

Product

- Non-contact Infrared Forehead Thermometer
- Trade mark Model/Type reference **Serial Number Report Number** FCC ID Date of Issue **Test Standards** Test result
- Microlife 2
- FR1MF1-B, NC150 BT :
- : N/A
 - EED32M00334201 2
 - Ο. U7I-FR1MF1-B
 - Dec. 01, 2020
 - 47 CFR Part 15Subpart C

PASS

Prepared for: **Microlife Corporation**

9F, 431, RuiGuang Road, NeiHu, Taipei 11492, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by: Reviewed by: bin. sunlight sun Sunlight Sun Bill Lu Aavon Ma Dec. 01, 2020 Date: Aaron Ma Check No.:4538060328 Report Seal

Page 2 of 55

2 Version

Ver	sion No.		Date	(\mathcal{A})	Descript	ion	
	00	De	ec. 01, 2020		Origina		
		I			Ì		

Page 3 of 55

3 Test Summary

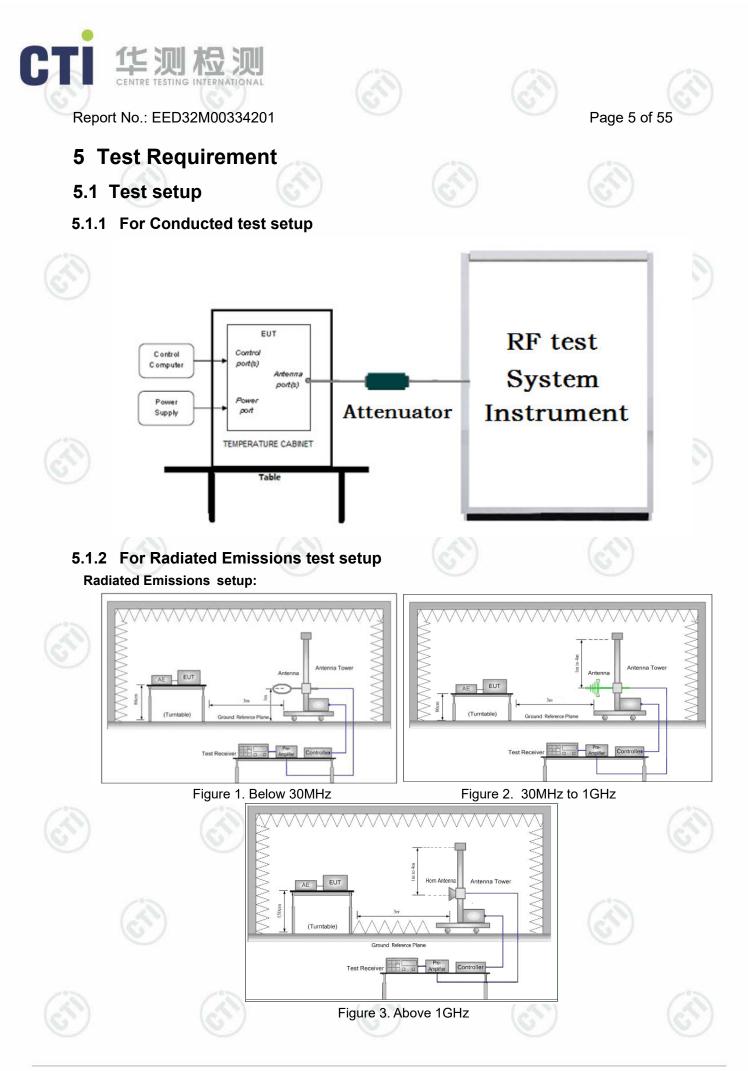
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

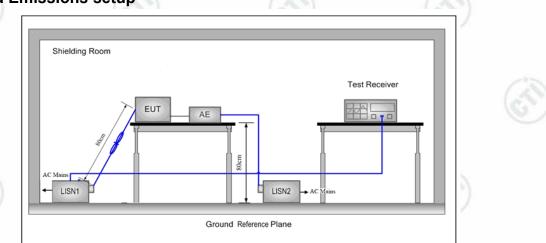
Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. Model No.: FR1MF1-B, NC150 BT

Only the model FR1MF1-B, NC150 BT was tested, Their electrical circuit design, layout, components used, internal wiring, software and outer decoration are identical, only the model name are different, the tested product has two model names, FR1MF1-B is the market model name; NC150 BT is the factory internal model name.



Page 4 of 55

4 Content				
1 COVER PAGE				1
2 VERSION	<u> </u>	<u> </u>	\sim	2
3 TEST SUMMARY				3
4 CONTENT				4
5 TEST REQUIREMENT				5
5.1.1 For Conducted t 5.1.2 For Radiated En 5.1.3 For Conducted E 5.2 TEST ENVIRONMENT	est setup nissions test setup Emissions test setup			5 5 6 6
6 GENERAL INFORMATIC)N			7
 6.2 GENERAL DESCRIPTIO 6.3 DESCRIPTION OF SUPI 6.4 TEST LOCATION 6.5 ABNORMALITIES FROM 6.6 OTHER INFORMATION 6.7 MEASUREMENT UNCEI 	IN OF EUT PORT UNITS STANDARD CONDITIONS. REQUESTED BY THE CUS RTAINTY (95% CONFIDEN	TOMER CE LEVELS, K=2)		
7 EQUIPMENT LIST				10
8 RADIO TECHNICAL REG	QUIREMENTS SPECIFI	CATION	<u> </u>	12
Appendix B): Conduct Appendix C): Band-ec Appendix D): RF Cond Appendix E): Power S Appendix F): Antenna Appendix G): Restricted	ed Peak Output Power. Ige for RF Conducted E ducted Spurious Emissio pectral Density Requirement ed bands around fundar	missions ons nental frequency (Radiate	d)	
PHOTOGRAPHS OF TEST	SETUP	(4)	(47
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL D	ETAILS	<u> </u>	



Page 6 of 55

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH	version in the	
Atmospheric Pressure:	1010mbar		0

5.3 Test Condition

Test channel:

12	Test Mode	Tx/Rx	12		100	
AN N	Test Mode		Low(L)	Middle(M)	High(H)	
Y	0501/	\odot		Channel 19	Channel 39	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Tra	ansmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Report No.: EED32M00334201

6 General Information

6.1 Client Information

Applicant:	Microlife Corporation
Address of Applicant:	9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan
Manufacturer:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Manufacturer:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China
Factory:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Factory:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China

