

Page 1 of 50 Report No.: EED32L00199701

TEST REPORT

Product Digital Blood Pressure Monitor

microlite **Trade mark**

Model/Type reference BP3SK1-3B, WatchBP Office

Serial Number N/A

Report Number EED32L00199701 **FCC ID** : U7I-BP3SK1-3B

Date of Issue Aug. 21, 2019

Test Standards 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Microlife Corporation 9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Jay Zheng

Compiled by:

Reviewed by:

None Xm

Ware Xin

Aug. 21, 2019 Date:

Kevin Yang

Check No.:3970397532

Report No.: EED32L00199701

2 Version

Version No.	Date	(6	Description)
00	Aug. 21, 2019		Original	
	25	12	75	795
((c ² /2)	(642)	(6%)

Report No.: EED32L00199701

3 Test Summary

rest Summary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

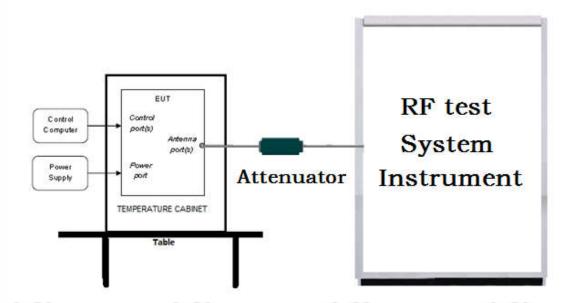
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.
The tested sample(s) and the sample information are provided by the client.

Report No.: EED32L00199701 Page 4 of 50

4 Content

7.4						
1 COVER PAG	E			•••••		1
2 VERSION	•••••				•••••	2
3 TEST SUMM	ARY	•••••				3
4 CONTENT			•••••			4
5.1 TEST SET 5.1.1 For 5.1.2 For 5.1.3 For 5.2 TEST EN	UPConducted test so Radiated Emissic Conducted Emiss	etup ons test setupsions test setup				5 5 6
6 GENERAL IN	FORMATION	•••••			•••••	7
6.2 GENERAL 6.3 PRODUCT 6.4 DESCRIPT 6.5 TEST LOC 6.6 DEVIATIO 6.7 ABNORMA 6.8 OTHER IN	DESCRIPTION OF SPECIFICATION STON OF SUPPORT CATION	EUT UBJECTIVE TO THIS S' UNITS DS NDARD CONDITIONS JESTED BY THE CUSTO	TANDARD			
7 EQUIPMENT	LIST			•••••		10
RADIO TECH	INICAL REQUIR	EMENTS SPECIFIC	ATION	•••••		12
Appendix Appendix Appendix Appendix Appendix Appendix Appendix Appendix	B): Conducted Po C): Band-edge for D): RF Conducte E): Power Spectin F): Antenna Reqin G): AC Power Lin H): Restricted ba	eak Output Power or RF Conducted Em d Spurious Emissior cal Density uirement ne Conducted Emiss nds around fundame	nissionssionsio	ated)		
PHOTOGRAPH	IS OF TEST SET	TUP		•••••		43
PHOTOGRAPH	IS OF EUT CON	STRUCTIONAL DE	TAILS		•••••	45



Report No.: EED32L00199701 Page 5 of 50

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

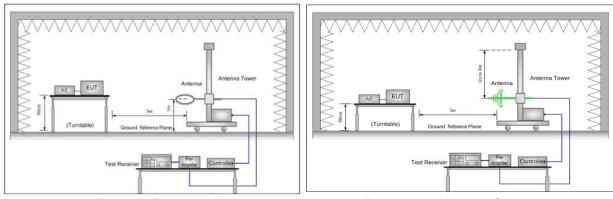


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

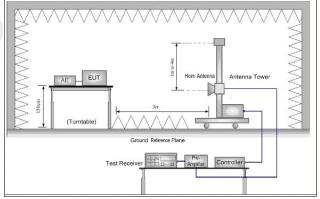
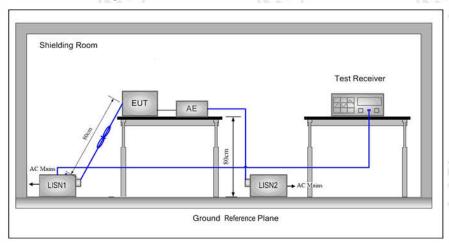



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	57 % RH	Date:		
Atmospheric Pressure:	1010mbar		11	

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
١	1 est Mode	TA/NX	Low(L)	Middle(M)	High(H)	
l	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data	
			1.00			

6 General Information

6.1 Client Information

Applicant:	Microlife Corporation			
Address of Applicant:	9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan			
Manufacturer:	ONBO Electronic (Shenzhen) Co., Ltd.			
Address of Manufacturer:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China			
Factory:	ONBO Electronic (Shenzhen) Co., Ltd.			
Address of Factory:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China			

6.2 General Description of EUT

18.3.5.7	10.4	18.4				
Product Name:	Digital Blood F	Digital Blood Pressure Monitor				
Model No.(EUT):	BP3SK1-3B, V	BP3SK1-3B, WatchBP Office				
Trade mark:	microlife					
EUT Supports Radios application:	BT4.2 Single mode:2402-2480MHz					
Power Supply:	AC Adapter	SWITCHING POWER ADAPTOR MODEL NO: UES18LCP-075200SPA INPUT: 100-240V~50/60Hz, 500mA OUTPUT: 7.5V=2.0A				
	Battery	NIMH Battery: GPRHC252C236 GP250AAHC4BMXZ Voltage :4.8V Capacity: 2400mAh				
Sample Received Date:	Jul. 25, 2019		(6)			
Sample tested Date:	Jul. 25, 2019 to	Jul. 25, 2019 to Aug. 20,2019				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.2
Modulation Technique:	DTS
Modulation Type:	GFSK
Number of Channel:	40
Test Power Grade:	Default (manufacturer declare)
Test Software of EUT:	N/A
Antenna Type and Gain:	Type: Internal Antenna Gain:0 dBi
Test Voltage:	AC 120V,60Hz

