

Product

microlife

N/A

2

:

- **Digital Blood Pressure Monitor**
- Trade mark Model/Type reference **Serial Number Report Number** FCC ID
- WatchBP Home T(BP3MX1-3T)
- EED32M00333301 :
- U7I-BP3MX1-3T :
- Dec. 01, 2020 :
- 47 CFR Part 15Subpart C

Test Standards Test result

Date of Issue

PASS •

Prepared for: **Microlife Corporation**

9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by: Approved by: CTU BULLES		Sunlight Sun Sunlight Sun Jaron Ma Aaron Ma	Review	<u>В-м. Lu</u> Bill Lu Dec. 01, 2020 Check No.:4538050193
	Report Seal			

Page 2 of 60

2 Version

Ve	ersion No.		Date	(\mathcal{S})	Descript	ion	
	00	De	ec. 01, 2020		Origina		
							(J)

Page 3 of 60

3 Test Summary

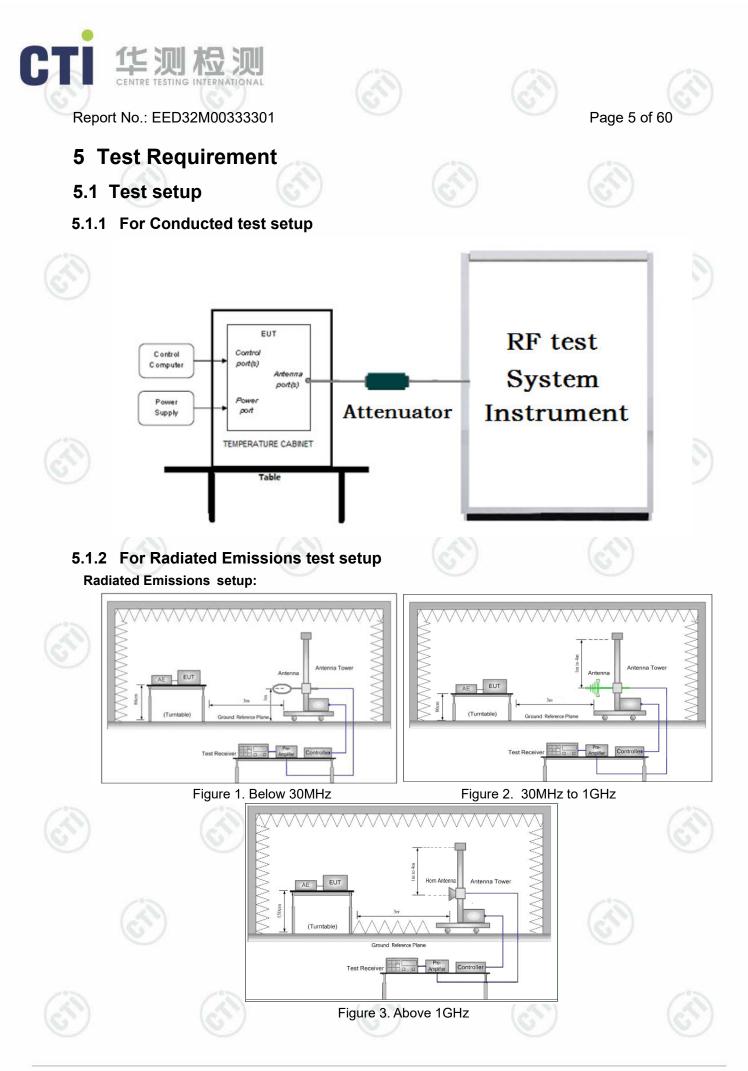
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

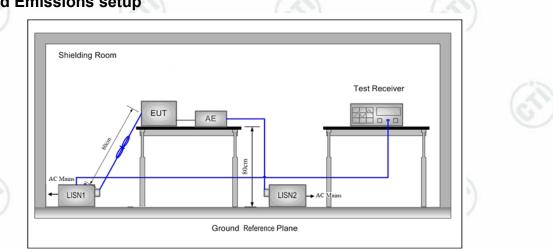
Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. Model No.: WatchBP Home T(BP3MX1-3T)

Only the model WatchBP Home T(BP3MX1-3T) was tested. Their electrical circuit design, layout, components used, internal wiring, software and outer decoration are identical, only the model name are different, the tested product has two model names, WatchBP Home T is the market model name; BP3MX1-3T is the factory internal model name.



Page 4 of 60

	ent						
	AGE						
2 VERSION	<u> </u>		••••••		•••••		••••••
3 TEST SUM	IMARY		••••••		•••••	••••••	••••••
4 CONTENT				•••••		•••••	
5 TEST REQ	UIREMENT					••••••	
5.1.1 Fc 5.1.2 Fc 5.1.3 Fc 5.2 TEST E	ETUP or Conducted test or Radiated Emiss or Conducted Emi ENVIRONMENT CONDITION	setup sions test setup. ssions test setu	p				
	INFORMATION.						
6.2 Gener 6.3 Descr 6.4 Test L 6.5 Abnor 6.6 Other	INFORMATION AL DESCRIPTION OF INFION OF SUPPOR OCATION MALITIES FROM ST INFORMATION REC	FEUT TUNITS ANDARD CONDIT QUESTED BY THE	IONS CUSTOMER		\odot		
	IREMENT UNCERTA						
	NT LIST CHNICAL REQUI						
Annond	liv A): 6dP Occupi	ind Dandwidth					
Append Append Append Append Append Append Append	lix A): 6dB Occup lix B): Conducted lix C): Band-edge lix D): RF Conduc lix E): Power Spec lix F): Antenna Re lix G): AC Power I lix H): Restricted I lix I) Radiated Spu	Peak Output Pc for RF Conduct ted Spurious Er ctral Density equirement Line Conducted pands around fu	ower ed Emissions nissions Emission ndamental frec	juency (Ra	idiated)		1
Append Append Append Append Append Append Append Append	lix B): Conducted lix C): Band-edge lix D): RF Conduc lix E): Power Spee lix F): Antenna Re lix G): AC Power I	Peak Output Pc for RF Conduct ted Spurious Er ctral Density equirement Line Conducted pands around fu urious Emission	ower ed Emissions nissions Emission ndamental frec s	juency (Ra	ndiated)		1 1 2 3 3 3 3 3 3 4
Append Append Append Append Append Append Append Append Append	lix B): Conducted lix C): Band-edge lix D): RF Conduc lix E): Power Spec lix F): Antenna Re lix G): AC Power I lix H): Restricted I lix H): Restricted I	Peak Output Po for RF Conduct ted Spurious Er ctral Density equirement Line Conducted bands around fu urious Emissions	ower ed Emissions nissions Emission ndamental frec s	juency (Ra	idiated)		1 1 2 2 3 3 3 3 3 3 4 5
Append Append Append Append Append Append Append Append Append	lix B): Conducted lix C): Band-edge lix D): RF Conduc lix E): Power Spec lix F): Antenna Re lix G): AC Power I lix H): Restricted I lix I) Radiated Spic PHS OF TEST SI	Peak Output Po for RF Conduct ted Spurious Er ctral Density equirement Line Conducted bands around fu urious Emissions	ower ed Emissions nissions Emission ndamental frec s	juency (Ra	idiated)		1 1 2 2 3 3 3 3 3 3 4
Append Append Append Append Append Append Append Append Append	lix B): Conducted lix C): Band-edge lix D): RF Conduc lix E): Power Spec lix F): Antenna Re lix G): AC Power I lix H): Restricted I lix I) Radiated Spic PHS OF TEST SI	Peak Output Po for RF Conduct ted Spurious Er ctral Density equirement Line Conducted bands around fu urious Emissions	ower ed Emissions nissions Emission ndamental frec s	juency (Ra	idiated)		1 1 2 2 3 3 3 3 3 4