Page 7 of 55

6.2 General Description of EUT

Product Name:	Non-contact Infrared Forehead Thern	nometer		
Model No.(EUT):	FR1MF1-B, NC150 BT			
Trade mark:	Microlife	-0-		20%
Power Supply:	2*AAA Battery 3.0V			
Operation Frequency:	2402MHz~2480MHz			
Bluetooth Version:	4.0 (BLE)		4 au/100	
Modulation Technique:	DSSS			
Modulation Type:	GFSK)	(O)	
Number of Channel:	40			
Test Power Grade:	Default			
Test Software of EUT:	Default			()
Antenna Type and Gain:	Type: PCB Antenna Gain: -2.39dBi	(C)		(C)
Test Voltage:	DC 3.0V			
Sample Received Date:	Nov. 16, 2020		12	
Sample tested Date:	Nov. 16, 2020 to Nov. 24, 2020		(\mathcal{S})	
		6		

Page 8 of 55

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

6.3 Description of Support Units

The EUT has been tested independently

6.4 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.5 Abnormalities from Standard Conditions

None.

6.6 Other Information Requested by the Customer

None.

6.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1 🕼	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Source emission test	4.3dB (30MHz-1GHz)
° I	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 10 of 55

7 Equipment List

		3M full-anechoid	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	<u>()</u>	(#N)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	<u> </u>	
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	- 60	1
Cable line	Times	HF160-KMKM-3.00M	393493-0001	S)	

Page 11 of 55

	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
RILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/107 11112	-68		
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A	A-200	

Page 12 of 55

8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title
2	1	FCC Part15C	Subpart C-Intentional Radiators
Ś	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

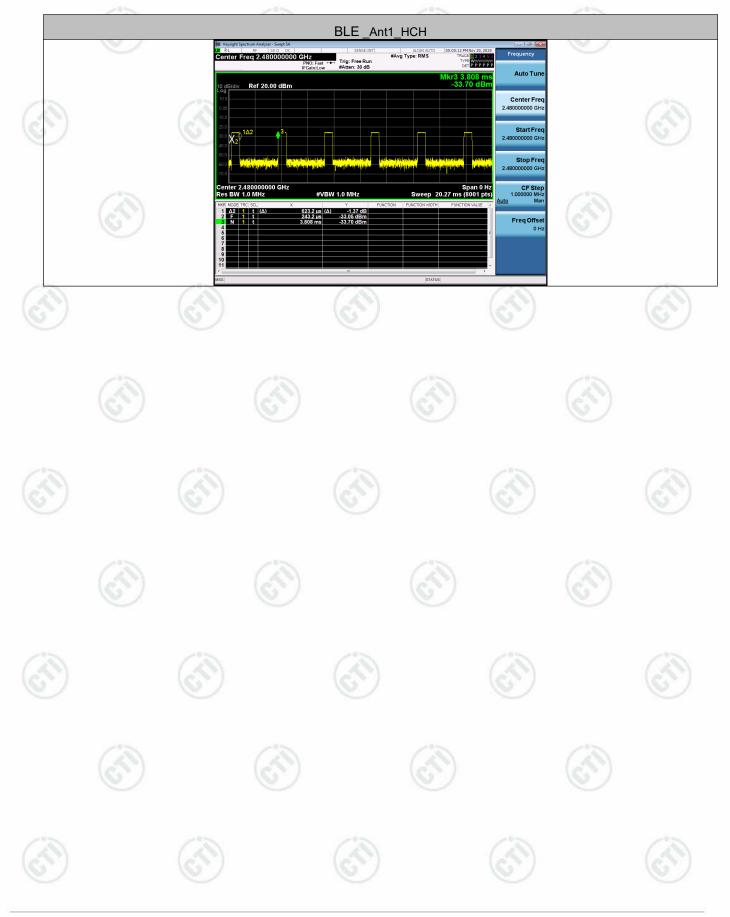
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

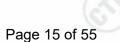
Page 13 of 55

Duty Cycle

Result Table	6	A) (A)		
Mode	Channel	Duty Cycle [%]	Limit	Verdict
BLE	LCH	18.91%		PASS
BLE	MCH	17.56%	<u></u>	PASS
BLE	нсн	17.48%	(S)	PASS

Test Graph




Page 14 of 55

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

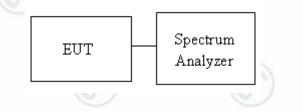
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth :

(<u>)</u>		(2)
Limit	Shall be at least 500kHz	(e)


Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 , section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

