

Page 1 of 61

Product	:	Digital Blood Pressure Monitor	
Trade mark	:	microlife	
Model/Type reference	:	WatchBP Office Vascular,TWIN200 VSR	
Serial Number	:	N/A	
Report Number	:	EED32M00235001	
FCC ID	:	U7I-TWIN200VSR	
Date of Issue	:	Aug. 31, 2020	
Test Standards	:	47 CFR Part 15 Subpart C	
Test result	:	PASS	

Prepared for:

Microlife Corporation 9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compileo Approved	TIONAL CR	unlight Sun Sunlight Sun Lan Clevery	(A)	Reviewed by: Date:	Jok Yang Aug. 31, 2020
Report S	PSO	Sam Chuang			Check No.3970340721

Page 2 of 61

2 Version

	Version No.		Date	(\mathcal{A}^{1})	Descripti	on	
-	00	Αι	ug. 31, 2020		Original	\sim	
<u>I</u>		(S)			(I)		

Report No. : EED32M00235001

3 Test Summary

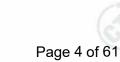
Page 3 of 61

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

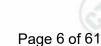
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

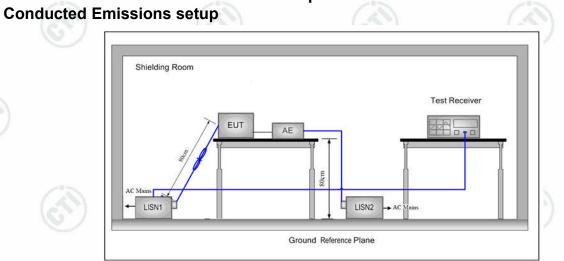

Model No.: WatchBP Office Vascular, TWIN200 VSR

Only the model WatchBP Office Vascular was tested, Their electrical circuit design, layout, components used, internal wiring, software and outer decoration are identical. Only the model names are different. The tested product has two model names, WatchBP Office Vascular is the market model name; TWIN200 VSR is the factory internal model name.

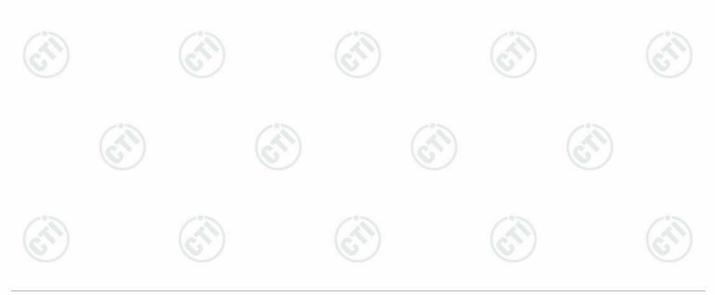
Report No. : EED32M00235001



4 Content				
COVER PAGE				••••••
VERSION		<u> </u>		
B TEST SUMMARY				
CONTENT				
TEST REQUIREMENT			<u> </u>	
5.1 TEST SETUP		~ ~	<u> </u>	\sim
	•			
		<u></u>		
5.3 TEST CONDITION				
GENERAL INFORMATION				
6.1 CLIENT INFORMATION				
6.2 GENERAL DESCRIPTION	OF EUT			
		TANDARD		
6.4 DESCRIPTION OF SUPPO	RT UNITS			
6.5 TEST LOCATION				
		OMER		
6.9 MEASUREMENT UNCERT	AINTY (95% CONFIDENC	СЕ LEVELS, К=2)		
EQUIPMENT LIST				1
RADIO TECHNICAL REQU				
Appendix A): 6dB Occur	bied Bandwidth		N	
Appendix B): Conducted	Peak Output Power.	<u></u>		
Appendix C): Band-edge	e for RF Conducted Er	nissions	<u>/</u>	
Appendix D): RF Condu	cted Spurious Emissic	ns		
Appendix F): Antenna R	equirement			
		sion		
		ental frequency (Radiated)		
Appendix I) Radiated Sp	ourious Emissions	\sim		
PHOTOGRAPHS OF TEST S	SETUP			••••••••••••••••••••••••
HOTOGRAPHS OF EUT CO	ONSTRUCTIONAL DE	TAILS		



5.1.3 For Conducted Emissions test setup


5.2 Test Environment

Operating Environment:	e		C
Temperature:	24.0 °C		
Humidity:	53 % RH	1122	10.0
Atmospheric Pressure:	1010 mbar		
	107.79	100.00	

5.3 Test Condition

Test channel:

100	Test Mode	Tx/Rx	/	RF Channel	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(A)	Test Mode	I X/KX	Low(L)	Middle(M)	High(H)
C	0501/		Channel 0	Channel 19	Channel 39
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep the EUT in transmitting mode rate.	e with all kind of m	odulation and a	all kind of data
	(\bigcirc)		(6)	6)

Report No. : EED32M00235001

6 General Information

6.1 Client Information

Applicant:	Microlife Corporation
Address of Applicant:	9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan
Manufacturer:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Manufacturer:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China
Factory:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Factory:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China

Page 7 of 61

6.2 General Description of EUT

Product Name:	Digital Blood	d Pressure Monitor	
Model No.(EUT):	WatchBP O	ffice Vascular,TWIN200 VSR	
Test Model No:	WatchBP O	ffice Vascular	23
Trade mark:	microli	fe	(2)
EUT Supports Radios application:		le mode, 2402MHz to 2480MHz	V
Power Supply:	Adapter	MODEL No:UE15WCP1-075150SPA PART No:UE140425DGHD03-R INPUT:100-240V~50/60Hz,500mA OUTPUT:7.5V1.5A	
	Battery	GPRHC252C236 GP250AAHC4BMXZ 4.8V 2400mAh	
Sample Received Date:	Aug. 04, 202	20	62
Sample tested Date:	Aug. 04, 202	20 to Aug.10, 2020	6

