Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road, Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report No.....: CHTEW20050087 Report Verification:

Project No.: SHT2005015001EW

FCC ID: **U7GBBOXGO**

Applicant's name: Klein Electronics, Inc.

Address: 349 N. Vinewood St, Escondido, California, USA 92029

Test item description: **Digital Transceiver**

Trade Mark....:: Blackbox

Model/Type reference: Go!

Listed Model(s)....:

FCC CFR Title 47 Part 2 Standard....::

FCC CFR Title 47 Part 90

Date of receipt of test sample..... May 12, 2020

Date of testing..... May 12, 2020- May 27, 2020

Date of issue..... May 27, 2020

Result:: **PASS**

Compiled by

(position+printed name+signature) .: File administrators Echo Wei

Supervised by

(position+printed name+signature) .: Project Engineer Gaosheng Pan Echo Wei Graosheng. Pan Homstu

Approved by

(position+printed name+signature) .: RF Manager Hans Hu

Testing Laboratory Name.....: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No.: CHTEW20050087 Page: 2 of 55 Issued: 2020-05-21

Contents

<u>1</u>	TEST STANDARDS AND REPORT VERSION	3
4.4	Took Stondards	•
1.1. 1.2.	Test Standards	3 3
1.2.	Report revised information	3
<u>2</u>	TEST DESCRIPTION	4
<u>3</u>	SUMMARY	5
		_
3.1	Client Information	5
3.2	Product Description	5
3.3	Radio Specification Description	5
3.4	Testing Laboratory Information	7
<u>4</u>	TEST CONFIGURATION	8
4.1	Test frequency list	8
4.2	Operation mode	9
4.3	Support unit used in test configuration and system	10
4.4	Testing environmental condition	11
4.5	Statement of the measurement uncertainty	11
4.6	Equipments Used during the Test	12
<u>5</u>	TEST CONDITIONS AND RESULTS	14
5.1	Conducted Carrier Output Power	14
5.2	99% Occupied Bandwidth & 26dB Bandwidth	15
5.3	Emission Mask	17
5.4	Modulation Limit	19
5.5	Audio Frequency Response	20
5.6	Frequency stability VS Temperature	22
5.7	Frequency stability VS Voltage	23
5.8	Transmitter Frequency Behavior	24
5.9	Transmit Conducted Spurious Emission	26
5.10	Transmitter Radiated Spurious Emission	27
5.11	AC Power Line Conducted Emission	39
5.12	Radiated Emission	42
<u>6</u>	TEST SETUP PHOTOS OF THE EUT	45
<u>7</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	48
8	APPENDIX REPORT	5.5

Report No.: CHTEW20050087 Page: 3 of 55 Issued: 2020-05-21

1 TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 2: Frequency allocations and radio treaty matters; General rules and regulations

FCC Rules Part 90: Private land mobile radio services.

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

<u>ANSI/TIA-603-E(2016):</u> Land Mobile FM or PM Communications Equipment and Performance Standards <u>FCC Part 15 Subpart B:</u> Unintentional Radiators.

ANSI C63.4-2014: American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2. Report revised information

Revised No.	Date of issued	Description
N/A	2020-05-21	Original

Report No.: CHTEW20050087 Page: 4 of 55 Issued: 2020-05-21

2 TEST DESCRIPTION

Report clause	Test Item	Standard Requirement	Result
5.1	Conducted Carrier Output Power	Part 90.205 Part 2.1046(a)	Pass
5.2	99% Occupied Bandwidth & 26dB bandwidth	Part 90.209 & 210 Part 2.1049	Pass
5.3	Emission Mask	Part 90.209 & 210 Part 2.1049	Pass
5.4	Modulation Limit	Part 2.1047(b)	Pass
5.5	Audio Frequency Response	Part 2.1047(a)	Pass
5.6	Frequency Stability VS Temperature	Part 90.213 Part 2.1055	Pass
5.7	Frequency Stability VS Voltage	Part 90.213 Part 2.1055	Pass
5.8	Transient Frequency Behavior	Part 90.214	Pass
5.9	Transmit Conducted Spurious Emission	Part 90.210 Part 2.1051	Pass
5.10	Transmit Radiated Spurious Emission	Part 90.210 Part 2.1053	Pass
5.11	AC Power Line Conducted Emission	Part 15.107	Pass
5.12	Radiated Emission	Part 15.109	Pass

Report No.: CHTEW20050087 Page: 5 of 55 Issued: 2020-05-21

3 SUMMARY

3.1 Client Information

Applicant:	Klein Electronics, Inc.
Address:	349 N. Vinewood St, Escondido, California, USA 92029
Manufacturer:	Klein Electronics, Inc.
Address:	349 N. Vinewood St, Escondido, California, USA 92029

3.2 Product Description

Main unit				
Name of EUT:	Digital Transceiver			
Trade mark:	Blackbox			
Model/Type reference:	Go!			
Listed model(s):	-			
Power supply:	DC 7.5V			
Hardware version:	DMR_UHF V1.2			
Software version:	GO V1.0.3.13			
Ancillary unit				
Battery information:	Model No.: Go!-BATT Norm: DC 7.5V 15Wh 2000mAh			
Charger information:	Model No.: Go!-Charger Input: 12Vd.c.,1000mA Output:600mA			
Adapter information:	Input: 100-240Va.c.,50/60Hz Ouput:12Vd.c.,500mA			

3.3 Radio Specification Description

Support Frequency Range:	400MHz~470MHz			
Permitted frequency range: *1	400MHz~406MHz, 406.1MHz~470MHz			
Rated Output Power:	⊠ High Power: 4W			
Modulation Type:	Analog:	FM		
Modulation Type:	Digital :	4FSK		
Supported Digital Protocol: *2	DMR			
Channel Separation:	Analog:		☐ 25kHz	
Channel Separation:	Digital :	☐ 6.25kHz	⊠ 12.5kHz	
Emission Designator: *3	Analog:	11K0F3E		
Emission Designator.	Digital:	7K60FXW, 7K60FXD		
Antenna Type:	SMA-K			
Antenna Gain:	2dBi			

Report No.: CHTEW20050087 Page: 6 of 55 Issued: 2020-05-21

Note:

(1) *1 Listed frequency range 400MHz~406MHz for Federal use Only.

- (2) *2 The DMR standard specifies two-slot Time Division Multiplexing Technology to split the 12.5 kHz channel into two virtual 6.25kHz communication paths. This equates to an efficiency of one voice channel per 6.25 kHz of bandwidth even though it operates in channels of 12.5 kHz
- (3) *3 According to FCC Part 2.202 requirements, the Necessary Bandwidth is calculated as follows:
 - For FM Voice Modulation

Channel Spacing = 12.5 KHz, D = 2.5 KHz max, K = 1, M = 3 KHz

Bn = 2M + 2DK = 2*3 + 2*2.5*1 = 11 KHz

Emission designation: 11K0F3E

- For 4FSK Data Modulation

Channel Spacing = 12.5 KHz, R = 9600 bps, D = 1944Hz, S = 4, K = 0.72

Bn = $(R/log_2S) + 2DK \approx 7.6 \text{ KHz}$

Emission designation: 7K60FXW, 7K60FXD

Report No.: CHTEW20050087 Page: 7 of 55 Issued: 2020-05-21

3.4 Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
	Туре	Accreditation Number	
	CNAS	L1225	
Qualifications	A2LA	3902.01	
	FCC	762235	
	Canada	5377A	

Report No.: CHTEW20050087 Page: 8 of 55 Issued: 2020-05-21

4 TEST CONFIGURATION

4.1 Test frequency list

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

Frequency range over which EUT operates	Number of frequencies	Location in frequency range of operation	
1 MHz or less	1	Middle	
1 MHz to 10 MHz	2	1 near top and 1 near bottom	
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom	

Frequency Bands (MHz)	Test Frequency (MHz)		
400MHz ~ 406MHz	CH _L 400.0125		
400IVITZ ~ 400IVITZ	CH _{M1} 405.9875		
	CH _{M2} 406.1125		
406.1MHz ~470MHz	CH _{M3} 438.0125		
	CH _H 469.9875		

Report No.: CHTEW20050087 Page: 9 of 55 Issued: 2020-05-21

4.2 Operation mode

Test mode	Transmitting Rece	Pagain in a	Digital	Analog	Power level		Charging
rest mode		Receiving	12.5kHz	12.5kHz	High	Low	Charging
TX-DNH	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$		
TX-DNL	V		V			√	
TX-ANH	$\sqrt{}$			\checkmark	$\sqrt{}$		
TX-ANL	√			√		√	
RX-DN		√	√				
RX-AN		V		√			
Charging							√

Note:

Charging mode: The radio must be turned off during charging mode.

