

Digital Blood Pressure Monitor Product

microlife **Trade mark**

: BP3NQ1-4B, BP3NQ1-4BHEB Model/Type reference

Serial Number N/A

Report Number : EED32M00009001

FCC ID : U7I-BP3NQ1-4B

Date of Issue : Mar. 12, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Microlife Corporation 9F, 431, RuiGuang Road, NeiHu, Taipei 11492, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Compiled by:

Report Sea

Zhong Smile

Mark Chen

Smile Zhona

Reviewed by:

None Xm Ware Xin

Sam Chuang

Date:

Mar. 12, 2020

Check No.: 3970355585

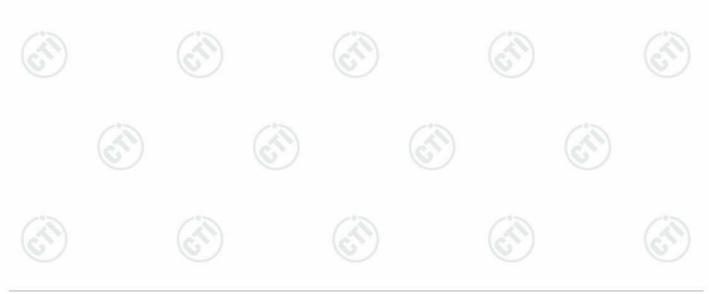
2 Version

Version No.	Date	(6	Description	5)
00	Mar. 12, 2020		Original	
		(25)		

Report No. : EED32M00009001 Page 3 of 60

3 Test Summary

J rest Summary	J-07	70	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	enna Requirement 47 CFR Part 15Subpart C Section 15.203/15.247 (c)		PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

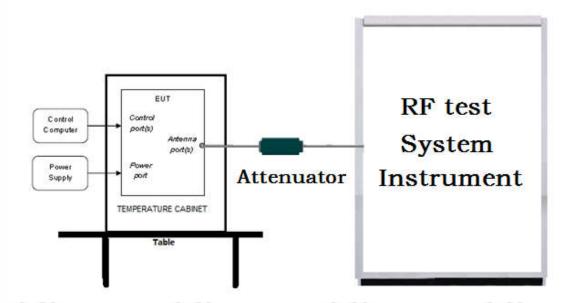
Model No.: BP3NQ1-4B, BP3NQ1-4BHEB

Only the model BP3NQ1-4B was tested, their electrical circuit design, layout, components used, internal wiring, software and outer decoration are identical. Only the model numbers are different. The tested product has two model numbers, BPNQ1-4BHEB is the market model number, BP3NQ1-4B is the factory internal model number.

Report No.: EED32M00009001 Page 4 of 60

4 Content

1 COVE	R PAGE					1
2 VERS	SION	•••••	•••••	•••••		2
3 TEST	SUMMARY					3
	ΓΕΝΤ					
	REQUIREMENT					
_	EST SETUP					_
	1.1 For Conducted test se 1.2 For Radiated Emissio	•				
	1.2 For Radiated Emission 1.3 For Conducted Emiss					
	EST ENVIRONMENT					
	EST CONDITION					
	ERAL INFORMATION					
	CLIENT INFORMATION					
	BENERAL DESCRIPTION OF					
	PRODUCT SPECIFICATION S					
	ESCRIPTION OF SUPPORT					
	EST LOCATION					
6.6 E	EVIATION FROM STANDARI	DS				8
	BNORMALITIES FROM STAN					
	THER INFORMATION REQU					
	MEASUREMENT UNCERTAIN					
7 EQUI	PMENT LIST		•••••			10
	O TECHNICAL REQUIR					
E	JT DUTY CYCLE	/\h	\	/ 5		14
	pendix A): 6dB Occupied					
A	pendix B): Conducted Pe	eak Output Power				18
	ppendix C): Band-edge fo					
	ppendix D): RF Conducte					
	pendix E): Power Spectr					
	ppendix F): Antenna Requ					
	ppendix G): AC Power Lir ppendix H): Restricted ba					
	ppendix H). Restricted ba ppendix I) Radiated Spuri					
	GRAPHS OF TEST SET					
PHOTO	GRAPHS OF EUT CON	STRUCTIONAL DETA	NLS		••••••	52



Report No.: EED32M00009001 Page 5 of 60

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

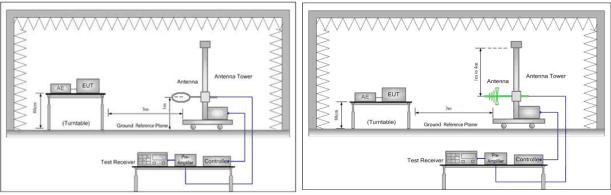
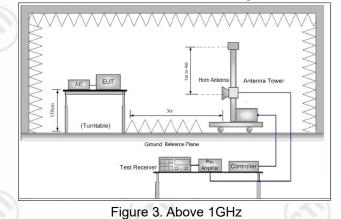
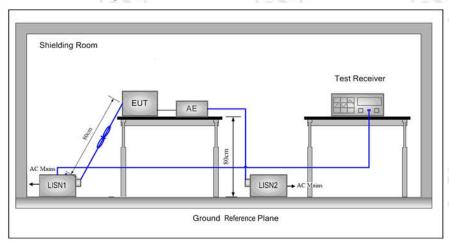



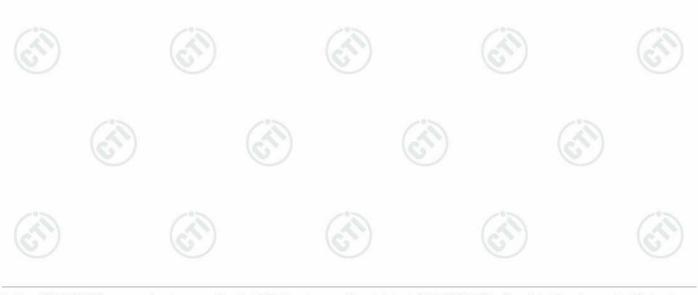
Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			(6)
Temperature:	24.0 °C		
Humidity:	54 % RH	160	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel					
Test Mode	TX/KX	Low(L)	Low(L) Middle(M) High(H)				
05014	0.400.441 0.400.441	Channel 1	Channel 20	Channel 40			
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz			
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.						