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		215	
Bluetooth Version:	4.2)		
Modulation Technique:	DSSS		S.	
Modulation Type:	GFSK			
Number of Channel:	40			
Test Power Grade:	Default			(2)
Test Software of EUT:	NRF	6.		67
Antenna Type and Gain:	Ceramic Antenna and 0dBi			
Test Voltage:	Battery 4.8V			
	215 A.S.		1	

Page 8 of 61

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Hotline: 400-6788-333

6.9 Measurement Uncertainty (95% confidence levels, k=2)

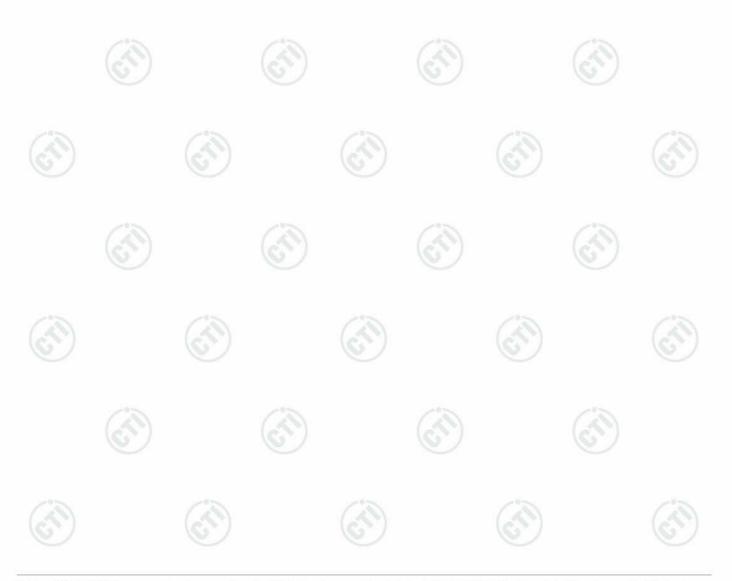
No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2		0.46dB (30MHz-1GHz)		
2 RF power, conduc	RF power, conducted	0.55dB (1GHz-18GHz)		
3 Ra	Dedicted Sources emission test	4.3dB (30MHz-1GHz)		
	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
4	Conduction emission	3.5dB (9kHz to 150kHz)		
*)	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		
		(23)		

_ _

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	НМ10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			- 6
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d			
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			
	(2)				64

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128		(S)		
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188				



Page 11 of 61

		3M S	Semi/full-anecho	ic Chamber		
	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
2	3M Chamber & Accessory Equipment	ток	SAC-3		05-24-2019	05-23-2022
	TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
	Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
	Multi device Controller	maturo	NCD/070/107 11112	(23)		(\land)
	Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
	Cable line	Fulai(7M)	SF106	5219/6A		
	Cable line	Fulai(6M)	SF106	5220/6A		
2	Cable line	Fulai(3M)	SF106	5216/6A	1	
	Cable line	Fulai(3M)	SF106	5217/6A	()	

Page 12 of 61

		3M full-anecho	1		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		<u>e</u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001)
Cable line	Times	EMC104-NMNM- 1000	SN160710	E)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		<u> </u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(S)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		<u> </u>

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title	
1	FCC Part15C	Subpart C-Intentional Radiators	
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices	

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

EUT DUTY CYCLE

Node: BLE		Ant: Ant1		
Channel: LCH		Voltage: VN	(2)	
Temperature: TN	G	Result: PASS	Value:66.67%	(
Start Time: 2020/8/6 10:59:41		End Time: 2020	0/8/6 10:59:55	
Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω DC Center Freq 2.402000000 GHz IFOG in:1 IFOG in:1		ALIGN AUTO #Avg Type: RMS	01:40:41 PM Aug 06, 2020 TRACE 1 2 3 4 5 6 TYPE DET A A A A A A	Frequency
10 dB/div Ref 23.00 dBm			Mkr3 1.222 ms -27.92 dBm	Auto Tune
3.00				Center Freq 2.402000000 GHz
-17.0 3 -27.0 3 -37.0 -47.0		, , , , , , , , , , , , , , , , , , ,		Start Freq 2.402000000 GHz Stop Freq
-57.0 -67.0 Center 2.402000000 GHz			Span 0 Hz	2.402000000 GHz
	¥VBW 1.0 MHz*	Sweep 5	0.13 ms (8001 pts)	1.000000 MHz <u>Auto</u> Man
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ls (Δ) 2.24 dB ls -25.76 dBm	FUNCTION WDTH	FUNCTION VALUE	Freq Offset 0 Hz
8 9 10 10 11 11 10 10 10 10 10 10 10 10 10	III	STATUS		
6 ⁻) (6		6	(S)

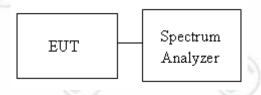
Appendix A): 6dB Occupied Bandwidth

<u>Test Limit</u>

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth

		(2)
Limit	Shall be at least 500kHz	e


Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 , section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

0.7218

Test Result 6dB Bandwidth Mode Channel 6dB Bandwidth [MHz] Verdict BLE LCH 0.6885 PASS BLE MCH 0.7044 PASS

HCH

99% OBW

BLE

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.2593	PASS
BLE	МСН	1.2104	PASS
BLE	нсн	1.0669	PASS

PASS

Hotline: 400-6788-333





6dB Bandwidth

61)

Page 18 of 61

Report No. : EED32M00235001

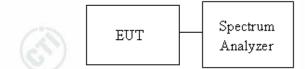
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