Modulation Type	Description		
UM	Un-modulation		
AM2	Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.		
AM6	Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, then increase the level from the audio generator by 20 dB		
AM5	Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation.		
DM	A 511 bit binary pseudo-random bit sequence based on ITU-T Rec. O.153		

Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report.

Test item	Modulation Type	Test mode (Worse case mode)
Conducted Output Power	UM	TX-DNH, TX-DNL,TX-ANH,TX-ANL,
99% Occupied Bandwidth & 26dB bandwidth	AM6, DM	TX-DNH, TX-DNL,TX-ANH,TX-ANL,
Emission Mask	AM5, DM	TX-DNH, TX-DNL,TX-ANH,TX-ANL,
Modulation Limit	AM6	TX-ANH,
Audio Frequency Response	AM2	TX-ANH,
Frequency Stability VS Temperature	UM	TX-DNH, TX-DNL,TX-ANH,TX-ANL,
Frequency Stability VS Voltage	UM	TX-DNH, TX-DNL,TX-ANH,TX-ANL,
Transient Frequency Behavior	UM	TX-DNH, TX-ANH,
Transmit Conducted Spurious Emission	AM5, DM	TX-DNH, TX-ANH,
Transmit Radiated Spurious Emission	AM5, DM	TX-DNH, TX-ANH,
AC Power Line Conducted Emission	-	Charging
Radiated Emission	-	Charging

 $[\]sqrt{\cdot}$: is operation mode.

Report No.: CHTEW20050087 Page: 10 of 55 Issued: 2020-05-21

4.3 Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measuremen

Whet	Whether support unit is used?									
✓	✓ No									
Item	Equipment	Trade Name	Model No.	FCC ID	Power cord					
1										
2										

Report No.: CHTEW20050087 Page: 11 of 55 Issued: 2020-05-21

4.4 Testing environmental condition

Atmospher	ic Contions
Temperature:	21°C to 25°C
Relative Humidity:	20 % to 75 %.
Atmospheric Pressure:	860 mbar to 1060 mbar
Norminal Test Voltage:	V _N = DC 7.50V
Extrem Test Voltage @115%V _N :	V _H = DC 8.63V
Extrem Test Voltage @85%V _N :	V _L = DC 6.38V

4.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.65 dB	(1)
Radiated Emission 1~18GHz	5.16 dB	(1)
Radiated Emission 18-40GHz	5.54 dB	(1)
Occupied Bandwidth	35 Hz	(1)
FM deviation	25 Hz	(1)
Audio level	0.62 dB	(1)
Low Pass Filter Response	0.76 dB	(1)
Modulation Limiting	0.42 %	(1)
Transient Frequency Behavior	6.8 %	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW20050087 Page: 12 of 55 Issued: 2020-05-21

4.6 Equipments Used during the Test

•	TS8613 Test s	ystem					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2019/10/26	2020/10/25
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2019/10/26	2020/10/25
•	RF Communication Test Set	HP	HTWE0038	8920A	3813A10206	2019/10/26	2020/10/25
•	Digital intercom communication tester	Aeroflex	HTWE0255	3920B	1001682041	2019/10/26	2020/10/25
•	Signal Generator	R&S	HTWE0191	SML02	100507	2019/10/26	2020/10/25
•	RF Control Unit	Tonscend	HTWE0294	JS0806-2	N/A	N/A	N/A
0	Filter-VHF	Microwave	HTWE0309	N26460M1	498702	N/A	N/A
•	Filter-UHF	Microwave	HTWE0311	N25155M2	498704	N/A	N/A
•	Power Divider	Microwave	HTWE0043	OPD1040-N-4	N/A	2019/05/24	2020/05/23
•	Power Divider	Microwave	HTWE0043	OPD1040-N-4	N/A	2020/05/22	2021/05/21
•	Attenuator	JFW	HTWE0292	50FH-030-100	N/A	2020/05/16	2021/05/15
•	Attenuator	JFW	HTWE0293	50-A-MFN-20	0322	2020/05/16	2021/05/15
•	Test software	HTW	N/A	Radio ATE	N/A	N/A	N/A

•	Auxiliary Equipment									
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2019/10/23	2020/10/22			
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A			

•	Radiated Spu	urious Emission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2018/04/02	2021/04/01
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/10
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2018/04/04	2021/04/03
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2019/11/14	2020/11/13
•	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2019/05/23	2020/05/22
•	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2020/05/21	2021/05/20
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2020/05/09	2021/05/08
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2020/05/09	2021/05/08
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2020/05/09	2021/05/08
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2020/05/09	2021/05/08

Report No.: CHTEW20050087 Page: 13 of 55 Issued: 2020-05-21

•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2020/05/09	2021/05/08
•	EMI Test Software	Audix	N/A	E3	N/A	N/A	N/A

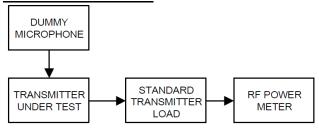
•	Conducted Emission									
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27			
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2019/10/26	2020/10/25			
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2019/10/23	2020/10/22			
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2019/10/23	2020/10/22			
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2019/10/23	2020/10/22			
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A			

•	Radiated Em	ission-6th test	site				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2019/10/26	2020/10/25
•	Ultra-Broadband Antenna	SCHWARZBEC K	HTWE0123	VULB9163	538	2018/04/04	2021/04/03
•	Pre-Amplifer	SCHWARZBEC K	HTWE0295	BBV 9742	N/A	2019/11/14	2020/11/13
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-01	N/A	N/A	2019/05/27	2020/05/26
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-01	N/A	N/A	2020/05/25	2021/05/24
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-02	SUCOFLEX10 4	501184/4	2019/05/27	2020/05/26
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-02	SUCOFLEX10 4	501184/4	2020/05/25	2021/05/24
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated em	ission-7th tes	t site				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25
•	Horn Antenna	SCHWARZBE CK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0201	BBV 9718	9718-248	2019/05/23	2020/05/22
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0201	BBV 9718	9718-248	2020/05/21	2021/05/20
•	RF Connection Cable	HUBER+SUH NER	HTWE0121-01	RE-7-FH	N/A	2020/05/09	2021/05/08
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

Report No.: CHTEW20050087 Page: 14 of 55 Issued: 2020-05-21

5 TEST CONDITIONS AND RESULTS


5.1 Conducted Carrier Output Power

LIMIT

FCC Part 90.205, FCC Part 2.1046

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation.

TEST CONFIGURATION

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Correct for all losses in the RF path
- (3) Measure the transmitter output power
- (4) If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

TEST MODE

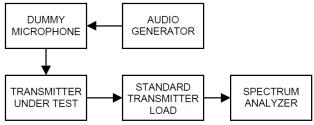
Please reference to the section 3.4

TEST RESULTS

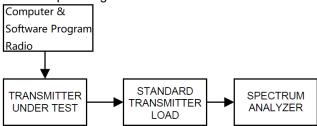
Please refer to appendix A on the section 8 appendix report

Report No.: CHTEW20050087 Page: 15 of 55 Issued: 2020-05-21

5.2 99% Occupied Bandwidth & 26dB Bandwidth


LIMIT

FCC Part 90.209, FCC Part 2.1049


Frequency band (MHz)	Channel spacing (kHz)	Authorized bandwidth (kHz)
Below 25 ²		
25-50	20	20
72-76	20	20
150-174	17.5	^{1 3} 20/11.25/6
216-220 ⁵	6.25	20/11.25/6
220-222	5	4
406-512 ²	¹ 6.25	¹³⁶ 20/11.25/6
806-809/851-854	12.5	20
809-824/854-869	25	⁶ 20
896-901/935-940	12.5	13.6
902-928 ⁴		
929-930	25	20
1427-1432 ⁵	12.5	12.5
³ 2450-2483.5 ²		
Above 2500 ²		

TEST CONFIGURATION

Test setup for Analog:

Test setup for Digital:

TEST PROCEDURE

- (1) Connect the equipment as illustrated
- (2) Spectrum set as follow:

Centre frequency = the nominal EUT channel center frequency,

The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of $1.5 \times OBW$ is sufficient)

RBW = 1% to 5% of the anticipated OBW, VBW ≥ 3 × RBW, Sweep = auto,

Detector function = peak, Trace = max hold

- (3) Set 99% Occupied Bandwidth and 26dB Bandwidth
- (4) Measure and record the results in the test report.

