

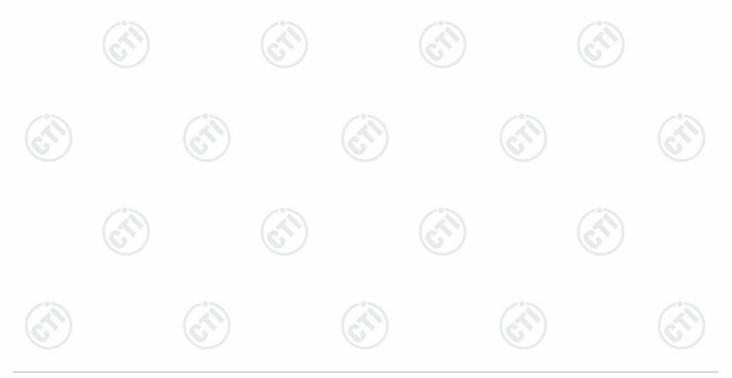
TEST REPORT

- Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result
- : Digital Blood Pressure Monitor
- : Mircrolife
- : BP3GX1-4B
- : N/A
- : EED32P80121201
- : U7I-BP3GX1-4B
- : Feb. 15, 2023
- : 47 CFR Part 15 Subpart C
- Prepared for:

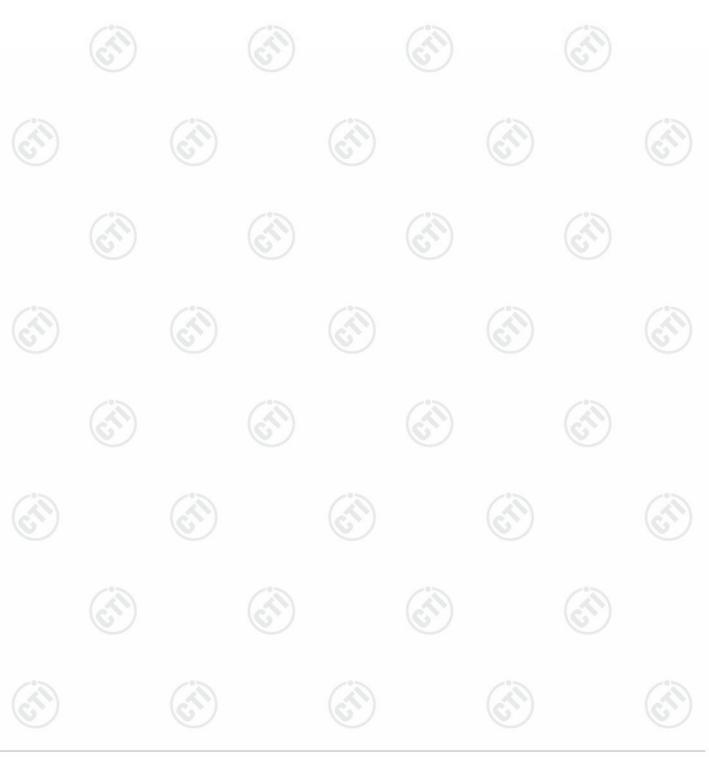
Microlife Corporation 9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan, China

PASS

Prepared by:


Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

lo mark, chen Reviewed by: Compiled by: Mark Chen Tom Chen avon Ma Date: Feb. 15, 2023 Aaron Ma Check No.: 6437070223 Report Seal


1 COVER PAGE	~	~ ~	
2 CONTENT			2
3 VERSION			
4 TEST SUMMARY			
5 GENERAL INFORMATION			5
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNIT 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (S	 rs	<u>)</u>	
6 EQUIPMENT LIST			
7 TEST RESULTS AND MEASURE	MENT DATA	<u> </u>	
7.1 ANTENNA REQUIREMENT 7.2 AC POWER LINE CONDUCTED E 7.3 MAXIMUM CONDUCTED OUTPUT 7.4 DTS BANDWIDTH	MISSIONS Power	<u>)</u>	
7.5 MAXIMUM POWER SPECTRAL DE 7.6 BAND EDGE MEASUREMENTS AN 7.7 RADIATED SPURIOUS EMISSION			

3 Version

Version No.	Date	Description)
00	Feb. 15, 2023	Original	
	·> />	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	(25)	(5)	6

4 Test Summary

Page 4 of 42

lest Summary		
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS
Democrity		631