Report No. : EED32L00199701 Page 8 of 50

(1)	<u> </u>		\	13		13	
Operation F	requency eac	h of channe		(6, 1))	(6))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No.: EED32L00199701 Page 9 of 5

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DC newer conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
	Dedicted Courieus amission tost	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)		
4	Conduction online	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

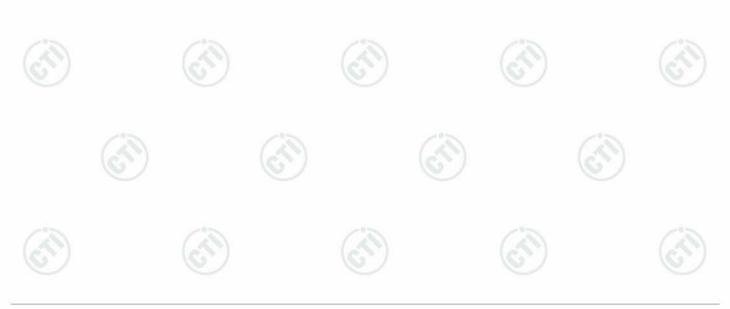
 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

7 Equipment List

RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020		
Attenuator	HuaXiang	SHX370	15040701	03-01-2019	02-28-2020		
Signal Generator	Keysight	N5181A	MY46240094	03-01-2019	02-28-2020		
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-09-2019	01-08-2020		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020		
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	(3)	01-09-2019	01-08-2020		
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	(C)	01-09-2019	01-08-2020		
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-09-2019	01-08-2020		
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-09-2019	01-08-2020		
Communicati on test set	R&S	CMW500	107929	04-28-2019	04-26-2020		
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020		
PC-1	Lenovo	R4960d	/	03-01-2019	02-28-2020		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020		
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-01-2019	02-28-2020		
high-low temperature test chamber	DongGuangQi nZhuo	LK-80GA	QZ20150611 879	03-01-2019	02-28-2020		

Report No. : EED32L00199701 Page 11 of 50

	3M S	Semi/full-anecho				
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020	
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-10-2020	
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020	
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021	
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021	
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021	
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 2	07-26-2019	07-24-2020	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021	
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020	
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020	
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019	
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020	
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020	
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019	
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020	
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020	
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020	
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020	
Cable line High-pass filter	Fulai(3M) Sinoscite	SF106 FL3CX03WG 18NM12- 0398-002	5217/6A 	01-09-2019 01-09-2019	01-08-2020	
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001	(3)	01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	6.)	01-09-2019	01-08-2020	
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020	


8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

cot itcourto Elot.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32L00199701

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.5165	1.7235	PASS
BLE	MCH	0.5292	1.7566	PASS
BLE	нсн	0.5418	1.3183	PASS

Report No.: EED32L00199701

3

Test Graphs Graphs Ref Offset 19.5 dB Ref 10.00 dBm Center Fre LCH 1.7235 MHz Center Free MCH 1.7566 MHz 70.109 kHz Ref Offset 19.77 dB Ref 10.00 dBm Center Fre

HCH

1.3183 MHz

99.00 % -6.00 dB

Report No. : EED32L00199701 Page 15 of 50

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-4.09	PASS
BLE	MCH	-3.816	PASS
BLE	HCH	-3.686	PASS

Report No.: EED32L00199701 Page 16 of 50

Test Graphs

Page 17 of 50

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Report No.: EED32L00199701

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-4.269	-44.406	-24.27	PASS
BLE	НСН	-3.692	-42.296	-23.69	PASS

Report No.: EED32L00199701

Test Graphs

Report No. : EED32L00199701 Page 19 of 50

Appendix D): RF Conducted Spurious Emissions

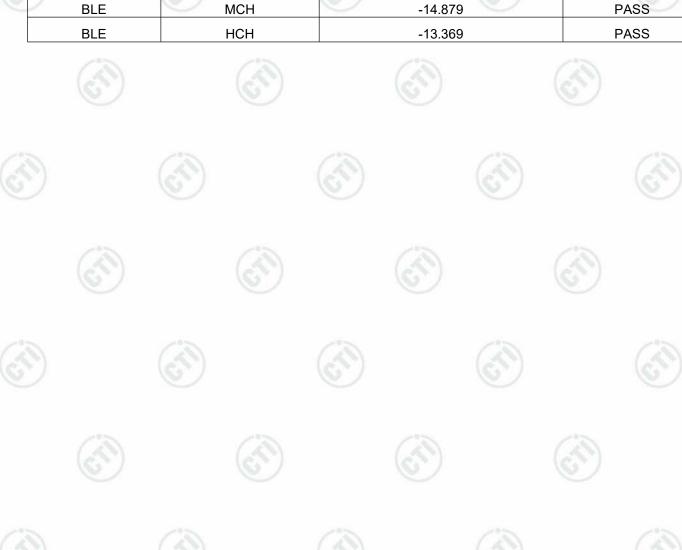
Result Table


Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-4.298	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-4.078	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-4.019	<limit< td=""><td>PASS</td></limit<>	PASS