Report No.: CHTEW20050087 Page: 16 of 55 Issued: 2020-05-21 **TEST MODE** Please reference to the section 3.4 **TEST RESULTS ⊠** Passed ■ Not Applicable Please refer to appendix B on the section 8 appendix report

Report No.: CHTEW20050087 Page: 17 of 55 Issued: 2020-05-21

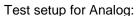
5.3 Emission Mask

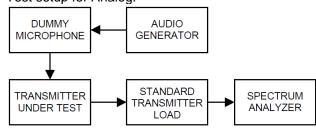
LIMIT

FCC Part 90.210, FCC Part 2.1049

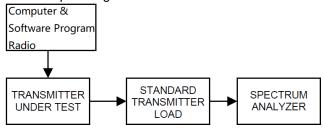
	Mask for equipment with audio low	Mask for equipment without audio low	\Box
Frequency band (MHz)	pass filter	pass filter	
	A or B	A or C	\dashv
Below 25 ¹			
25-50	В	C	
72-76	В	C	
150-174 ²	B, D, or E	C, D or E	
150 paging only	В	С	
220-222	F	F	
421-512 ^{2 5}	B, D, or E	C, D, or E	
450 paging only	В	G	
806-809/851-854 ⁶	В	Н	
809-824/854-869 ³⁵	B, D	D, G.	
896-901/935-940	I	J	
902-928	K	K	
929-930	В	G	
4940-4990 MHz	L or M	L or M	
5850-5925 ⁴			
All other bands	В	С	

Emission Mask D — 12.5 kHz channel bandwidth equipment


For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:


- (1) On any frequency from the centre of the authorized bandwidth f₀ to 5.625 kHz removed from f₀: 0dB
- (2) On any frequency removed from the centre of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(f_d-2.88 kHz) dB.
- (3) On any frequency removed from the centre of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:


- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

TEST CONFIGURATION

Test setup for Digital:

Report No.: CHTEW20050087 Page: 18 of 55 Issued: 2020-05-21

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- 2) Spectrum set as follow:

Centre frequency = fundamental frequency, span=120kHz for 12.5kHz channel spacing, RBW=100Hz, VBW=1000Hz, Sweep = auto,

Detector function = peak, Trace = max hold

- 3) Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4) Apply Input Modulation Signal to EUT according to Section 3.4
- 5) Measure and record the results in the test report.

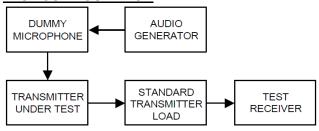
TEST MODE

Please reference to the section 3.4

TEST	RESU	LTS
-------------	-------------	-----

⊠ Passed	■ Not Applicable
<u> </u>	

Please refer to appendix C on the section 8 appendix report


Report No.: CHTEW20050087 Page: 19 of 55 Issued: 2020-05-21

5.4 Modulation Limit

LIMIT

FCC Part 2.1047(b) 2.5kHz for 12.5 KHz Channel Spacing System

TEST CONFIGURATION

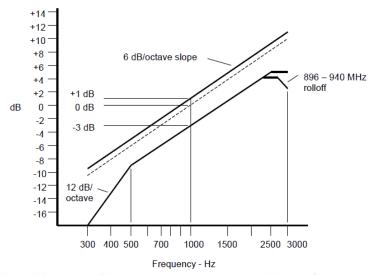
TEST PROCEDURE

- Connect the equipment as illustrated.
- 2) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 3) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15,000 Hz. Turn the de-emphasis function off.
- Apply Input Modulation Signal to EUT according to Section 3.4 and vary the input level from –20 to +20dB.
- Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 6) Repeat step 4-5 with input frequency changing to 300Hz, 1004Hz, 1500Hz and 2500Hz in sequence.

TEST MODE

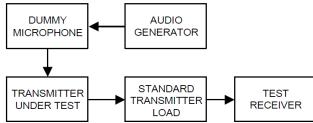
Please reference to the section 3.4

TEST RESULTS


Please refer to appendix D on the section 8 appendix report

Report No.: CHTEW20050087 Page: 20 of 55 Issued: 2020-05-21

5.5 Audio Frequency Response


LIMIT

2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- 2) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for 50 Hz to 15,000 Hz. Turn the de-emphasis function off.
- 3) Set the DMM to measure rms voltage.
- 4) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 5) Apply Input Modulation Signal to EUT according to Section 3.4
- 6) Set the test receiver to measure rms deviation and record the deviation reading.
- 7) Record the DMM reading as V_{REF} .
- 8) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- Vary the audio frequency generator output level until the deviation reading that was recorded in step 6) is obtained.
- 10) Record the DMM reading as V_{FREQ}
- 11) Calculate the audio frequency response at the present frequency as: audio frequency response= $20log_{10}$ (V_{FREQ}/V_{REF}).
- 12) Repeat steps 8) through 11) for all the desired test frequencies

Report No.: CHTEW20050087 Page: 21 of 55 Issued: 2020-05-21

TEST MODE

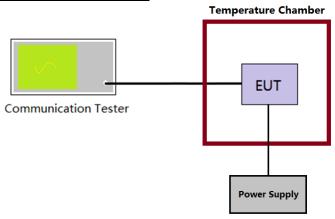
Please reference to the section 3.4

TEST RESULTS

 $oxed{oxed}$ Passed $oxed{oxed}$ Not Applicable

Please refer to appendix E on the section 8 appendix report

Report No.: CHTEW20050087 Page: 22 of 55 Issued: 2020-05-21


5.6 Frequency stability VS Temperature

LIMIT

FCC Part 90.213, FCC Part 2.1055

		Mobile stations	
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power
Below 25	1 2 3 ₁₀₀	100	200
25-50	20	20	50
72-76	5		50
150-174	5 115	⁶ 5	⁴⁶ 50
216-220	1.0		1.0
220-222 ¹²	0.1		1.5
421-512	7 11 142.5	85	85
806-809	141.0	1.5	1.5
809-824	141.5	2.5	2.5
851-854	1.0	1.5	1.5
854-869	1.5	2.5	2.5
896-901	140.1	1.5	1.5
902-928	2.5	2.5	2.5
902-928 ¹³	2.5	2.5	2.5
929-930	1.5		
935-940	0.1	1.5	1.5
1427-1435	⁹ 300	300	300
Above 2450 ¹⁰			

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- The EUT was placed inside the temperature chamber.
- Turn EUT off and set the chamber temperature to −30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency as MCF_{MHz}.
- 4) Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with 10°C increased per stage until the highest temperature of +50°C reached.

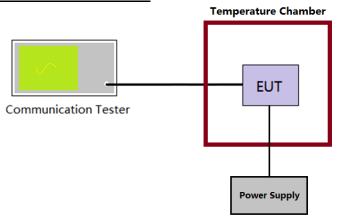
TEST MODE

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix F on the section 8 appendix report

Report No.: CHTEW20050087 Page: 23 of 55 Issued: 2020-05-21


5.7 Frequency stability VS Voltage

LIMIT

FCC Part 90.213, FCC Part 2.1055

		Mobile stations		
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power	
Below 25	1 2 3100	100	200	
25-50	20	20	50	
72-76	5		50	
150-174	5 115	⁶ 5	^{4 6} 50	
216-220	1.0		1.0	
220-222 ¹²	0.1	1.5	1.5	
421-512	7 11 142.5	85	85	
806-809	141.0	1.5	1.5	
809-824	141.5	2.5	2.5	
851-854	1.0	1.5	1.5	
854-869	1.5	2.5	2.5	
896-901	140.1	1.5	1.5	
902-928	2.5	2.5	2.5	
902-928 ¹³	2.5	2.5	2.5	
929-930	1.5			
935-940	0.1	1.5	1.5	
1427-1435	⁹ 300	300	300	
Above 2450 ¹⁰				

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- The EUT was placed inside the temperature chamber at 25°C
- 3) Record the carrier frequency of the transmitter as MCF_{MHZ}
- 4) Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- Repeat step 3 measure with varied ±15% of the nominal value measured at the input to the EUT

TEST MODE

Please reference to the section 3.4

TEST RESULTS

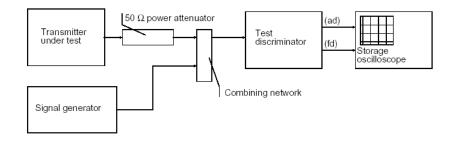
Please refer to appendix G on the section 8 appendix report