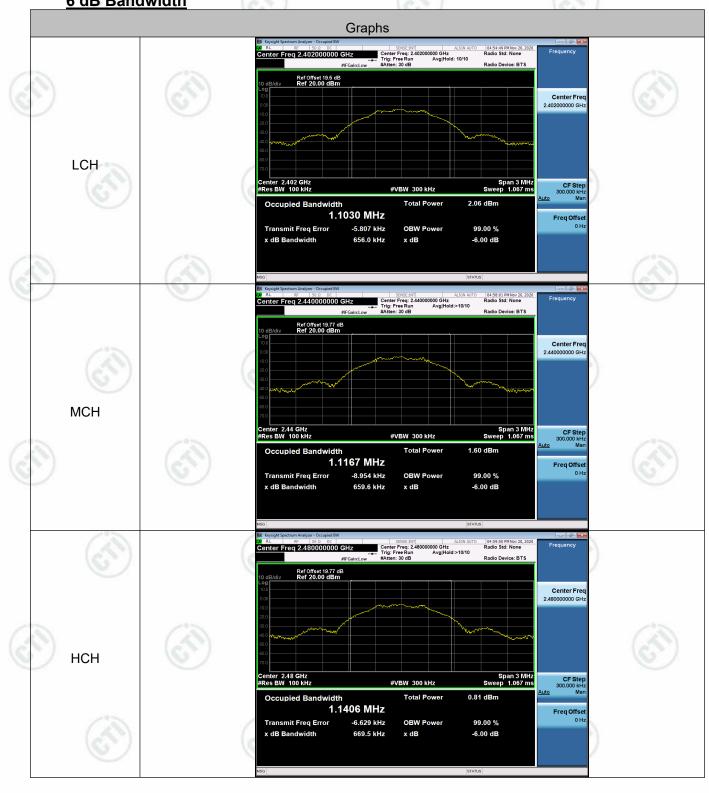
Test Setup

Page 16 of 55

<u>Test Result</u>

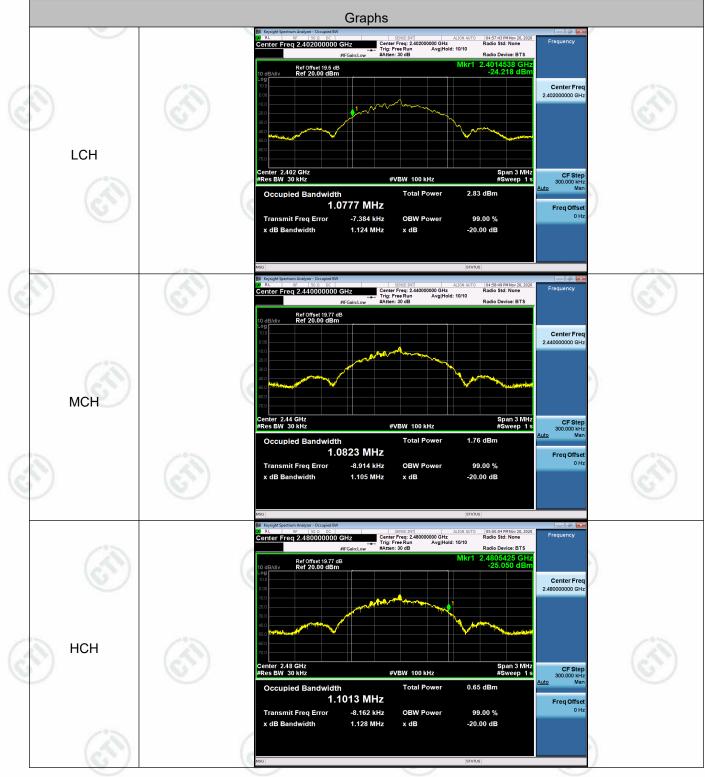
	Mode	Channel	6dB	Bandwidth [MHz]	99% OI	BW[MHz]	Verdic
	BLE	LCH	\bigcirc	0.6560	V	1.(7770	PASS
	BLE	МСН		0.6596		1.(0823	PASS
a	BLE	НСН		0.6695		1.1	1013	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 17 of 55

Test Graphs <u>6 dB Bandwidth</u>



Page 18 of 55

Occupied Bandwidth(99%)

Page 19 of 55

Appendix B): Conducted Peak Output Power

<u>Test Limit</u>

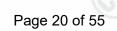
According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

		Antenna not exceed 6 dBi : 30dBm	(C)
L	₋imit	Antenna with DG greater than 6 dBi [Limit = $30 - (DG - 6)$]	
		Point-to-point operation	

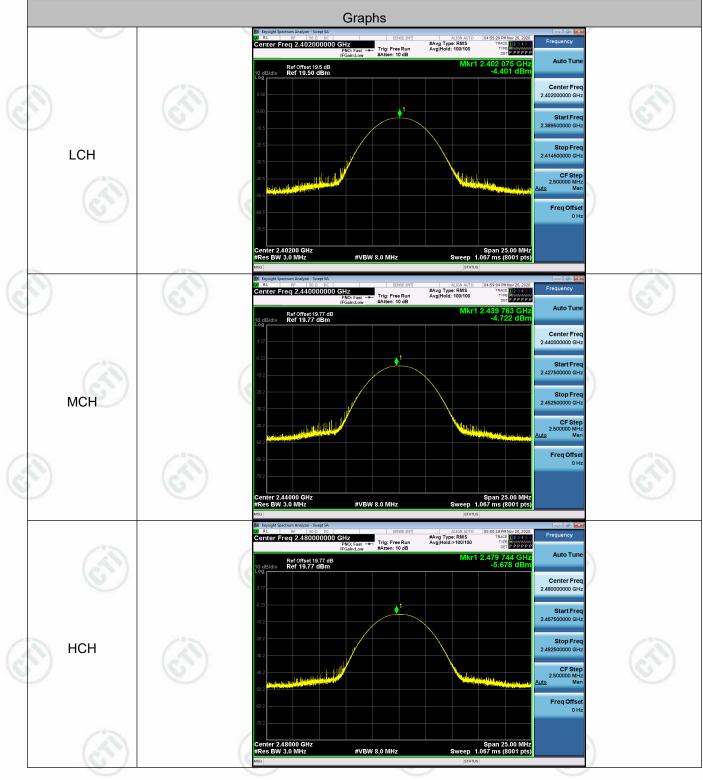
Test Procedure


Test method Refer as KDB 558074 D01 , section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW \geq DTS bandwidth.
 - b) Set VBW≥[3×RBW].
 - c) Set span≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.
 - Test Setup

Test Result

Test	Result		(S)		1			
	Mode		Channel		Conduct Pea	k Power[dBr	n]	Verdict
	BLE		LCH		-4.401			
	BLE	МСН		~	-4.722			
9	BLE		НСН	(S)	-5.	678		PASS



Page 21 of 55

Test Graphs

Report No.: EED32M00334201

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Page 22 of 55

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

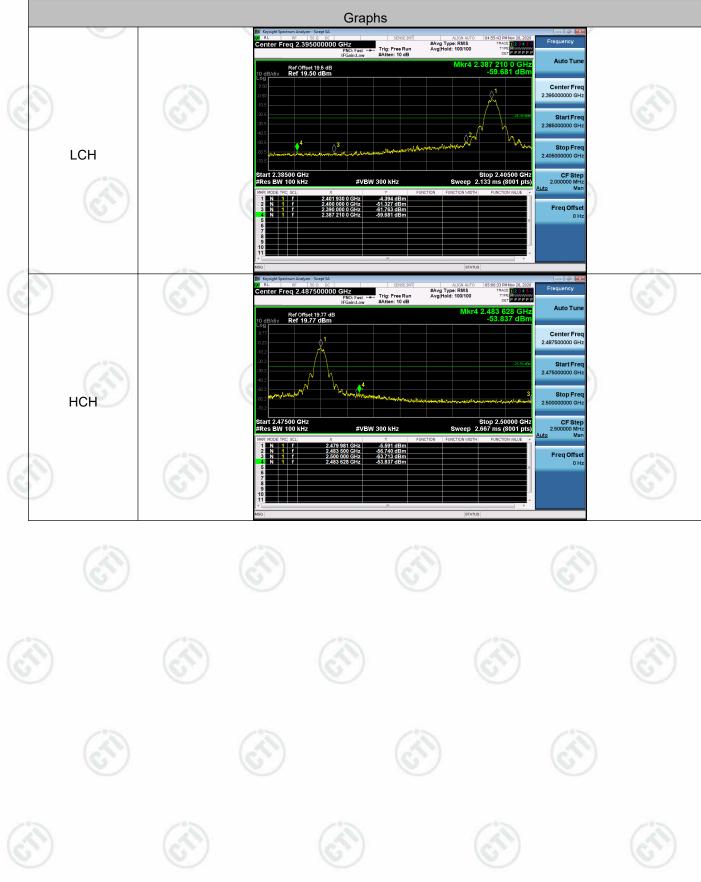
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Page 23 of 55