Report No. : EED32M00009001 Page 7 of 60

6 General Information

6.1 Client Information

Applicant:	Microlife Corporation
Address of Applicant:	9F, 431, RuiGuang Road, NeiHu, Taipei 11492, Taiwan
Manufacturer:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Manufacturer:	No. 138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China
Factory:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Factory:	No. 138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China

6.2 General Description of EUT

Product Name:	Digital Blood	Pressure Monitor				
Model No.(EUT):	BP3NQ1-4B	, BP3NQ1-4BHEB				
Model Test :	BP3NQ1-4B	BP3NQ1-4B				
Trade mark:	micro	microlife				
EUT Supports Radios application:	BT 4.0 Singl	BT 4.0 Single mode, 2402MHz to 2480MHz				
Power Supply:	Battery	DC 6V				
	Adapter	Model:DSA-6E-05 US 060060 Input: 100-240V~50/60Hz 0.3A Output: +6V 0.6A	(6)			
Sample Received Date:	Jan. 13, 202	20		-0-		
Sample tested Date:	Jan. 13, 202	0 to Mar. 09, 2020		(41)		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz				
Bluetooth Version:	4.0	13		130	
Modulation Technique:	DSSS	(0)		(6)	
Modulation Type:	GFSK				
Number of Channel:	40				
Test Power Grade:	Default		100		100
Test Software of EUT:	Default		(6.5)		(8.5)
Antenna Type and Gain:	Type:Integral Antenna Gain:-2.39dBi				
Test Voltage:	DC 6V				

Report No.: EED32M00009001 Page 8 of 60

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No. : EED32M00009001 Page 9 of 60

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nover conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction aminaism	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32M00009001 Page 10 of 60

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019 02-17-2020	02-29-2020 02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019 02-17-2020	02-29-2020 02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	0.		ع)
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	03-01-2019 02-17-2020	02-29-2020 02-16-2021
PC-1	Lenovo	R4960d		<u></u>	
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019 02-17-2020	02-29-2020 02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	03-01-2019 02-17-2020	02-29-2020 02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			

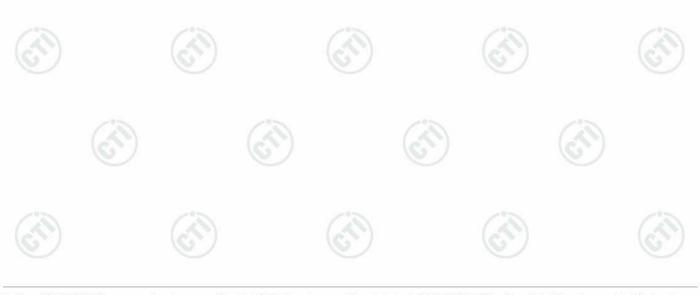
Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020		
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-13-2020		
LISN	R&S	ENV216	100098	05-08-2019	05-07-2020		
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020		

	Cal. Due date	
v)	(mm-dd-vvvv)	

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021	
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020	
Multi device Controller	maturo	NCD/070/107 11112	(A)	/	6	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A	/ S-	/ 33	

Page 12 of 60

		3M full-anechoi	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-21-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		/
Cable line	Times	EMC104-NMNM- 1000	SN160710	(a)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		<u> </u>
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(C)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

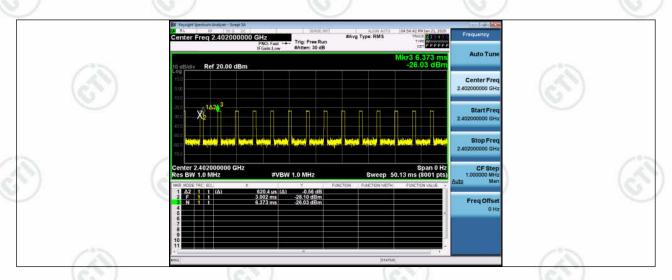

8 Radio Technical Requirements Specification

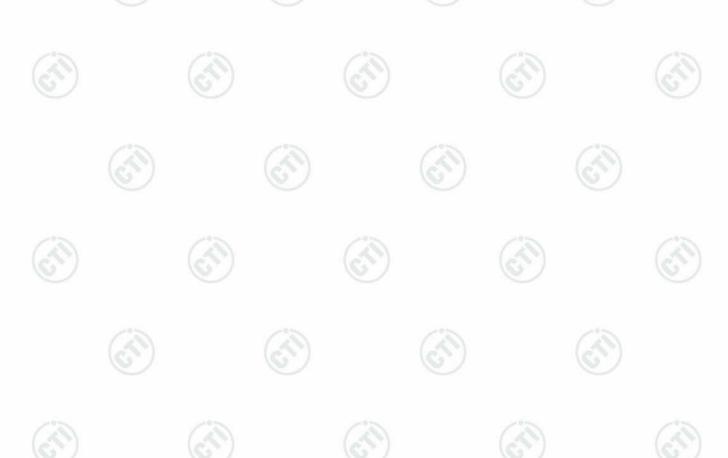
Reference documents for testing:

Г			
	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
2 ANSI C63.10-2013		ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)





Report No. : EED32M00009001 Page 14 of 60

EUT DUTY CYCLE

Duty Cycle				
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)	
BLE (0.6204	3.371	18.40%	

Report No. : EED32M00009001 Page 15 of 60

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

Limit	Shall be at least 500kHz	

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 , section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth .
- 4. Measure and record the result of 6 dB Bandwidth . in the test report.

Test Setup

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6565	1.1140	PASS
BLE	MCH	0.6774	1.1362	PASS
BLE	НСН	0.6534	1.1091	PASS

Report No.: EED32M00009001 Page 17 of 60

Test Graphs

Report No. : EED32M00009001 Page 18 of 60

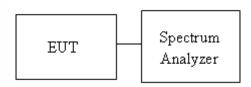
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


	(6)		0
Limit		\square Antenna with DG greater than 6 dBi [Limit = $30 - (DG - 6)$]	
		☐ Point-to-point operation	

Test Procedure

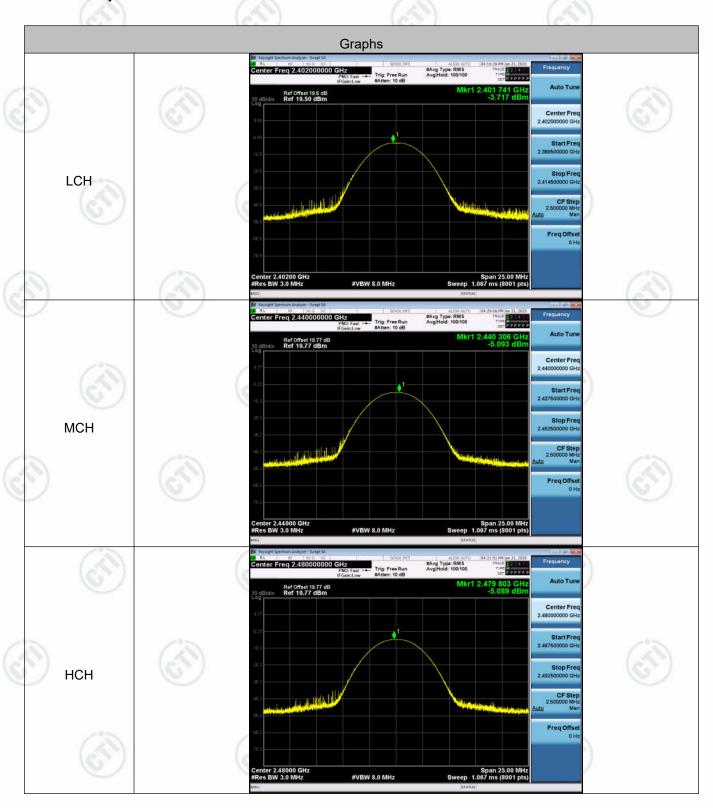
Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW≥DTS bandwidth.
 - b) Set VBW ≥ [3×RBW].
 - c) Set span ≥ [3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