Report No.: EED32L00199701 Page 20 of 50

Test Graphs

Report No.: EED32L00199701

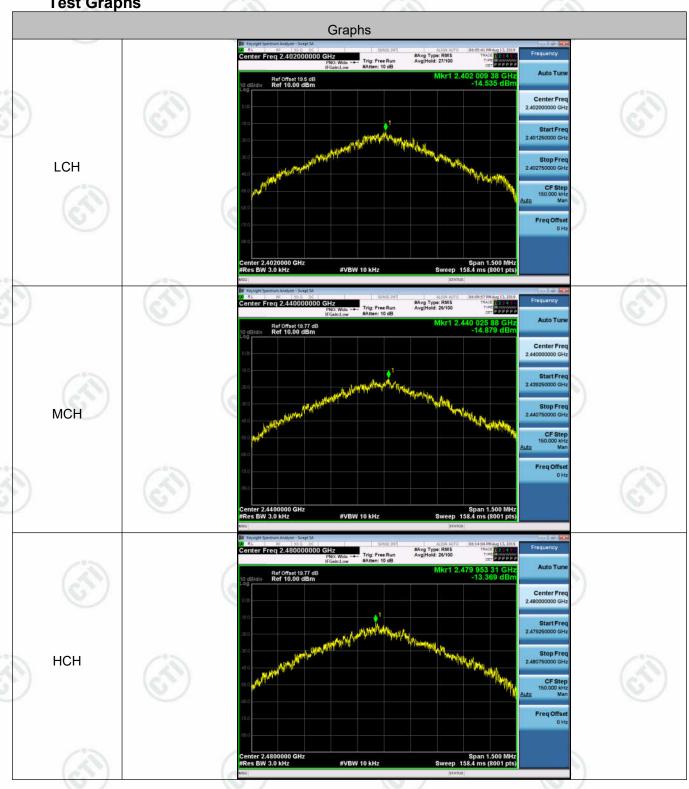


Report No.: EED32L00199701

Appendix E): Power Spectral Density

Result Table

	Mode	Channel	PSD [dBm]	Verdict
Ø	BLE	LCH	-14.535	PASS
4	BLE	MCH	-14.879	PASS
	BLE	НСН	-13.369	PASS

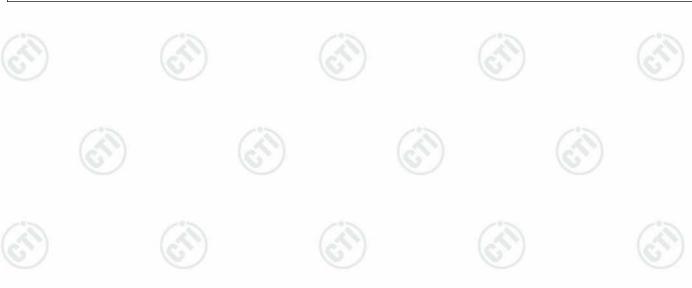


Report No.: EED32L00199701

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

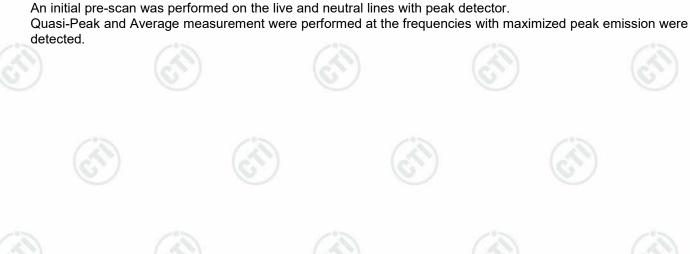
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0 dBi.

Report No.: EED32L00199701 Page 26 of 50

LISN 2.

Test Procedure:	Test frequency range: 150KHz-30MHz
	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1
	for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN
	1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

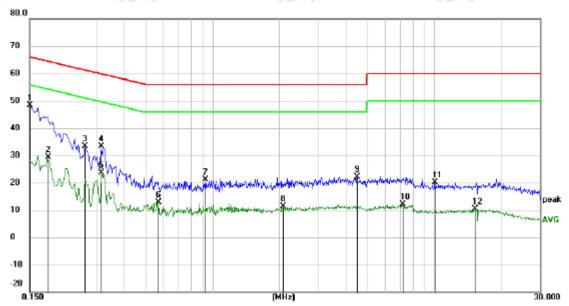

Limit:

	Fraguency range (MHz)	Limit (c	lΒμV)
Ļ	Frequency range (MHz)	Quasi-peak	Average
Ĭ,	0.15-0.5	66 to 56*	56 to 46*
Ļ	0.5-5	56	46
	5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data


Report No. : EED32L00199701 Page 27 of 50

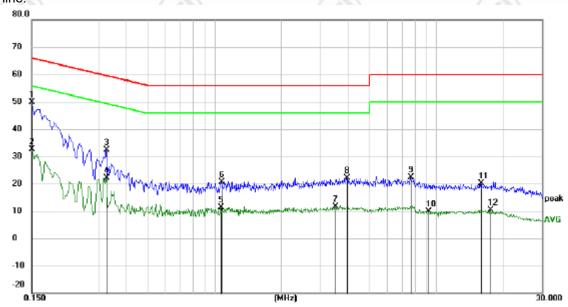
Product : Digital Blood Pressure Monitor Model/Type : BP3SK1-3B, WatchBP Office

reference

Temperature : 21° Humidity : 51%

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	38.29	9.97	48.26	66.00	-17.74	peak	
2		0.1815	19.49	10.00	29.49	54.42	-24.93	AVG	
3		0.2670	23.29	10.07	33.36	61.21	-27.85	peak	
4		0.3165	23.21	10.08	33.29	59.80	-26.51	peak	
5		0.3165	13.53	10.08	23.61	49.80	-26.19	AVG	
6		0.5730	2.70	10.09	12.79	46.00	-33.21	AVG	
7		0.9330	11.18	9.92	21.10	56.00	-34.90	peak	
8		2.0805	1.60	9.83	11.43	46.00	-34.57	AVG	
9		4.4970	12.22	9.83	22.05	56.00	-33.95	peak	
10		7.1835	2.26	9.86	12.12	50.00	-37.88	AVG	
11		10.0680	10.27	9.96	20.23	60.00	-39.77	peak	
12		15.2925	0.40	9.98	10.38	50.00	-39.62	AVG	
7.7			Part of the second		1200		1000	515/1/20	



Report No. : EED32L00199701 Page 28 of 50

Neutral line:

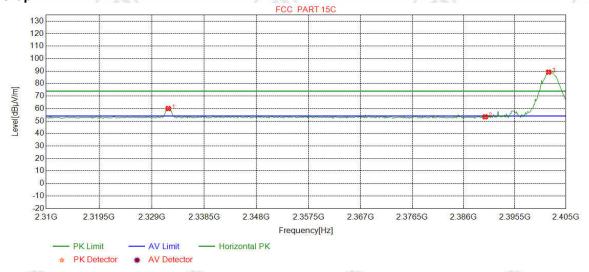
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	39.99	9.97	49.96	66.00	-16.04	peak	
2		0.1500	22.67	9.97	32.64	56.00	-23.36	AVG	
3		0.3255	22.41	10.07	32.48	59.57	-27.09	peak	
4		0.3255	12.09	10.07	22.16	49.57	-27.41	AVG	
5		1.0680	1.49	9.90	11.39	46.00	-34.61	AVG	
6		1.0725	10.64	9.90	20.54	56.00	-35.46	peak	
7		3.4935	1.85	9.83	11.68	46.00	-34.32	AVG	
8		3.9435	12.29	9.83	22.12	56.00	-33.88	peak	
9		7.6515	12.40	9.87	22.27	60.00	-37.73	peak	
10		9.2265	0.03	9.93	9.96	50.00	-40.04	AVG	
11		15,8055	10.08	9.97	20.05	60.00	-39.95	peak	
12		17.5380	0.34	9.95	10.29	50.00	-39.71	AVG	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

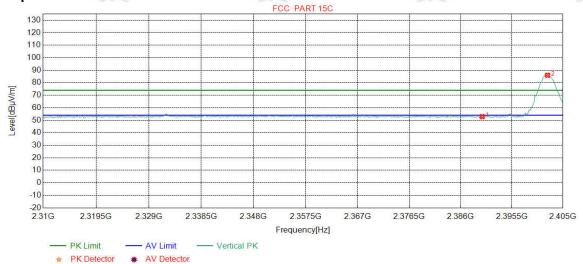
(Naulateu)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak 1	20kHz	300kHz	Quasi-peak	
	Ab 4011	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	(3
Test Procedure:	Below 1GHz test procedu	re as helow:	6			16
	a. The EUT was placed o at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is of determine the maximum polarizations of the antenna was turned was turned from 0 degree. The test-receiver systems at the systems of the systems of the systems of the antenna was turned from 0 degree. The test-receiver systems of the syst	n the top of a rotation hoic camber. The state of the highest radiaters away from the pof a variable-heignaried from one mean value of the field enna are set to manission, the EUT was to heights from 1 rees to 360 degreem was set to Peak	table was ation. interferer ght antenreter to fould strength. The strength are as arrangemeter to 4 es to find the strength.	rotated 3 nce-receive a tower. r meters a Both horieasureme ed to its v meters a he maxim	of the property of the protect	to, which
	f. Place a marker at the ending frequency to show combands. Save the spectron for lowest and highest of the same and highest o	pliance. Also meas rum analyzer plot. I channel	sure any e	emissions	s in the restri	
	frequency to show combands. Save the spectr	pliance. Also measum analyzer plot. In channel Ire as below: The is the test site, control ber change form to table is the test site is the test site. The ments are performed found the X axis properties.	change from the state of the st	emissions r each po m Semi- neter to 1. er). channel f, Z axis p g which it	Anechoic Ch .5 meter(Abo	ambe ove
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectral for lowest and highest of the spectral for lowest and highest of the state of the spectral for lowest and highest of the state of the spectral forms and the spectral frequency to show the spectral forms and the spec	pliance. Also measum analyzer plot. In channel Ire as below: The is the test site, control ber change form to table is the test site is the test site. The ments are performed found the X axis properties.	change from the state of the st	emissions r each po m Semi- neter to 1. channel f, Z axis p g which it	Anechoic Ch .5 meter(Abo	ambe ove
_imit:	frequency to show combands. Save the spectr for lowest and highest of the spectral for fully Anechoic Chamaland 18GHz the distance is hold in the spectral for the spectral for fully for fully for lower the spectral for fully for lower the spectral for fully fully for fully fully for fully fully for fully f	pliance. Also measum analyzer plot. In channel In re as below: The is the test site, compared to the change form to the compared to the ments are performed found the X axis presuntil all frequents.	change from the state of the st	emissions r each po m Semi- neter to 1. channel f, Z axis p g which it sured wa	Anechoic Ch .5 meter(Abo ositioning for t is worse cas as complete.	dulation ambe
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectral for lowest and highest of the spectral for lowest and highest of lowest and highest of fully Anechoic Chamaland 18 GHz the distance is how to fully Anechoic Chamaland 18 GHz the distance is how the spectral full full for the spectral full full for the spectral full full full full full full full fu	pliance. Also measum analyzer plot. In channel In re as below: The is the test site, control ber change form to a meter and table is west channel, the ments are performed found the X axis pres until all frequer Limit (dBµV/m	change from the state of the st	emissions r each po m Semi- neter to 1. channel f, Z axis p g which it sured wa Rer Quasi-pe	Anechoic Ch .5 meter(Abo ositioning for it is worse cas as complete.	dulational de la composition d
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectral for lowest and highest of the spectral for lowest and highest of lowest and highest of fully Anechoic Chamalagh and the spectral form of	ppliance. Also measum analyzer plot. Find an analyzer performed found the X axis pres until all frequer Limit (dBµV/m 40.0	change from the state of the st	emissions r each po m Semi- neter to 1. channel f, Z axis p g which it sured wa Ren Quasi-pe	Anechoic Ch. 5 meter (About 15 meter (About 15 meter) Anechoic Ch. 5 meter (About 15 meter) Anechoic Ch. 6 meter (About 15 meter) Anechoic Ch. 7 m	dulational de la composition d
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectral for lowest and highest of some second	ppliance. Also measum analyzer plot. In channel In re as below: The is the test site, control ber change form to the set of the test site, control the set of the test site, control the set of the s	change from the state of the st	emissions r each po m Semi- neter to 1. channel f, Z axis p g which it sured wa Rer Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo nositioning for t is worse cas as complete. mark eak Value	dulational de la composition d
Limit:	frequency to show combands. Save the spectr for lowest and highest of the spectral for lowest and highest of lowest and highest of section 18 decision of the section of th	ppliance. Also measum analyzer plot. Fichannel Ire as below: The is the test site, control ber change form to the set of the test site, control ber change form to the set of the test site, control ber change form to the set of the	change from the state of the st	emissions r each po m Semi- neter to 1. er). channel f, Z axis p g which it sured wa Ren Quasi-pe Quasi-pe Quasi-pe	Anechoic Chassis in the restrict ower and mode of the control of t	dulational de la composition d