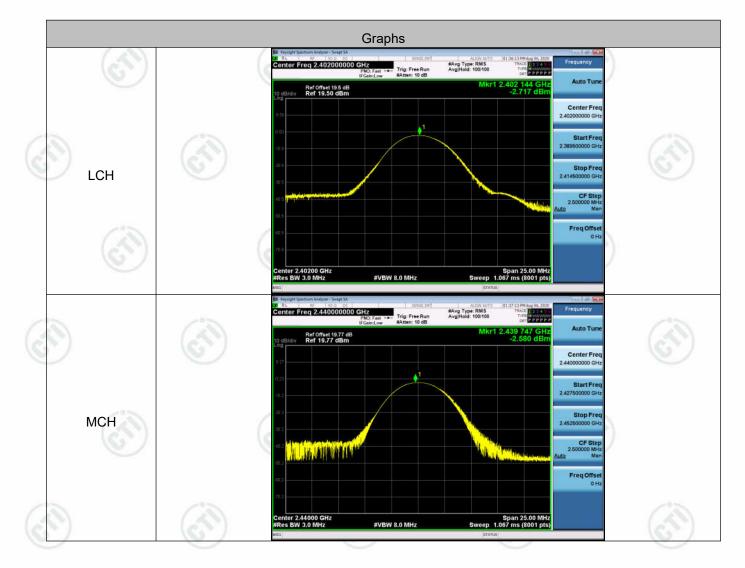

Page 19 of 61

(C)	🖂 Antenna not exceed 6 dBi : 30dBm	6
Limit	Antenna with DG greater than 6 dBi [Limit = $30 - (DG - 6)$]	
<2°	Point-to-point operation	

Test Procedure

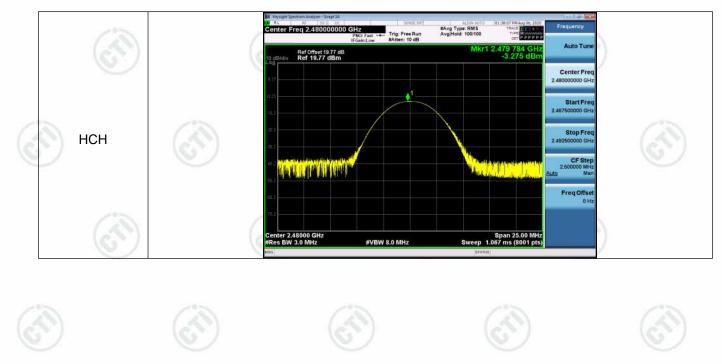
Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW \geq DTS bandwidth.
 - b) Set VBW≥[3×RBW].
 - c) Set span≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.
- Test Setup



<u>Test Result</u>

<u>est Result</u>			6
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-2.717	PASS
BLE	МСН	-2.58	PASS
BLE	нсн	-3.275	PASS
Test Graphs			



s) _P

Page 21 of 61

Page 22 of 61

Appendix C): Band-edge for RF Conducted Emissions

<u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>

Report No. : EED32M00235001

Page 23 of 61

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-2.591	-55.263	-22.59	PASS
BLE	нсн	-3.604	-51.641	-23.6	PASS
Test Grap	ohs 🧹				

Report No. : EED32M00235001

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

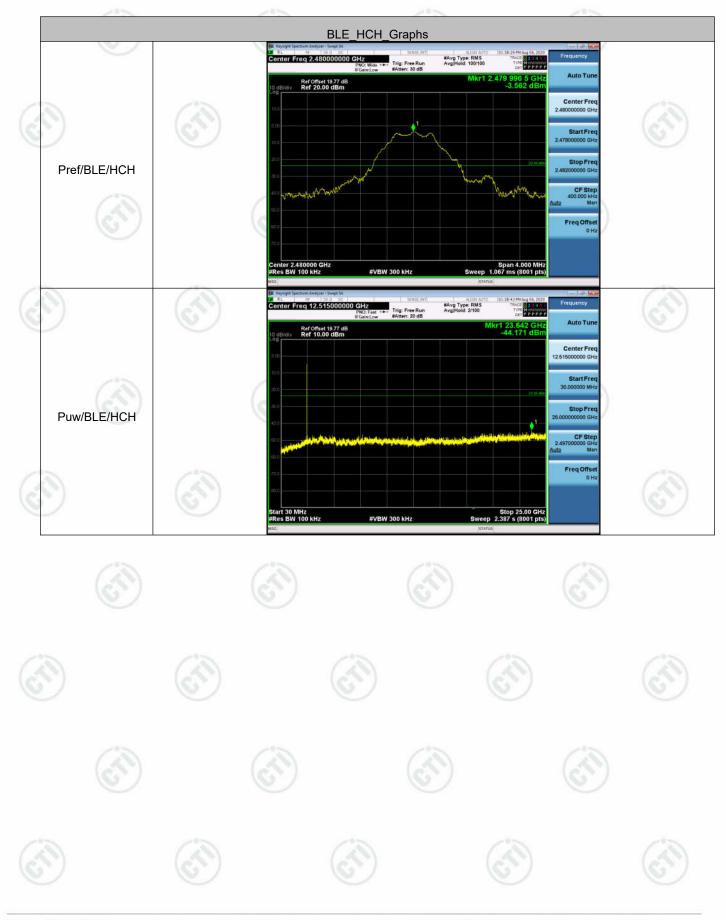
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