Report No.: CHTEW20050087 Page: 24 of 55 Issued: 2020-05-21

5.8 Transmitter Frequency Behavior

LIMIT

FCC part 90.214


Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

	Maximum frequency difference ³	All equipment		
Time intervals ^{1 2}		150 to 174 MHz	421 to 512 MHz	
Transient	Frequency Behavior for E	quipment Designed to Opera	te on 25 kHz Channels	
t ₁ ⁴	±25.0 kHz	5.0 ms	10.0 ms	
t ₂	±12.5 kHz	20.0 ms	25.0 ms	
t ₃ ⁴	±25.0 kHz	5.0 ms	10.0 ms	
Transient	Frequency Behavior for Eq	uipment Designed to Operat	e on 12.5 kHz Channels	
t ₁ ⁴	±12.5 kHz	5.0 ms	10.0 ms	
t ₂	±6.25 kHz	20.0 ms	25.0 ms	
t ₃ ⁴	±12.5 kHz	5.0 ms	10.0 ms	
Transient	Frequency Behavior for Eq	uipment Designed to Operat	e on 6.25 kHz Channels	
t ₁ ⁴	±6.25 kHz	5.0 ms	10.0 ms	
t ₂	±3.125 kHz	20.0 ms	25.0 ms	
t ₃ ⁴	±6.25 kHz	5.0 ms	10.0 ms	

Note:

- 1. On is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.
 - 1) t₁ is the time period immediately following ton.
 - 2) t₂ is the time period immediately following t₁.
 - 3) t₃ is the time period from the instant when the transmitter is turned off until toff.
 - 4) t_{off} is the instant when the 1 kHz test signal starts to rise.
- 2. During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in §90.213.
- Difference between the actual transmitter frequency and the assigned transmitter frequency.
- If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect DUT into Test discriminator and Storage Oscilloscope and keep DUT stats ON;
- 2) Input 1kHz signal into DUT;
- 3) Set the modulation domain analyzer to trigger on the rising edge of the waveform in order to capture a single-shot turn-on of the transmitter signals;
- 4) Keep DUT in OFF state and Key the PTT;
- 5) Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the periods t₁ and t₂, and shall also remain within limits following t₂;
- 6) Adjust the modulation domain analyzer to trigger on the falling edge of the transmitter waveform in order to capture a single-shot turn-off transmitter of the transmitter signal.
- 7) Keep the digital portable radio in ON state and unkey the PTT;
- 8) Observe the stored oscilloscope of modulation domain analyzer, The signal trace shall be maintained within the allowable limits during the period t₃.
- 9) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ±12.5 kHz deviation and set its output level to -100dBm.
- 10) Turn on the transmitter.

Report No.: CHTEW20050087 Page: 25 of 55 Issued: 2020-05-21

11) Supply sufficient attenuation via the RF attenuator to provide an input level to the stored oscilloscope

- 12) that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the stored oscilloscope as P₀.
- 13) Turn off the transmitter.
- 14) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- 15) Remove the attenuation, so the input power to the stored oscilloscope is increased by 30 dB when the transmitter is turned on.
- 16) Adjust the vertical amplitude control of the stored oscilloscope to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- 17) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be ton. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- 18) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum
- 19) Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

T	ES.	ГΝ	IOI	DE

Please reference to the section 3.4

TEST RESULTS

⊠ Passed	☐ Not Applicable
Please refer to a	appendix H on the section 8 appendix report

Report No.: CHTEW20050087 Page: 26 of 55 Issued: 2020-05-21

5.9 Transmit Conducted Spurious Emission

LIMIT

FCC Part 90.210, FCC Part 2.1051

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

In general, the worse case attenuation requirement shown above was applied.

For 12.5kHz:

Calculation: Limit (dBm) =EL-50-10log (P)

EL is the emission level of the Output Power expressed in dBm,

Limit (dBm) = P(dBm)-50-10 log (Pwatts) = -20dBm

For 25kHz:

Calculation: Limit (dBm) =EL-43-10log (P)

EL is the emission level of the Output Power expressed in dBm,

Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the equipment as illustrated, with the notch filter by-passed.
- 2. Apply Input Modulation Signal to EUT according to Section 3.4
- 3. Adjust the spectrum analyzer for the following settings:

Below 1GHz: RBW=100kHz, VBW=300kHz

Above 1GHz: RBW=1MHz, VBW=3MHz

Detector=Peak, Sweep time=Auto, Trace=Max hold

- 4. Scan frequency range up to 10th harmonic.
- 5. Record the frequencies and levels of spurious emissions

TEST MODE

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix I on the section 8 appendix report

Report No.: CHTEW20050087 Page: 27 of 55 Issued: 2020-05-21

5.10 Transmitter Radiated Spurious Emission

Radiated spurious emissions are emissions from the equipment when transmitting into a nonradiating load on a frequency or frequencies that are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

LIMIT

FCC Part 90.210. FCC Part 2.1051

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.

In general, the worse case attenuation requirement shown above was applied.

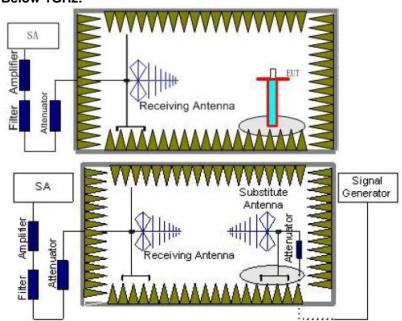
For 12.5kHz:

Calculation: Limit (dBm) =EL-50-10log (P)

EL is the emission level of the Output Power expressed in dBm,

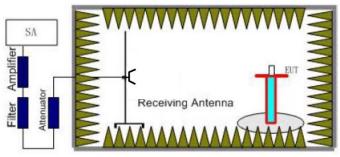
Limit (dBm) = P(dBm)-50-10 log (Pwatts) = -20dBm

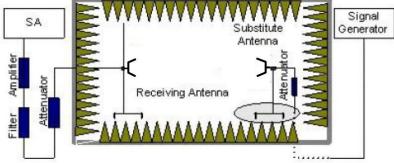
For 25kHz:


Calculation: Limit (dBm) =EL-43-10log (P)

EL is the emission level of the Output Power expressed in dBm,

Limit (dBm) = P(dBm)-43-10 log (Pwatts) = -13dBm


TEST CONFIGURATION


Below 1GHz:

Report No.: CHTEW20050087 Page: 28 of 55 Issued: 2020-05-21

Above 1GHz:

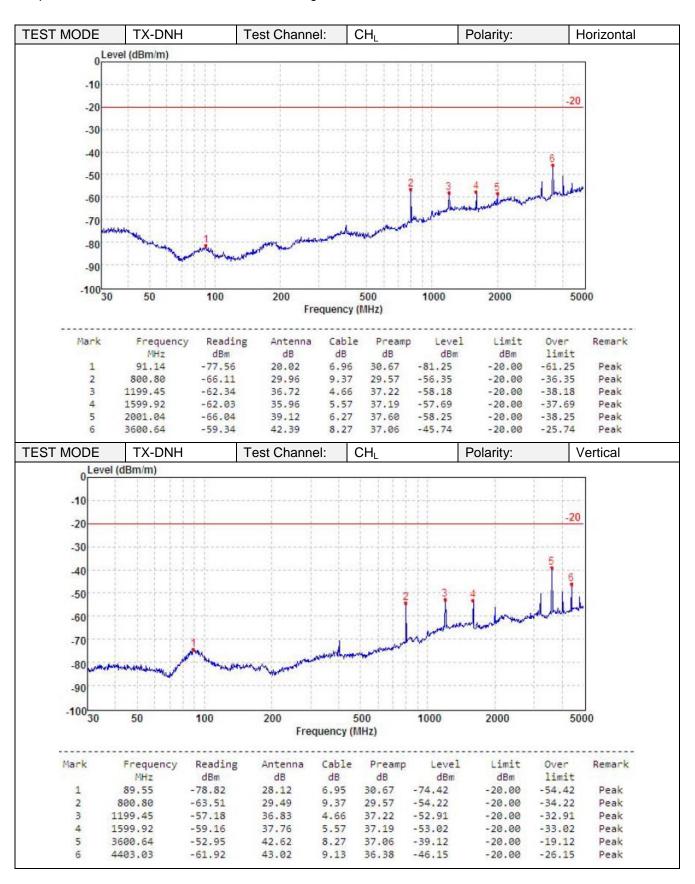
TEST PROCEDURE

- 1. Standard Transmitter Load with a 50Ω input impedance and an output impedance matched to the test equipment.
- 2. EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 3. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