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious [dBm]	Level	Limit [dBm]	Verdict
BLE	LCH	-4.394		-59.681		-24.39	PASS
BLE	НСН	-5.591	(K)	-53.837	(A)	-25.59	PASS



Page 24 of 55

Test Graphs

Page 25 of 55

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

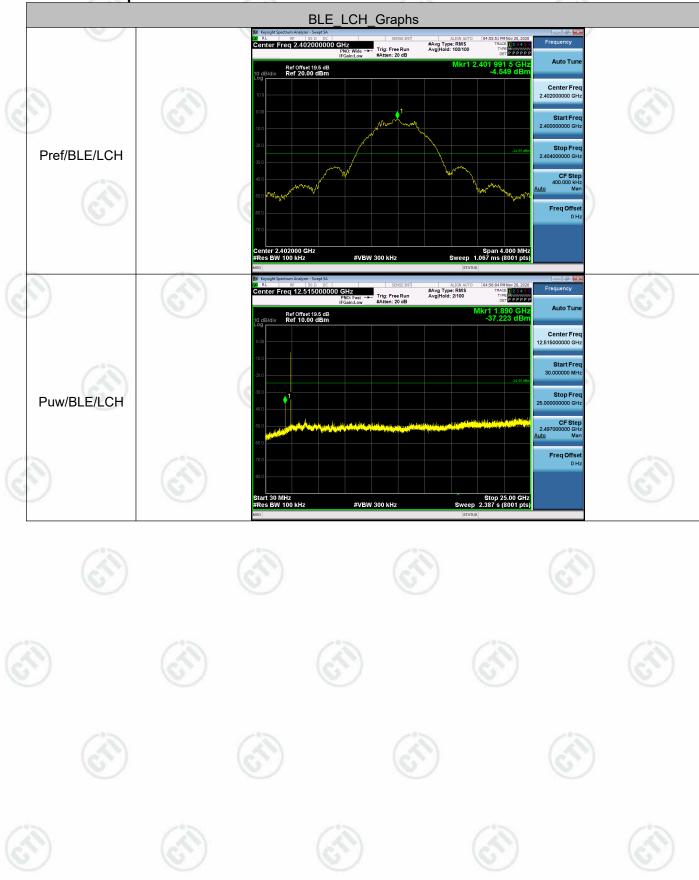
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>

Page 26 of 55

Result Table

Мо	de	Channel		Pref [dB	m]	Puv	v[dBm]	Verdict
BL	E	LCH	S	-4.549		<	Limit	PASS
BL	E	MCH		-5.981		<	Limit	PASS
BL	E	HCH		-5.877	,	<	Limit	PASS



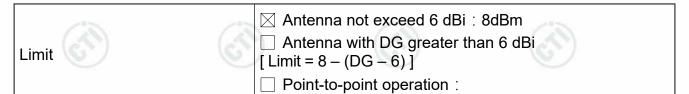
Page 27 of 55

Test Graphs

Page 28 of 55



Page 29 of 55



Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Test Procedure

Test method Refer as KDB 558074 D01 , Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.

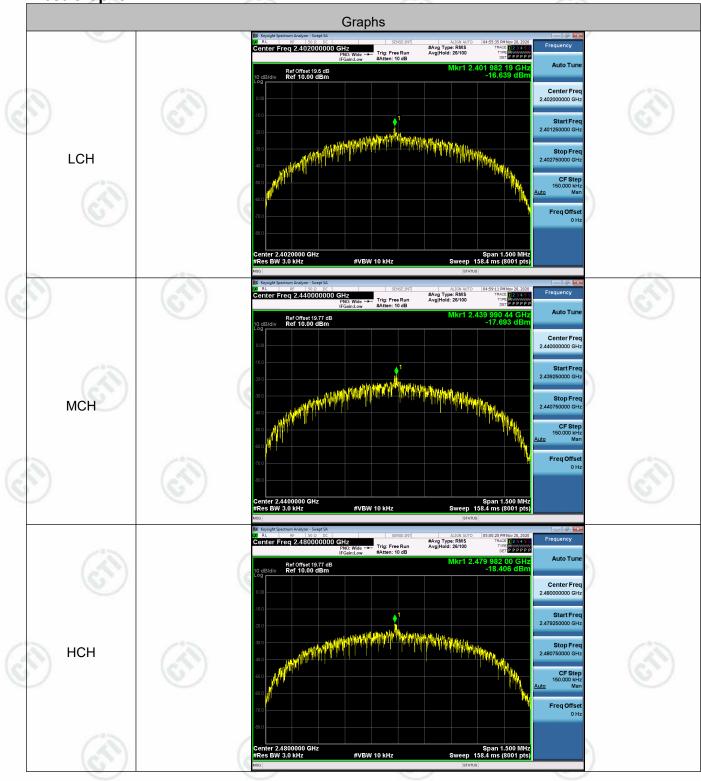
Measure and record the result of power spectral density. in the test report.

Test Setup

Page 31 of 55

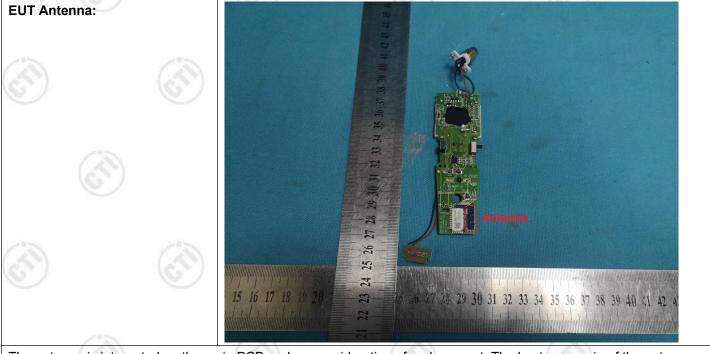
Result Table

Resi	lit lable			10			
	Mode	C	Channel	PSD [dl	Bm]		Verdict
	BLE		LCH	-16.63	39	~	PASS
	BLE		MCH	-17.69	93		PASS
1	BLE		HCH	-18.40	06		PASS



Page 32 of 55

Test Graphs


Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

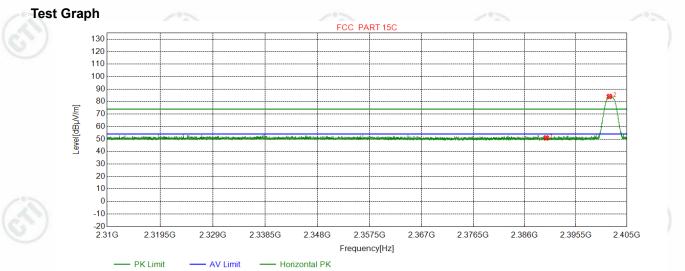
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -2.39dBi.