Page 6 of 60

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	55 % RH	
Atmospheric Pressure:	1010mbar	2

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel				
Test Wode		Low(L)	Middle(M)	High(H)		
0501		Channel 0	Channel 19	Channel 39		
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz		
Transmitting mode:	Keep the EUT in transmitting mode w	ith all kind of modu	lation and all kind	l of data rate.		
Transmitting mode:	Keep the EUT in transmitting mode w	vith all kind of modu	lation and all kinc	d of data		

6 General Information

6.1 Client Information

Applicant:	Microlife Corporation
Address of Applicant:	9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan
Manufacturer:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Manufacturer:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China
Factory:	ONBO Electronic (Shenzhen) Co., Ltd.
Address of Factory:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China

Page 7 of 60

6.2 General Description of EUT

Product Name:	Digital Bloo	od Pressure Mor	nitor		V	
Model No.(EUT):	WatchBP Home T(BP3MX1-3T)					
Trade mark:	microlife					200
Power Supply:	Adapter	MODEL:DSA-6 INPUT:100-24 OUTPUT:+6V	0 V~50/60Hz 0.3	A		
	Battery	4*AA Battery 6	.0V			
Operation Frequency:	2402MHz~	2480MHz			(3)	
Bluetooth Version:	4.2 (BLE)).	(\mathcal{C})		(\mathcal{O})	
Modulation Technique:	DSSS		\sim			
Modulation Type:	GFSK					
Number of Channel:	40	100		13		13
Test Power Grade:	Default	(\sim)		(5)		(3)
Test Software of EUT:	Default	V		V		J
Antenna Type and Gain:	Type: Cera Gain: 3dBi	amic Antenna				
Test Voltage:	DC 6.0V				(2)	
Sample Received Date:	Nov. 16, 20	020	e l		S	
Sample tested Date:	Nov. 16, 20	020 to Nov. 20, 2	2020			

Page 8 of 60

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

6.3 Description of Support Units

The EUT has been tested independently

6.4 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.5 Abnormalities from Standard Conditions

None.

6.6 Other Information Requested by the Customer

None.

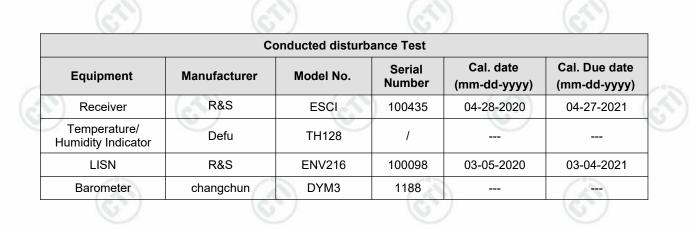
6.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE power conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dedicted Sourieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 10 of 60


7 Equipment List

3M full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166				
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021		
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021		
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021		
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021		
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021		
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021		
Preamplifier	JS Tonscend	980380	EMC051845SE	01-09-2020	01-08-2021		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021		
Fully Anechoic Chamber	TDK	FAC-3	(\mathbf{S})	01-17-2018	01-16-2021		
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001				
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	<u>s)</u>	(#N)		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	<u> </u>			
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001				
Cable line	Times	EMC104-NMNM-1000	SN160710	(3			
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001				
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001				
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	- 60			
Cable line	Times	HF160-KMKM-3.00M	393493-0001	S)	(27)		



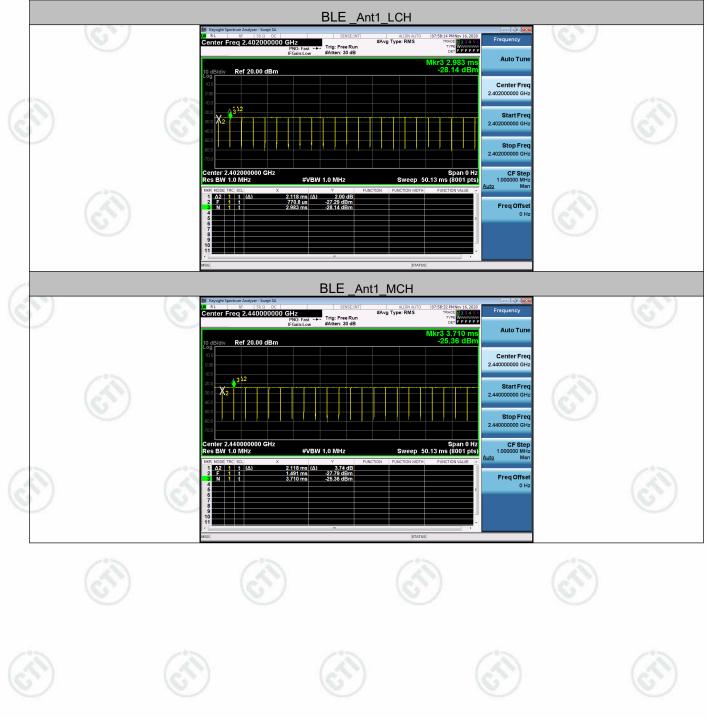
	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	ТDК	SAC-3		05-24-2019	05-23-2022
RILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/107 11112	-63	(
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A	AN	