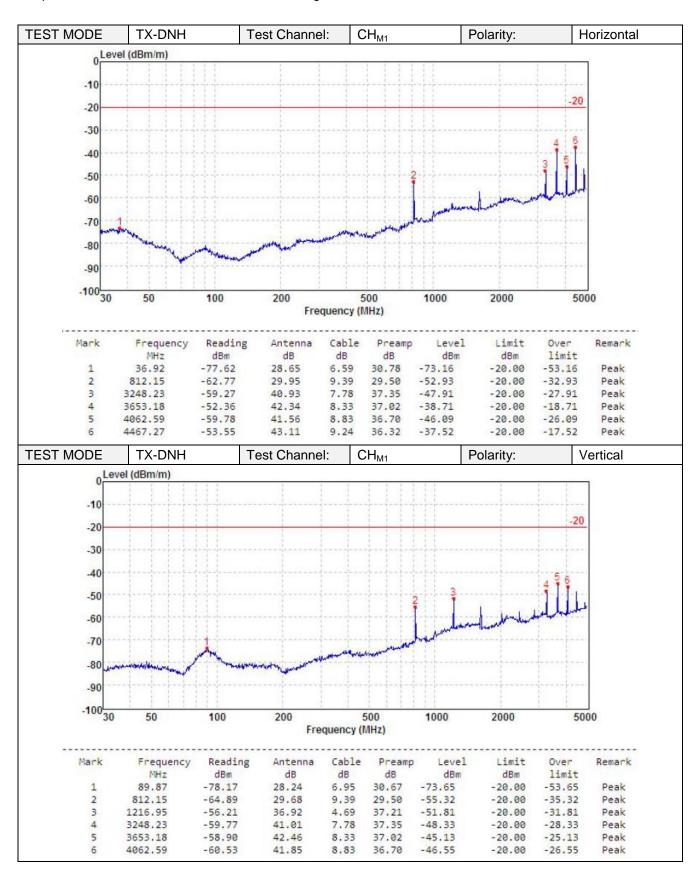
The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl - Ga

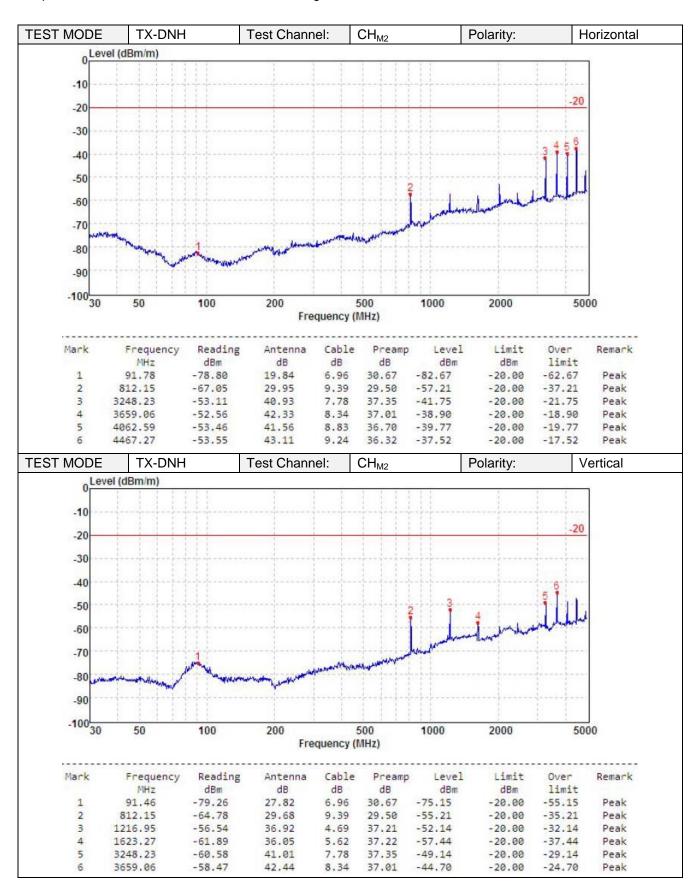
We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl - Ga