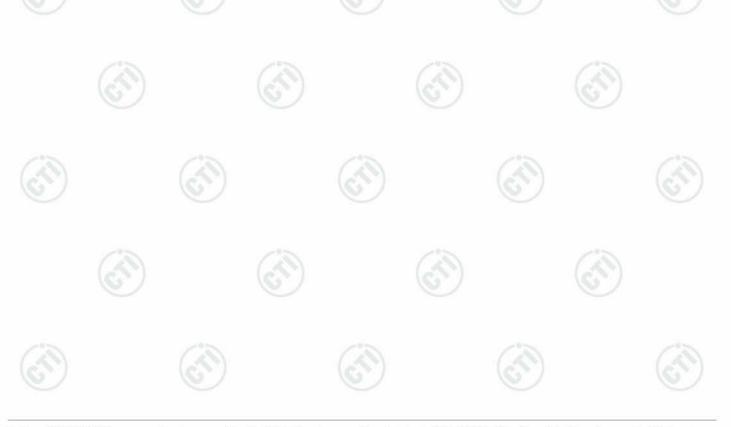


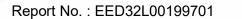
Test plot as follows:

Mode:	GFSK	Channel:	2402
Remark:	PK		

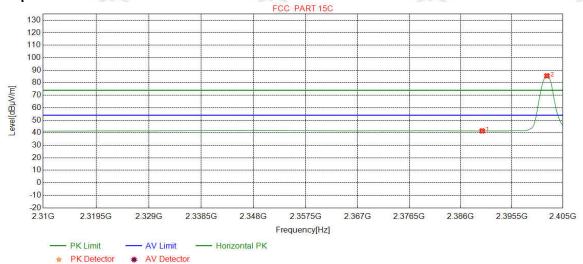
Test Graph

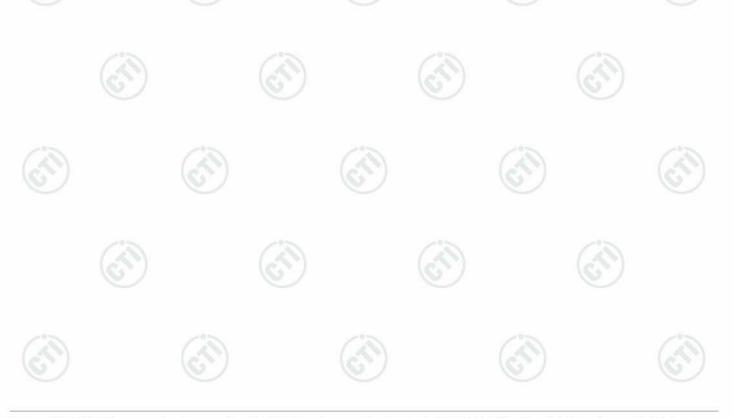

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2331.9962	32.16	13.53	-42.46	56.76	59.99	74.00	14.01	Pass	Horizontal
2	2390.0000	32.25	13.37	-42.44	50.18	53.36	74.00	20.64	Pass	Horizontal
3	2401.7897	32.26	13.31	-42.43	86.02	89.16	74.00	-15.16	Pass	Horizontal



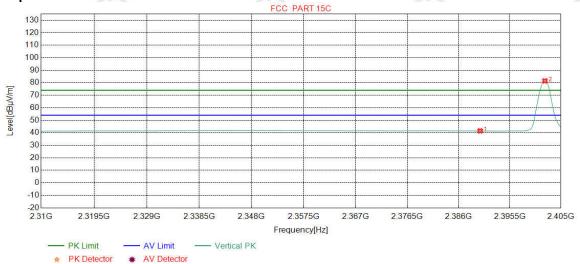

(6.74)	1.00	(100)	(()
Mode:	GFSK	Channel:	2402
Remark:	PK		

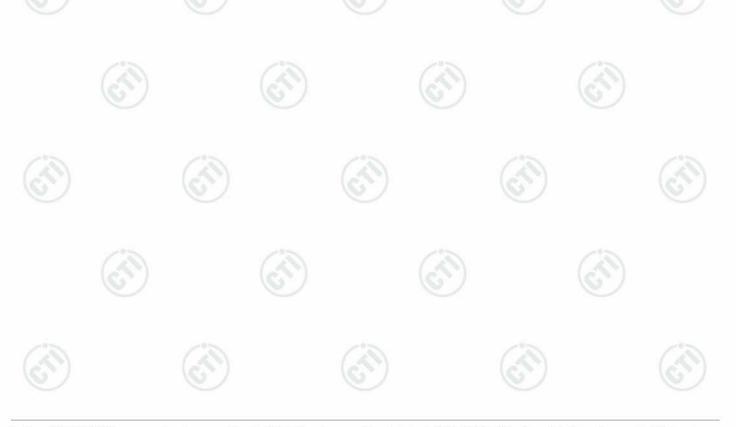
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.73	52.91	74.00	21.09	Pass	Vertical
2	2402.1464	32.26	13.31	-42.43	82.81	85.95	74.00	-11.95	Pass	Vertical