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Microlife Corporation	
Address of Applicant:	9F, 431, RuiGuang Road, NeiHu Taipei 11492, Taiwan, China	
Manufacturer:	ONBO Electronic (Shenzhen) Co., Ltd.	
Address of Manufacturer: No.138, Huasheng Road, Langkou Community, Dalang Street District, Shenzhen, China		
Factory:	ONBO Electronic (Shenzhen) Co., Ltd.	
Address of Factory:	No.138, Huasheng Road, Langkou Community, Dalang Street, Longhua District, Shenzhen, China	

5.2 General Description of EUT

Product Name:	Digital Bloc	od Pressure Monitor		
Model No.:	BP3GX1-4	В		
Trade mark:	Mircrolife			13
Device type:	Portable	(25) (25)		(2)
Operation Frequency:	2402MHz~	2480MHz		S
Modulation Type:	GFSK			
Transfer Rate:	⊠ 1Mbps		-07	
Number of Channel:	40			
Antenna Type:	Chip anten	na	0	
Antenna Gain:	3dBi			
Power Supply:	Adapter	Model:DSA-6E-05 US 060060 Input:AC100-240V, 50/60Hz, 0.3A Output:6.0V0.6A		(A)
	Battery 6V			U
Test Voltage:	AC 120V			
Sample Received Date:	Feb. 07, 20)23	~	
Sample tested Date:	Feb. 07, 20	023 to Feb. 14, 2023		
			U.S.	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The lowest channel (CH0)	nnel (CH0) 2402MHz	
The middle channel (CH19)	2440MHz	
The highest channel (CH39)	2480MHz	13
	(67)	(6)

5.3 Test Configuration

Software:	e: nRF_DTM			
EUT Power Grade:	Class2 (Por selected)	Class2 (Power level is built-in set parameters and cannot be char selected)		annot be changed and
Ise test software to ansmitting of the El	set the lowest frequency JT.	v, the middle frequer	ncy and the highest t	frequency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СН0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	CH39	2480

5.4 Test Environment

	Operating Environment	t:				
260	Radiated Spurious Emi	ssions:				
10	Temperature:	22~25.0 °C				(2)
2	Humidity:	50~56 % RH		(U)		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:	·				
	Temperature:	22~25.0 °C				
	Humidity:	50~56 % RH	(\mathbf{c})		(\mathcal{O})	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:	·				
	Temperature:	22~25.0 °C		1		13
	Humidity:	50~56 % RH		$(c^{(n)})$		(\mathcal{A})
~	Atmospheric Pressure:	1010mbar		U		U

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1)	support	equi	oment
1/	Support	cyui	princin

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164



5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Dedicted Spurious omission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
a		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

65

Page 9 of 42

Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-23-2022	12-22-2023	
Signal Generator	Keysight	N5182B	MY53051549	12-19-2022	12-18-2023	
Signal Generator	Agilent	N5181A	MY46240094	12-19-2022	12-18-2023	
DC Power Keysight		E3642A	MY56376072	12-19-2022	12-18-2023	
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	06-11-2022	06-10-2023	
RF control unit	JS Tonscend	JS0806-2	158060006	12-23-2022	12-22-2023	
ommunication test set	R&S	CMW500	120765	12-23-2022	12-22-2023	
high-low temperature test chamber	high-low mperature test Zhuo		QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-01-2022	06-15-2023	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518		A Contraction	

Conducted disturbance Test										
Equipment	Manufacturer	Model No.					Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-06-2022	05-05-2023					
Temperature/ Humidity Indicator			1							
LISN	R&S	ENV216	100098	09-27-2022	09-26-2023					
Barometer	changchun	DYM3	1188	/						

Hotline:400-6788-333

Page 10 of 42

			(1)								
3M Semi-anechoic Chamber (2)- Radiated disturbance Test											
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date						
3M Chamber & Accessory Equipment	трк	SAC-3		05/22/2022	05/21/2025						
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023						
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025						
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024						
Multi device Controller	maturo	NCD/070/10711112)	S							
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024						
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023						

Ì

(N)