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:		\sim		
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

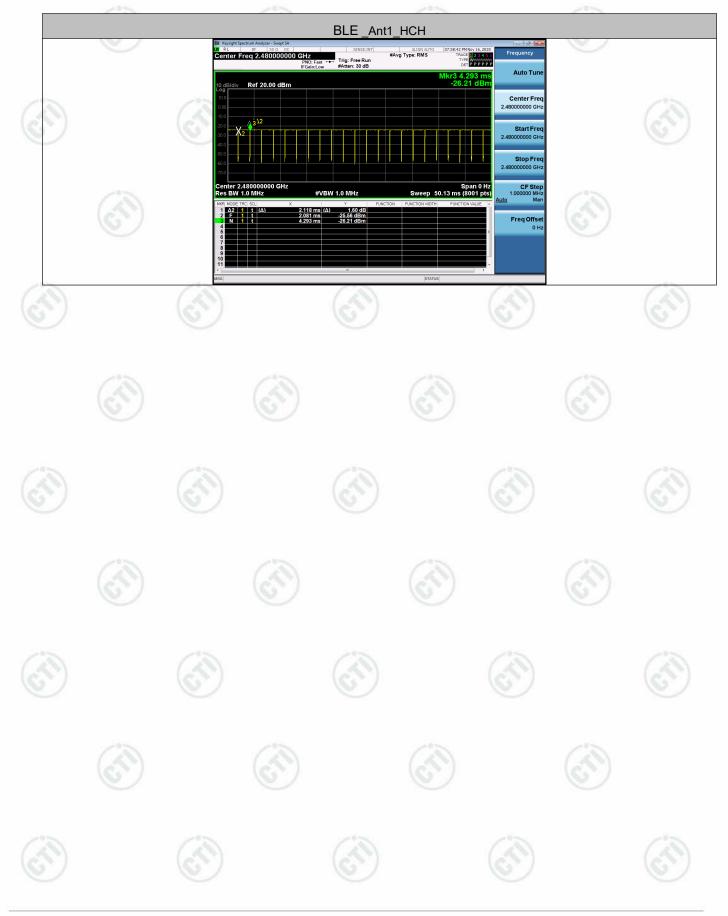


Page 13 of 60

Duty Cycle

	Result Table			(3)	
	Mode	Channel	Duty Cycle [%]	Limit	Verdict
	BLE	LCH	95.75%		PASS
1	BLE	MCH	95.48%	<u> - a</u>	PASS
ć	BLE	НСН	95.75%	(S)	PASS

Test Graph



Page 14 of 60

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

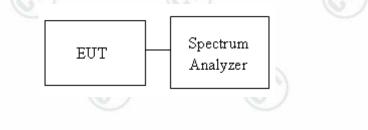
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth :

신신) (전신)		(C.)
🕘 Limit 🛛 🔍 🔍	Shall be at least 500kHz	


Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 , section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Page 16 of 60

<u>Test Result</u>

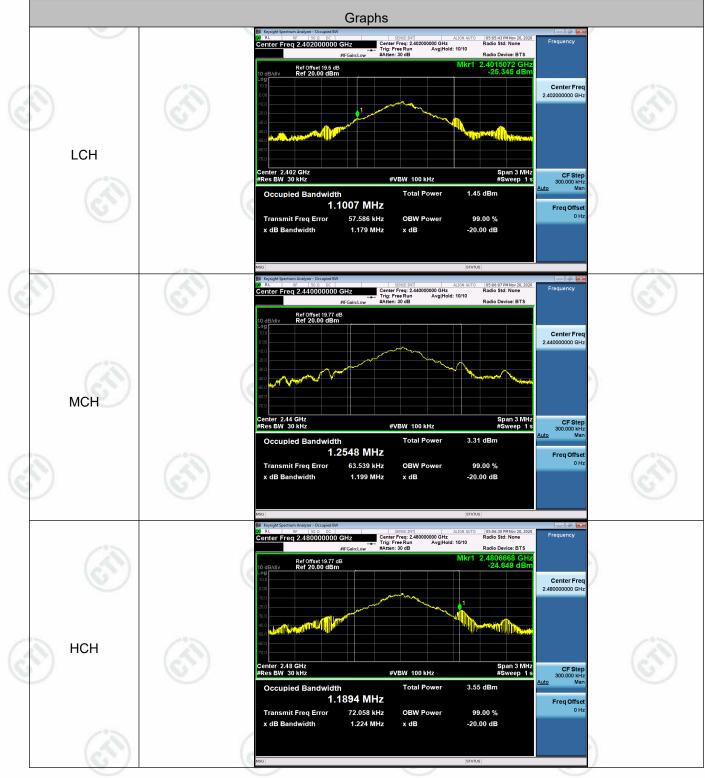
	Mode	Channel	6dB	Bandwidth [MHz]	99% OI	BW[MHz]	Verdict
	BLE	LCH		0.5095	V	1.1	1007	PASS
	BLE	MCH		0.5065		1.2	2548	PASS
A.	BLE	НСН		0.5218		1.:	1894	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 17 of 60

Test Graphs <u>6 dB Bandwidth</u>



Page 18 of 60

Occupied Bandwidth(99%)

Page 19 of 60

Appendix B): Conducted Peak Output Power

<u>Test Limit</u>

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

2	2	S	⊠ Antenna not exceed 6 dBi ∶ 30dBm	(C)
	Limit		Antenna with DG greater than 6 dBi [Limit = $30 - (DG - 6)$]	
			Point-to-point operation	