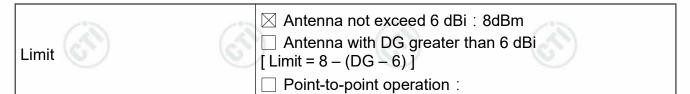
Page 25 of 61

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-2.874	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-2.723	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-3.562	<limit< td=""><td>PASS</td></limit<>	PASS
Test Gra	ohs 🕥		87) <u> </u>	67
		BLE_LCH_Graphs	1 co 1 de 100	
Pref/BLE/LCH	(J)	Rogade Section Andress - Sected 301 Location Allocation Certer Freq 2.402000000 GHz (Figure 1.5.5 dB) Source 1.5.5 dB) Mkr1 2.4 10 dB/div Ref Offset 18.5 dB) Mkr1 2.4 10 dB/div Ref Offset 19.5 dB) Ref Offset 19.5 10 dB/div Ref Offset 19.5 Ref Offset 19.5 10 dV Ref Offset 19.5 Ref Offset 19.5 10 dV Ref Offset 19.5 Ref Offset 19.5 10 dV Ref Offset 19.5 Ref Offset 19.5 10 d	(1) 20: 44 Marg 06, 2021 The additional of the	(ji)
(I) (I)	(F)	Mac parameter Bit Registrat Spectrum Analyzer - Singet M Coll R. L. Min 1900 - CC Center Freq 12.515000000 GHz FRO: Fast ++- Trig: Free Run Avg/Hold: 2/100 #Kvg Type: RMS Avg/Hold: 2/100	Span 4.000 MHz 0 Hz 67 ms (8001 MHz) Fraquency 130.49 MAag 05,200 Fraquency The Conter Fraquency 12.616000000 GHz 12.616000000 GHz Start Freq 30.000000 MHz 30.000000 MHz	(F)
Puw/BLE/LCH		MSG STATUS	1 25.0000000 GHz 26.00000000 GHz 2.49700000 GHz 2.49700000 GHz 2.49700000 GHz Auto Man Freq Offset 0 Hz Stop 25.00 GHz 387 s (8001 pts)	



Page 27 of 61



Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.

5. Mark the maximum level.

Measure and record the result of power spectral density. in the test report.

Test Setup

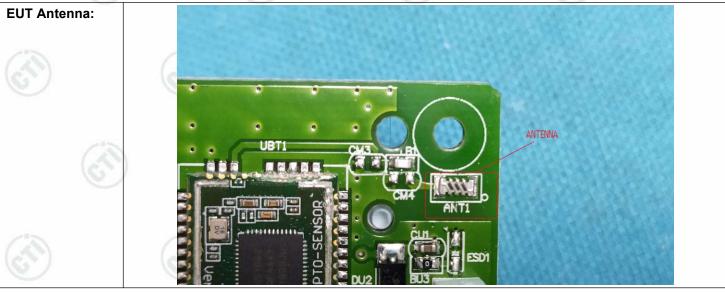
Page 29 of 61

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-17.642	PASS
BLE	MCH	-16.812	PASS
BLE	НСН	-16.899	PASS
Test Graphs	(31)		(67)
	W e see the second sec	Graphs	
(F)		1022000000 Stress Trig: Free Run IF Caint.nw AvgiHdid: 28/100 Tric: Free Run IF Caint.nw	uto Tune Inter Freq 30000 GHz Start Freq 5000 GHz
LCH			Stop Freq Sociol GHz CF Step Man eq Offset 0 Hz
(i)	Center 2.402000 #Res BW 3.0 kH ISSO	Iz #VBW 10 kHz Sweep 158.4 ms (8001 pts)	
	Center Freq 2.	440000000 GHz Provide Free Run Brack 19:77 dB SAver Type: RMS AvgHold: 27/100 Trucc Type: RMS Trucc Type: RMS AvgHold: 27/100 Trucc Type: RMS Trucc Type: RMS AvgHold: 27/100 Trucc Type: RMS Trucc Type: RMS Type: RMS Ty	uuney uuto Tune nter Freq Start Freq Stoop Freq
MCH	400 400 400 400 400 400 400 400	2.4407 2.4407 2.4111 2.4111 2.411 2.4111 2.4111 2.4111 2.4111 2.4111 2.4111 2.	S0000 GH2 CF Step 50 000 HH2 Man eq Offset 0 H2
		480000000 GHz IFGainLow Trig: Free Run AvgHold: 26100 SAvg Type: RMS AvgHold: 26100 Truc: IP 324 To Closed Content of the Content of the Conte	uto Tune Inter Freq 00000 GHz Start Freq Start Freq
нсн	10 0 10 0	2 4807 2 4807	CF Step 50000 GHz CF Step 50000 Hz eq Offset 0 Hz

Hotline: 400-6788-333

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com


Appendix F): Antenna Requirement

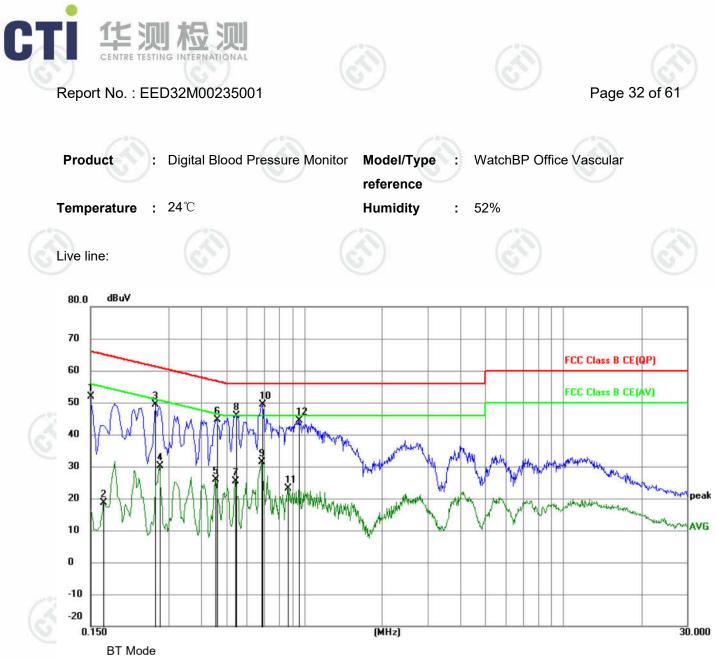
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.