Appendix G): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	k
	1 1011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	 Below 1GHz test procedu Test method Refer as KDB a. The EUT was placed of at a 3 meter semi-anext determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is a determine the maximum polarizations of the anten the antenna was tuned was turned from 0 degree 	Tre as below: 5558074 D01, S on the top of a ro choic camber. Th of the highest ra of the highest ra of the highest ra of a variable-h varied from one m value of the fin enna are set to nission, the EUT I to heights from rees to 360 degr	Section 12. tating table table wand adiation. the interference and the interference meter to for eld strengthe make the n was arran 1 meter to rees to find	1 e 0.8 meter is rotated 3 ence-receinna tower. our meters n. Both hor neasurement ged to its 4 meters a the maxin	rs above the 360 degrees iving antenna above the gr rizontal and v ent. worst case a and the rotat num reading.	to a, whi round vertica nd the able
	 e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spect for lowest and highest 	um Hold Mode. end of the restric opliance. Also m rum analyzer plo	ted band c easure any	losest to ti emission	he transmit s in the restri	icted
	 Bandwidth with Maximu f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locit. The radiation measure Transmitting mode, and 	um Hold Mode. and of the restrict apliance. Also m rum analyzer plo channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , to ments are perfo d found the X ax	eted band c easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 me the Highest rmed in X, tis positioni	flosest to the emission for each por rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	he transmit s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca	icted dulati namb ove r
Limit:	 Bandwidth with Maximu f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locit. The radiation measure Transmitting mode, and j. Repeat above procedu 	um Hold Mode. and of the restrict apliance. Also m rum analyzer plo channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , t ments are perfo d found the X ax ures until all frequ	eted band c easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, tis positioni uencies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	he transmit s in the restri ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca as complete.	icted dulati namb ove r
Limit:	 Bandwidth with Maximu f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locit. The radiation measure Transmitting mode, and 	um Hold Mode. and of the restrict apliance. Also m rum analyzer plo channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , to ments are perfo d found the X ax	ted band c easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 me the Highest rmed in X, tis positioni uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	he transmit s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca as complete. mark	icted dulati namb ove r
Limit:	 Bandwidth with Maximu f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locit. The radiation measure Transmitting mode, and j. Repeat above procedu 	um Hold Mode. and of the restrict apliance. Also m rum analyzer plot channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , to ments are perford d found the X ax ures until all frequency.	eted band c easure any ot. Repeat f n table 0.8 e is 1.5 met the Highest rmed in X, tis positioni uencies me (m @3m)	rom Semi- meter to 1 ter). Y, Z axis p ing which i easured wa	he transmit s in the restri ower and mo Anechoic Cf .5 meter(Ab positioning fo t is worse ca as complete. mark eak Value	icted dulati namb ove r
Limit:	 Bandwidth with Maximu f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest for lowest and highest for lowest and highest for lowest and highest for fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locities in the radiation measure transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 	um Hold Mode. end of the restrict apliance. Also m rum analyzer plot channel ure as below: /e is the test site aber change form 1 meter and tabl powest channel , to ments are perford d found the X ax ures until all frequent Limit (dBµV/ 40.0	ted band c easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 me he Highest rmed in X, tis positioni uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	he transmit s in the restri ower and mo Anechoic Ch .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value	icted dulati namb ove r
Limit:	 Bandwidth with Maximu f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locitient of the radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 	um Hold Mode. end of the restrict opliance. Also m rum analyzer plot channel ure as below: ve is the test site ober change form 1 meter and tabl owest channel , f ments are perford d found the X ax ires until all frequent Limit (dBµV/ 40.0 43.5	eted band c easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, tis positioni uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	he transmit s in the restri- ower and mo Anechoic Cf .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value	icted dulati namb ove r
Limit:	 Bandwidth with Maximu f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locitient of the the the the the the the the the the	um Hold Mode. end of the restrict apliance. Also m rum analyzer plot channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , to ments are perford d found the X ax ures until all frequency Limit (dBµV/ 40.0 43.5 46.0	ted band c easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, tis positioni <u>uencies me</u> (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Quasi-po Quasi-po Quasi-po	he transmit s in the restri ower and mo Anechoic Ch .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value	icted dulati namb ove
Limit:	 Bandwidth with Maximu f. Place a marker at the end of frequency to show combands. Save the spectra for lowest and highest for lowest and highest for lowest and highest for lowest and highest for fully Anechoic Chama 18GHz the distance is h. Test the EUT in the locit. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 	um Hold Mode. end of the restrict apliance. Also m rum analyzer plot channel ure as below: ve is the test site aber change form 1 meter and tabl owest channel , f ments are perford d found the X ax res until all freque Limit (dBµV/ 40.0 43.5 46.0 54.0	ted band c easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met he Highest rmed in X, tis positioni uencies met (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Quasi-po Quasi-po Quasi-po Quasi-po Averag	he transmit s in the restri- ower and mo Anechoic Ch .5 meter(Ab positioning fo t is worse ca as complete. mark eak Value eak Value eak Value eak Value	icted dulati nambo ove



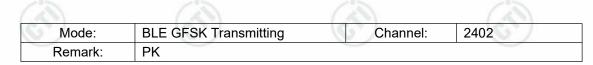
Page 35 of 55

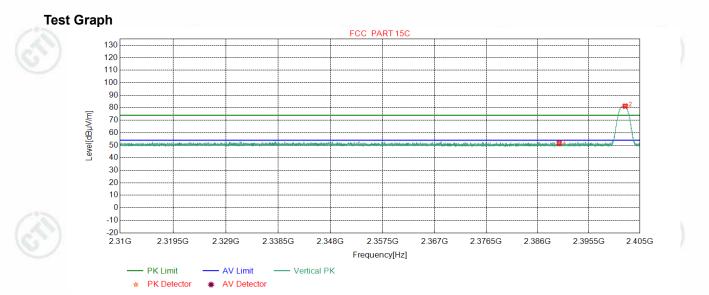
Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

