

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road,

Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 27 TEST REPORT FCC Part 27			
Report Reference No:	GTS20200612012-1-3-10		
FCC ID	U7GBBGRM		
Compiled by (position+printed name+signature).	. File administrators Jimmy Wang	Jon May	
Supervised by (position+printed name+signature).	. Test Engineer Aaron Tan	A CONDANT TECHNOLOGIC	
Approved by (position+printed name+signature).	· Manager Jason Hu	Jaconthuis	
Date of issue	. Jun.16, 2020		
Testing Laboratory Name	Shenzhen Global Test Service Co.		
Address	No.7-101 and 8A-104, Building 7 and . Garden, No.98, Pingxin North Road, Street, Longgang District, Shenzhen	Shangmugu Community, Pinghu	
Applicant's name		<u> </u>	
Address	· 349 North Vinewood Street, Escondi	do, California, USA 92029	
Test specification			
Standard	FCC CFR Title 47 Part 2, Part 27 . EIA/TIA 603-D: 2010 KDB 971168 D01		
Shenzhen Global Test Service Co.,Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd.takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.			
Test item description Global IOT mobile radio			
Trade Mark	. blackbox		
Manufacturer	· Klein Electronics, Inc.		
Model/Type reference	. Blackbox-BBGR-M		
Listed Models	Listed ModelsN/A		
Modulation Type	. QPSK, 16QAM		
LTE Band	. 698-716MHz		
ANT Gain	. 2.50dBi		
Rating	. DC 12V		
Hardware version DJ018_MB_V1.3			
Software version			
Result	PASS		

TEST REPORT

Test Report No. :	GTS20200612012-1-3-10 Jun.16, 2020 Date of issue	
Fauinment under Teet	: Global IOT mobile radio	
Equipment under Test		
Model /Type	: Blackbox-BBGR-M	
Listed Models	: N/A	
Applicant	: Klein Electronics, Inc.	
Address	: 349 North Vinewood Street, Escondido, California, USA 9202	9
Manufacturer	: Klein Electronics, Inc.	
Address	: 349 North Vinewood Street, Escondido, California, USA 9202	9

Test result	Pass *
-------------	--------

* In the configuration tested, the EUT complied with the standards specified page 4.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

<u>1</u>	SUMMARY	4
1.1	TEST STANDARDS	4
1.2	Test Description	4
1.3	Test Facility	5
1.4	Statement of the measurement uncertainty	5
<u>2</u>	GENERAL INFORMATION	6
2.1	General Remarks	6
2.2	Environmental conditions	6
2.3	Description of Test Modes	6
2.4	Equipments Used during the Test	7
2.5	Related Submittal(s) / Grant (s)	8
2.6	Modifications	8
<u>3</u>	TEST CONDITIONS AND RESULTS	9
3.1	Output Power	9
3.3	Peak-to-Average Ratio (PAR)	14
3.4	Occupied Bandwidth and Emission Bandwidth	15
3.5	Band Edge compliance	16
3.6	Spurious Emission	17
3.7	Frequency Stability under Temperature & Voltage Variations	21
<u>4</u>	TEST SETUP PHOTOS OF THE EUT	23
<u>5</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	23

1 <u>SUMMARY</u>

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 27 : MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

TIA/EIA 603 D June 2010:Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01: v02r02 MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

ANSI C63.4:2009: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2 Test Description

Test Item	Section in CFR 47	Result
RF Output Power	Part 2.1046 Part 27.50(c)(10)	Pass
Peak-to-Average Ratio	Part 27.50(c)(10)	Pass
99% & -26 dB Occupied Bandwidth	Part 2.1049 Part 27.53(g)	Pass
Spurious Emissions at Antenna Terminal	Part 2.1051 Part 27.53(g)	Pass
Field Strength of Spurious Radiation	Part 2.1053 Part 27.53(g)	Pass
Out of band emission, Band Edge	Part 2.1051 Part 27.53(g)	Pass
Frequency stability	Part 2.1055 Part 27.54	Pass

1.3.1 Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2024.