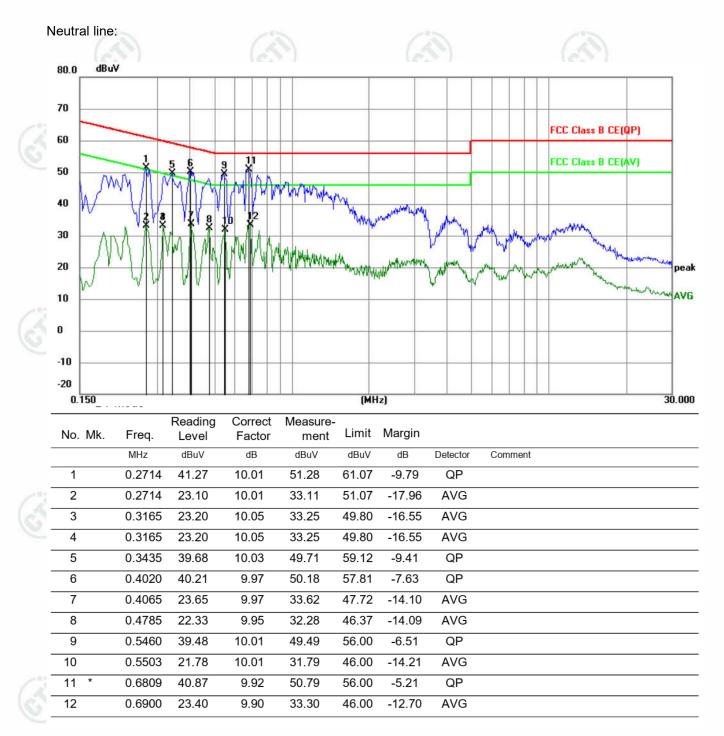

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-	-30MHz						
	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2 							
	which was bonded to the gr for the unit being measured multiple power cables to a s exceeded.	ound reference plane i d. A multiple socket ou	n the same way as itlet strip was used	the LISN to conn				
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangeme						
	4) The test was performed wit EUT shall be 0.4 m from the reference plane was bonde	e vertical ground refere	nce plane. The ver	tical grou				
	1 was placed 0.8 m from t ground reference plane for plane. This distance was be All other units of the EUT a LISN 2.	r LISNs mounted on etween the closest poir	top of the groun its of the LISN 1 a	d referer nd the El				
(in	5) In order to find the maximun of the interface cables r conducted measurement.							
Limit:	of the interface cables r conducted measurement.	nust be changed ac	cording to ANSI					
Limit:	of the interface cables r		cording to ANSI					
Limit:	of the interface cables r conducted measurement.	nust be changed ac Limit (dE	cording to ANSI					
Limit:	of the interface cables r conducted measurement. Frequency range (MHz)	nust be changed ac Limit (dE Quasi-peak	cording to ANSI BµV) Average					
Limit:	of the interface cables r conducted measurement. Frequency range (MHz) 0.15-0.5	nust be changed ac Limit (dE Quasi-peak 66 to 56*	cording to ANSI BμV) Average 56 to 46*					
Limit:	of the interface cables r conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5	Limit (dE Quasi-peak 66 to 56* 56 60 with the logarithm of th	Average 56 to 46* 46 50 te frequency in the	C63.10				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

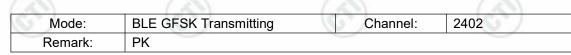


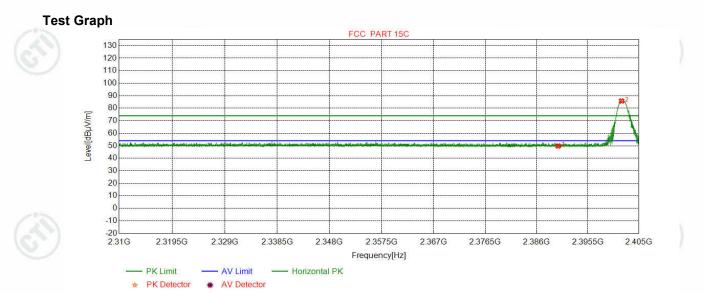
-	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1500	41.90	9.87	51.77	66.00	-14.23	QP	
-	2	0.1680	8.85	9.87	18.72	55.06	-36.34	AVG	
-	3	0.2670	39.41	10.00	49.41	61.21	-11.80	QP	
23	4	0.2760	20.07	10.02	30.09	50.94	-20.85	AVG	
6	5	0.4560	15.97	9.96	25.93	46.77	-20.84	AVG	
0	6	0.4605	34.66	9.96	44.62	56.68	-12.06	QP	
-	7	0.5415	15.32	10.00	25.32	46.00	-20.68	AVG	
-	8	0.5460	35.83	10.01	45.84	56.00	-10.16	QP	
-	9	0.6855	21.36	9.91	31.27	46.00	-14.73	AVG	
-	10 *	0.6900	39.37	9.90	49.27	56.00	-6.73	QP	
-	11	0.8655	13.30	9.85	23.15	46.00	-22.85	AVG	
-	12	0.9555	34.52	9.84	44.36	56.00	-11.64	QP	
2010									

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

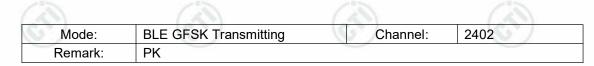
Appendix H): Restricted bands around fundamental frequency (Radiated)