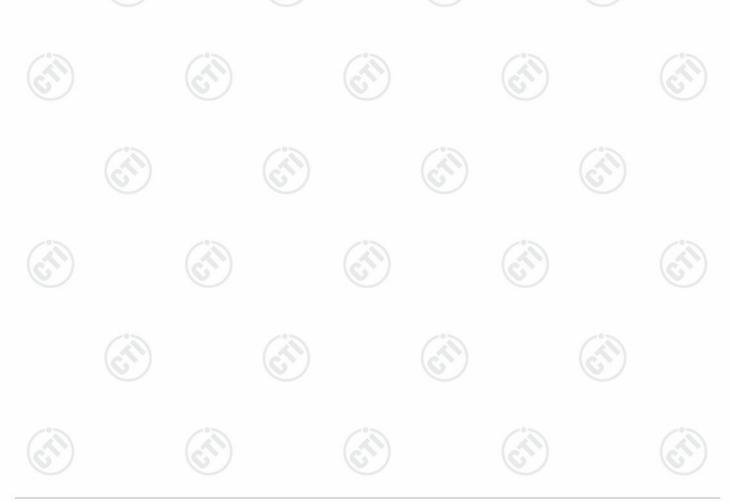
				<u>(1)</u>			
		3M full-anechoi	c Chamber				
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		6		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023		
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-01-2022	02-28-2023		
Spectrum Analyzer TRILOG	Keysight	N9030B	MY57140871	03-01-2022	02-28-2023		
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024		
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024		
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023		
Preamplifier	EMCI	EMC001330	980563	04-13-2022	04-12-2023		
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-29-2022	07-28-2023		
Communication test set	R&S	CMW500	102898	12-23-2022	12-23-2023		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	02-21-2022	02-20-2023		
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(9		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002				
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		0		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	\odot			
Cable line	Times	EMC104-NMNM-1000	SN160710				
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(<u> </u>		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(9		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001				
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(A	(2		
)	(C)	(c)		67	C		

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

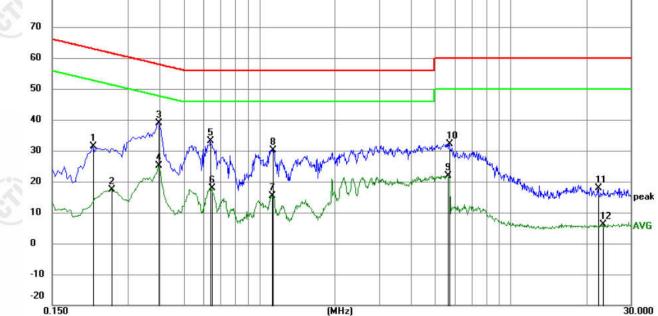
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos
The enterna is Chin enterna	The best ease gain of the enterna is 2dPi

The antenna is Chip antenna. The best case gain of the antenna is 3dBi.

Page 13 of 42

7.2 AC Power Line Conducted Emissions

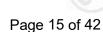

	Test Requirement:	47 CFR Part 15C Section 15.	.207						
	Test Method:	ANSI C63.10: 2013							
	Test Frequency Range:	150kHz to 30MHz							
13	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
6	Limit:		Limit (dBuV)					
~		Frequency range (MHz)	Quasi-peak	Average					
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
		* Decreases with the logarith							
	Test Setup:								
		AC Mains	AE <u><u><u></u></u> <u><u></u></u> <u><u></u></u> <u><u></u></u> <u><u></u></u> <u></u> <u></u> </u>	Test Receiver					
	Test Procedure:	 impedance. The power connected to a second Lipplane in the same way multiple socket outlet stripsingle LISN provided the n 3) The tabletop EUT was pluground reference plane. A placed on the horizontal g 4) The test was performed w the EUT shall be 0.4 m 	d to AC power source Network) which provide cables of all other SN 2, which was bonde as the LISN 1 for the o was used to connect rating of the LISN was aced upon a non-meta And for floor-standing a ground reference plane ith a vertical ground re from the vertical ground	through a LISN 1 (Line s a $50\Omega/50\mu$ H + 5Ω linear units of the EUT were ed to the ground reference unit being measured. A multiple power cables to a not exceeded. allic table 0.8m above the urrangement, the EUT was					
<u> -</u>	Test Mode: Test Results:	unit under test and bo mounted on top of the gro	nded to a ground report of the plane. The plane of the plane of the plane of the plane. The plane of the plan	ive positions of equipment according to					

Page 14 of 42

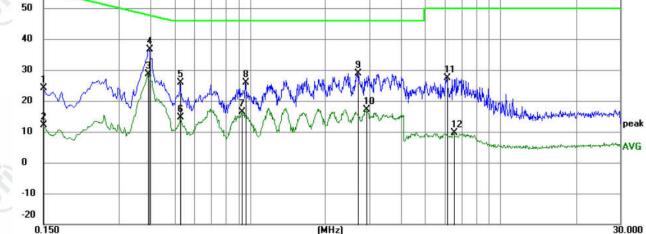
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2175	21.48	9.90	31.38	62.91	-31.53	QP	
2	0.2580	7.41	9.99	17.40	51.50	-34.10	AVG	
3 *	0.3975	28.79	9.97	38.76	57.91	-19.15	QP	
4	0.3975	15.12	9.97	25.09	47.91	-22.82	AVG	
5	0.6404	23.14	9.99	33.13	56.00	-22.87	QP	
6	0.6493	7.97	9.98	17.95	46.00	-28.05	AVG	
7	1.1219	5.55	9.83	15.38	46.00	-30.62	AVG	
8	1.1309	20.34	9.82	30.16	56.00	-25.84	QP	
9	5.6220	12.19	9.78	21.97	50.00	-28.03	AVG	
10	5.6850	22.41	9.78	32.19	60.00	-27.81	QP	
11	22.1865	7.92	9.98	17.90	60.00	-42.10	QP	
12	23.3160	-3.78	9.99	6.21	50.00	-43.79	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.