Test Procedure

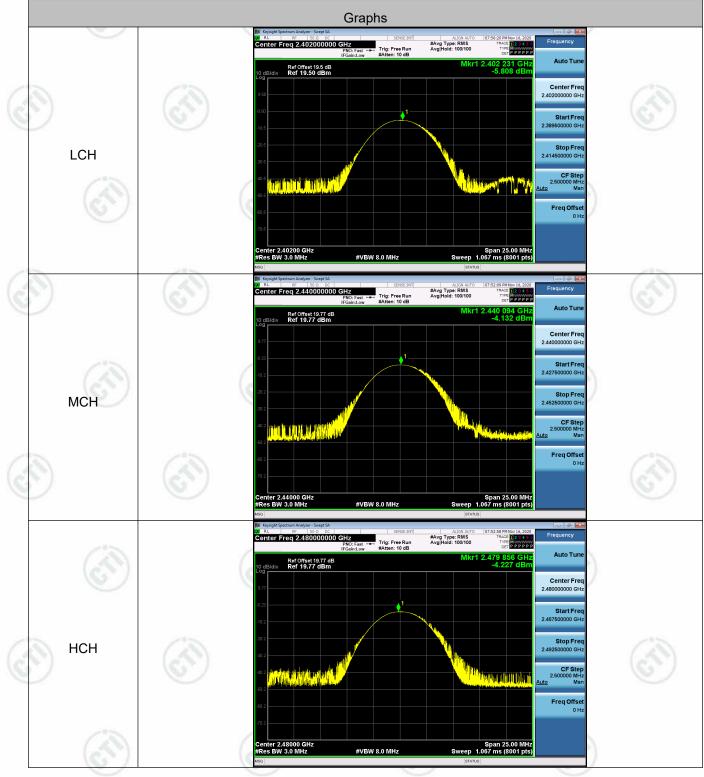
Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
 - a) Set the RBW \geq DTS bandwidth.
 - b) Set VBW≥[3×RBW].
 - c) Set span≥[3×RBW].
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.
 - Test Setup

Test Result

Test	t Result		6		13		(3)	
	Mode		Channel		Conduct Pea	k Power[dBr	n]	Verdict
	BLE		LCH		-5.	808		PASS
-	BLE	~~~	MCH	~~~		132		PASS
9	BLE	I I I I I I I I I I I I I I I I I I I	НСН	(S)	-4.	227		PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 21 of 60

Test Graphs

Page 22 of 60

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>

Page 23 of 60

Result Table

м	ode	Channel	Carri	ier Power[c	dBm]	Max.Spurious [dBm]	s Level	Limit [dBm]	Verdict
В	BLE	LCH		-5.882		-57.967	,	-25.88	PASS
В	BLE	НСН	2	-4.306	12	-48.658	1	-24.31	PASS

Page 24 of 60

Test Graphs

Page 25 of 60

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

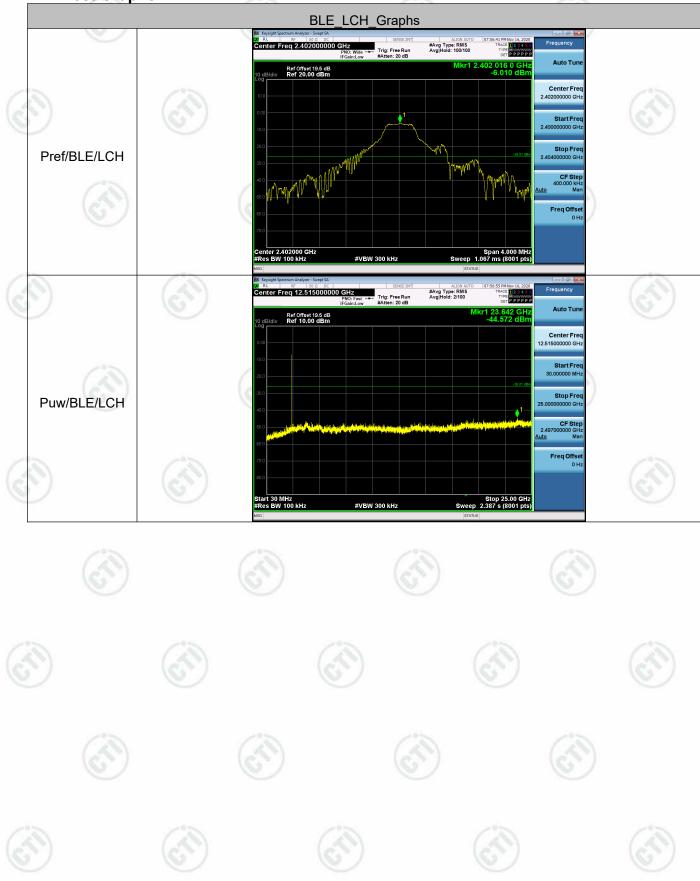
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>

Page 26 of 60

Result Table

Mod	le	Channel	Pref [dB	m]	Puv	/[dBm]	Verdict
BLE	\sim	LCH	-6.01	S	<	Limit	PASS
BLE	Ξ	MCH	-4.309)	<	Limit	PASS
BLE	Ξ	HCH	-4.468	3	<	Limit	PASS



Page 27 of 60

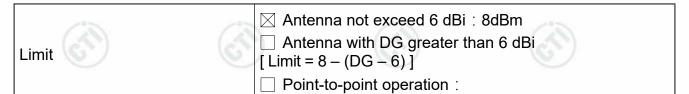
Test Graphs



Page 28 of 60

Page 29 of 60

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.

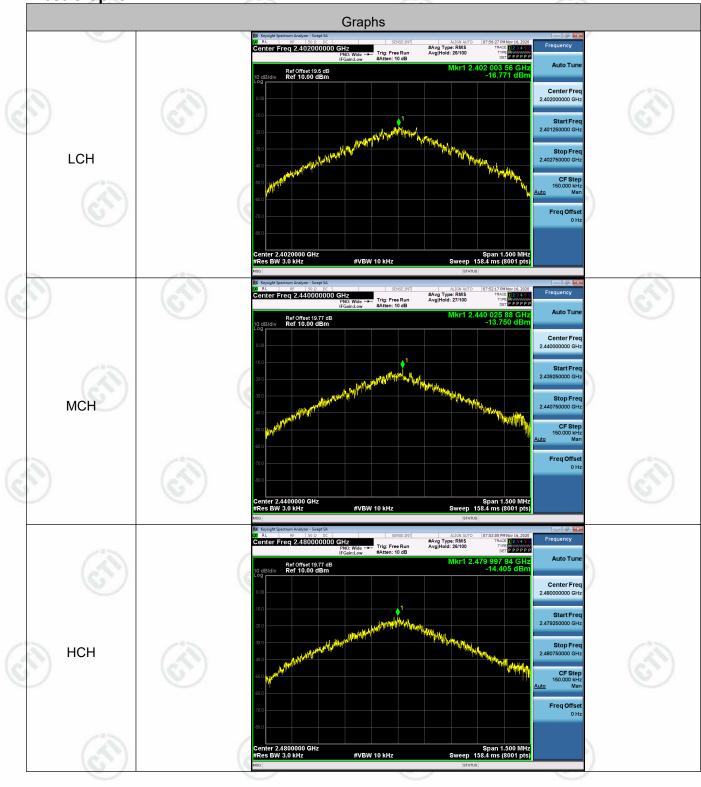
Measure and record the result of power spectral density. in the test report.