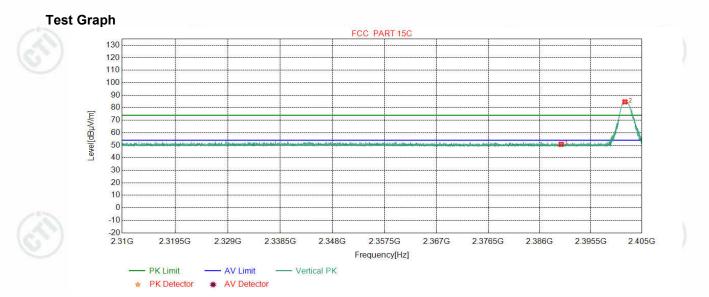

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
		Peak	1MHz	3MHz	Peak				
0	Above 1GHz	Peak	1MHz	10Hz	Average				
Test Procedure:	 Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 , Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the g at a 3 meter semi-anechoic camber. The table was rotated 360 degrees t determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the group determine the maximum value of the field strength. Both horizontal and v polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case ar the antenna was tuned to heights from 1 meter to 4 meters and the rotata was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restrict bands. Save the spectrum analyzer plot. Repeat for each power and model. 								
		um analyzer plo							
	bands. Save the spectr	um analyzer plo channel re as below: e is the test site ber change form 1 meter and table west channel , t ments are perfor 1 found the X ax	t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni	for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	Anechoic Ch .5 meter(Abo positioning for	dula naml ove r			
Limit:	 bands. Save the spectro for lowest and highest of Above 1GHz test procedure g. Different between above to fully Anechoic Champion 18GHz the distance is final the context of the EUT in the low in the radiation measurem Transmitting mode, and 	um analyzer plo channel re as below: e is the test site ber change form 1 meter and table west channel , t ments are perfor 1 found the X ax	t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me	for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Ch .5 meter(Abo positioning for	dula namt ove r			
Limit:	bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur	um analyzer plo channel re as below: e is the test site ber change form 1 meter and table west channel , to ments are perfor d found the X ax res until all freque	t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me m @3m)	for each por rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren	Anechoic Ch .5 meter(Abo positioning for it is worse cas as complete.	dula naml ove r			
Limit:	bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency	um analyzer plo channel re as below: e is the test site ber change form 1 meter and table west channel , t ments are perfor d found the X ax res until all frequ Limit (dBµV/	t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me m @3m)	for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe	Anechoic Ch .5 meter(Abd positioning for it is worse cas as complete. mark	dula namt ove r			
Limit:	bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz	um analyzer plo channel re as below: e is the test site ber change form 1 meter and table west channel , the ments are perfor d found the X ax res until all frequ Limit (dBµV/ 40.0	t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me m @3m)	for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abd oositioning for it is worse cas as complete. mark eak Value	dula naml ove r			
Limit:	bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	um analyzer plo channel re as below: e is the test site ber change form 1 meter and table west channel , ti ments are perfor d found the X ax res until all frequ Limit (dBµV/ 40.0 43.5	t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me m @3m)	for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abd positioning for it is worse cas as complete. mark eak Value eak Value	dula namt ove r			
Limit:	bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is 7 h Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	um analyzer plo channel re as below: e is the test site ber change form 1 meter and table west channel , the ments are perfor d found the X ax res until all frequ Limit (dBµV/ 40.0 43.5 46.0	t. Repeat f , change fr n table 0.8 e is 1.5 met he Highest med in X, is positioni uencies me m @3m)	for each por rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo oositioning for it is worse cas as complete. mark eak Value eak Value eak Value	dula namt ove r			
Limit:	bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	um analyzer plo channel re as below: e is the test site ber change form 1 meter and table west channel , ti ments are perfor d found the X ax res until all frequ Limit (dBµV/ 40.0 43.5 46.0 54.0	t. Repeat f	for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	Anechoic Ch .5 meter(Abd oositioning for it is worse cas as complete. mark eak Value eak Value eak Value eak Value	dula namt ove r			



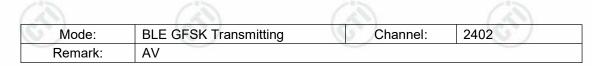
Test plot as follows:

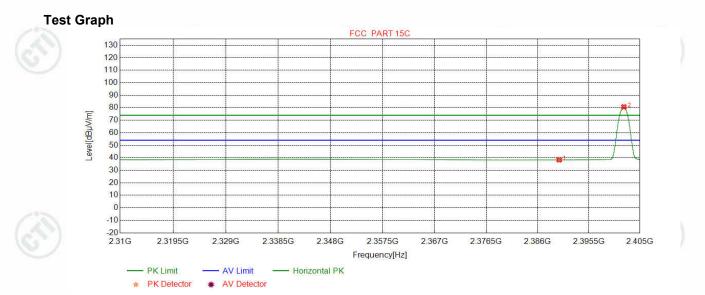
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-43.12	47.31	49.81	74.00	24.19	Pass	Horizontal
	2	2401.7761	32.26	13.31	-43.12	83.32	85.77	74.00	-11.77	Pass	Horizontal
1	1		100	1							



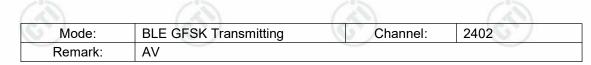


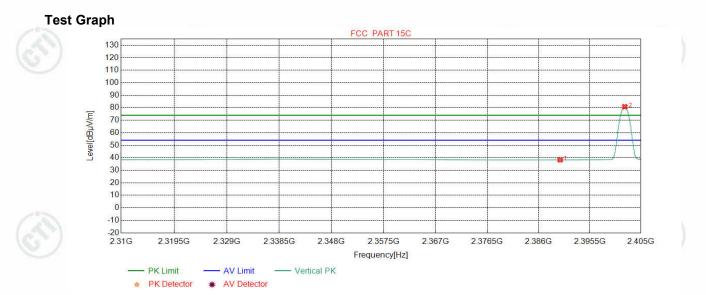
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.28	50.78	74.00	23.22	Pass	Vertical
2	2401.8395	32.26	13.31	-43.12	82.23	84.68	74.00	-10.68	Pass	Vertical
12	N	1.1	10	•						



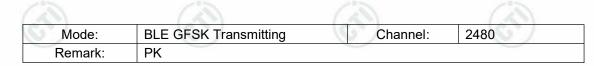


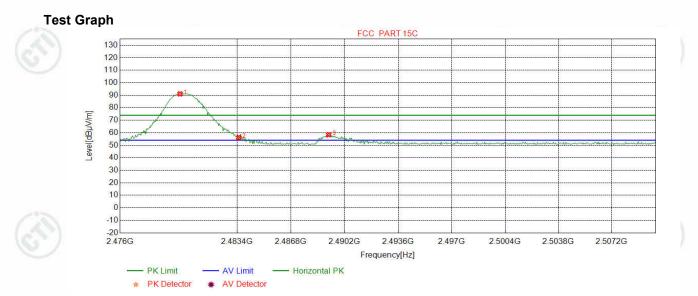
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.83	38.33	54.00	15.67	Pass	Horizontal
2	2402.0168	32.26	13.31	-43.12	78.21	80.66	54.00	-26.66	Pass	Horizontal
12	A	10	1				(1)			