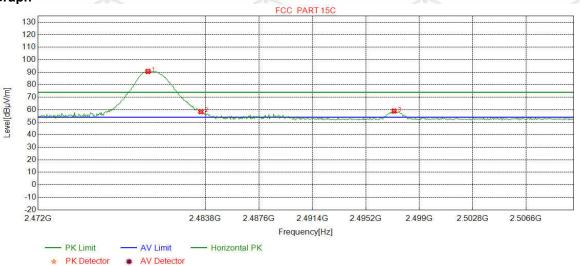


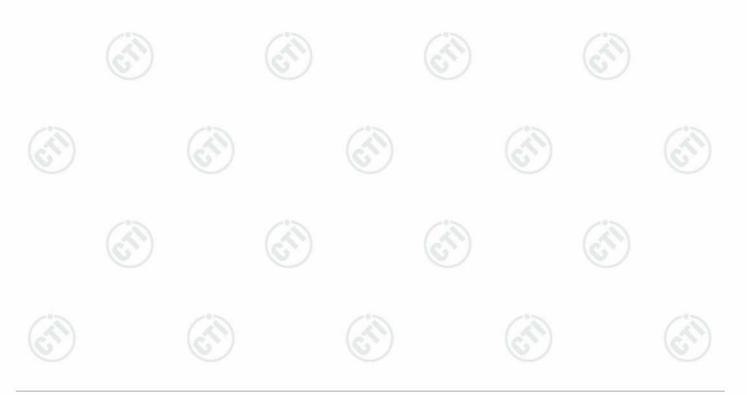
G A	OFOK	011	0.400
Mode:	GFSK	Channel:	2402
Remark:	AV		


NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.30	41.48	54.00	12.52	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	82.35	85.49	54.00	-31.49	Pass	Horizontal

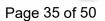


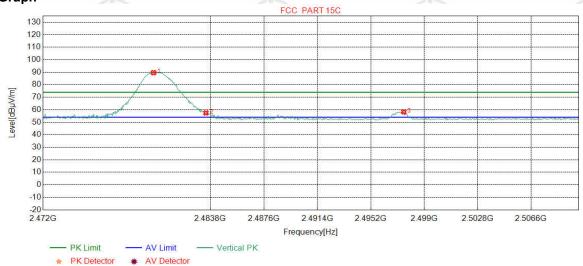
201911	1.65.75	120.75	16.35
Mode:	GFSK	Channel:	2402
Remark:	AV		

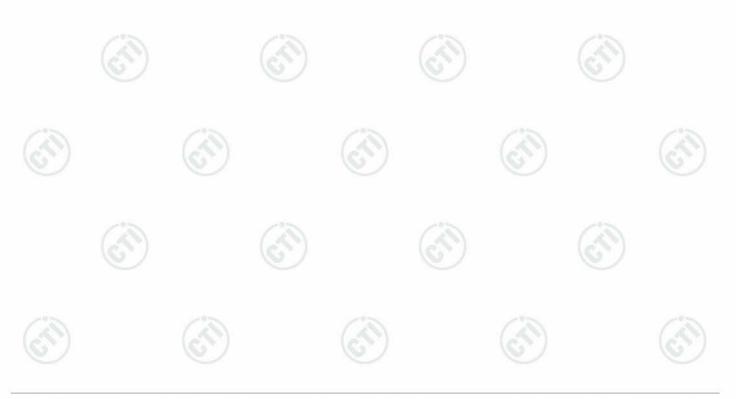

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.29	41.47	54.00	12.53	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	78.31	81.45	54.00	-27.45	Pass	Vertical



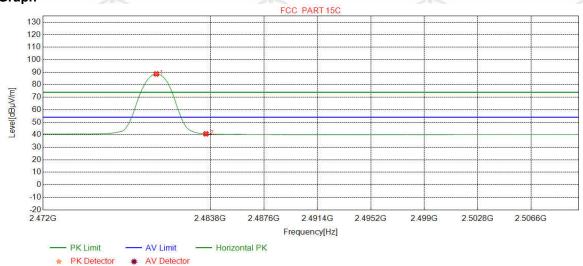
6.31	18.3	120.79	1.65.75
Mode:	GFSK	Channel:	2480
Remark:	PK		

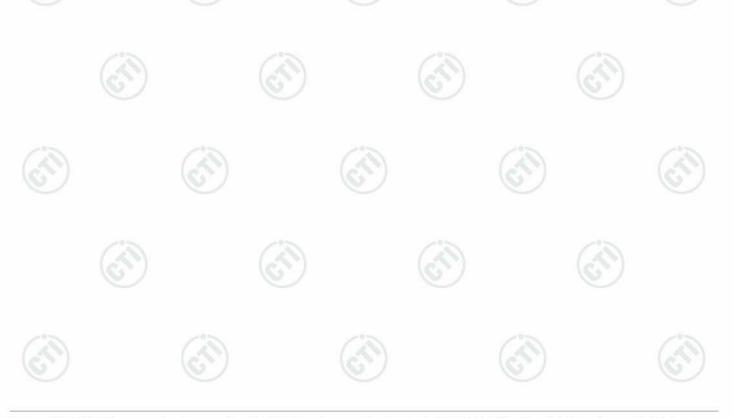

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7522	32.37	13.39	-42.39	87.24	90.61	74.00	-16.61	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	55.14	58.50	74.00	15.50	Pass	Horizontal
3	2497.2065	32.40	13.31	-42.39	55.63	58.95	74.00	15.05	Pass	Horizontal


 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



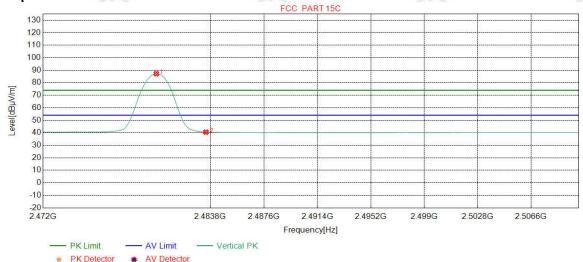
6.767	186.78	(10° N°)	1 (2000)
Mode:	GFSK	Channel:	2480
Remark:	PK		