Neutral line: 80.0

70

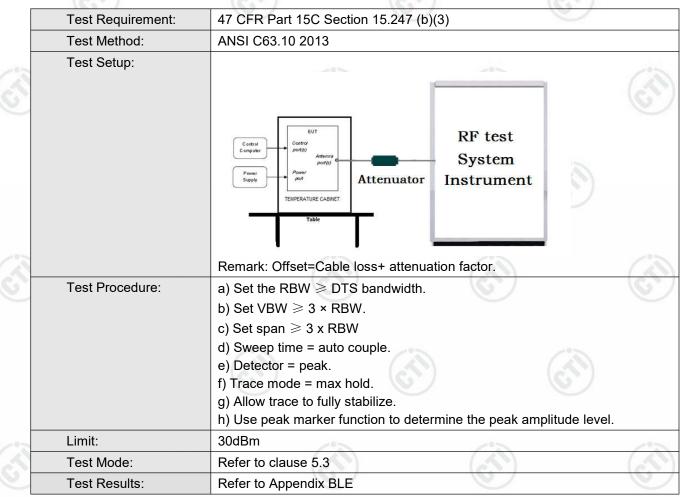

60

dBu∀

Report No. : EED32P80121201

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	14.21	9.87	24.08	66.00	-41.92	QP	
2		0.1500	2.26	9.87	12.13	56.00	-43.87	AVG	
3	*	0.3930	18.65	9.98	28.63	48.00	-19.37	AVG	
4		0.3975	26.72	9.97	36.69	57.91	-21.22	QP	
5		0.5280	15.79	9.98	25.77	56.00	-30.23	QP	
6		0.5280	4.53	9.98	14.51	46.00	-31.49	AVG	
7		0.9285	6.59	9.84	16.43	46.00	-29.57	AVG	
8		0.9600	16.13	9.84	25.97	56.00	-30.03	QP	
9		2.7060	19.14	9.79	28.93	56.00	-27.07	QP	
10		2.9219	7.22	9.79	17.01	46.00	-28.99	AVG	
11		6.0944	17.62	9.79	27.41	60.00	-32.59	QP	
12		6.5534	-0.17	9.79	9.62	50.00	-40.38	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 42

7.3 Maximum Conducted Output Power

7.4 DTS Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
	Test Method:	ANSI C63.10 2013
8	Test Setup:	
		Control Computer Computer Computer Power Supply Table RF test System Instrument
5		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
	Limit:	≥ 500 kHz
-	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix BLE

Page 18 of 42

7.5 Maximum Power Spectral Density

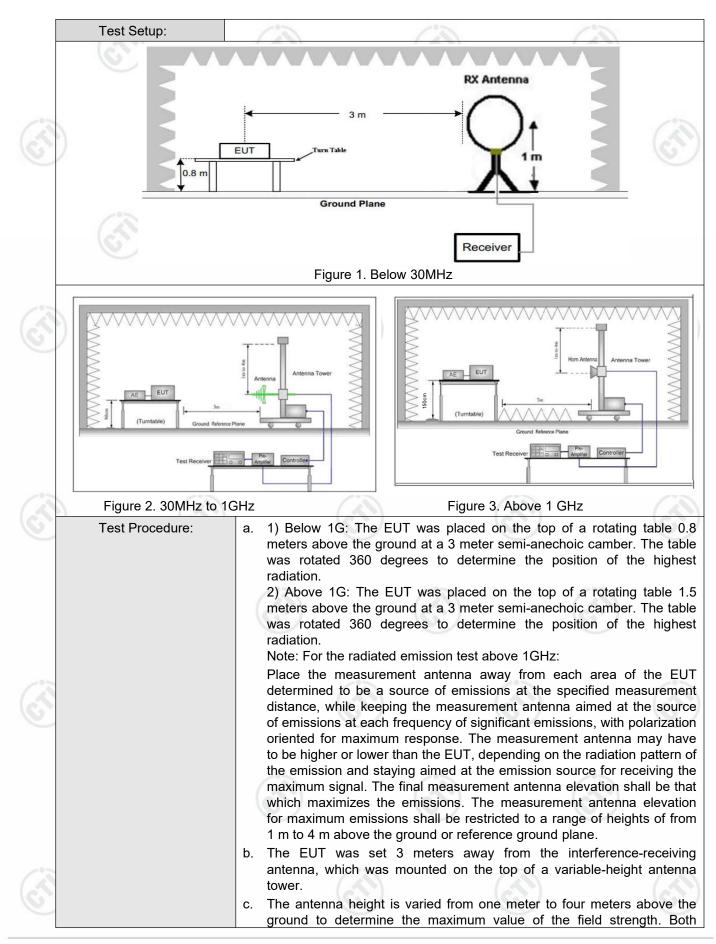
	Test Requirement:	47 CFR Part 15C Section 15.247 (e)
	Test Method:	ANSI C63.10 2013
3	Test Setup:	
		Control Computer Power Supply Teh/PERATURE CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
	Limit:	≤8.00dBm/3kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix BLE