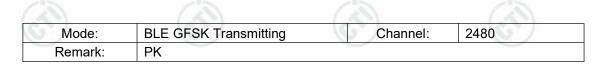


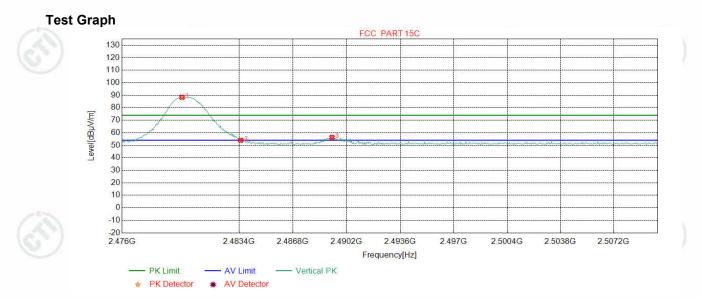
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.83	38.33	54.00	15.67	Pass	Vertical
2	2402.0041	32.26	13.31	-43.12	78.35	80.80	54.00	-26.80	Pass	Vertical
12	N	10	A							



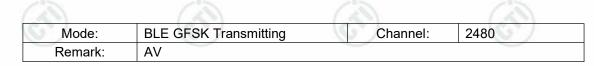


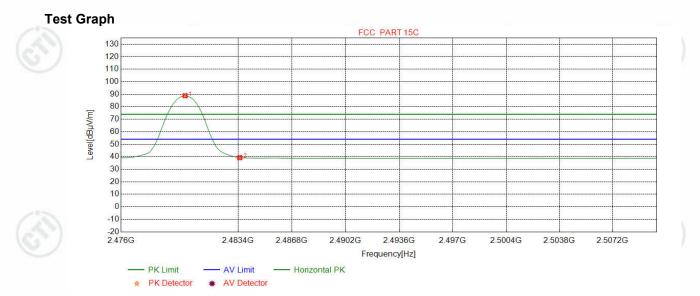
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	88.38	91.04	74.00	-17.04	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	53.50	56.15	74.00	17.85	Pass	Horizontal
3	2489.1915	32.38	13.35	-43.10	55.75	58.38	74.00	15.62	Pass	Horizontal
6).	6	9		67		67			67



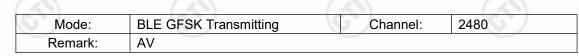


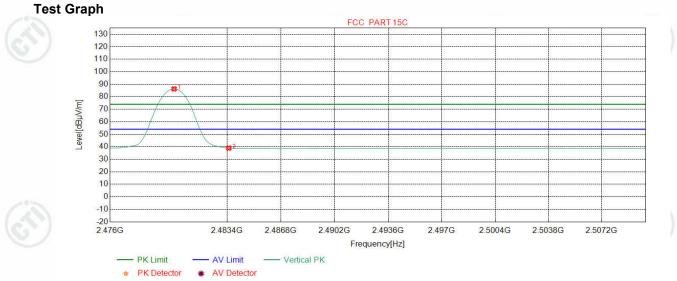
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	85.68	88.34	74.00	-14.34	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	51.32	53.97	74.00	20.03	Pass	Vertical
3	2489.2766	32.38	13.35	-43.10	53.62	56.25	74.00	17.75	Pass	Vertical
6)	6	9	•	67		67			S)





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	86.12	88.78	54.00	-34.78	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.65	39.30	54.00	14.70	Pass	Horizontal
12	6	14	10				(A)			(A)





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-43.10	83.57	86.23	54.00	-32.23	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.27	38.92	54.00	15.08	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
2	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(\mathcal{S})		Peak	1MHz	3MHz	Peak	
\sim	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:						
Test method Refer a a. The EUT was pla camber. The tab	rocedure as below: as KDB 558074 D01, Section aced on the top of a rotating to le was rotated 360 degrees to t 3 meters away from the inte ntenna tower.	able 0.8 meters a determine the p	osition of th	e highest r	adiation.	
c. The antenna heig of the field strengd. For each suspect heights from 1 m	ght is varied from one meter t gth. Both horizontal and vertic ted emission, the EUT was a leter to 4 meters (for the test to batable was turned from 0 de	cal polarizations or rranged to its wo frequency of belo	of the anten rst case and w 30MHz, f	na are set f then the a he antenna	to make the me antenna was tur a was tuned to h	asuremen ned to
e. The test-receiver	system was set to Peak Dete evel of the EUT in peak mode	ect Function and	Specified E	Bandwidth v	vith Maximum F	

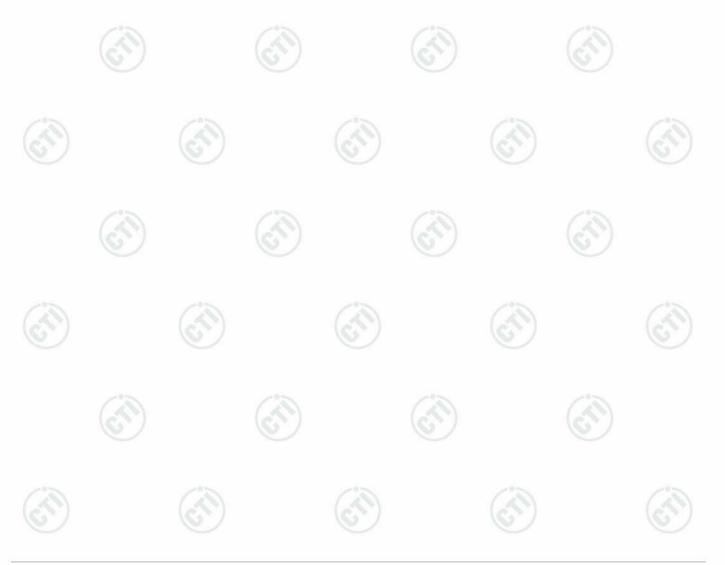
stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
 - Measurement Field strength Limit Frequency Remark (microvolt/meter) | (dBµV/m) distance (m) 0.009MHz-0.490MHz 2400/F(kHz) 300 . 0.490MHz-1.705MHz 24000/F(kHz) _ -1 30 1.705MHz-30MHz 30 30 _ _ 30MHz-88MHz 100 40.0 Quasi-peak 3 150 3 88MHz-216MHz 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 960MHz-1GHz 500 3 54.0 Quasi-peak 500 54.0 3 Above 1GHz Average

j. Repeat above procedures until all frequencies measured was complete.