Test Setup

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
Mode	Ghanner	Conduct reak rower[abin]	Verdice
BLE	LCH	-3.717	PASS
BLE	MCH	-5.093	PASS
BLE	НСН	-5.089	PASS



Test Graphs

Report No. : EED32M00009001 Page 21 of 60

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

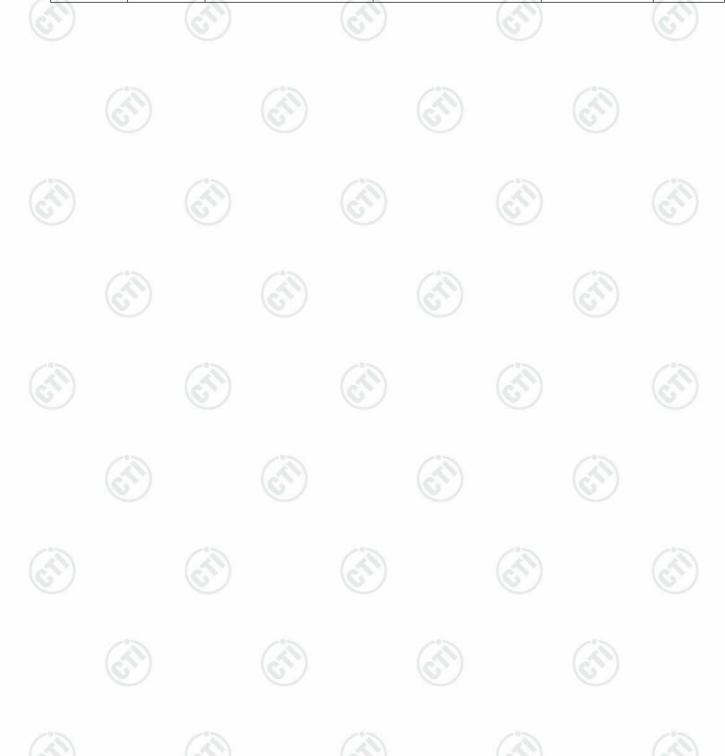
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Page 22 of 60

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-4.341	-60.999	-24.34	PASS
BLE	HCH	-5.154	-54.051	-25.15	PASS

Report No. : EED32M00009001 Page 23 of 60

Test Graphs

Report No. : EED32M00009001 Page 24 of 60

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

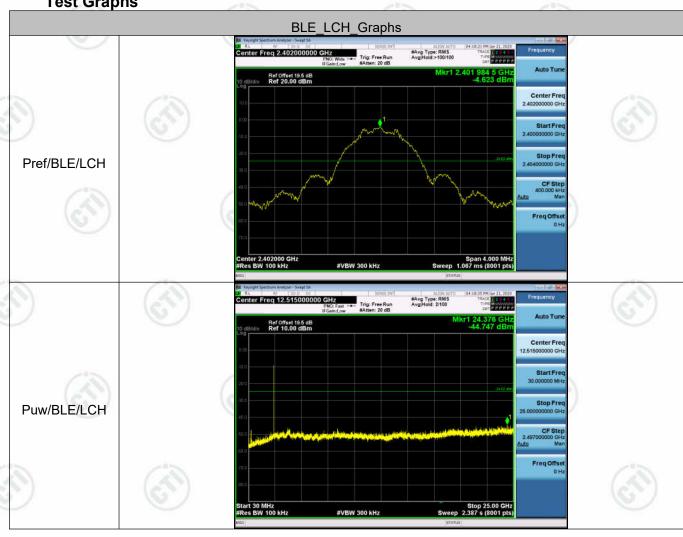
Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

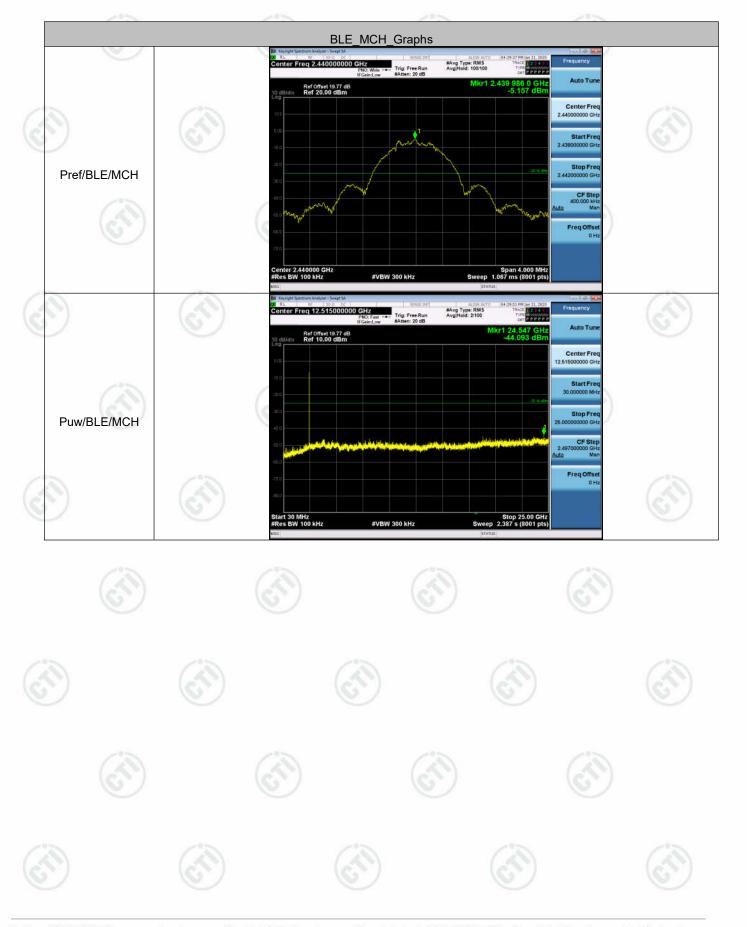
Test Setup

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-4.623	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-5.157	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-5.14	<limit< td=""><td>PASS</td></limit<>	PASS



Page 26 of 60


Test Graphs

Page 27 of 60

Page 28 of 60

Report No. : EED32M00009001 Page 29 of 60

Appendix E): Power Spectral Density

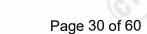
Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

☐ Point-to-point operation :