Page 19 of 42

7.6 Band Edge measurements and Conducted Spurious Emission

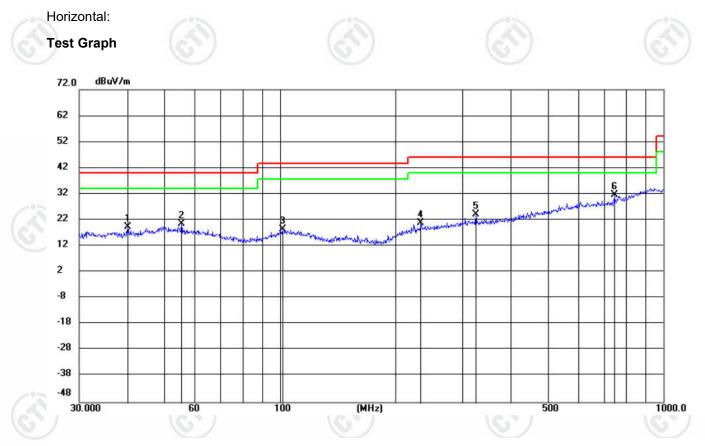
Page 20 of 42

7.7 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		C	
	Test Method:	ANSI C63.10 2013						
-	Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ıbe	r)	- 11
	Receiver Setup:	Frequency	2	Detector	RBW	6	VBW	Remark
9		0.009MHz-0.090MH	z	Peak	10kHz	z	30kHz	Peak
		0.009MHz-0.090MH	z	Average	10kH;	z	30kHz	Average
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak
		0.110MHz-0.490MH	z	Peak	10kH:	z	30kHz	Peak
		0.110MHz-0.490MH	z	Average	10kH:	z	30kHz	Average
		0.490MHz -30MHz		Quasi-peak	10kH	z	30kHz	Quasi-peak Quasi-peak
		30MHz-1GHz		Quasi-peak	100 kH	Ιz	300kHz	
13			2	Peak	1MHz		3MHz	Peak
S I		Above 1GHz		Peak	1MHz	z)	10kHz	Average
	Limit:	Ereduency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark		Measuremer distance (m
		0.009MHz-0.490MHz	2	400/F(kHz)	-	- / >		300
		0.490MHz-1.705MHz	24000/F(kHz) 30		-		- 8	30
		1.705MHz-30MHz			-		<u> </u>	30
		30MHz-88MHz		100	40.0	G)uasi-peak	3
		88MHz-216MHz		150	43.5	G)uasi-peak	3
		216MHz-960MHz	2	200	46.0	G)uasi-peak	3
S.		960MHz-1GHz	1	500	54.0	G	uasi-peak	3
		Above 1GHz		500	54.0		Average	3
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20d quip	IB above the oment under t	maximum est. This p	ре	rmitted ave	erage emission