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Report No. : EED32M00235001

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

Mode:			BLE G	SK Trans	smitting		Channel:		2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	105.9586	10.94	1.21	-32.00	41.14	21.29	43.50	22.21	Pass	Н	PK	
2	170.0820	8.45	1.53	-31.96	45.67	23.69	43.50	19.81	Pass	Н	PK	
3	199.9610	10.90	1.67	-31.90	43.93	24.60	43.50	18.90	Pass	Н	PK	
4	304.0524	13.29	2.07	-31.60	40.79	24.55	46.00	21.45	Pass	Н	PK	
5	600.0290	19.00	2.96	-31.50	40.98	31.44	46.00	14.56	Pass	Н	PK	
6	649.9890	19.40	3.10	-32.07	42.96	33.39	46.00	12.61	Pass	Н	PK	
7	35.2385	10.78	0.65	-31.42	42.60	22.61	40.00	17.39	Pass	V	PK	
8	120.0250	9.20	1.30	-32.07	42.67	21.10	43.50	22.40	Pass	V	PK	
9	150.0010	7.55	1.45	-32.01	46.87	23.86	43.50	19.64	Pass	V	PK	
10	195.0135	10.43	1.64	-31.94	46.49	26.62	43.50	16.88	Pass	V	PK	
11	600.0290	19.00	2.96	-31.50	41.29	31.75	46.00	14.25	Pass	V	PK	
12	649.9890	19.40	3.10	-32.07	43.56	33.99	46.00	12.01	Pass	V	PK	

Page 45 of 61

Report No. : EED32M00235001

Transmitter Emission above 1GHz

Mode	Mode: BLE GFSK Transmitting				Channel:		2402				
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1409.6410	28.31	2.91	-42.72	50.55	39.05	74.00	34.95	Pass	Н	PK
2	3177.0118	33.27	4.61	-43.10	50.10	44.88	74.00	29.12	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	56.62	52.87	74.00	21.13	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	46.92	46.88	74.00	27.12	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	47.89	50.06	74.00	23.94	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	45.19	50.20	74.00	23.80	Pass	Н	AV
7	1741.0741	29.99	3.22	-42.67	51.29	41.83	74.00	32.17	Pass	V	PK
8	2510.9511	32.42	4.04	-43.10	52.57	45.93	74.00	28.07	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	56.65	52.90	74.00	21.10	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	47.27	47.23	74.00	26.77	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	47.58	49.75	74.00	24.25	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	45.98	50.99	74.00	23.01	Pass	V	PK
1		1			6)	0				/

Mode	ð :	BLE GF	SK Tran	smitting			Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1341.0341	28.24	2.81	-42.74	50.93	39.24	74.00	34.76	Pass	Н	PK
2	3043.0029	33.22	4.84	-43.10	50.00	44.96	74.00	29.04	Pass	Н	PK
3	4880.1253	34.50	4.80	-42.80	56.34	52.84	74.00	21.16	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	47.38	47.51	74.00	26.49	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	48.14	50.47	74.00	23.53	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	45.11	50.30	74.00	23.70	Pass	Н	PK
7	1131.6132	28.03	2.64	-42.96	51.01	38.72	74.00	35.28	Pass	Н	AV
8	3978.0652	33.78	4.33	-43.00	51.05	46.16	74.00	27.84	Pass	V	PK
9	4880.1253	34.50	4.80	-42.80	58.40	54.90	74.00	19.10	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	46.33	46.46	74.00	27.54	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	47.23	49.56	74.00	24.44	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	46.09	51.28	74.00	22.72	Pass	V	PK
13	4880.1244	34.50	4.80	-42.80	55.72	52.22	54.00	1.78	Pass	V	AV
0	1	1	317		0	1	6	51		0	1

Page 46 of 61

Mode	e:	BLE GFSK Transmitting					Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1716.8717	29.83	3.21	-42.67	50.80	41.17	74.00	32.83	Pass	Н	PK
2	3213.0142	33.29	4.60	-43.11	49.81	44.59	74.00	29.41	Pass	Н	PK
3	4960.1307	34.50	4.82	-42.80	54.86	51.38	74.00	22.62	Pass	Н	PK
4	7669.3113	36.53	6.19	-42.13	49.09	49.68	74.00	24.32	Pass	Н	PK
5	9283.4189	37.64	6.63	-42.06	49.65	51.86	74.00	22.14	Pass	Н	PK
6	10993.5329	38.60	7.60	-42.00	47.86	52.06	74.00	21.94	Pass	Н	PK
7	1805.8806	30.42	3.33	-42.73	51.18	42.20	74.00	31.80	Pass	Н	AV
8	3215.0143	33.29	4.59	-43.10	51.48	46.26	74.00	27.74	Pass	V	PK
9	3864.0576	33.69	4.35	-43.02	49.86	44.88	74.00	29.12	Pass	V	PK
10	4959.1306	34.50	4.82	-42.80	57.88	54.40	74.00	19.60	Pass	V	PK
11	9157.4105	37.67	6.45	-42.03	49.33	51.42	74.00	22.58	Pass	V	PK
12	11239.5493	38.74	7.23	-41.99	48.88	52.86	74.00	21.14	Pass	V	PK
13	4959.1303	34.50	4.82	-42.80	45.54	42.06	54.00	11.94	Pass	V	AV

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.