Test Procedure

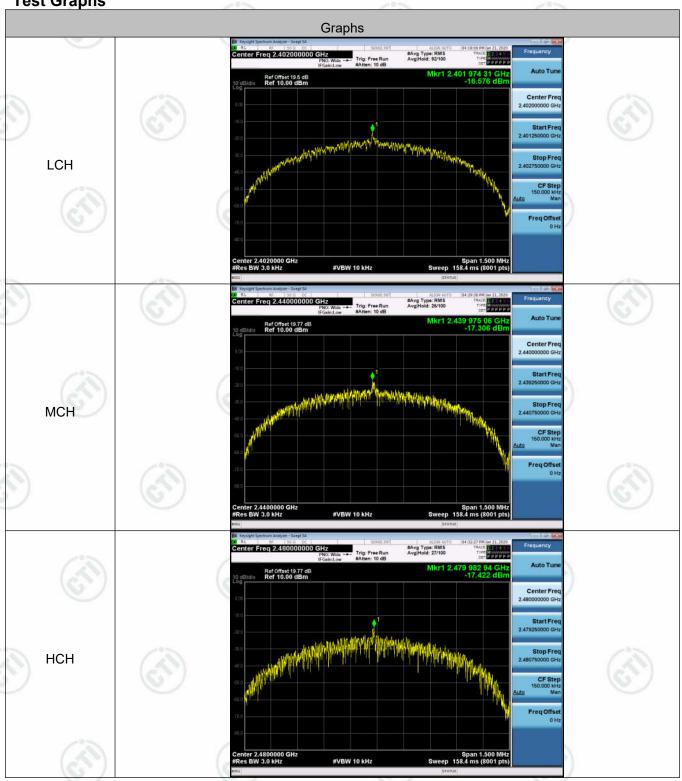

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

Test Setup

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-16.576	PASS
BLE	MCH	-17.306	PASS
BLE	НСН	-17.422	PASS



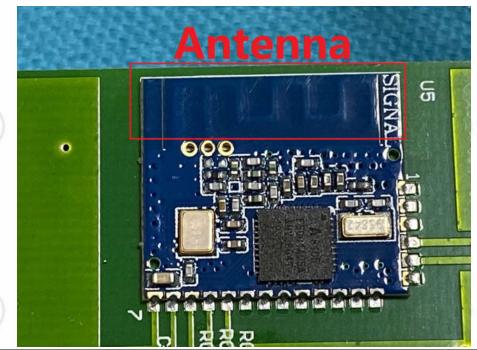
Page 31 of 60

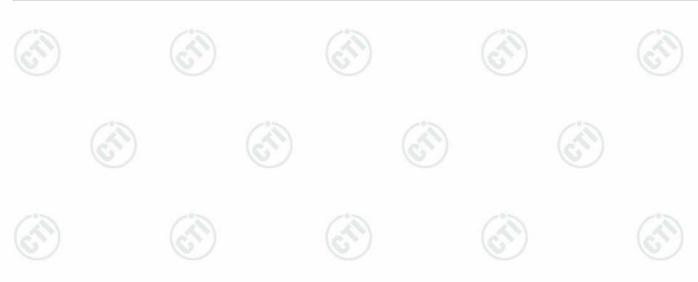
Test Graphs

Report No. : EED32M00009001 Page 32 of 60

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

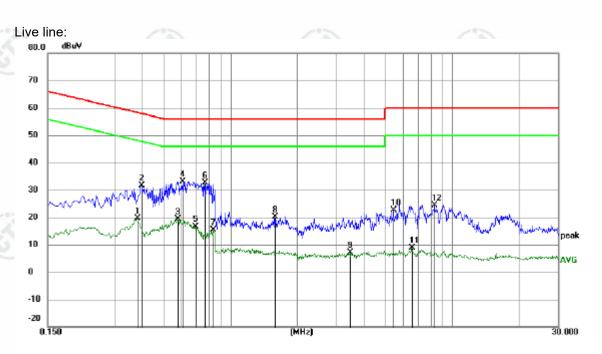
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -2.39dBi.

Report No. : EED32M00009001 Page 33 of 60

Appendix G): AC Power Line Conducted Emission

	Test frequency range :150KHz-	30MHz		
	1)The mains terminal disturban	ce voltage test was co	nducted in a shiel	ded room.
	The EUT was connected to Stabilization Network) which			
	power cables of all other ur	nits of the EUT were c	onnected to a se	cond LISN 2
	which was bonded to the gr			
	for the unit being measured multiple power cables to a s exceeded.			
	3)The tabletop EUT was place reference plane. And for floo horizontal ground reference	or-standing arrangeme		-
	4) The test was performed with		ference plane. Th	e rear of the
	EUT shall be 0.4 m from the	e vertical ground refere	nce plane. The ve	ertical ground
	reference plane was bonded			
	1 was placed 0.8 m from the ground reference plane for			
	plane. This distance was be			
	All other units of the EUT an LISN 2.	nd associated equipme	ent was at least 0	.8 m from the
	5) In order to find the maximum			
	of the interface cables n	nust be changed ac	cording to ANSI	C63.10 or
	conducted measurement			
Limit:	conducted measurement.			
Limit:		Limit (dE	βμV)	
Limit:	Frequency range (MHz)	Limit (dE Quasi-peak	βμV) Average	
Limit:		,	· ·	
Limit:	Frequency range (MHz)	Quasi-peak	Average	
Limit:	Frequency range (MHz) 0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*	
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5	Quasi-peak 66 to 56* 56 60 vith the logarithm of the	Average 56 to 46* 46 50 he frequency in the	



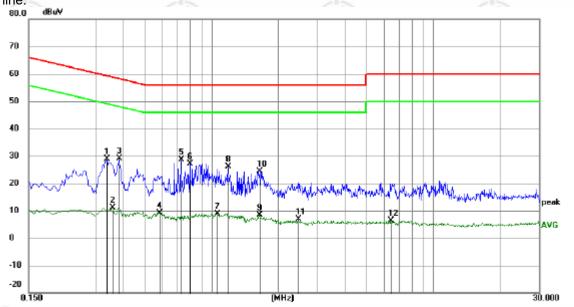
Page 34 of 60

Product : Digital Blood Pressure Monitor Model/Type reference : BP3NQ1-4B

Temperature : 24° **Humidity** : 52%

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3795	9.53	10.02	19.55	48.29	-28.74	AVG	
2	0.3975	21.57	10.00	31.57	57.91	-26.34	peak	
3	0.5775	9.36	10.09	19.45	46.00	-26.55	AVG	
4 *	0.6090	23.12	10.08	33.20	56.00	-22.80	peak	
5	0.6945	6.95	9.67	16.62	46.00	-29.38	AVG	
6	0.7665	22.81	9.82	32.63	56.00	-23.37	peak	
7	0.8340	5.38	9.91	15.29	46.00	-30.71	AVG	
8	1.5855	10.33	9.86	20.19	56.00	-35.81	peak	
9	3.4620	-2.81	9.83	7.02	46.00	-38.98	AVG	
10	5.4330	12.68	9.83	22.51	60.00	-37.49	peak	
11	6.5715	-1.09	9.85	8.76	50.00	-41.24	AVG	
12	8.2905	14.43	9.90	24.33	60.00	-35.67	peak	