1.4 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Global Test Service Co.,Ltd. is reported

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: GTS20200612012-1-3-10 **GENERAL INFORMATION** 2

2.1 General Remarks

Date of receipt of test sample	:	May.25, 2020
Testing commenced on	:	May.25, 2020
Testing concluded on	:	Jun.16, 2020

2.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

25 ° C
45 %
950-1050mbar

Conducted testing:

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

Testing comple ID	GTS20200612012-1-3-1#(Engineer sample),
Testing sample ID:	GTS20200612012-1-3-2#(Normal sample)

2.3 Description of Test Modes

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

Note:

- 1. For the ERP/EIRP and radiated emission test, every axis (X, Y, Z) was verified, and show the worst resulton this report.
- 2. Test method and refer to 3GPP TS136521.

2.4 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2019/09/20	2020/09/19
LISN	R&S	ESH2-Z5	893606/008	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESPI3	101841-cd	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESCI7	101102	2019/09/20	2020/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2019/09/20	2020/09/19
Spectrum Analyzer	R&S	FSV40	100019	2019/09/20	2020/09/19
Vector Signal generator	Agilent	N5181A	MY49060502	2019/09/20	2020/09/19
Signal generator	Agilent	E4421B	3610AO1069	2019/09/20	2020/09/19
Climate Chamber	ESPEC	EL-10KA	A20120523	2019/09/20	2020/09/19
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2019/09/23	2020/09/22
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2019/10/12	2020/10/11
Bilog Antenna	Schwarzbeck	VULB9163	000976	2020/05/25	2021/05/24
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2019/09/20	2020/09/19
Amplifier	Schwarzbeck	BBV9179	9719-025	2019/09/20	2020/09/19
Amplifier	EMCI	EMC051845B	980355	2019/09/20	2020/09/19
Temperature/Humidity Meter	Gangxing	CTH-608	02	2019/09/20	2020/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750-O/O	KL142031	2019/09/20	2020/09/19
High-Pass Filter	K&L	41H10- 1375/U12750-O/O	KL142032	2019/09/20	2020/09/19
RF Cable(below 1GHz)	HUBER+SUHNER	RG214	RE01	2019/09/20	2020/09/19
RF Cable(above 1GHz)	HUBER+SUHNER	RG214	RE02	2019/09/20	2020/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2019/09/20	2020/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2019/09/20	2020/09/19
Test Control Unit	Tonscend	JS0806-1	178060067	2019/06/20	2020/06/19
Automated filter bank	Tonscend	JS0806-F	19F8060177	2019/06/20	2020/06/19
Universal Radio Communication	R&S	CMU200	114353	2019/09/20	2020/09/19
Wireless Commnunication Tester	R&S	CMW500	125408	2019/09/20	2020/09/19
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/

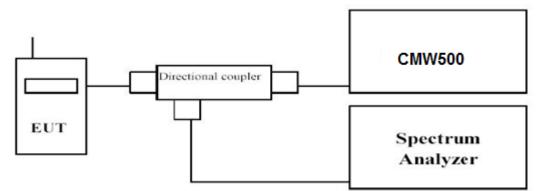
Report No.: GTS20200612012-1-3-10 2.5 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: U7GBBGRM filing to comply with of the FCC Part 24 Rules.

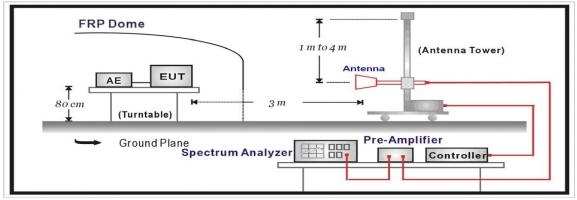
2.6 Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20200612012-1-3-10 3 TEST CONDITIONS AND RESULTS


3.1 Output Power

<u>LIMIT</u>


According to § 27.50 C(10): Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP."

TEST CONFIGURATION

Conducted Power Measurement

Radiated Power Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c) EUT Communicate with CMW500, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to thefrequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. Test site anechoic chamber refer to ANSI C63.4.