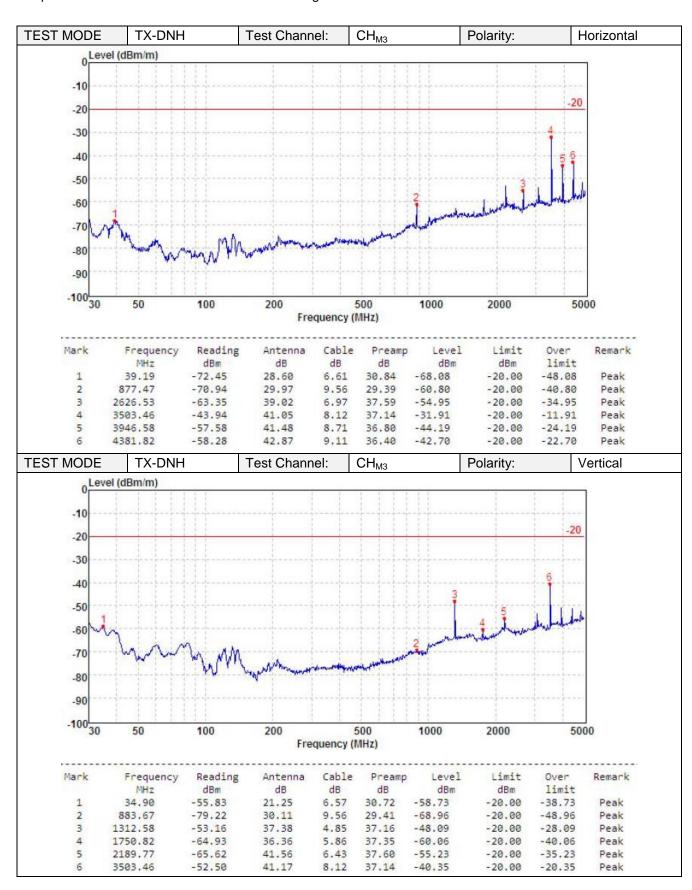

- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

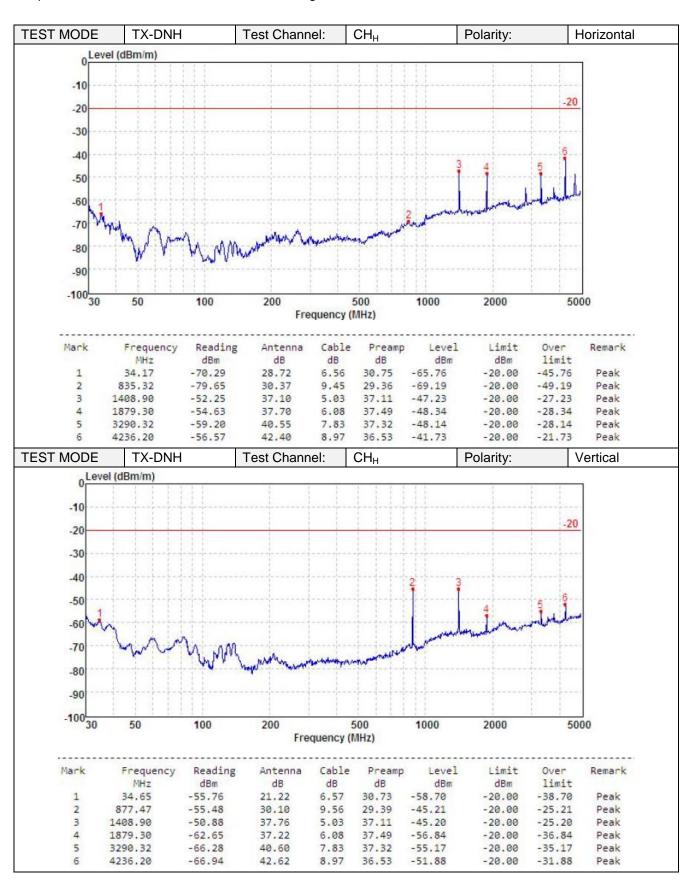
TEST MODE

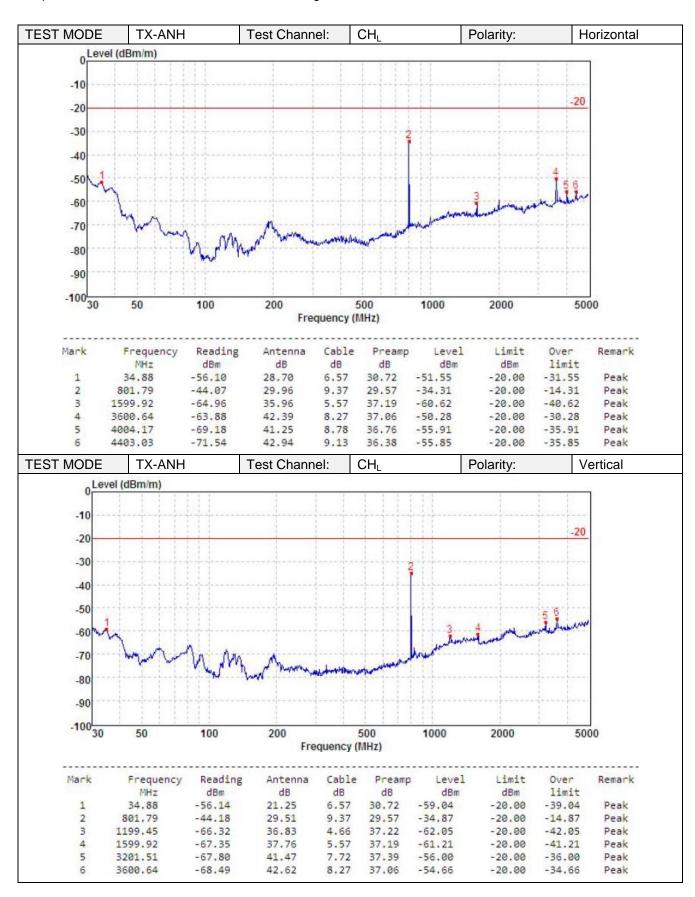

Please reference to the section 3.4

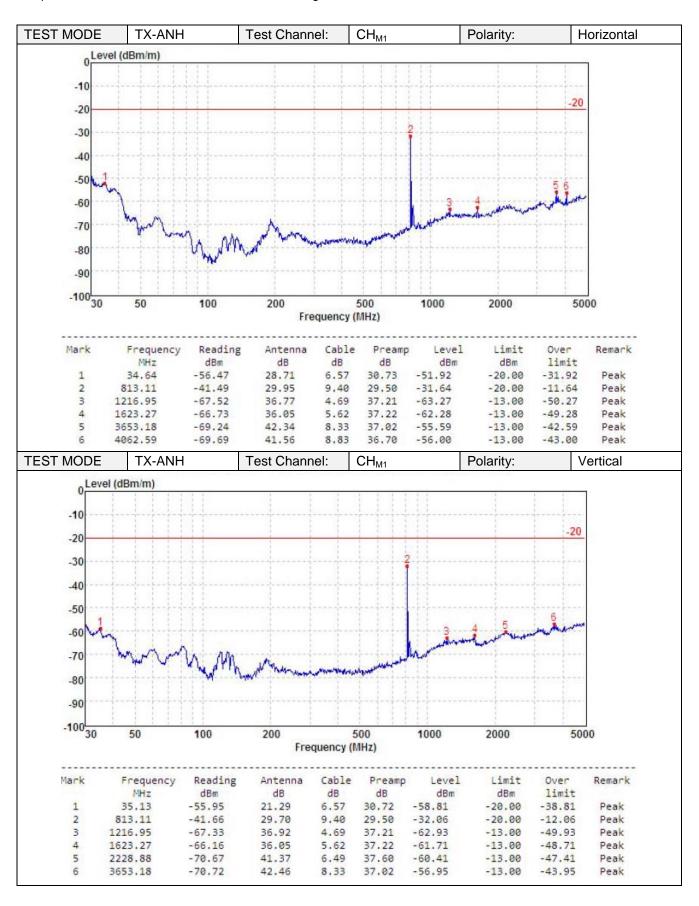
TEST RESULTS

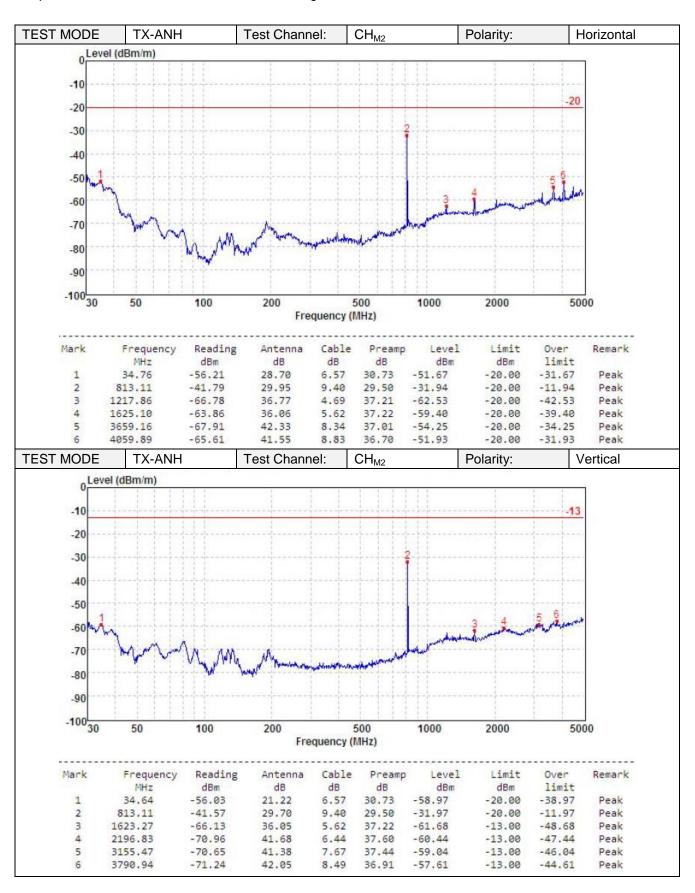

 Report No.: CHTEW20050087 Page: 29 of 55 Issued: 2020-05-21

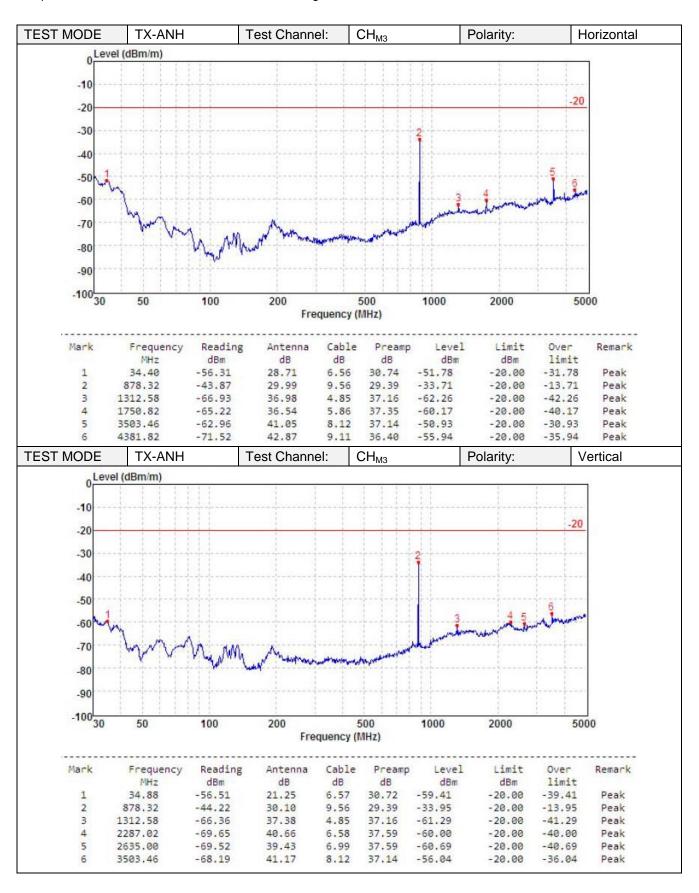

Report No.: CHTEW20050087 Page: 30 of 55 Issued: 2020-05-21

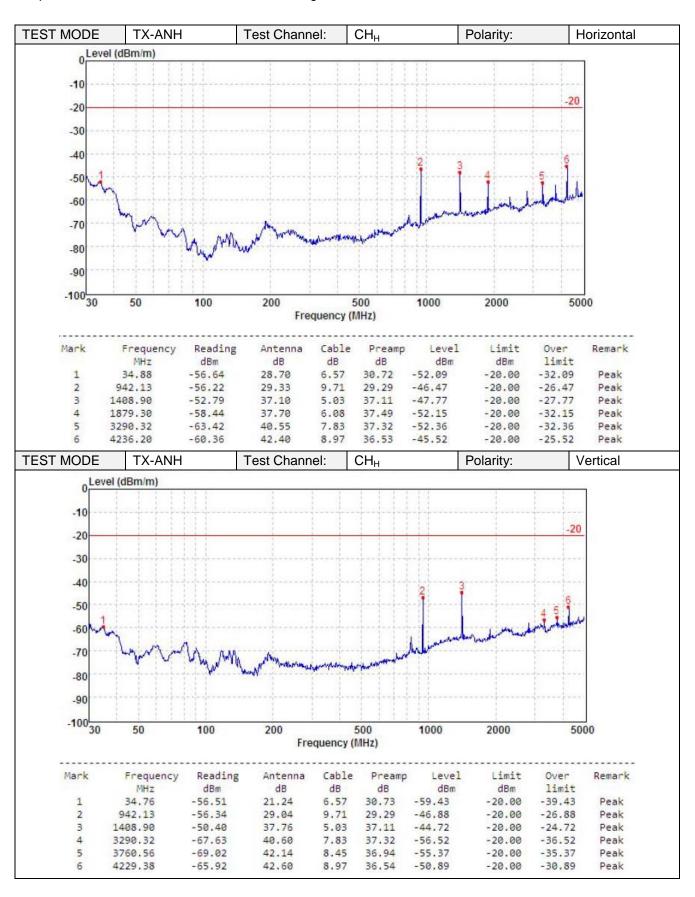

Report No.: CHTEW20050087 Page: 31 of 55 Issued: 2020-05-21


Report No.: CHTEW20050087 Page: 32 of 55 Issued: 2020-05-21


Report No.: CHTEW20050087 Page: 33 of 55 Issued: 2020-05-21


Report No.: CHTEW20050087 Page: 34 of 55 Issued: 2020-05-21


Report No.: CHTEW20050087 Page: 35 of 55 Issued: 2020-05-21

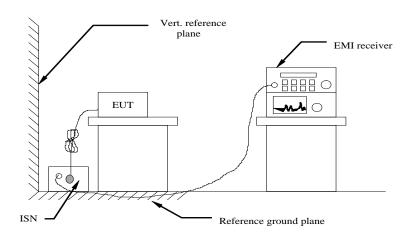

Report No.: CHTEW20050087 Page: 36 of 55 Issued: 2020-05-21

Report No.: CHTEW20050087 Page: 37 of 55 Issued: 2020-05-21

Report No.: CHTEW20050087 Page: 38 of 55 Issued: 2020-05-21

Report No.: CHTEW20050087 Page: 39 of 55 Issued: 2020-05-21

5.11 AC Power Line Conducted Emission


The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm / 50 u Henry as specified by section 5.1 of ANSI C63.4. Cables and peripherals were moved to find the maximum emission levels for each frequency.