No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3390	18.90	10.06	28.96	59.23	-30.27	peak	0.7000/4/94172
2	0.3570	1.05	10.04	11.09	48.80	-37.71	AVG	
3	0.3840	19.18	10.02	29.20	58.19	-28.99	peak	
4	0.5820	-0.96	10.10	9.14	46.00	-36.86	AVG	
5 *	0.7304	18.90	9.72	28.62	56.00	-27.38	peak	
6	0.8025	17.26	9.91	27.17	56.00	-28.83	peak	
7	1.0635	-0.90	9.90	9.00	46.00	-37.00	AVG	
8	1.1849	16.25	9.90	26.15	56.00	-29.85	peak	
9	1.6440	-1.55	9.86	8.31	46.00	-37.69	AVG	
10	1.6485	14.50	9.86	24.36	56.00	-31.64	peak	
11	2.4539	-2.91	9.83	6.92	46.00	-39.08	AVG	
12	6,4274	-3.46	9.84	6.38	50.00	-43.62	AVG	

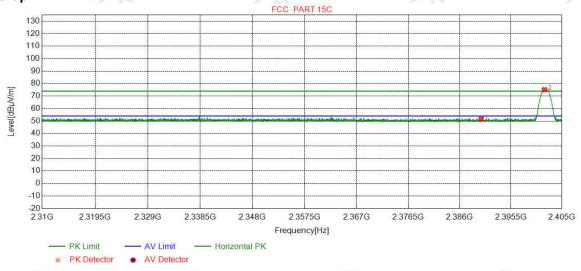
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

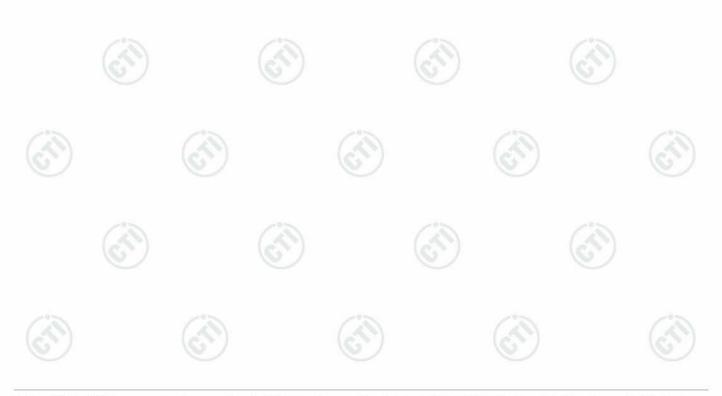
www.cti-cert.com E-mail: info@cti-cert.com

Appendix H): Restricted bands around fundamental frequency (Radiated)

Later and the second	A STATE OF THE STA	1.677				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-pea	ık
	Al 4011-	Peak	1MHz	3MHz	Peak	- 2
	Above 1GHz	Peak	1MHz	10Hz	Average	(1)
Test Procedure:	Below 1GHz test procedu	re as below:	6			6
	Test method Refer as KDB a. The EUT was placed of at a 3 meter semi-anect determine the position of the EUT was set 3 meters are was mounted on the total control of the anternal height is a determine the maximum polarizations of the anternal documents.	n the top of a ro hoic camber. The of the highest raters away from p of a variable-haried from one n value of the ficenna are set to hission, the EUT	otating table the table wandiation. the interfer neight ante meter to for eld strengtl make the r	e 0.8 meter as rotated 3 ence-recei nna tower. our meters n. Both hor neasurements	Wing antenn above the grizontal and ent. worst case a	s to a, whice ground to vertica and the
	the antenna was tuned was turned from 0 degr e. The test-receiver syste Bandwidth with Maximu f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of	ees to 360 degrees to 360 degreem was set to Permission Hold Mode. Ind of the restrict pliance. Also mum analyzer plannel	rees to find eak Detect cted band c easure any	the maxin Function a closest to the emissions	nd Specified ne transmit s in the resti	j. d ricted
	e. The test-receiver system Bandwidth with Maximular for Place a marker at the effrequency to show combands. Save the spectra for lowest and highest of the Above 1GHz test procedular g. Different between above to fully Anechoic Chamman 18GHz the distance is the first the EUT in the load in the radiation measurer to Transmitting mode, and	mees to 360 degrees to 360 degrees to 96 deg	rees to find eak Detect cted band of easure any ot. Repeat to e, change find table 0.8 de is 1.5 me the Highest rmed in X, kis position	the maxin Function a closest to the emissions for each portion of the company of the channel Y, Z axis ping which i	nd Specified ne transmit is in the restrower and mo	g. d ricted odulation chambe bove or ase.
imit:	was turned from 0 degre. The test-receiver system Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the system	mees to 360 degram was set to Perm Was set on the Perm Was set	rees to find eak Detect cted band of easure any ot. Repeat for table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me	the maxin Function a closest to the definition of the closest to t	nd Specified ne transmit is in the restrower and mo	g. d ricted odulation chambe bove or ase.
imit:	was turned from 0 degre. The test-receiver systems Bandwidth with Maximular for Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the systems of the syste	m was set to Perm was set to Perm Hold Mode. Ind of the restrict pliance. Also mum analyzer plothannel In e as below: In e is the test site ber change form the same performents are performents are performents are performent all frequential frequential (dBµV).	rees to find eak Detect cted band of easure any ot. Repeat to e, change find table 0.8 le is 1.5 med the Highest rmed in X, kis position uencies med/m @3m)	the maxin Function a closest to the missions for each portage for each por	nd Specified ne transmit is in the restrower and modern	g. d ricted odulation chambe bove or ase.
imit:	e. The test-receiver systemed Bandwidth with Maximular for Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the system Bandwidth with Maximular for Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the system Bandwidth for lowest and highest of the following frequency and for the radiation measurer fransmitting mode, and for the system Bandwidth frequency and for the system	mees to 360 degram was set to Permitted Mode. In the restrict pliance. Also mum analyzer plothannel in the as below: The as below: The is the test site is the	rees to find eak Detect to ted band of the easure any ot. Repeat to table 0.8 the Highest rmed in X, kis position uencies med/m @3m)	the maxin Function a closest to the missions for each portage for each por	nd Specified ne transmit is in the restrower and modern	g. d ricted odulation chambe bove or ase.
imit:	was turned from 0 degre. The test-receiver systems and width with Maximular for Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the systems of the syste	m was set to Perm was set to Perm Hold Mode. Ind of the restrict pliance. Also mum analyzer plothannel In eas below: In e is the test site ber change form the meter and table west channel, ments are perford found the X axing the ments are perford for the ments are pe	tees to find eak Detect ted band of easure any ot. Repeat to table 0.8 te is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	the maxin Function a closest to the remissions for each portant for each p	nd Specified ne transmit is in the restrower and modern	g. d ricted odulation chambe bove or ase.
imit:	e. The test-receiver systems and width with Maximular for Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the form of the for	m was set to Perm was set to Perm Hold Mode. Ind of the restrict pliance. Also mum analyzer plothannel In as below: In the test site ber change form the test site ber channel, ments are performents are performents are performent in the X-axis and the X-axis an	rees to find eak Detect cted band of easure any ot. Repeat to table 0.8 te is 1.5 met the Highest rmed in X, kis position uencies met table 0.8 te is 0.5 met table	the maxin Function a closest to the missions for each portage for each por	nd Specified ne transmit is in the restrower and more and was complete mark and walue and value and valu	g. d ricted odulation chambe bove or ase.
imit:	was turned from 0 degre. The test-receiver systems and width with Maximular for Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the system of the sys	m was set to Perm was set to Perm Hold Mode. Ind of the restrict pliance. Also mum analyzer plothannel In eas below: In e is the test site of the set of	rees to find eak Detect cted band of easure anyot. Repeat for table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me (/m @3m)	the maxin Function a closest to the remissions for each portant part of the remissions of the remissio	nd Specified ne transmit is in the restrower and modern	g. d ricted odulation chambe bove or ase.
imit:	e. The test-receiver systems and width with Maximular for Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the form of the for	m was set to Perm was set to Perm Hold Mode. Ind of the restrict pliance. Also mum analyzer plothannel In as below: In the test site ber change form the test site ber channel, ments are performents are performents are performent in the X-axis and the X-axis an	rees to find eak Detect cted band of easure any ot. Repeat to table 0.8 the Highest rmed in X, kis position uencies med to table 0.8 the Highest rmed in X, kis position of table 0.8 the Highest rmed in X, kis position of table 0.8 the Highest rmed in X, kis position of table 0.9 th	the maxin Function a closest to the missions for each position for each position of the control	nd Specified ne transmit is in the restrower and more and was complete mark and walue and value and valu	g. d ricted odulation chambe bove or ase.