TEST RESULTS

Conducted Measurement:

		LTE FDD Band 12			
TX Channel	Frequency	RB Size/Offset	Average Power [dBm]		
Bandwidth	(MHz)	RB Size/Oliset	QPSK	16QAM	
		1 RB low	23.06	22.13	
		1 RB Mid	23.08	22.19	
		1 RB high	23.13	22.25	
	699.7	50% RB Low	23.02	21.99	
		50% RB mid	22.93	22.00	
		50% RB high	23.24	22.10	
		100% RB	22.06	20.76	
		1 RB low	22.83	21.97	
		1 RB Mid	22.96	22.23	
4 4 8411-		1 RB high	22.84	22.06	
1.4 MHz	707.5	50% RB Low	23.11	22.08	
		50% RB mid	23.09	22.07	
		50% RB high	22.99	21.96	
		100% RB	21.79	20.94	
		1 RB low	22.86	21.84	
	715.3	1 RB Mid	22.85	21.97	
		1 RB high	22.93	21.83	
		50% RB Low	22.91	21.88	
		50% RB mid	23.06	22.32	
		50% RB high	23.03	22.00	
		100% RB	22.09	20.79	
	700.5	1 RB low	22.89	21.84	
		1 RB Mid	22.60	21.57	
		1 RB high	22.75	21.56	
		50% RB Low	22.21	22.18	
		50% RB mid	21.93	21.88	
		50% RB high	21.62	21.57	
		100% RB	21.89	20.74	
3 MHz		1 RB low	22.77	21.79	
	707.5	1 RB Mid	23.04	22.20	
		1 RB high	22.85	22.10	
		50% RB Low	22.15	22.09	
		50% RB mid	22.27	22.25	
		50% RB high	22.21	22.17	
		100% RB	21.83	20.75	
	714.5	1 RB low	22.69	21.79	
	/ 14.0	1 RB Mid	22.67	21.71	

Report No.: GTS2	0200612012-1-3-10			Page 11 of 23
		1 RB high	22.81	21.56
		50% RB Low	21.85	21.73
		50% RB mid	21.82	21.79
		50% RB high	21.58	21.45
		100% RB	21.85	20.74
		1 RB low	22.77	21.64
		1 RB Mid	22.71	21.61
		1 RB high	22.60	20.98
	701.5	50% RB Low	22.01	21.88
		50% RB mid	21.84	21.80
		50% RB high	21.87	21.81
		100% RB	21.92	20.90
		1 RB low	22.55	21.77
		1 RB Mid	23.01	22.07
		1 RB high	22.88	21.96
5 MHz	707.5	50% RB Low	21.82	21.85
		50% RB mid	21.90	21.85
		50% RB high	21.84	21.82
		100% RB	21.82	20.85
		1 RB low	22.71	21.47
		1 RB Mid	22.58	21.89
		1 RB high	22.86	21.34
	713.5	50% RB Low	21.86	21.82
		50% RB mid	21.95	21.91
		50% RB high	21.79	21.76
		100% RB	21.82	20.78
		1 RB low	22.84	21.89
		1 RB Mid	22.56	21.69
		1 RB high	22.68	21.50
	704.0	50% RB Low	21.90	21.94
		50% RB mid	21.75	21.86
		50% RB high	21.76	21.88
		100% RB	21.81	20.92
		1 RB low	22.17	21.41
		1 RB Mid	22.37	21.54
		1 RB high	22.08	21.25
	707.5	50% RB Low	21.35	21.49
10 MHz		50% RB mid	21.36	21.49
		50% RB high	21.09	21.22
		100% RB	21.25	20.32
		1 RB low	22.11	21.20
		1 RB Mid	22.20	21.25
		1 RB high	22.20	21.36
	711.0	50% RB Low	21.12	21.24
		50% RB mid	21.20	21.24
		50% RB high	21.07	21.19
		100% RB	21.12	20.17