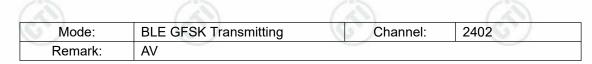
★ PK Detector 🛛 🗰 AV Detector

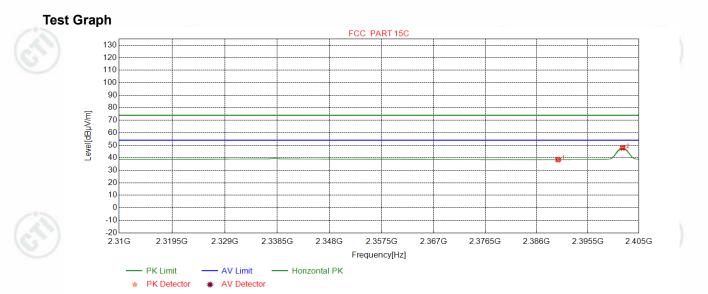
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.42	50.92	74.00	23.08	Pass	Horizontal
2	2401.7381	32.26	13.31	-43.12	81.60	84.05	74.00	-10.05	Pass	Horizontal
(2))	65	·)		(a)		(3)		(S)





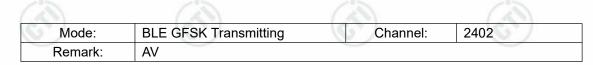
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.10	51.60	74.00	22.40	Pass	Vertical
2	2402.2702	32.26	13.31	-43.12	78.82	81.27	74.00	-7.27	Pass	Vertical
120		12	1						1	12

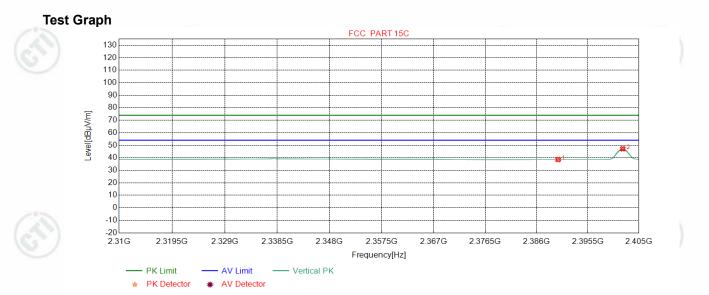




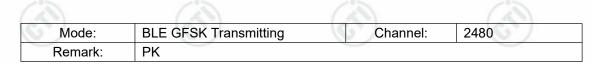
Page 37 of 55

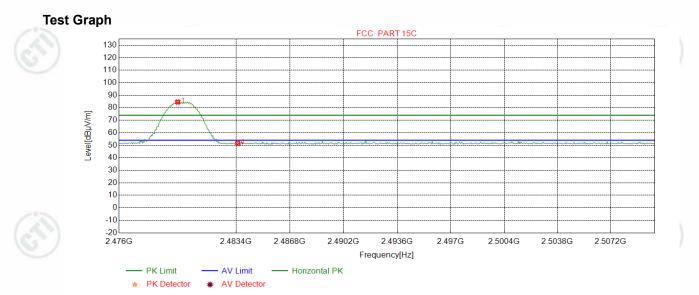
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.02	38.52	54.00	15.48	Pass	Horizontal
2	2401.9788	32.26	13.31	-43.12	45.43	47.88	54.00	6.12	Pass	Horizontal
(AN)		12	6		(A)		(1)		1	12



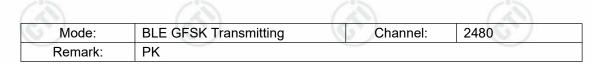


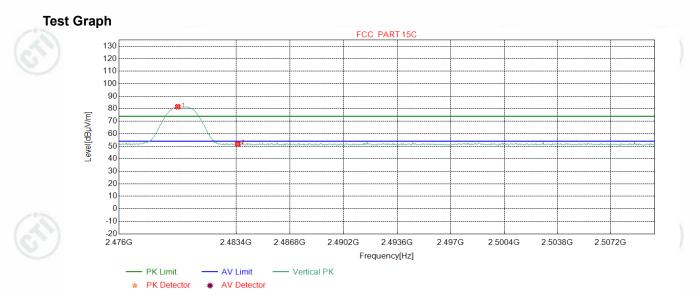
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.08	38.58	54.00	15.42	Pass	Vertical
2	2401.9915	32.26	13.31	-43.12	44.71	47.16	54.00	6.84	Pass	Vertical
(2)		12	1				(1)		1	12



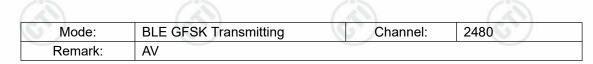


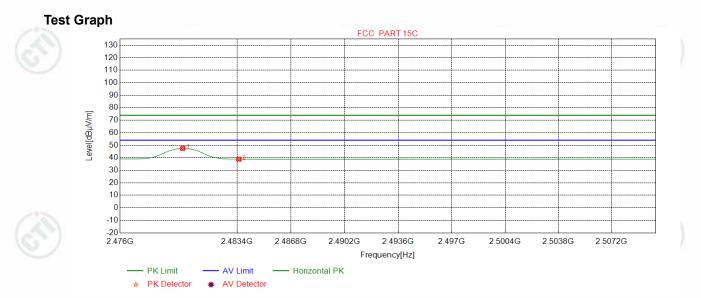
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	81.90	84.56	74.00	-10.56	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.87	51.52	74.00	22.48	Pass	Horizontal
(A)		12	1					-	1	12



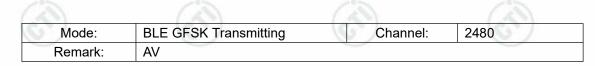


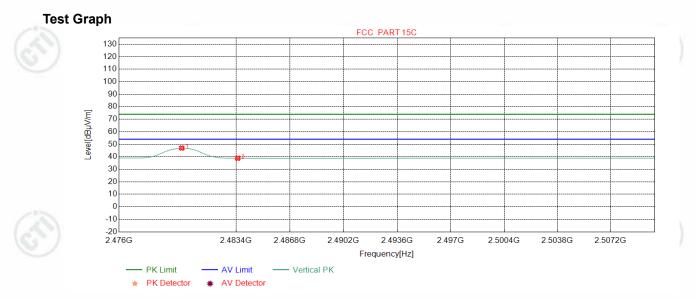
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	78.94	81.60	74.00	-7.60	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.16	51.81	74.00	22.19	Pass	Vertical
(A)		12	1						1	12