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7998	32.37	13.39	-42.39	86.26	89.63	74.00	-15.63	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	54.09	57.45	74.00	16.55	Pass	Vertical
3	2497.5394	32.40	13.31	-42.39	54.96	58.28	74.00	15.72	Pass	Vertical



6.79	1.00	(100 mm)	
Mode:	GFSK	Channel:	2480
Remark:	AV		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9900	32.37	13.39	-42.39	85.24	88.61	54.00	-34.61	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.36	40.72	54.00	13.28	Pass	Horizontal



Report No. : EED32L00199701 Page 37 of 50

6.7	16.7	16.3	16.7
Mode:	GFSK	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9900	32.37	13.39	-42.39	83.87	87.24	54.00	-33.24	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.13	40.49	54.00	13.51	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	200
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	(1)
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	6
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(CLI)	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

J. Ropout abovo	procoduros ariai aii iroquoi	iolog modearod wa	o oomplote	•	18.6 /
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-0-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	(4)	30
	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

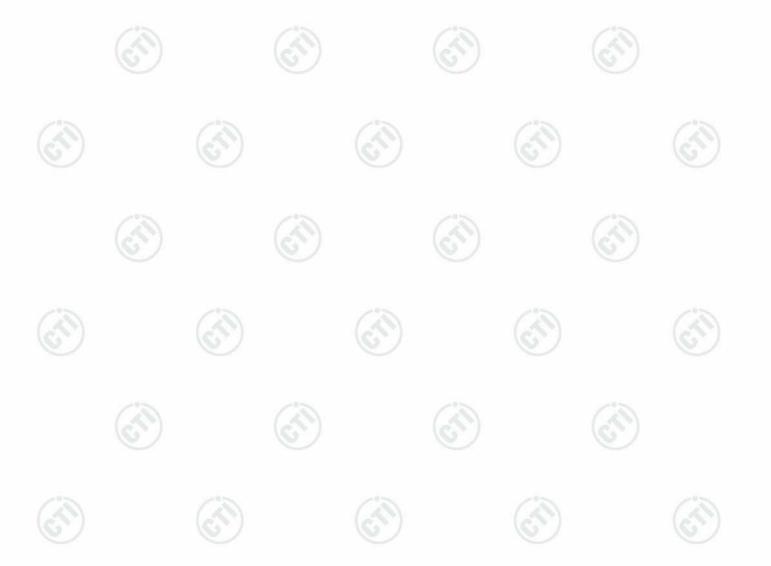
Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz


Mode	e:		GFSK					Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	41.01	20.81	40.00	19.19	Pass	Н	PK
2	62.8863	10.85	0.91	-32.04	42.69	22.41	40.00	17.59	Pass	Н	PK
3	129.9200	7.71	1.33	-32.02	43.99	21.01	43.50	22.49	Pass	Н	PK
4	208.8859	11.13	1.71	-31.94	48.68	29.58	43.50	13.92	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	39.90	30.33	46.00	15.67	Pass	Н	PK
6	909.9750	22.16	3.60	-31.48	34.14	28.42	46.00	17.58	Pass	Н	PK
7	68.5129	9.39	0.94	-32.05	42.21	20.49	40.00	19.51	Pass	V	PK
8	132.2482	7.59	1.34	-32.01	49.24	26.16	43.50	17.34	Pass	V	PK
9	208.8859	11.13	1.71	-31.94	41.66	22.56	43.50	20.94	Pass	V	PK
10	390.0030	15.18	2.35	-31.81	37.11	22.83	46.00	23.17	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	39.26	29.69	46.00	16.31	Pass	V	PK
12	909.9750	22.16	3.60	-31.48	33.42	27.70	46.00	18.30	Pass	V	PK

Mode	e:		GFSK					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	42.40	22.20	40.00	17.80	Pass	Н	PK
2	66.2816	9.97	0.93	-32.05	42.88	21.73	40.00	18.27	Pass	Н	PK
3	129.5320	7.77	1.33	-32.02	44.22	21.30	43.50	22.20	Pass	Н	PK
4	208.8859	11.13	1.71	-31.94	48.79	29.69	43.50	13.81	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	39.54	29.97	46.00	16.03	Pass	Н	PK
6	907.9378	22.15	3.60	-31.50	33.67	27.92	46.00	18.08	Pass	Н	PK
7	36.6937	11.24	0.67	-32.11	42.18	21.98	40.00	18.02	Pass	V	PK
8	69.0949	9.24	0.94	-32.05	41.86	19.99	40.00	20.01	Pass	V	PK
9	130.1140	7.69	1.33	-32.01	49.27	26.28	43.50	17.22	Pass	V	PK
10	208.8859	11.13	1.71	-31.94	41.26	22.16	43.50	21.34	Pass	V	PK
11	413.7704	15.62	2.43	-31.84	36.83	23.04	46.00	22.96	Pass	V	PK
12	649.9890	19.40	3.10	-32.07	39.53	29.96	46.00	16.04	Pass	V	PK