Report No.: GTS20200612012-1-3-10 Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration for the model Blackbox-BBGR-M and GT-200 and GT-300, the Mode refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12 at the H Polarization for Blackbox-BBGR-M
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_{a}(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Ga Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
699.7	-21.50	2.38	8.23	2.15	36.70	18.90	34.77	15.87	Н
707.5	-19.78	2.40	8.29	2.15	36.70	20.66	34.77	14.11	Н
715.3	-20.32	2.43	8.28	2.15	36.70	20.08	34.77	14.69	Н

LTE FDD Band 12_Channel Bandwidth 1.4MHz_QPSK

LTE FDD Band 12_Channel Bandwidth 3MHz_QPSK

F	requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G₂ Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	700.5	-21.02	2.38	8.23	2.15	36.7	19.38	34.77	15.39	Н
	707.5	-20.39	2.40	8.29	2.15	36.7	20.05	34.77	14.72	Н
	714.5	-20.37	2.43	8.28	2.15	36.7	20.03	34.77	14.74	H

LTE FDD Band 12_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Ga Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
701.5	-19.87	2.38	8.23	2.15	36.7	20.53	34.77	14.24	Н
707.5	-19.95	2.40	8.29	2.15	36.7	20.49	34.77	14.28	Н
713.5	-19.23	2.43	8.28	2.15	36.7	21.17	34.77	13.60	Н

LTE FDD Band 12_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G₂ Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
704.0	-21.32	2.38	8.23	2.15	36.7	19.08	34.77	15.69	Н
707.5	-21.24	2.40	8.29	2.15	36.7	19.2	34.77	15.57	Н
711.0	-20.39	2.43	8.28	2.15	36.7	20.01	34.77	14.76	Н

LTE FDD Band 12_Channel Bandwidth 1.4MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G₂ Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
699.7	-21.05	2.38	8.23	2.15	36.7	19.35	34.77	15.42	Н
707.5	-20.86	2.40	8.29	2.15	36.7	19.58	34.77	15.19	Н
715.3	-21.22	2.43	8.28	2.15	36.7	19.18	34.77	15.59	Н

LTE FDD Band 12_Channel Bandwidth 3MHz_16QAM

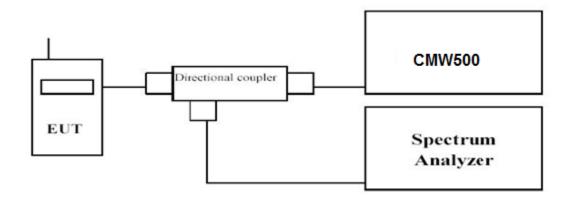
Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
700.5	-21.28	2.38	8.23	2.15	36.7	19.12	34.77	15.65	Н
707.5	-21.46	2.40	8.29	2.15	36.7	18.98	34.77	15.79	Н
714.5	-21.32	2.43	8.28	2.15	36.7	19.08	34.77	15.69	Н

LTE FDD Band 12_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
701.5	-20.73	2.38	8.23	2.15	36.7	19.67	34.77	15.1	Н
707.5	-21.00	2.40	8.29	2.15	36.7	19.44	34.77	15.33	Н
713.5	-21.32	2.43	8.28	2.15	36.7	19.08	34.77	15.69	Н

Report No.: GTS20200612012-1-3-10 LTE FDD Band 12_Channel Bandwidth 10MHz_16QAM

Page 13 of 23


Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
704.0	-21.92	2.38	8.23	2.15	36.7	18.48	34.77	16.29	Н
707.5	-21.40	2.40	8.29	2.15	36.7	19.04	34.77	15.73	Н
711.0	-20.45	2.43	8.28	2.15	36.7	19.95	34.77	14.82	Н

Report No.: GTS20200612012-1-3-10 3.3 Peak-to-Average Ratio (PAR)

<u>LIMIT</u>

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,

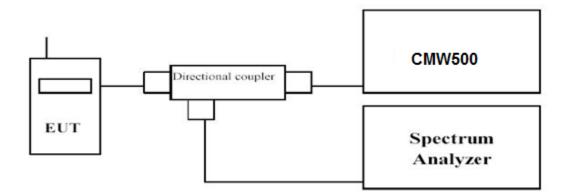
2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.