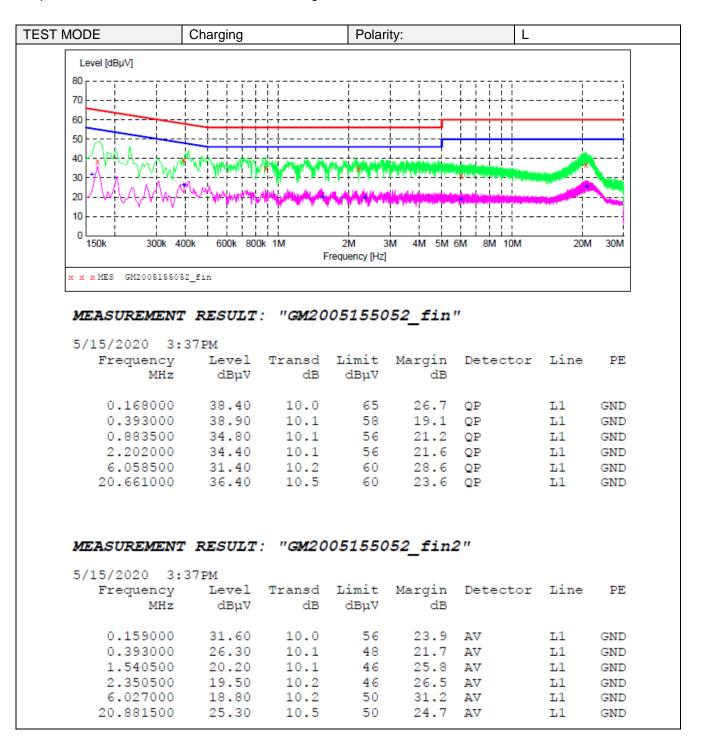
Limit

FCC part 15.107(a)

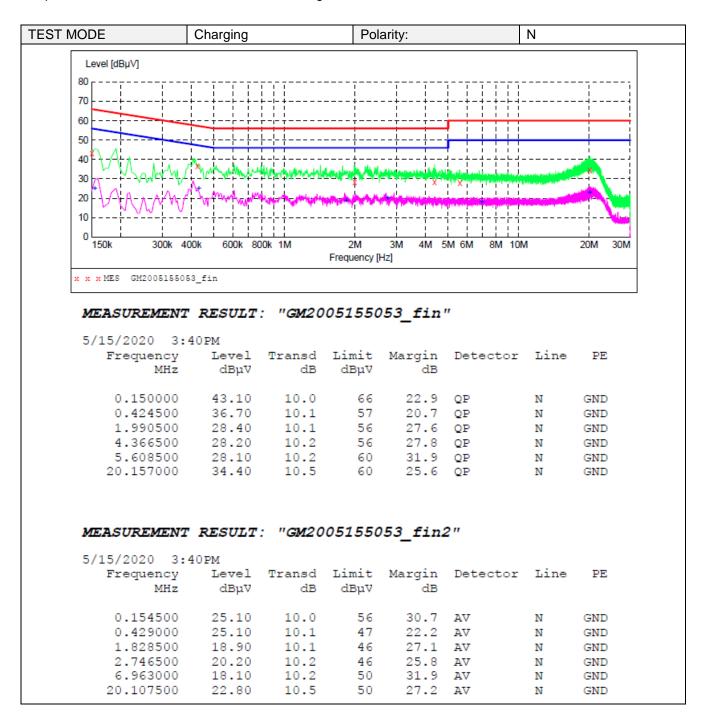
	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

TEST CONFIGURATION

TEST PROCEDURE


- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4
- 2 Support equipment, if needed, was placed as per ANSI C63.4
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4 If a EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

TEST MODE


Please reference to the section 3.4

TEST RESULTS

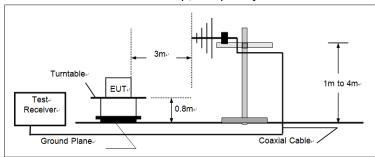
 Report No.: CHTEW20050087 Page: 40 of 55 Issued: 2020-05-21

Report No.: CHTEW20050087 Page: 41 of 55 Issued: 2020-05-21

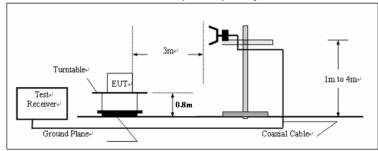
Report No.: CHTEW20050087 Page: 42 of 55 Issued: 2020-05-21

5.12 Radiated Emission

LIMIT


For unintentional device, according to § 15.109(a) except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of emission (MHz)	Field strength (microvolts/meter)
30-88	100
88-216	150
216-960	200
Above 960	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

TEST CONFIGURATION

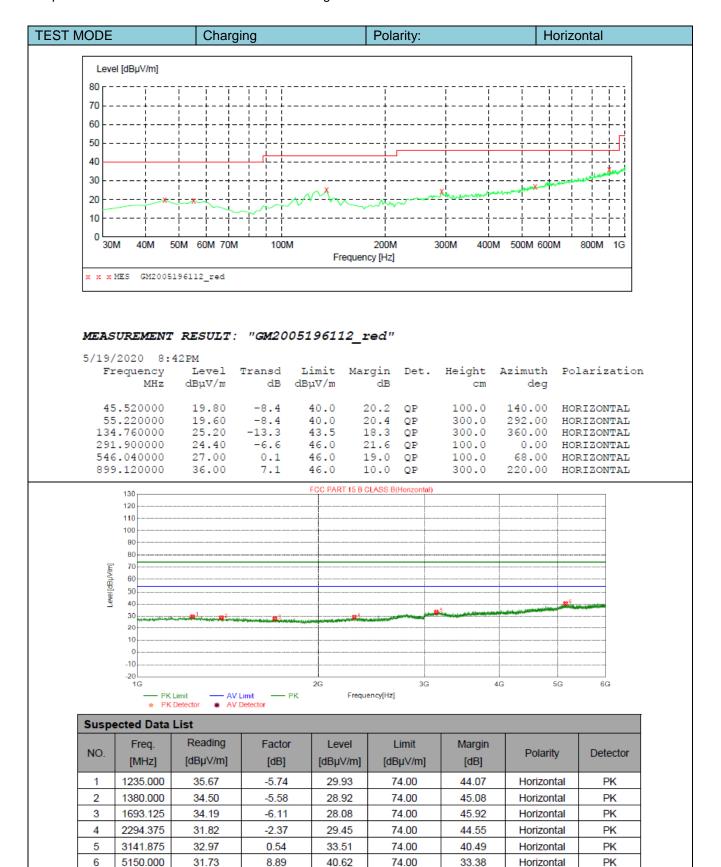
(A) Radiated Emission Test Set-Up, Frequency below 1000MHz