Page 41 of 55




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	44.83	47.49	54.00	6.51	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.22	38.87	54.00	15.13	Pass	Horizontal
(A)		12	1						1	12

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	44.28	46.94	54.00	7.06	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.16	38.81	54.00	15.19	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix H) Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Peak	1MHz	3MHz	Peak	
Above TGHZ	Peak	1MHz	10Hz	Average	
1	1				
	0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.009MHz-0.090MHzPeak0.009MHz-0.090MHzAverage0.009MHz-0.110MHzQuasi-peak0.110MHz-0.490MHzPeak0.110MHz-0.490MHzAverage0.490MHz -30MHzQuasi-peak30MHz-1GHzQuasi-peakAbove 1GHzPeak	0.009MHz-0.090MHzPeak10kHz0.009MHz-0.090MHzAverage10kHz0.009MHz-0.110MHzQuasi-peak10kHz0.110MHz-0.490MHzPeak10kHz0.110MHz-0.490MHzAverage10kHz0.110MHz-0.490MHzQuasi-peak10kHz0.490MHz -30MHzQuasi-peak10kHz30MHz-1GHzQuasi-peak120kHzAbove 1GHzPeak1MHz	0.009MHz-0.090MHzPeak10kHz30kHz0.009MHz-0.090MHzAverage10kHz30kHz0.009MHz-0.110MHzQuasi-peak10kHz30kHz0.110MHz-0.490MHzPeak10kHz30kHz0.110MHz-0.490MHzAverage10kHz30kHz0.110MHz-0.490MHzQuasi-peak10kHz30kHz0.490MHz -30MHzQuasi-peak10kHz30kHz30MHz-1GHzQuasi-peak120kHz300kHzAbove 1GHzPeak1MHz3MHz	0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.009MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzPeak0.110MHz-0.490MHzQuasi-peak10kHz30kHzAverage0.490MHz-30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeak

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Limit:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
 - Measurement Field strength Limit Frequency Remark (microvolt/meter) | (dBµV/m) distance (m) 0.009MHz-0.490MHz 2400/F(kHz) 300 . 0.490MHz-1.705MHz 24000/F(kHz) _ -1 30 1.705MHz-30MHz 30 _ 30 -30MHz-88MHz 100 40.0 Quasi-peak 3 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 960MHz-1GHz 500 3 54.0 Quasi-peak 500 54.0 Above 1GHz Average 3 Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency

te: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

j. Repeat above procedures until all frequencies measured was complete.

Page 44 of 55

Radiated Spurious Emissions test Data: During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2440MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiated Emission below 1GHz

Mode):		BLE G	SK Trans	smitting			Channel:	_	2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	45.31	25.81	40.00	14.19	Pass	Н	PK
2	124.5845	8.51	1.31	-32.04	38.61	16.39	43.50	27.11	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	39.54	20.44	43.50	23.06	Pass	Н	PK
4	303.9554	13.29	2.07	-31.60	40.58	24.34	46.00	21.66	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	38.85	29.31	46.00	16.69	Pass	Н	PK
6	844.9785	21.44	3.50	-31.82	39.31	32.43	46.00	13.57	Pass	Н	PK
7	52.5063	12.80	0.82	-32.04	40.63	22.21	40.00	17.79	Pass	V	PK
8	130.0170	7.70	1.33	-32.02	44.16	21.17	43.50	22.33	Pass	V	PK
9	195.0135	10.43	1.64	-31.94	43.31	23.44	43.50	20.06	Pass	V	PK
10	304.0524	13.29	2.07	-31.60	40.04	23.80	46.00	22.20	Pass	V	PK
11	600.0290	19.00	2.96	-31.50	39.05	29.51	46.00	16.49	Pass	V	PK
12	909.9750	22.16	3.60	-31.48	38.07	32.35	46.00	13.65	Pass	V	PK
	0	1		0	1						

Hotline: 400-6788-333

Page 45 of 55

Transmitter Emission above 1GHz

Mode	:		BLE GFS	SK Transm	itting			Channel:		2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	1419.2419	28.32	2.92	-42.76	51.40	39.88	74.00	34.12	Pass	Н	PK		
2	3227.0151	33.29	4.54	-43.10	50.80	45.53	74.00	28.47	Pass	Н	PK		
3	4804.1203	34.50	4.55	-42.80	52.54	48.79	74.00	25.21	Pass	Н	PK		
4	7206.0000	36.31	5.81	-42.16	46.13	46.09	74.00	27.91	Pass	Н	PK		
5	9608.0000	37.64	6.63	-42.10	46.39	48.56	74.00	25.44	Pass	Н	PK		
6	12010.0000	39.31	7.60	-41.90	47.01	52.02	74.00	21.98	Pass	Н	PK		
7	1803.8804	30.41	3.32	-42.72	50.58	41.59	74.00	32.41	Pass	V	PK		
8	3335.0223	33.33	4.54	-43.10	50.03	44.80	74.00	29.20	Pass	V	PK		
9	4804.1203	34.50	4.55	-42.80	55.54	51.79	74.00	22.21	Pass	V	PK		
10	7206.0000	36.31	5.81	-42.16	47.04	47.00	74.00	27.00	Pass	V	PK		
11	9608.0000	37.64	6.63	-42.10	47.70	49.87	74.00	24.13	Pass	V	PK		
12	12010.0000	39.31	7.60	-41.90	46.89	51.90	74.00	22.10	Pass	V	PK		
1	1										1		