For reporting purpose only. Please refer to Appendix LTE Band 12.

3.4 Occupied Bandwidth and Emission Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

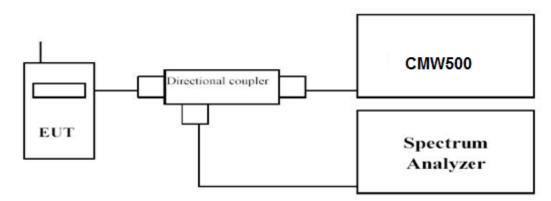
-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.

For reporting purpose only. Please refer to Appendix LTE Band 12.


3.5 Band Edge compliance

LIMIT

According to Part §27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest and highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

Remark:

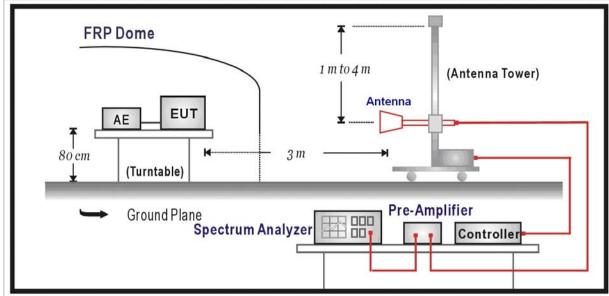
1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.

For reporting purpose only. Please refer to Appendix LTE Band 12.

3.6 Spurious Emission


<u>LIMIT</u>

According to Part §27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.


The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

Conducted Spurious Measurement:

Radiated Spurious Measurement:

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Conducted Spurious Measurement:

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was set sufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

Г	eport No G132020	0012012-1-3-10			Fage to 0125
	Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 12	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26.5	1 MHz	3 MHz	Auto

Demo 10 of 22

Radiated Spurious Measurement:

- a. The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c. The output of the test antenna shall be connected to the measuring receiver.
- d. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- h. The maximum signal level detected by the measuring receiver shall be noted.
- i. The transmitter shall be replaced by a substitution antenna.
- j. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- k. The substitution antenna shall be connected to a calibrated signal generator.
- I. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- m. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- n. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- o. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- p. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- q. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for Part 22 and 1MHz for Part 24. The frequency range was checked up to 10th harmonic.
- r. Test site anechoic chamber refer to ANSI C63.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12.

Conducted Measurement:

For reporting purpose only. Please refer to Appendix LTE Band 4.

Radiated Measurement:

Remark:

1. We were tested all RB Configuration for the model Blackbox-BBGR-M and GT-200 and GT-300, the Mode refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case for each Channel Bandwidth of LTE FDD Band 12 at the H Polarization for Blackbox-BBGR-M

2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB) + G_a(dBi)$

3. We were not recorded other points as values lower than limits.

4. Margin = Limit - EIRP

LTE FDD Band 12_Channel Bandwidth 1.4MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G₂ Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1399.4	-36.00	2.86	3.00	7.25	-31.61	-13.00	18.61	Н
2099.1	-45.67	2.94	3.00	9.53	-39.08	-13.00	26.08	Н
1399.4	-44.63	2.86	3.00	7.25	-40.24	-13.00	27.24	V
2099.1	-47.87	2.94	3.00	9.53	-41.28	-13.00	28.28	V

LTE FDD Band 12_Channel Bandwidth 1.4MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1415.0	-34.58	2.86	3.00	7.25	-30.19	-13.00	17.19	Н
2122.5	-42.91	2.94	3.00	9.53	-36.32	-13.00	23.32	Н
1415.0	-42.56	2.86	3.00	7.25	-38.17	-13.00	25.17	V
2122.5	-48.97	2.94	3.00	9.53	-42.38	-13.00	29.38	V

LTE FDD Band 12_Channel Bandwidth 1.4MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1430.6	-40.22	2.86	3.00	7.25	-35.83	-13.00	22.83	Н
2145.9	-47.85	2.94	3.00	9.53	-41.26	-13.00	28.26	Н
1430.6	-49.82	2.86	3.00	7.25	-45.43	-13.00	32.43	V
2145.9	-53.17	2.94	3.00	9.53	-46.58	-13.00	33.58	V