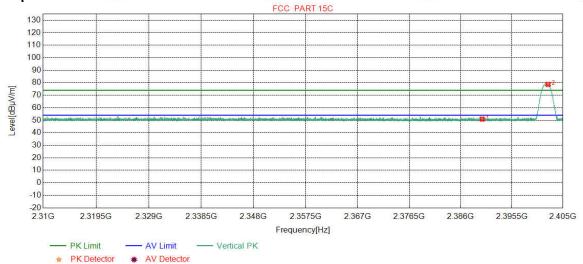
Report No. : EED32M00009001 Page 37 of 60

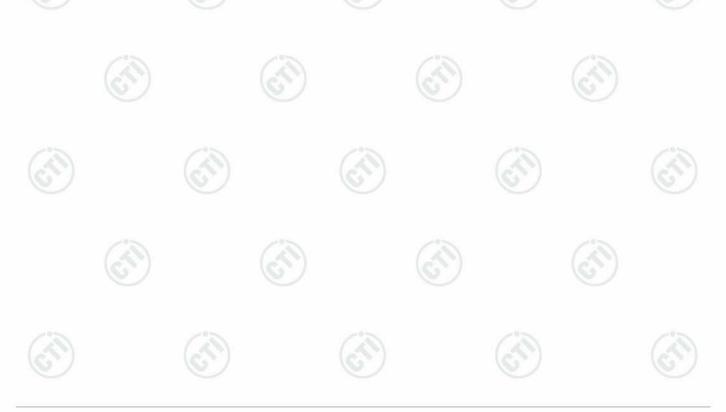

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402	
Remark:	PK			

Test Graph

Ant Cable Pream Freq. Reading Level Limit Margin Factor NO loss gain Result **Polarity** [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [MHz] [dB] [dB] [dB] **Pass** 1 2390.0000 32.25 74.00 22.39 13.37 -43.12 49.11 51.61 Horizontal Pass 2 2401.7508 32.26 -43.12 13.31 72.60 75.05 74.00 -1.05 Horizontal

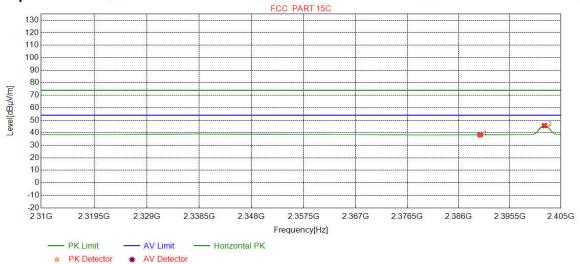


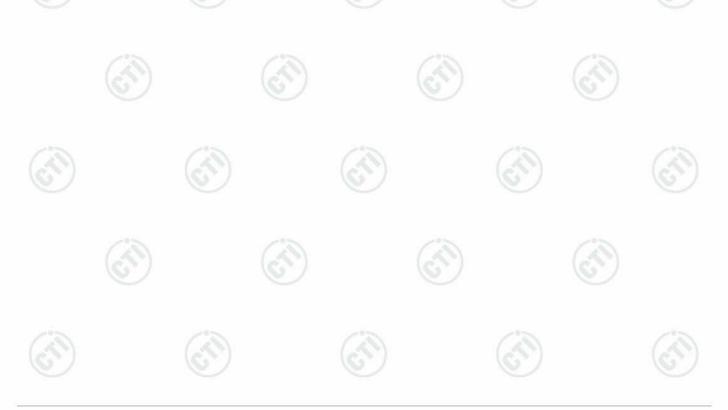

Page 3	38 c	of 6	0
--------	------	------	---

Mode: BLE GFSK Transmitting		Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.40	50.90	74.00	23.10	Pass	Vertical
2	2402.2321	32.26	13.31	-43.12	76.17	78.62	74.00	-4.62	Pass	Vertical