CTI华测检测

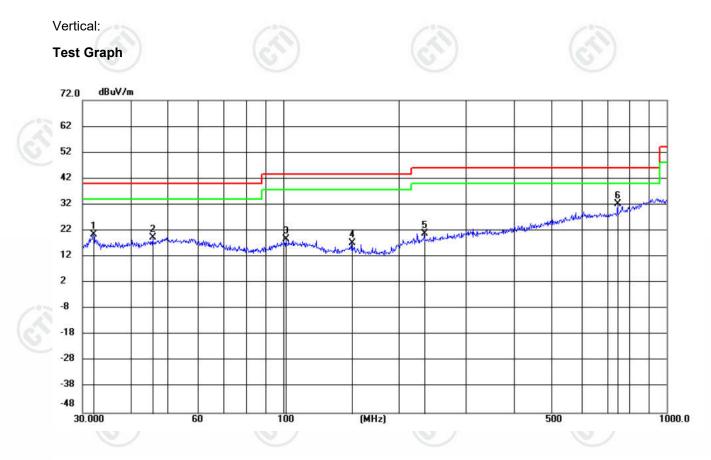
1	est Results:	Pass
1	est Mode:	Refer to clause 5.3
<u> </u>		i. Repeat above procedures until all frequencies measured was complete.
8		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
ି		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
		 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		horizontal and vertical polarizations of the antenna are set to make the measurement.


Page 22 of 42

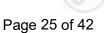
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

Page 23 of 42



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		40.1347	6.04	13.25	19.29	40.00	-20.71	QP	200	82	
2		55.4147	6.29	14.17	20.46	40.00	-19.54	QP	100	298	
3		101.6443	4.74	13.63	18.37	43.50	-25.13	QP	200	4	
4		233.3486	6.51	14.20	20.71	46.00	-25.29	QP	100	205	
5		324.4560	6.92	17.20	24.12	46.00	-21.88	QP	200	19	
6	*	744.8660	7.62	24.10	31.72	46.00	-14.28	QP	100	17	



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.9546	7.71	12.77	20.48	40.00	-19.52	QP	200	236	
2		45.6948	5.18	14.11	19.29	40.00	-20.71	QP	100	228	
3		101.6443	5.14	13.63	18.77	43.50	-24.73	QP	200	268	
4		151.0666	5.88	11.47	17.35	43.50	-26.15	QP	100	134	
5	2	233.3487	6.58	14.20	20.78	46.00	-25.22	QP	100	249	
6	*	744.8661	8.11	24.10	32.21	46.00	-13.79	QP	100	311	

Radiated Spurious Emission above 1GHz:

	Mode	:		BLE GFSK Tra	ansmitting		Channel:		2402 MHz	2
23	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
5	1	1222.8223	0.86	39.79	40.65	74.00	33.35	Pass	Н	PK
)	2	1986.2986	4.48	39.22	43.70	74.00	30.30	Pass	Н	PK
	3	3721.0481	-19.77	55.53	35.76	74.00	38.24	Pass	Н	PK
	4	4804.1203	-16.23	66.21	49.98	74.00	24.02	Pass	Н	PK
	5	7207.2805	-11.83	64.15	52.32	74.00	21.68	Pass	Н	PK
	6	11999.6	-5.25	50.51	45.26	74.00	28.74	Pass	Н	PK
	7	1274.2274	0.99	39.92	40.91	74.00	33.09	Pass	V	PK
	8	1830.283	3.51	38.82	42.33	74.00	31.67	Pass	V	PK
13	9	4804.1203	-16.23	67.08	50.85	74.00	23.15	Pass	V	PK
	10	5760.184	-13.71	58.82	45.11	74.00	28.89	Pass	V	PK
	11	7205.2804	-11.83	60.83	49.00	74.00	25.00	Pass	V	PK
	12	10205.4804	-7.09	50.42	43.33	74.00	30.67	Pass	V	PK

	Mode	:	BL	E GFSK Trar	nsmitting		Channel:		2440 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1259.2259	0.95	40.22	41.17	74.00	32.83	Pass	Н	PK
	2	1844.2844	3.61	38.45	42.06	74.00	31.94	Pass	Н	PK
	3	3856.0571	-19.17	56.53	37.36	74.00	36.64	Pass	Н	PK
1	4	4879.1253	-16.21	58.35	42.14	74.00	31.86	Pass	Н	PK
	5	7321.2881	-11.65	65.66	54.01	74.00	19.99	Pass	Н	PK
	6	11351.5568	-6.37	51.40	45.03	74.00	28.97	Pass	Н	PK
	7	7321.2881	-11.65	58.10	46.45	54.00	7.55	Pass	Н	AV
	8	1328.4328	1.16	38.99	40.15	74.00	33.85	Pass	V	PK
	9	1864.6865	3.77	38.17	41.94	74.00	32.06	Pass	V	PK
	10	4879.1253	-16.21	60.91	44.70	74.00	29.30	Pass	V	PK
à	11	5759.1839	-13.72	56.33	42.61	74.00	31.39	Pass	V	PK
	12	7320.288	-11.65	63.37	51.72	74.00	22.28	Pass	V	PK
4	13	9760.4507	-7.51	52.11	44.60	74.00	29.40	Pass	V	PK