Test Setup

Page 31 of 60

Result Table

	Mode	C	Channel	PSD [dl	Bm]		Verdict
	BLE		LCH	-16.77		V	PASS
	BLE		MCH	-13.75			PASS
A.	BLE	(2)	НСН	-14.40)5		PASS

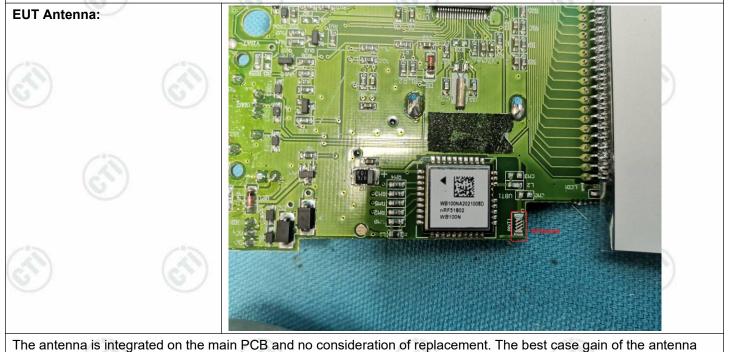


Page 32 of 60

Test Graphs

Page 33 of 60

Appendix F): Antenna Requirement


15.203 requirement:

is 3dBi.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

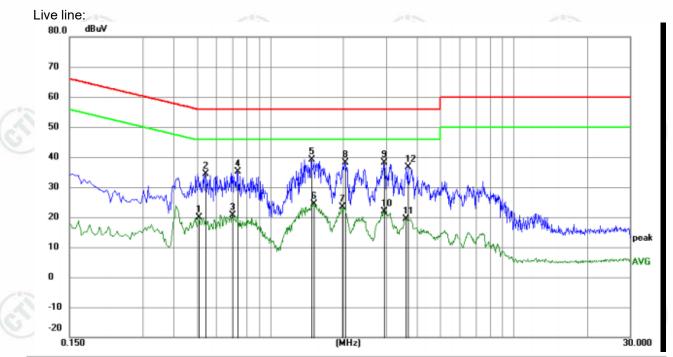
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Page 34 of 60

Appendix G): AC Power Line Conducted Emission

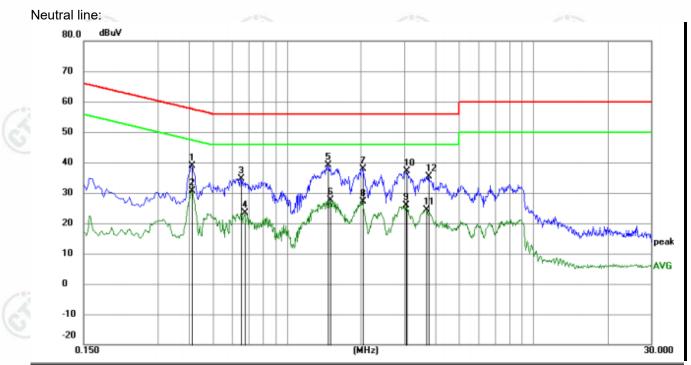
Test Procedure:	Test frequency range :150KHz	-30MHz						
	1)The mains terminal disturbar		onducted in a shield	led room.				
	2) The EUT was connected to	•						
	Stabilization Network) which							
	power cables of all other u							
	which was bonded to the g							
	for the unit being measure multiple power cables to as							
	exceeded.			i nuo not				
	3)The tabletop EUT was place	ed upon a non-metalli	c table 0.8m above	e the grou				
	reference plane. And for flo horizontal ground reference		ent, the EUT was p	laced on				
	4) The test was performed wi							
	EUT shall be 0.4 m from th							
	reference plane was bonde							
	1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference							
	plane. This distance was b							
	All other units of the EUT a	nd associated equipm	ent was at least 0.8	8 m from				
	LISN 2.			-				
	5) In order to find the maximur			ment and				
(I)				ment and				
Limit:	5) In order to find the maximum of the interface cables r conducted measurement.		cording to ANSI	ment and				
Limit:	5) In order to find the maximur of the interface cables r	must be changed ad	cording to ANSI	ment and				
Limit:	5) In order to find the maximum of the interface cables r conducted measurement.	must be changed ad	Cording to ANSI ΒμV)	ment and				
Limit:	5) In order to find the maximum of the interface cables in conducted measurement.	must be changed ac Limit (d Quasi-peak	BμV) Average	ment and				
Limit:	5) In order to find the maximum of the interface cables in conducted measurement. Frequency range (MHz) 0.15-0.5	must be changed ad Limit (d Quasi-peak 66 to 56*	Coording to ANSI BμV) Average 56 to 46*	ment and				
Limit:	5) In order to find the maximum of the interface cables in conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5	must be changed as Limit (d Quasi-peak 66 to 56* 56 60	Coording to ANSI BμV) Average 56 to 46* 46 50	ment and C63.10				


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 35 of 60

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.5100	10.00	9.96	19.96	46.00	-26.04	AVG
12	2		0.5415	24.43	10.00	34.43	56.00	-21.57	QP
C	3		0.6990	10.72	9.88	20.60	46.00	-25.40	AVG
	4		0.7350	25.34	9.87	35.21	56.00	-20.79	QP
	5	*	1.4730	29.44	9.81	39.25	56.00	-16.75	QP
	6		1.5090	14.55	9.81	24.36	46.00	-21.64	AVG
	7		1.9725	13.56	9.79	23.35	46.00	-22.65	AVG
12	8		2.0264	28.40	9.79	38.19	56.00	-17.81	QP
C	9		2.9445	28.40	9.79	38.19	56.00	-17.81	QP
	10		2.9445	12.15	9.79	21.94	46.00	-24.06	AVG
	11		3.6195	9.70	9.78	19.48	46.00	-26.52	AVG
	12		3.6870	26.74	9.78	36.52	56.00	-19.48	QP