LTE FDD Band 12_Channel Bandwidth 3MHz_QPSK_ Low Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1401.0	-35.53	2.86	3.00	7.25	-31.14	-13.00	18.14	Н
2101.5	-44.95	2.94	3.00	9.53	-38.36	-13.00	25.36	Н
1401.0	-43.68	2.86	3.00	7.25	-39.29	-13.00	26.29	V
2101.5	-47.16	2.94	3.00	9.53	-40.57	-13.00	27.57	V

LTE FDD Band 12_Channel Bandwidth 3MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	Ga Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1415.0	-35.03	2.86	3.00	7.25	-30.64	-13.00	17.64	Н
2122.5	-42.21	2.94	3.00	9.53	-35.62	-13.00	22.62	Н
1415.0	-41.76	2.86	3.00	7.25	-37.37	-13.00	24.37	V
2122.5	-48.43	2.94	3.00	9.53	-41.84	-13.00	28.84	V

LTE FDD Band 12_Channel Bandwidth 3MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1429.0	-40.32	2.86	3.00	7.25	-35.93	-13.00	22.93	Н
2143.5	-47.49	2.94	3.00	9.53	-40.90	-13.00	27.90	Н
1429.0	-49.19	2.86	3.00	7.25	-44.80	-13.00	31.80	V
2143.5	-52.60	2.94	3.00	9.53	-46.01	-13.00	33.01	V

LTE FDD Band 12_Channel Bandwidth 5MHz_QPSK_ Low Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1403.0	-35.92	2.86	3.00	7.25	-31.53	-13.00	18.53	Н
2104.5	-45.69	2.94	3.00	9.53	-39.10	-13.00	26.10	Н
1403.0	-44.51	2.86	3.00	7.25	-40.12	-13.00	27.12	V
2104.5	-47.51	2.94	3.00	9.53	-40.92	-13.00	27.92	V

LTE FDD Band 12_Channel Bandwidth 5MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1415.0	-34.61	2.86	3.00	7.25	-30.22	-13.00	17.22	Н
2122.5	-42.76	2.94	3.00	9.53	-36.17	-13.00	23.17	Н
1415.0	-41.86	2.86	3.00	7.25	-37.47	-13.00	24.47	V
2122.5	-47.60	2.94	3.00	9.53	-41.01	-13.00	28.01	V

LTE FDD Band 12_Channel Bandwidth 5MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1427.0	-39.62	2.86	3.00	7.25	-35.23	-13.00	22.23	Н
2140.5	-46.81	2.94	3.00	9.53	-40.22	-13.00	27.22	Н
1427.0	-49.42	2.86	3.00	7.25	-45.03	-13.00	32.03	V
2140.5	-53.24	2.94	3.00	9.53	-46.65	-13.00	33.65	V

LTE FDD Band 12_Channel Bandwidth 10MHz_QPSK_ Low Channel

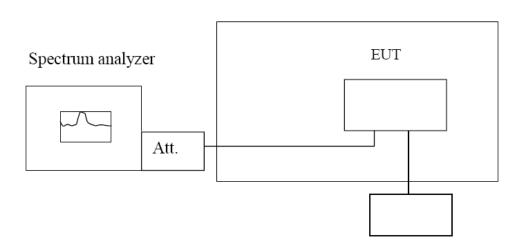
Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1408.0	-35.67	2.86	3.00	7.25	-31.28	-13.00	18.28	Н
2112.0	-44.98	2.94	3.00	9.53	-38.39	-13.00	25.39	Н
1408.0	-44.17	2.86	3.00	7.25	-39.78	-13.00	26.78	V
2112.0	-46.76	2.94	3.00	9.53	-40.17	-13.00	27.17	V

