74.00	-4.53	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	51.76	54.41	74.00	19.59	Pass	Vertical

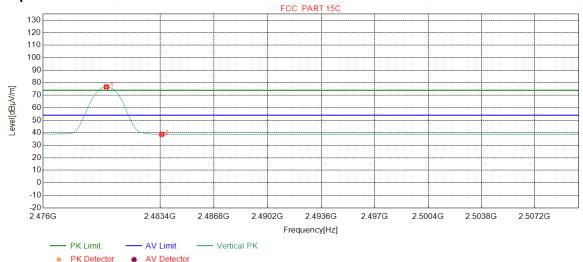



Page 4	4 of	60
--------	------	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	78.12	80.78	54.00	-26.78	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.18	38.83	54.00	15.17	Pass	Horizontal



Page 45 of 60	45 of 60
---------------	----------

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	74.07	76.73	54.00	-22.73	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.07	38.72	54.00	15.28	Pass	Vertical

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32M00333301 Page 46 of 60

Appendix I) Radiated Spurious Emissions

4 CANAGA (N. A.	/					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(FI)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4CUT	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

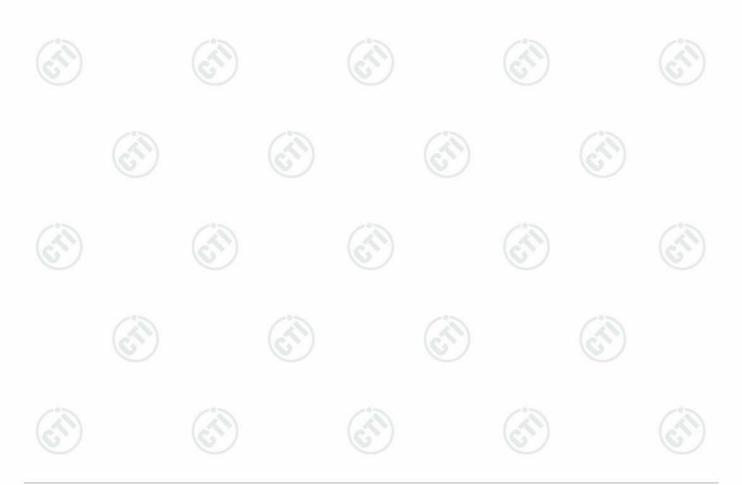
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

			•	
1	- 1	m	п	۲.
L	_!		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


Report No.: EED32M00333301 Page 47 of 60

Radiated Spurious Emissions test Data:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2440MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiated Emission below 1GHz

Mode:			BLE G	SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	42.54	23.04	40.00	16.96	Pass	Н	PK
2	150.0010	7.55	1.45	-32.01	42.81	19.80	43.50	23.70	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	41.58	22.48	43.50	21.02	Pass	Н	PK
4	304.0524	13.29	2.07	-31.60	37.01	20.77	46.00	25.23	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	39.63	30.09	46.00	15.91	Pass	Н	PK
6	909.9750	22.16	3.60	-31.48	38.22	32.50	46.00	13.50	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	43.93	24.43	40.00	15.57	Pass	V	PK
8	56.1926	12.21	0.85	-31.92	37.74	18.88	40.00	21.12	Pass	V	PK
9	195.0135	10.43	1.64	-31.94	45.15	25.28	43.50	18.22	Pass	V	PK
10	304.0524	13.29	2.07	-31.60	37.96	21.72	46.00	24.28	Pass	V	PK
11	600.0290	19.00	2.96	-31.50	39.72	30.18	46.00	15.82	Pass	V	PK
12	909.9750	22.16	3.60	-31.48	37.48	31.76	46.00	14.24	Pass	V	PK

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333

Transmitter Emission above 1GHz

Mode	de:		BLE GFS	SK Transm	itting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1942.2942	31.32	3.42	-43.06	51.13	42.81	74.00	31.19	Pass	Н	PK
2	3189.0126	33.28	4.63	-43.10	50.39	45.20	74.00	28.80	Pass	Н	PK
3	4804.1203	34.50	4.55	-42.80	54.65	50.90	74.00	23.10	Pass	Н	PK
4	7206.2804	36.31	5.81	-42.16	50.70	50.66	74.00	23.34	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	47.24	49.41	74.00	24.59	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	47.86	52.87	74.00	21.13	Pass	Н	PK
7	1717.2717	29.83	3.21	-42.66	50.60	40.98	74.00	33.02	Pass	V	PK
8	4804.1203	34.50	4.55	-42.80	54.46	50.71	74.00	23.29	Pass	V	PK
9	7205.2804	36.31	5.82	-42.17	53.34	53.30	74.00	20.70	Pass	V	PK
10	9608.0000	37.64	6.63	-42.10	47.37	49.54	74.00	24.46	Pass	V	PK
11	10402.4935	38.36	7.19	-42.01	50.15	53.69	74.00	20.31	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.52	51.53	74.00	22.47	Pass	V	PK

Mode:		BLE GF	SK Transr	nitting		Channel:		2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1691.2691	29.66	3.19	-42.68	50.93	41.10	74.00	32.90	Pass	Н	PK
2	3957.0638	33.77	4.34	-43.01	50.98	46.08	74.00	27.92	Pass	Н	PK
3	4880.1253	34.50	4.80	-42.80	54.61	51.11	74.00	22.89	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	49.10	49.23	74.00	24.77	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.96	49.29	74.00	24.71	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	46.29	51.48	74.00	22.52	Pass	Н	PK
7	1845.2845	30.68	3.37	-42.82	50.97	42.20	74.00	31.80	Pass	V	PK
8	3240.0160	33.30	4.49	-43.10	50.99	45.68	74.00	28.32	Pass	V	PK
9	4880.1253	34.50	4.80	-42.80	55.37	51.87	74.00	22.13	Pass	V	PK
10	7319.2880	36.42	5.85	-42.14	52.54	52.67	74.00	21.33	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	47.69	50.02	74.00	23.98	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	46.17	51.36	74.00	22.64	Pass	V	PK
			G Transition					10.7%		20.00	

Mode:			BLE GF	SK Transm	nitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1318.4318	28.22	2.78	-42.77	51.26	39.49	74.00	34.51	Pass	Н	PK
2	3007.0005	33.20	4.92	-43.10	50.32	45.34	74.00	28.66	Pass	Н	PK
3	4960.1307	34.50	4.82	-42.80	53.41	49.93	74.00	24.07	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	49.00	49.28	74.00	24.72	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.27	48.73	74.00	25.27	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	47.14	52.64	74.00	21.36	Pass	Н	PK
7	1594.4594	29.02	3.07	-42.91	51.64	40.82	74.00	33.18	Pass	V	PK
8	3037.0025	33.21	4.86	-43.10	50.56	45.53	74.00	28.47	Pass	V	PK
9	4961.1307	34.50	4.82	-42.80	52.37	48.89	74.00	25.11	Pass	V	PK
10	7440.2960	36.54	5.85	-42.11	51.62	51.90	74.00	22.10	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	45.99	48.45	74.00	25.55	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	47.07	52.57	74.00	21.43	Pass	V	PK

NOTE:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