-	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
-			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.4110	29.02	9.97	38.99	57.63	-18.64	QP
63	2		0.4110	20.61	9.97	30.58	47.63	-17.05	AVG
6	3		0.6540	24.75	9.97	34.72	56.00	-21.28	QP
_	4		0.6765	13.40	9.92	23.32	46.00	-22.68	AVG
-	5	٠	1.4685	29.20	9.81	39.01	56.00	-16.99	QP
-	6		1.5000	17.78	9.81	27.59	46.00	-18.41	AVG
	7		2.0310	28.06	9.79	37.85	56.00	-18.15	QP
6	8		2.0310	17.38	9.79	27.17	46.00	-18.83	AVG
	9		3.0570	16.16	9.79	25.95	46.00	-20.05	AVG
	10		3.0615	27.43	9.79	37.22	56.00	-18.78	QP
-	11		3.6915	14.64	9.78	24.42	46.00	-21.58	AVG
	12		3.7500	25.63	9.78	35.41	56.00	-20.59	QP

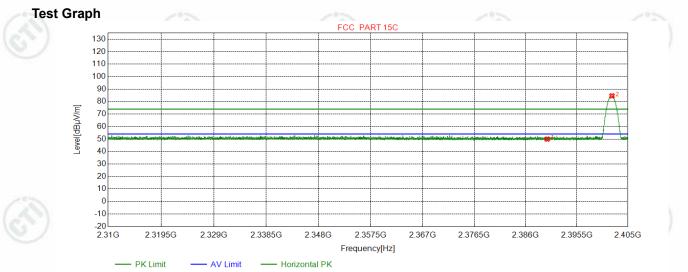
Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	<		
		Peak	1MHz	3MHz	Peak			
0	Above 1GHz	Peak	1MHz	10Hz	Average			
Test Procedure:	 Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01, Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the at a 3 meter semi-anechoic camber. The table was rotated 360 degrees determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenn was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the g determine the maximum value of the field strength. Both horizontal and polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case a the antenna was tuned to heights from 1 meter to 4 meters and the rota was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and more than the set of the se							
	f. Place a marker at the e frequency to show com bands. Save the spectru	nd of the restric pliance. Also m um analyzer plo	easure any	emission	s in the restri			
	f. Place a marker at the e frequency to show com	nd of the restric pliance. Also m um analyzer plo channel re as below: e is the test site ber change forn I meter and tabl west channel , to nents are perfo I found the X ax	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highes rmed in X, kis position	rom Semi- meter to 1 ter). Y, Z axis p ing which i	s in the restri ower and mod Anechoic Ch .5 meter(Ab positioning for t is worse cas	dula naml ove r		
Limit:	 f. Place a marker at the e frequency to show com bands. Save the spectru for lowest and highest of Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measurer Transmitting mode, and 	nd of the restric pliance. Also m um analyzer plo channel re as below: e is the test site ber change forn I meter and tabl west channel , to nents are perfo I found the X ax	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	s in the restri ower and mod Anechoic Ch .5 meter(Ab positioning for t is worse cas	dula naml ove r		
Limit:	 f. Place a marker at the e frequency to show com bands. Save the spectru for lowest and highest of Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measurem Transmitting mode, and j. Repeat above procedure 	nd of the restrict pliance. Also m um analyzer plot channel re as below: e is the test site ber change form I meter and tabl west channel , f nents are perfo I found the X ax	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restri ower and mod Anechoic Ch .5 meter(Ab positioning for t is worse ca as complete.	dula naml ove r		
Limit:	 f. Place a marker at the e frequency to show com bands. Save the spectra for lowest and highest of Above 1GHz test procedu g. Different between above to fully Anechoic Chamil 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measurem Transmitting mode, and j. Repeat above procedur 	nd of the restrict pliance. Also m um analyzer plot channel re as below: e is the test site ber change form I meter and tabl west channel , to nents are perfo I found the X ax res until all frequency Limit (dBµV/	easure any ot. Repeat t e, change fi n table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-p	s in the restri ower and mod Anechoic Ch .5 meter(Ab positioning for t is worse ca as complete. mark	dula naml ove r		
Limit:	 f. Place a marker at the e frequency to show com bands. Save the spectru for lowest and highest of Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 	nd of the restrict pliance. Also m um analyzer plot channel re as below: e is the test site ber change form I meter and tabl west channel , to nents are perfo I found the X ax res until all frequent Limit (dBµV/ 40.0	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pu	s in the restri ower and mod Anechoic Ch .5 meter(Ab positioning for t is worse car as complete. mark eak Value	dula naml ove r		
Limit:	 f. Place a marker at the e frequency to show com bands. Save the spectru for lowest and highest of Above 1GHz test procedu g. Different between above to fully Anechoic Chamil 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 	nd of the restrict pliance. Also m um analyzer plot channel re as below: e is the test site ber change form I meter and tabl west channel , f nents are perfo I found the X ax res until all freque Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pu Quasi-pu Quasi-pu	s in the restri ower and mod Anechoic Ch .5 meter(Ab oositioning for t is worse ca as complete. mark eak Value eak Value	dula naml ove r		
Limit:	 f. Place a marker at the e frequency to show com bands. Save the spectru for lowest and highest of Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz 	nd of the restrict pliance. Also m um analyzer plot channel re as below: e is the test site ber change form I meter and tabl west channel , to nents are perfor I found the X ax res until all freque Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me /m @3m) 0 5 0	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-p Quasi-p Quasi-p	s in the restri ower and mod Anechoic Ch .5 meter(Ab oositioning for t is worse cas as complete. mark eak Value eak Value eak Value	dula naml ove r		
Limit:	 f. Place a marker at the e frequency to show com bands. Save the spectru for lowest and highest of Above 1GHz test procedu g. Different between above to fully Anechoic Chaml 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measuren Transmitting mode, and j. Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 	nd of the restrict pliance. Also m um analyzer plot channel re as below: e is the test site ber change form I meter and tabl west channel , f nents are perfo I found the X ax res until all freque Limit (dBµV/ 40.0 43.5 46.0	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me (m @3m) 0 0 0	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-p Quasi-p Quasi-p Quasi-p	s in the restri ower and mod Anechoic Cr .5 meter(Ab positioning for t is worse cas as complete. mark eak Value eak Value eak Value eak Value	dula naml ove r		



Page 38 of 60

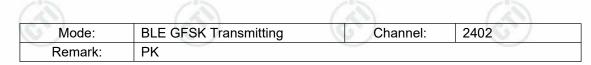
Test plot as follows:

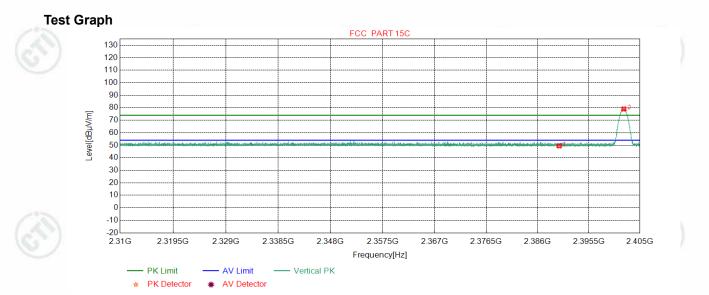
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	РК		

★ PK Detector * AV Detector

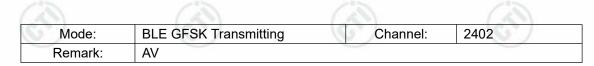
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.45	49.95	74.00	24.05	Pass	Horizontal
2	2402.0358	32.26	13.31	-43.12	82.10	84.55	74.00	-10.55	Pass	Horizontal
N)	65	2)		(2)				(S)

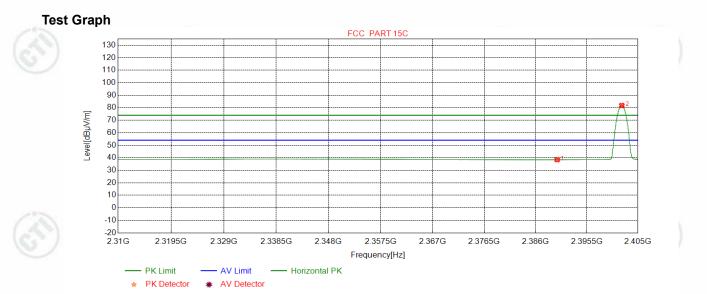
Hotline: 400-6788-333

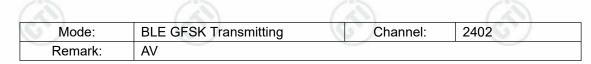


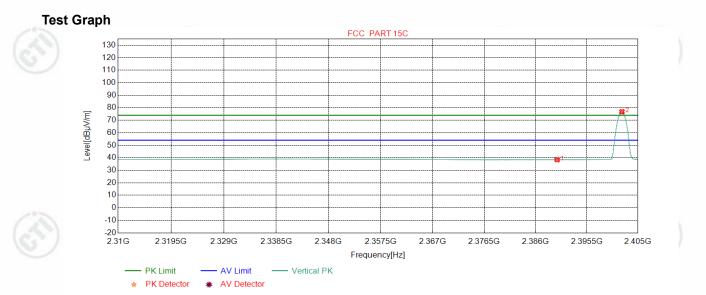


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.02	49.52	74.00	24.48	Pass	Vertical
2	2402.0105	32.26	13.31	-43.12	76.53	78.98	74.00	-4.98	Pass	Vertical
(2)		12	1	-					1	12

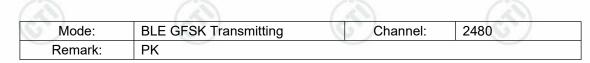

(1)

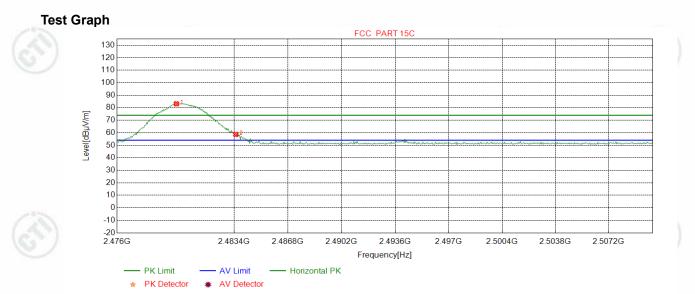





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.96	38.46	54.00	15.54	Pass	Horizontal
2	2402.0041	32.26	13.31	-43.12	79.36	81.81	54.00	-27.81	Pass	Horizontal
(2)		12	1						1	12

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.95	38.45	54.00	15.55	Pass	Vertical
2	2402.0295	32.26	13.31	-43.12	74.33	76.78	54.00	-22.78	Pass	Vertical
120		12	1						1	12





Page 42 of 60

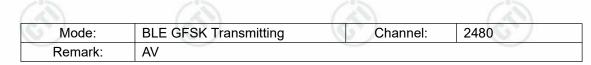
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	80.48	83.14	74.00	-9.14	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	56.00	58.65	74.00	15.35	Pass	Horizontal
(2)		12	1						1	12

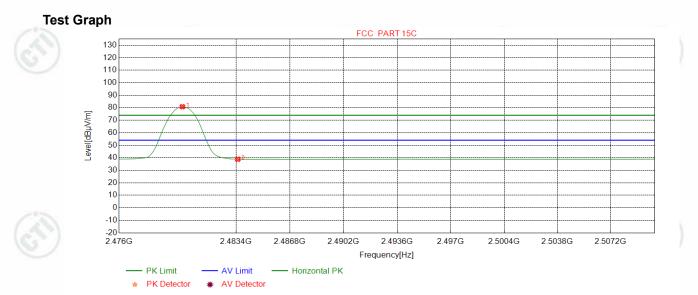


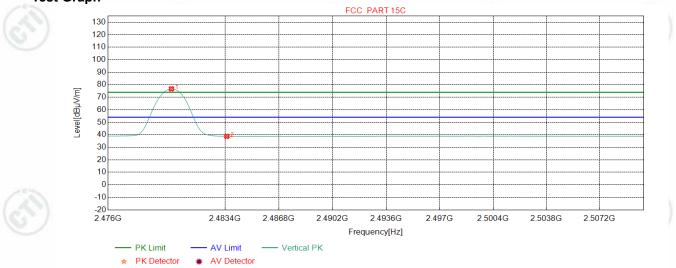
Page 43 of 60

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	РК		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	75.87	78.53	74.00	-4.53	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	51.76	54.41	74.00	19.59	Pass	Vertical
(2)		12	6		12		(2)		1	12







NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	78.12	80.78	54.00	-26.78	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.18	38.83	54.00	15.17	Pass	Horizontal
(2)		12	6		12		(2)		1	12

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	74.07	76.73	54.00	-22.73	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.07	38.72	54.00	15.28	Pass	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Page 46 of 60

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(\mathcal{S})		Peak	1MHz	3MHz	Peak	
\sim	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:					•	

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Limit:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
 - Measurement Field strength Limit Frequency Remark (microvolt/meter) | (dBµV/m) distance (m) 0.009MHz-0.490MHz 2400/F(kHz) 300 . 0.490MHz-1.705MHz 24000/F(kHz) _ -1 30 30 1.705MHz-30MHz 30 _ -30MHz-88MHz 100 40.0 Quasi-peak 3 3 88MHz-216MHz 150 43.5 Quasi-peak 3 216MHz-960MHz 200 46.0 Quasi-peak 960MHz-1GHz 500 3 54.0 Quasi-peak 500 54.0 Above 1GHz Average 3 Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit

applicable to the equipment under test. This peak limit applies to the total

. Repeat above procedures until all frequencies measured was complete.

peak emission level radiated by the device.