LTE FDD Band 12_Channel Bandwidth 10MHz_QPSK_ Middle Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1415.0	-34.48	2.86	3.00	7.25	-30.09	-13.00	17.09	Н
2122.5	-42.48	2.94	3.00	9.53	-35.89	-13.00	22.89	Н
1415.0	-42.64	2.86	3.00	7.25	-38.25	-13.00	25.25	V
2122.5	-47.93	2.94	3.00	9.53	-41.34	-13.00	28.34	V

LTE FDD Band 12_Channel Bandwidth 10MHz_QPSK_ High Channel

Frequency (MHz)	Р _{меа} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1422.0	-38.91	2.86	3.00	7.25	-34.52	-13.00	21.52	Н
2133.0	-46.21	2.94	3.00	9.53	-39.62	-13.00	26.62	Н
1422.0	-50.01	2.86	3.00	7.25	-45.62	-13.00	32.62	V
2133.0	-52.45	2.94	3.00	9.53	-45.86	-13.00	32.86	V


3.7 Frequency Stability under Temperature & Voltage Variations

<u>LIMIT</u>

According to §27.54, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

Temperature Chamber

Variable Power Supply

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the EUT to overnight soak at -30℃.

3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 12, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing. 6. Subject the EUT to overnight soak at +50 °C.

7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements

9. At all temperature levels hold the temperature to +/- 0.5° during the measurement procedure.

Frequency Stability Under Voltage Variations:

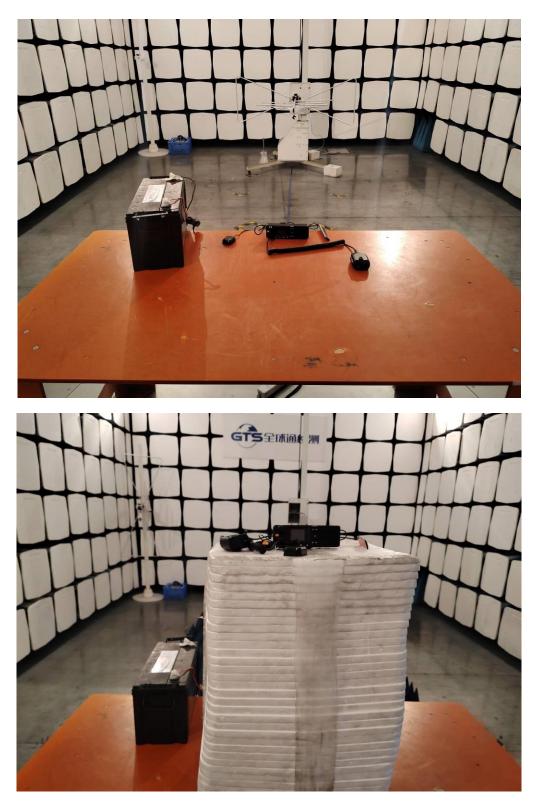
Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Remark:

1. We tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 12; recorded worst case.


LTE Band 12, 1.4MHz bandwidth (worst case of all bandwidths) 1RB#0 for Mid channel

Frequency Error vs Voltage

Voltage	Frequency	[,] error (Hz)	Frequency	error (ppm)	Limit
(V)	QPSK	16QAM	QPSK	16QAM	(ppm)
10.8	13	9	0.0184	0.0127	2.50
12.0	8	11	0.0113	0.0155	2.50
13.2	12	13	0.0170	0.0184	2.50

Frequency Error vs Temperature

Temperature	Frequency	error (Hz)	Frequency	error (ppm)	Limit
(°C)	QPSK	16QAM	QPSK	16QAM	(ppm)
-30°	15	18	0.0212	0.0254	2.50
-20°	11	15	0.0155	0.0212	2.50
-10°	10	22	0.0141	0.0311	2.50
0°	21	13	0.0297	0.0184	2.50
10°	18	15	0.0254	0.0212	2.50
20°	15	17	0.0212	0.0240	2.50
30°	19	23	0.0269	0.0325	2.50
40°	21	11	0.0297	0.0155	2.50
50°	13	17	0.0184	0.0240	2.50

5 External and Internal Photos of the EUT

Reference to the test report No. GTS20200612012-1-3-1