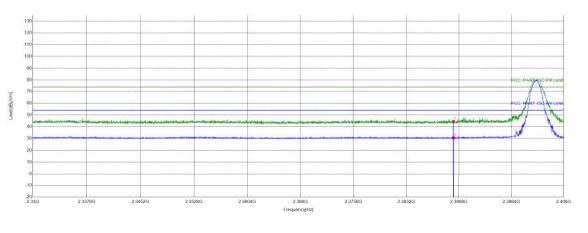
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 26 of 42

		1000		1000		187		1	0	
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0.00	1	1512.0512	1.57	41.30	42.87	74.00	31.13	Pass	Н	PK
~	2	2058.9059	4.74	38.04	42.78	74.00	31.22	Pass	Н	PK
2	3	3859.0573	-19.15	55.76	36.61	74.00	37.39	Pass	Н	PK
	4	6306.2204	-12.92	54.16	41.24	74.00	32.76	Pass	Н	PK
	5	7439.296	-11.34	70.15	58.81	74.00	15.19	Pass	Н	PK
	6	9919.4613	-7.10	52.51	45.41	74.00	28.59	Pass	Н	PK
	7	7440.296	-11.34	61.87	50.53	54.00	3.47	Pass	Н	AV
	8	1314.4314	1.10	38.98	40.08	74.00	33.92	Pass	V	PK
	9	1772.2772	3.19	38.75	41.94	74.00	32.06	Pass	V	PK
	10	3188.0125	-20.38	61.06	40.68	74.00	33.32	Pass	V	PK
13	11	5759.1839	-13.72	58.15	44.43	74.00	29.57	Pass	V	PK
	12	7440.296	-11.34	65.85	54.51	74.00	19.49	Pass	V	PK
~	13	9919.4613	-7.10	54.75	47.65	74.00	26.35	Pass	V	PK
	14	7440.296	-11.34	58.51	47.17	54.00	6.83	Pass	V	AV

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

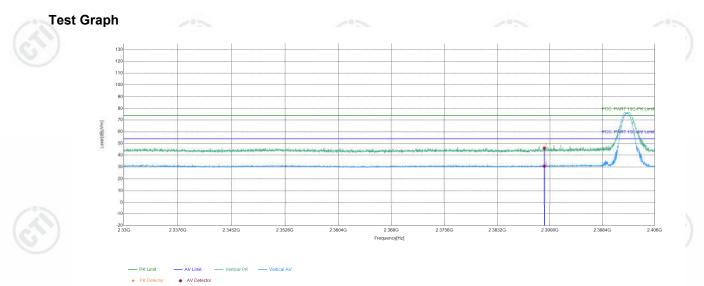


Test plot as follows:

Mode:	BLE GFSK Transmitting	Test_Frequency:	2402	100
Remark:	1M	e		

Test Graph

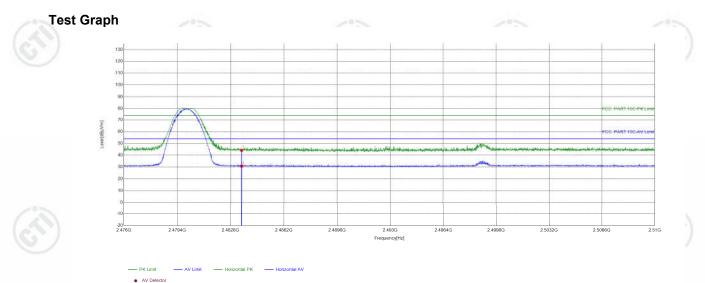
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Γ	1	2390	5.77	38.69	44.46	74.00	29.54	PASS	Horizontal	PK
	2	2390	5.77	24.78	30.55	54.00	23.45	PASS	Horizontal	AV


(A)

Page 28 of 42

Mode:	BLE GFSK Transmitting	Test_Frequency:	2402
Remark:	1M		·

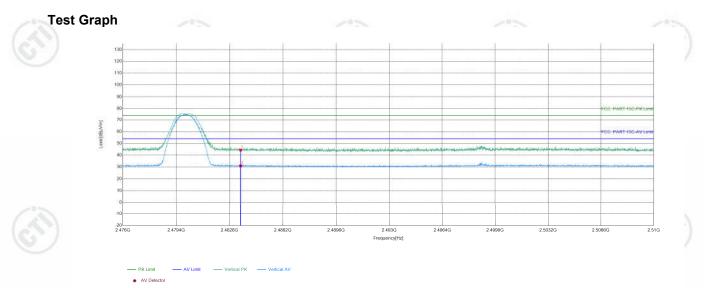
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	5.77	40.37	46.14	74.00	27.86	PASS	Vertical	PK
2	2390	5.77	25.02	30.79	54.00	23.21	PASS	Vertical	AV
)		GT		67		C.			G