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



Report No. : EED32L00199701

Page 40 of 50

Mode	j.		GFSK					Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.6937	11.24	0.67	-32.11	40.64	20.44	40.00	19.56	Pass	Н	PK
2	65.0205	10.29	0.92	-32.04	43.33	22.50	40.00	17.50	Pass	Н	PK
3	128.0768	7.99	1.32	-32.03	44.11	21.39	43.50	22.11	Pass	Н	PK
4	208.8859	11.13	1.71	-31.94	48.51	29.41	43.50	14.09	Pass	Н	PK
5	649.9890	19.40	3.10	-32.07	39.80	30.23	46.00	15.77	Pass	Н	PK
6	875.0515	21.80	3.55	-31.70	33.58	27.23	46.00	18.77	Pass	Н	PK
7	36.6937	11.24	0.67	-32.11	40.63	20.43	40.00	19.57	Pass	V	PK
8	68.9009	9.29	0.94	-32.05	42.98	21.16	40.00	18.84	Pass	V	PK
9	133.1213	7.54	1.35	-32.01	49.17	26.05	43.50	17.45	Pass	V	PK
10	240.0260	11.94	1.84	-31.90	41.11	22.99	46.00	23.01	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	39.07	29.50	46.00	16.50	Pass	V	PK
12	909.9750	22.16	3.60	-31.48	33.64	27.92	46.00	18.08	Pass	V	PK

Transmitter Emission above 1GHz

Mode	Mode:		GFSK					Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2057.1057	31.78	3.56	-42.58	50.96	43.72	74.00	30.28	Pass	Н	PK
2	2964.5965	33.14	4.44	-42.13	50.87	46.32	74.00	27.68	Pass	Н	PK
3	4804.1203	34.50	4.55	-40.66	57.56	55.95	74.00	18.05	Pass	Н	PK
4	7206.0000	36.31	5.81	-41.02	49.65	50.75	74.00	23.25	Pass	Н	PK
5	9608.0000	37.64	6.63	-40.76	43.44	46.95	74.00	27.05	Pass	Н	PK
6	12010.000	39.31	7.60	-41.21	43.44	49.14	74.00	24.86	Pass	Н	PK
7	4803.5103	34.50	4.55	-40.66	50.79	49.18	54.00	4.82	Pass	Н	AV
8	4803.5103	34.50	4.55	-40.66	50.65	49.04	54.00	4.96	Pass	Н	AV
9	1855.6856	30.75	3.38	-42.68	51.18	42.63	74.00	31.37	Pass	V	PK
10	2840.7841	32.95	4.23	-42.21	50.99	45.96	74.00	28.04	Pass	V	PK
11	4804.1203	34.50	4.55	-40.66	56.67	55.06	74.00	18.94	Pass	V	PK
12	7206.0000	36.31	5.81	-41.02	47.27	48.37	74.00	25.63	Pass	V	PK
13	9608.0000	37.64	6.63	-40.76	43.31	46.82	74.00	27.18	Pass	V	PK
14	12010.000	39.31	7.60	-41.21	42.69	48.39	74.00	25.61	Pass	V	PK
15	4803.4603	34.50	4.55	-40.66	49.01	47.40	54.00	6.60	Pass	V	AV

Mode	e:		GFSK					Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1899.2899	31.04	3.42	-42.67	51.06	42.85	74.00	31.15	Pass	Н	PK	
2	2783.7784	32.85	4.21	-42.23	51.90	46.73	74.00	27.27	Pass	Н	PK	
3	4879.1253	34.50	4.80	-40.60	57.19	55.89	74.00	18.11	Pass	Н	PK	
4	7320.0000	36.42	5.85	-40.92	48.07	49.42	74.00	24.58	Pass	Н	PK	
5	9760.0000	37.70	6.73	-40.62	42.19	46.00	74.00	28.00	Pass	Н	PK	
6	12200.000	39.42	7.67	-41.17	44.04	49.96	74.00	24.04	Pass	Н	PK	
7	4879.5853	34.50	4.80	-40.60	53.16	51.86	54.00	2.14	Pass	Н	AV	
8	1886.0886	30.95	3.41	-42.67	50.91	42.60	74.00	31.40	Pass	V	PK	
9	3183.0122	33.27	4.62	-42.00	50.27	46.16	74.00	27.84	Pass	V	PK	
10	4879.1253	34.50	4.80	-40.60	55.61	54.31	74.00	19.69	Pass	V	PK	
11	7320.0000	36.42	5.85	-40.92	46.26	47.61	74.00	26.39	Pass	V	PK	
12	9760.0000	37.70	6.73	-40.62	43.44	47.25	74.00	26.75	Pass	V	PK	
13	12200.000	39.42	7.67	-41.17	43.15	49.07	74.00	24.93	Pass	V	PK	
14	4879.4153	34.50	4.80	-40.60	48.70	47.40	54.00	6.60	Pass	V	AV	

PΚ

PΚ

PΚ

ΑV

Report No.: EED32L00199701

Mode	e:		GFSK					Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2088.5089	31.82	3.58	-42.57	51.12	43.95	74.00	30.05	Pass	Н	PK
2	3238.0159	33.30	4.50	-41.98	50.56	46.38	74.00	27.62	Pass	Н	PK
3	4959.1306	34.50	4.82	-40.53	57.68	56.47	74.00	17.53	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	44.76	46.33	74.00	27.67	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	43.49	47.57	74.00	26.43	Pass	Н	PK
6	12400.000	39.54	7.86	-41.12	44.44	50.72	74.00	23.28	Pass	Н	PK
7	4959.5106	34.50	4.82	-40.53	52.38	51.17	54.00	2.83	Pass	Н	AV
8	1996.6997	31.68	3.47	-42.62	50.41	42.94	74.00	31.06	Pass	V	PK
9	3197.0131	33.28	4.65	-42.01	51.17	47.09	74.00	26.91	Pass	V	PK
10	4959.1306	34.50	4.82	-40.53	56.60	55.39	74.00	18.61	Pass	V	PK

44.83

47.50

50.49

48.06

74.00

74.00

74.00

54.00

29.17

26.50

23.51

5.94

Pass

Pass

Pass

Pass

٧

V

V

Note:

7440.0000

9920.0000

12400.000

4959.3906

36.54

37.77

39.54

34.50

11

12

13

14

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

43.26

43.42

44.21

49.27

Final Test Level =Receiver Reading -Correct Factor

5.85

6.79

7.86

4.82

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

-40.82

-40.48

-41.12

-40.53

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