(B) Radiated Emission Test Set-Up, Frequency above 1000MHz

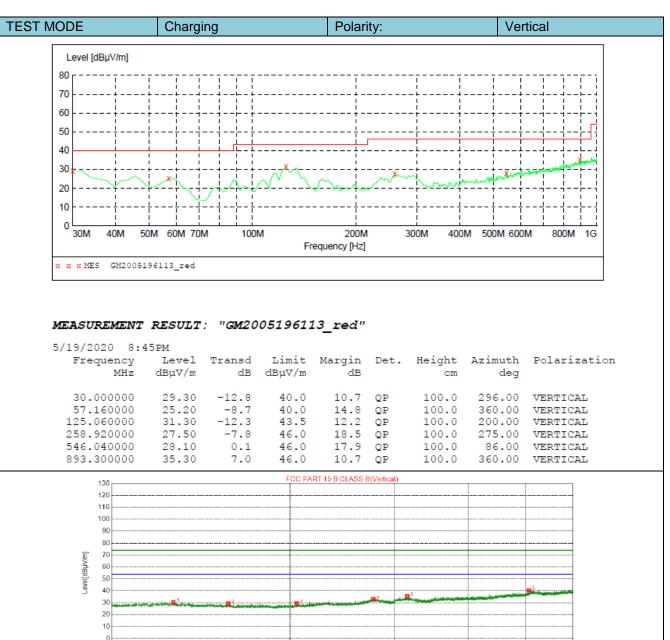
TEST PROCEDURE

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360°C to acquire the highest emissions from EUT
- 3 And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4 Repeat above procedures until all frequency measurements have been completed.

TEST MODE


Please reference to the section 3.4

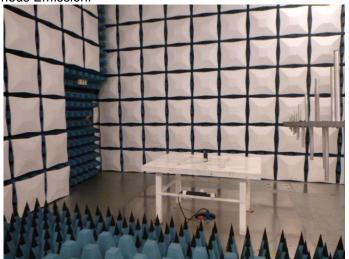
TEST RESULTS

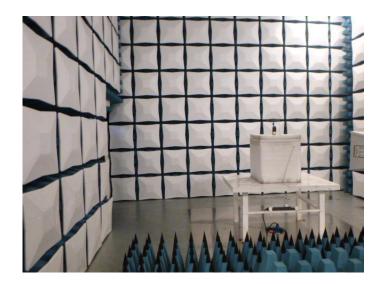

Note:

The EUT shall be scanned from 30 MHz to the 5th harmonic of the highest oscillator frequency in the digital devices or 1 GHz whichever is higher.

Report No.: CHTEW20050087 Page: 43 of 55 Issued: 2020-05-21

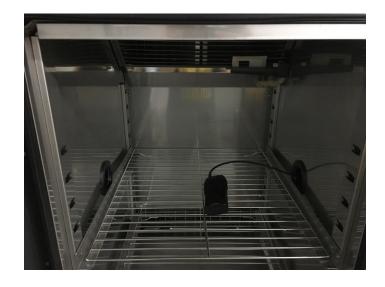
Report No.: CHTEW20050087 Page: 44 of 55 Issued: 2020-05-21


	100						
	120					ļ	-
	110					ļ	
	100					ļ	-
	90					ļ	
	80						_
F	70						_
Ž.	60		***************************************				_
Level[dBµV/m]	50						_
ewe.	40					88. 6	
_	30	<u></u> 1	-m ³	Marine Marine	and the latest designation of the latest des		
	20	Alternative Control of the Control o					
	10						
	0						_
	-10						
	20						
	1	G 2	G 3	G 4	G 5	iG 6	6G
	— PK Limit — AV Limit — PK Frequency[Hz] ★ PK Detector ★ AV Detector						


Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1	1270.625	36.10	-5.65	30.45	74.00	43.55	Vertical	PK
2	1573.125	35.39	-6.11	29.28	74.00	44.72	Vertical	PK
3	2052.500	33.80	-4.34	29.46	74.00	44.54	Vertical	PK
4	2763.125	31.52	1.54	33.06	74.00	40.94	Vertical	PK
5	3153.125	34.86	0.60	35.46	74.00	38.54	Vertical	PK
6	5061.250	32.09	8.43	40.52	74.00	33.48	Vertical	PK

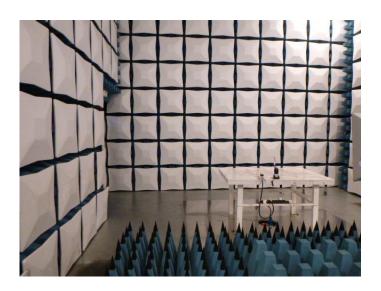
Report No.: CHTEW20050087 Page: 45 of 55 Issued: 2020-05-21

6 TEST SETUP PHOTOS OF THE EUT


Transmitter Radiated Spurious Emission:

Report No.: CHTEW20050087 Page: 46 of 55 Issued: 2020-05-21

Frequency Stability:


Other RF test item:

Radiated Emission:

Report No.: CHTEW20050087 Page: 47 of 55 Issued: 2020-05-21

Conducted Emission:


Report No.: CHTEW20050087 Page: 48 of 55 Issued: 2020-05-21

7 EXTERNAL AND INTERNAL PHOTOS OF THE EUT

External Photos of the EUT

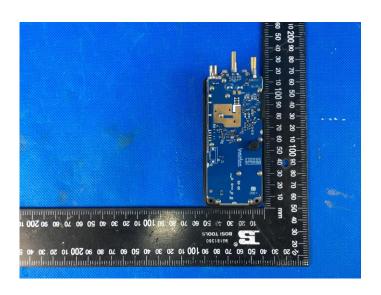
Report No.: CHTEW20050087 Page: 49 of 55 Issued: 2020-05-21

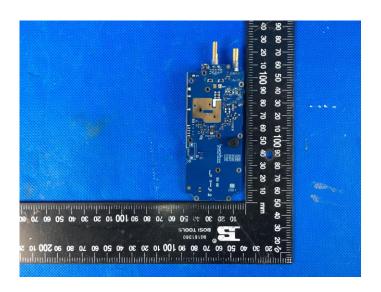
Report No.: CHTEW20050087 Page: 50 of 55 Issued: 2020-05-21

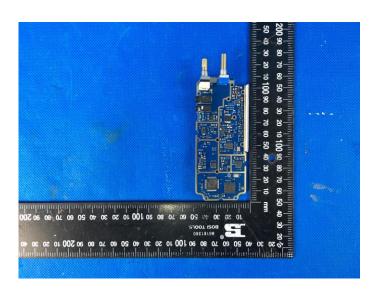
Report No.: CHTEW20050087 Page: 51 of 55 Issued: 2020-05-21

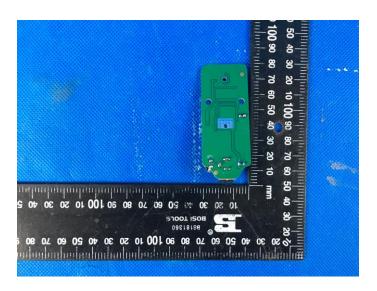


Report No.: CHTEW20050087 Page: 52 of 55 Issued: 2020-05-21


Internal Photos of the EUT




Report No.: CHTEW20050087 Page: 53 of 55 Issued: 2020-05-21


Report No.: CHTEW20050087 Page: 54 of 55 Issued: 2020-05-21

Report No.: CHTEW20050087 Page: 55 of 55 Issued: 2020-05-21

8 APPENDIX REPORT