Page 47 of 60

Radiated Spurious Emissions test Data: During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2440MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Radiated Emission below 1GHz

Mode:			BLE G	SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	42.54	23.04	40.00	16.96	Pass	Н	PK
2	150.0010	7.55	1.45	-32.01	42.81	19.80	43.50	23.70	Pass	Н	PK
3	208.8859	11.13	1.71	-31.94	41.58	22.48	43.50	21.02	Pass	Н	PK
4	304.0524	13.29	2.07	-31.60	37.01	20.77	46.00	25.23	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	39.63	30.09	46.00	15.91	Pass	Н	PK
6	909.9750	22.16	3.60	-31.48	38.22	32.50	46.00	13.50	Pass	Н	PK
7	36.5967	11.21	0.67	-31.38	43.93	24.43	40.00	15.57	Pass	V	PK
8	56.1926	12.21	0.85	-31.92	37.74	18.88	40.00	21.12	Pass	V	PK
9	195.0135	10.43	1.64	-31.94	45.15	25.28	43.50	18.22	Pass	V	PK
10	304.0524	13.29	2.07	-31.60	37.96	21.72	46.00	24.28	Pass	V	PK
11	600.0290	19.00	2.96	-31.50	39.72	30.18	46.00	15.82	Pass	V	PK
12	909.9750	22.16	3.60	-31.48	37.48	31.76	46.00	14.24	Pass	V	PK
		1			/	0					

Hotline: 400-6788-333

Page 48 of 60

Transmitter Emission above 1GHz											
Mode	:	_	BLE GFS	SK Transm	itting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1942.2942	31.32	3.42	-43.06	51.13	42.81	74.00	31.19	Pass	Н	PK
2	3189.0126	33.28	4.63	-43.10	50.39	45.20	74.00	28.80	Pass	Н	PK
3	4804.1203	34.50	4.55	-42.80	54.65	50.90	74.00	23.10	Pass	Н	PK
4	7206.2804	36.31	5.81	-42.16	50.70	50.66	74.00	23.34	Pass	Н	PK
5	9608.0000	37.64	6.63	-42.10	47.24	49.41	74.00	24.59	Pass	Н	PK
6	12010.0000	39.31	7.60	-41.90	47.86	52.87	74.00	21.13	Pass	Н	PK
7	1717.2717	29.83	3.21	-42.66	50.60	40.98	74.00	33.02	Pass	V	PK
8	4804.1203	34.50	4.55	-42.80	54.46	50.71	74.00	23.29	Pass	V	PK
9	7205.2804	36.31	5.82	-42.17	53.34	53.30	74.00	20.70	Pass	V	PK
10	9608.0000	37.64	6.63	-42.10	47.37	49.54	74.00	24.46	Pass	V	PK
11	10402.4935	38.36	7.19	-42.01	50.15	53.69	74.00	20.31	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.52	51.53	74.00	22.47	Pass	V	PK
1						1				1	1

Mode:			BLE GF	SK Transr	nitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1691.2691	29.66	3.19	-42.68	50.93	41.10	74.00	32.90	Pass	Н	PK
2	3957.0638	33.77	4.34	-43.01	50.98	46.08	74.00	27.92	Pass	Н	PK
3	4880.1253	34.50	4.80	-42.80	54.61	51.11	74.00	22.89	Pass	Н	PK
4	7320.0000	36.42	5.85	-42.14	49.10	49.23	74.00	24.77	Pass	Н	PK
5	9760.0000	37.70	6.73	-42.10	46.96	49.29	74.00	24.71	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.90	46.29	51.48	74.00	22.52	Pass	Н	PK
7	1845.2845	30.68	3.37	-42.82	50.97	42.20	74.00	31.80	Pass	V	PK
8	3240.0160	33.30	4.49	-43.10	50.99	45.68	74.00	28.32	Pass	V	PK
9	4880.1253	34.50	4.80	-42.80	55.37	51.87	74.00	22.13	Pass	V	PK
10	7319.2880	36.42	5.85	-42.14	52.54	52.67	74.00	21.33	Pass	V	PK
11	9760.0000	37.70	6.73	-42.10	47.69	50.02	74.00	23.98	Pass	V	PK
12	12200.0000	39.42	7.67	-41.90	46.17	51.36	74.00	22.64	Pass	V	PK

6

Page 49 of 60

Mode:			BLE GF	SK Transm	nitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1318.4318	28.22	2.78	-42.77	51.26	39.49	74.00	34.51	Pass	Н	PK
2	3007.0005	33.20	4.92	-43.10	50.32	45.34	74.00	28.66	Pass	Н	PK
3	4960.1307	34.50	4.82	-42.80	53.41	49.93	74.00	24.07	Pass	Н	PK
4	7440.0000	36.54	5.85	-42.11	49.00	49.28	74.00	24.72	Pass	Н	PK
5	9920.0000	37.77	6.79	-42.10	46.27	48.73	74.00	25.27	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.90	47.14	52.64	74.00	21.36	Pass	Н	PK
7	1594.4594	29.02	3.07	-42.91	51.64	40.82	74.00	33.18	Pass	V	PK
8	3037.0025	33.21	4.86	-43.10	50.56	45.53	74.00	28.47	Pass	V	PK
9	4961.1307	34.50	4.82	-42.80	52.37	48.89	74.00	25.11	Pass	V	PK
10	7440.2960	36.54	5.85	-42.11	51.62	51.90	74.00	22.10	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	45.99	48.45	74.00	25.55	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	47.07	52.57	74.00	21.43	Pass	V	PK
NOTE		5.7					37				

NOTE:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