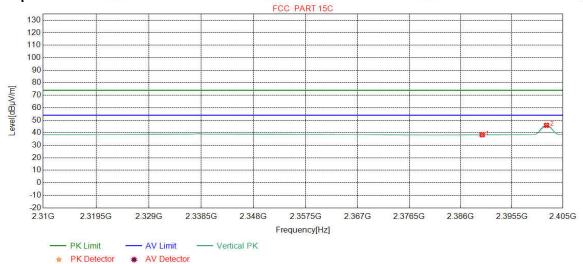


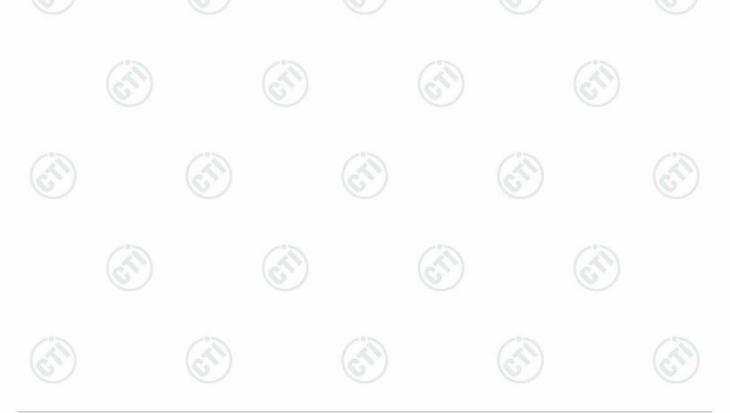

Page	39	of	60	
------	----	----	----	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.87	38.37	54.00	15.63	Pass	Horizontal
2	2401.9471	32.26	13.31	-43.12	43.23	45.68	54.00	8.32	Pass	Horizontal

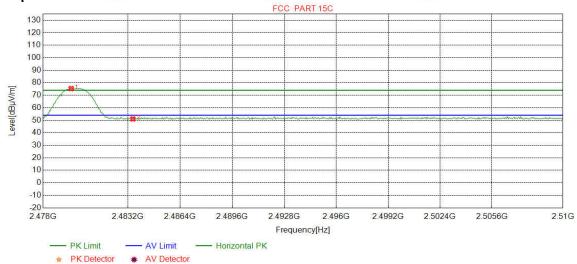


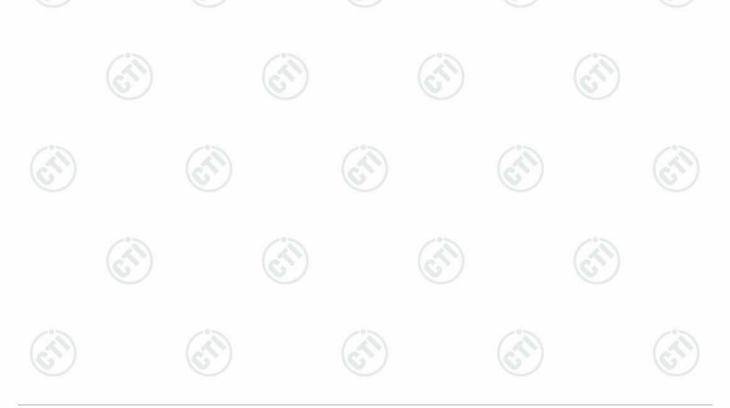

Page 40 of 60	
---------------	--

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.92	38.42	54.00	15.58	Pass	Vertical
2	2401.9535	32.26	13.31	-43.12	43.51	45.96	54.00	8.04	Pass	Vertical

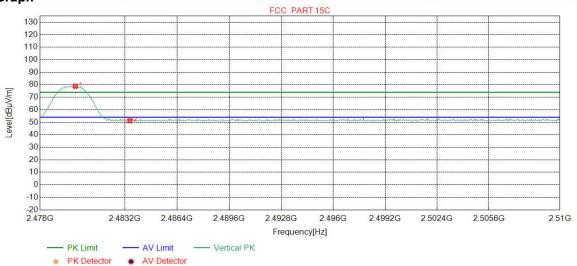


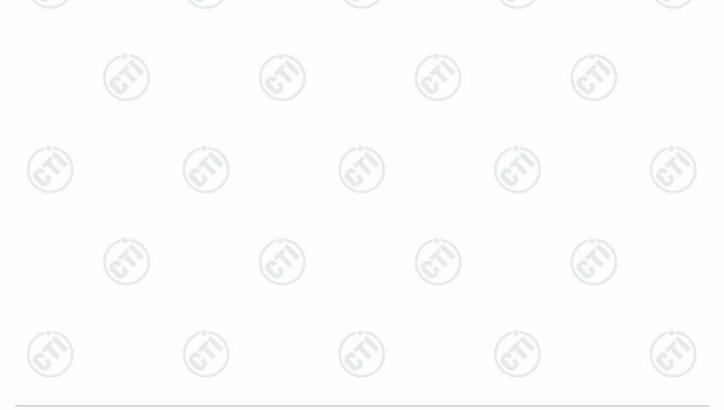

Page 41	of 60
---------	-------

Mode:	Mode: BLE GFSK Transmitting		2480	
Remark:	PK			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7222	32.37	13.39	-43.10	72.66	75.32	74.00	-1.32	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	48.41	51.06	74.00	22.94	Pass	Horizontal

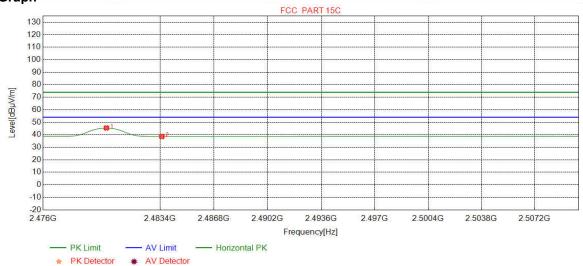


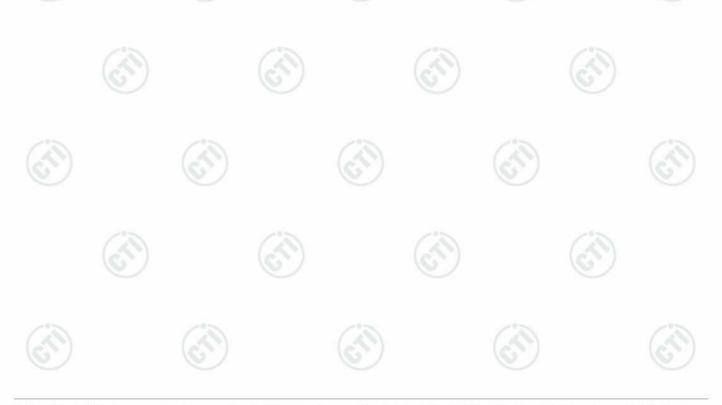

Page ·	42	of	60
--------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1627	32.37	13.39	-43.10	76.11	78.77	74.00	-4.77	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.55	51.20	74.00	22.80	Pass	Vertical