		BLE GF	SK Transr	nitting			Channel:		2440	
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1656.2656	29.43	3.15	-42.77	51.64	41.45	74.00	32.55	Pass	Н	PK
3094.0063	33.24	4.73	-43.10	51.18	46.05	74.00	27.95	Pass	Н	PK
4880.1253	34.50	4.80	-42.80	51.29	47.79	74.00	26.21	Pass	Н	PK
7320.0000	36.42	5.85	-42.14	46.00	46.13	74.00	27.87	Pass	Н	PK
9760.0000	37.70	6.73	-42.10	46.92	49.25	74.00	24.75	Pass	Н	PK
12200.0000	39.42	7.67	-41.90	46.23	51.42	74.00	22.58	Pass	Н	PK
1782.0782	30.26	3.29	-42.70	51.06	41.91	74.00	32.09	Pass	V	PK
2963.5964	33.14	4.44	-43.10	50.38	44.86	74.00	29.14	Pass	V	PK
4880.1253	34.50	4.80	-42.80	54.27	50.77	74.00	23.23	Pass	V	PK
7320.0000	36.42	5.85	-42.14	46.94	47.07	74.00	26.93	Pass	V	PK
9760.0000	37.70	6.73	-42.10	47.34	49.67	74.00	24.33	Pass	V	PK
12200.0000	39.42	7.67	-41.90	44.87	50.06	74.00	23.94	Pass	V	PK
	[MHz] 1656.2656 3094.0063 4880.1253 7320.0000 9760.0000 12200.0000 1782.0782 2963.5964 4880.1253 7320.0000 9760.0000	Freq. [MHz]Factor [dB]1656.265629.433094.006333.244880.125334.507320.000036.429760.000037.7012200.000039.421782.078230.262963.596433.144880.125334.507320.000036.429760.000037.70	Freq. [MHz]Ant Factor [dB]Cable loss [dB]1656.265629.433.153094.006333.244.734880.125334.504.807320.000036.425.859760.000037.706.7312200.000039.427.671782.078230.263.292963.596433.144.444880.125334.504.807320.000036.425.859760.000037.706.73	Freq. [MHz]Ant Factor [dB]Cable loss [dB]Pream gain [dB]1656.265629.433.15-42.773094.006333.244.73-43.104880.125334.504.80-42.807320.000036.425.85-42.149760.000037.706.73-42.1012200.000039.427.67-41.901782.078230.263.29-42.702963.596433.144.44-43.104880.125334.504.80-42.807320.000036.425.85-42.149760.000037.706.73-42.10	Freq. [MHz]Factor [dB]loss [dB]gain [dB]g [dB]1656.265629.433.15-42.7751.643094.006333.244.73-43.1051.184880.125334.504.80-42.8051.297320.000036.425.85-42.1446.009760.000037.706.73-41.9046.231782.078230.263.29-42.7051.062963.596433.144.44-43.1050.384880.125334.504.80-42.8054.277320.000036.425.85-42.1446.949760.000037.706.73-42.1047.34	Freq. [MHz]Ant Factor [dB]Cable loss [dB]Pream gain [dB]Readin g [dBµV]Level [dBµV/m]1656.265629.433.15-42.7751.6441.453094.006333.244.73-43.1051.1846.054880.125334.504.80-42.8051.2947.797320.000036.425.85-42.1446.0046.139760.000037.706.73-42.1046.2351.421782.078230.263.29-42.7051.0641.912963.596433.144.44-43.1050.3844.864880.125334.504.80-42.8054.2750.777320.000036.425.85-42.1446.9447.079760.000037.706.73-42.1047.3449.67	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Freq. [MHz]Ant Factor [dB]Cable loss [dB]Pream gain [dB]Readin g [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]Margin [dB]1656.265629.433.15-42.7751.6441.4574.0032.553094.006333.244.73-43.1051.1846.0574.0027.954880.125334.504.80-42.8051.2947.7974.0026.217320.000036.425.85-42.1446.0046.1374.0024.759760.000037.706.73-42.0046.2351.4274.0022.581782.078230.263.29-42.7051.0641.9174.0032.092963.596433.144.44-43.1050.3844.8674.0023.237320.000036.425.85-42.1446.9447.0774.0023.237320.000036.425.85-42.1446.9447.0774.0023.237320.000036.425.85-42.1446.9447.0774.0023.237320.000036.425.85-42.1446.9447.0774.0026.939760.000037.706.73-42.1047.3449.6774.0024.33	Freq. [MHz]Ant Factor [dB]Cable loss [dB]Pream gain [dB]Readin g [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]Result1656.265629.433.15-42.7751.6441.4574.0032.55Pass3094.006333.244.73-43.1051.1846.0574.0027.95Pass4880.125334.504.80-42.8051.2947.7974.0026.21Pass7320.000036.425.85-42.1446.0046.1374.0024.75Pass9760.000037.706.73-42.1046.9249.2574.0022.58Pass12200.000039.427.67-41.9046.2351.4274.0022.58Pass1782.078230.263.29-42.7051.0641.9174.0032.09Pass2963.596433.144.44-43.1050.3844.8674.0029.14Pass4880.125334.504.80-42.1446.9447.0774.0023.23Pass7320.000036.425.85-42.1446.9447.0774.0023.23Pass7320.000036.425.85-42.1446.9447.0774.0023.23Pass7320.000036.425.85-42.1446.9447.0774.0024.33Pass7320.000037.706.73-42.1047.3449.6774.0024.33Pas	Freq. [MHz]Ant Factor [dB]Cable loss [dB]Pream gain [dB]Readin g [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity1656.265629.433.15-42.7751.6441.4574.0032.55PassH3094.006333.244.73-43.1051.1846.0574.0027.95PassH4880.125334.504.80-42.8051.2947.7974.0026.21PassH7320.000036.425.85-42.1446.0046.1374.0027.87PassH12200.000037.706.73-42.1046.2351.4274.0022.58PassH1782.078230.263.29-42.7051.0641.9174.0032.09PassV2963.596433.144.44-43.1050.3844.8674.0029.14PassV4880.125334.504.80-42.8054.2750.7774.0023.23PassV2963.596433.144.44-43.1050.3844.8674.0023.23PassV4880.125334.504.80-42.8054.2750.7774.0023.23PassV2963.596433.144.44-43.1050.3844.8674.0026.93PassV4880.125334.504.80-42.8054.2750.7774.0023.23PassV

Page 46 of 55

Mode	:		BLE GF	SK Transm	nitting			Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1692.0692	29.67	3.19	-42.68	51.59	41.77	74.00	32.23	Pass	Н	PK
2	3182.0121	33.27	4.62	-43.10	50.02	44.81	74.00	29.19	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	48.10	44.62	74.00	29.38	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	47.30	47.58	74.00	26.42	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.30	48.76	74.00	25.24	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	46.43	51.93	74.00	22.07	Pass	Н	PK
7	1280.6281	28.18	2.72	-42.80	51.60	39.70	74.00	34.30	Pass	V	PK
8	2899.9900	33.04	4.38	-43.10	50.80	45.12	74.00	28.88	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	49.18	45.70	74.00	28.30	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	46.83	47.11	74.00	26.89	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	45.58	48.04	74.00	25.96	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.73	52.23	74.00	21.77	Pass	V	PK
0	NOTE:	0	2.1					3.7		0	1

NOTE:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