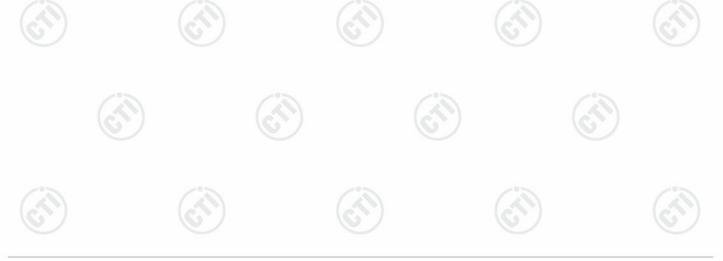
Page 29 of 42

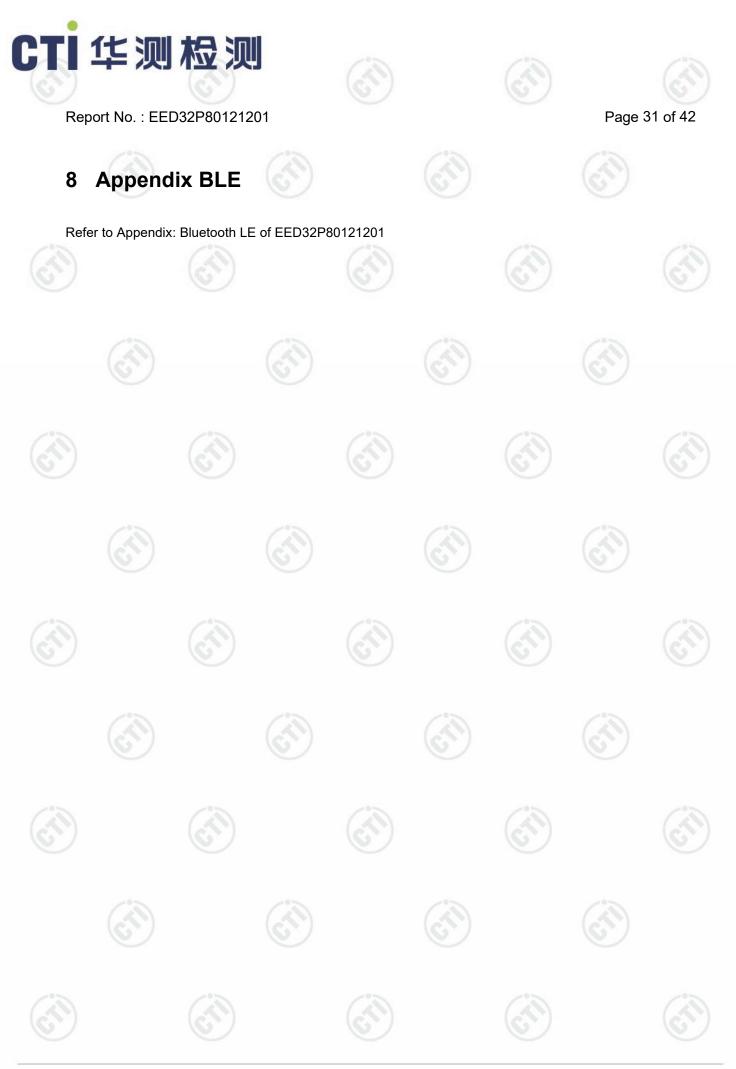
Mode:	BLE GFSK Transmitting	Test_Frequency:	2480
Remark:	1M	·	·

1	22				_^^>			<u>/'></u>	
Suspect	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	6.57	37.62	44.19	74.00	29.81	PASS	Horizontal	PK
2	2483.5	6.57	24.21	30.78	54.00	23.22	PASS	Horizontal	AV
7		GT /		(G)		LC.			G



Mode:	BLE GFSK Transmitting	Test_Frequency:	2480
Remark:	1M		·




	1	2				12			1°2	
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	37.83	44.40	74.00	29.60	PASS	Vertical	PK
	2	2483.5	6.57	24.41	30.98	54.00	23.02	PASS	Vertical	AV
2)		ST/		(\mathcal{O})		G			5

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com