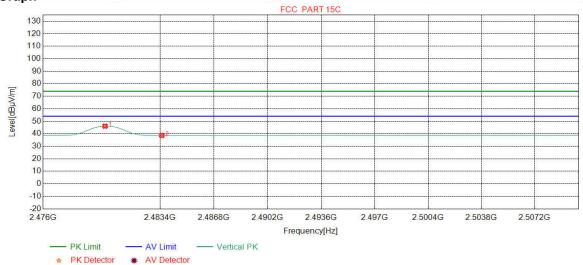



Page 4	3 of 60
--------	---------

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

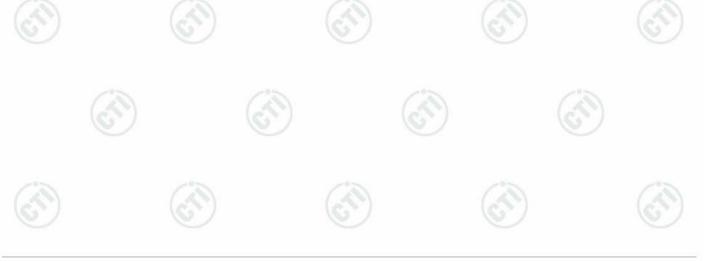
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	42.77	45.43	54.00	8.57	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	35.93	38.58	54.00	15.42	Pass	Horizontal



Page 44 of 60

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	43.42	46.08	54.00	7.92	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	35.97	38.62	54.00	15.38	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32M00009001 Page 45 of 60

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

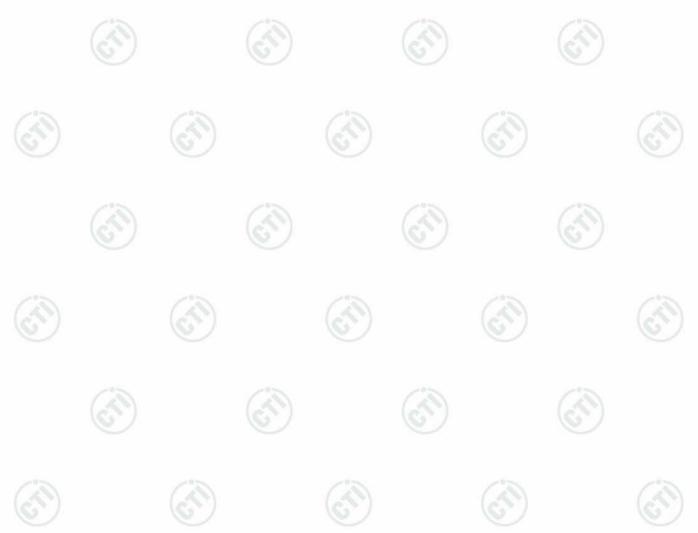
Above 1GHz test procedure as below:

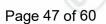
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

	n	าเ	t.
_,		ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	Mode:			SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	63.9534	10.57	0.92	-31.90	38.26	17.85	40.00	22.15	Pass	Н	PK
2	159.9930	7.90	1.47	-31.98	43.78	21.17	43.50	22.33	Pass	Н	PK
3	256.0326	12.32	1.90	-31.88	43.72	26.06	46.00	19.94	Pass	Н	PK
4	399.9950	15.40	2.38	-31.70	40.27	26.35	46.00	19.65	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	38.68	29.14	46.00	16.86	Pass	Н	PK
6	875.0515	21.80	3.55	-31.70	34.67	28.32	46.00	17.68	Pass	Н	PK
7	30.0000	10.50	0.63	-31.55	40.01	19.59	40.00	20.41	Pass	V	PK
8	52.8943	12.74	0.82	-32.03	40.73	22.26	40.00	17.74	Pass	V	PK
9	130.0170	7.70	1.33	-32.02	43.91	20.92	43.50	22.58	Pass	V	PK
10	184.3424	9.41	1.59	-31.98	45.56	24.58	43.50	18.92	Pass	V	PK
11	411.4421	15.58	2.42	-31.83	37.43	23.60	46.00	22.40	Pass	V	PK
12	600.0290	19.00	2.96	-31.50	38.82	29.28	46.00	16.72	Pass	V	PK
13	844.9785	21.44	3.50	-31.82	35.27	28.39	46.00	17.61	Pass	V	PK

Transmitter Emission above 1GHz

Mode	Mode:		BLE GF	SK Transn	nitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1300.6301	28.20	2.75	-42.78	51.58	39.75	74.00	34.25	Pass	Н	PK
2	2145.7146	31.90	3.64	-43.16	51.87	44.25	74.00	29.75	Pass	Н	PK
3	4804.0000	34.50	4.55	-42.80	50.50	46.75	74.00	27.25	Pass	Н	PK
4	7206.0000	36.31	5.81	-42.16	45.57	45.53	74.00	28.47	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	46.84	49.01	74.00	24.99	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	45.81	50.82	74.00	23.18	Pass	Н	PK
7	1418.6419	28.32	2.92	-42.76	51.20	39.68	74.00	34.32	Pass	V	PK
8	3602.0401	33.48	4.34	-43.08	49.48	44.22	74.00	29.78	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	51.03	47.28	74.00	26.72	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	46.13	46.09	74.00	27.91	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	47.32	49.49	74.00	24.51	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.05	51.06	74.00	22.94	Pass	V	PK

Mode:			BLE GF	SK Transn	nitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1405.4405	28.31	2.91	-42.71	50.93	39.44	74.00	34.56	Pass	Н	PK
2	2183.7184	31.96	3.65	-43.17	55.20	47.64	74.00	26.36	Pass	Н	PK
3	4880.0000	34.50	4.80	-42.80	49.01	45.51	74.00	28.49	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	46.64	46.77	74.00	27.23	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.40	48.73	74.00	25.27	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	45.55	50.74	74.00	23.26	Pass	Н	PK
7	1464.8465	28.36	2.96	-42.95	51.05	39.42	74.00	34.58	Pass	V	PK
8	2890.5891	33.02	4.35	-43.09	51.00	45.28	74.00	28.72	Pass	V	PK
9	4880.0000	34.50	4.80	-42.80	49.58	46.08	74.00	27.92	Pass	V	PK
10	7320.0000	36.42	5.85	-42.14	46.81	46.94	74.00	27.06	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	47.17	49.50	74.00	24.50	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	45.39	50.58	74.00	23.42	Pass	V	PK

Mode	Mode:			SK Transn	nitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2223.7224	32.01	3.72	-43.16	53.69	46.26	74.00	27.74	Pass	Н	PK
2	2685.9686	32.70	4.11	-43.10	52.00	45.71	74.00	28.29	Pass	Н	PK
3	4960.0000	34.50	4.82	-42.80	47.69	44.21	74.00	29.79	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	46.16	46.44	74.00	27.56	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	45.67	48.13	74.00	25.87	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	47.64	53.14	74.00	20.86	Pass	Н	PK
7	1733.6734	29.94	3.22	-42.67	50.85	41.34	74.00	32.66	Pass	V	PK
8	3909.0606	33.73	4.34	-43.02	49.44	44.49	74.00	29.51	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	48.12	44.64	74.00	29.36	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	45.76	46.04	74.00	27.96	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	45.37	47.83	74.00	26.17	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	46.95	52.45	74.00	21.55	Pass	V	PK


Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

