

Global United Technology Services Co., Ltd.

Report No.: GTS202007000071-05

TEST REPORT

Applicant: FCC: Magtek Incorporated

IC: MagTek Inc

Address of Applicant: FCC: 1710 Apollo Court, seal beach, California 90740, United

IC: 1710 Apollo Court Seal Beach CA 90740 United States

Manufacturer: FCC: Magtek Incorporated

IC: MagTek Inc

FCC: 1710 Apollo Court, seal beach, California 90740, United Address of

Manufacturer: States

IC: 1710 Apollo Court Seal Beach CA 90740 United States

Equipment Under Test (EUT)

Product Name: DynaGlass

Model No.: 40000102, 40000101

Trade Mark: **MAGTEK**

FCC ID: U73-40000102

IC: 23169-40000102

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

> RSS-Gen Issue 5 RSS-247 Issue 2

Date of sample receipt: July 07, 2020

Date of Test: July 08, 2020-August 31, 2020

Date of report issued: August 31, 2020

Test Result: PASS *

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 34

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	August 31, 2020	Original

Prepared By:	Date:	August 31, 2020
	Project Engineer	
Check By:	Date:	August 31, 2020

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2 5.3	TEST MODE DESCRIPTION OF SUPPORT UNITS	
	5.4	TEST FACILITY	7
	5.5	TEST LOCATIONTINSTRUMENTS LIST	
6	IES	I INSTRUMENTS LIST	δ
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGE	
	7.6.		
	7.7	Spurious Emission	
	7.7.		
	7.8	FREQUENCY STABILITY	31
8	TES	T SETUP PHOTO	34
9	EUT	CONSTRUCTIONAL DETAILS	34

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203 & RSS-Gen 8.3	Pass
AC Power Line Conducted Emission	FCC part 15.207 & RSS-Gen 8.8	Pass
Conducted Peak Output Power	FCC part 15.407(a)(3) & RSS-247 6.2.4.1	Pass
Channel Bandwidth and 99% Occupied Bandwidth	FCC part 15.407(e) & RSS-247 6.2.4.1	Pass
Power Spectral Density	FCC part 15.407(a)(3) & RSS-247 6.2.4.1	Pass
Band Edge	FCC part 15.407(b)(4)	Pass
Band Edge	RSS-Gen 8.10 & RSS-Gen	Pass
Spurious Emission	FCC part 15.205/15.209/15.407(b)(4)	Pass
Spurious Effilssion	RSS-247 6.2.4.2 & RSS-Gen 8.9	F d55
Frequency Stability	FCC part 15.407(g) & RSS-Gen 8.11	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)
Note (1): The measurement unce	rtainty is for coverage factor of k	=2 and a level of confidence of	95%.

5 General Information

5.1 General Description of EUT

Product Name:	DynaGlass	
Model No.:	40000102, 40000101	
Test Model No:	40000102	
	are identical in the same PCB layout, interior structure and electrical circuits. rance color and model name for commercial purpose.	
S/N:	B90A998	
Hardware Version:	DynaGlass_AND_V040 DynaGlass_PAY_V040	
Software Version:	Android:0.9.05; Max32550-LCS+:1.0.0	
Test sample(s) ID:	GTS202007000071-1	
Sample(s) Status:	Engineer sample	
Operation Frequency:	802.11a/802.11n(HT20): 5745MHz ~ 5825MHz	
Channel numbers:	5	
Channel bandwidth:	20MHz	
Modulation technology:	Orthogonal Frequency Division Multiplexing (OFDM)	
Antenna Type:	Integral Antenna	
Antenna gain:	1.9dBi(declare by applicant)	
Power supply:	DC 5V	
	or	
	DC 7.4V 1850mAh 13.69Wh by Li-ion battery	

Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
149	5745MHz	151	5755MHz	153	5765MHz	155	5775MHz
157	5785MHz	159	5795MHz	161	5805MHz	163	5815MHz
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Took observed		Frequency (MHz)	
Test channel	802.11a/n(HT20)		
Lowest channel	5745		
Middle channel	5785		
Highest channel	5825		

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
-------------------	--

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6Mbps
802.11n(HT20)	6.5Mbps

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook PC	E40-80	N/A
Apple	PC	A1278	C1MN99ERDTY3

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A.

• CNAS (No. CNAS L5775)

CNAS has accredited Global United Technology Services Co., Ltd., to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021	
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021	
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021	
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021	
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021	
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021	

Cond	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021

RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021

General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Standard requirement: RSS-Gen 8.3

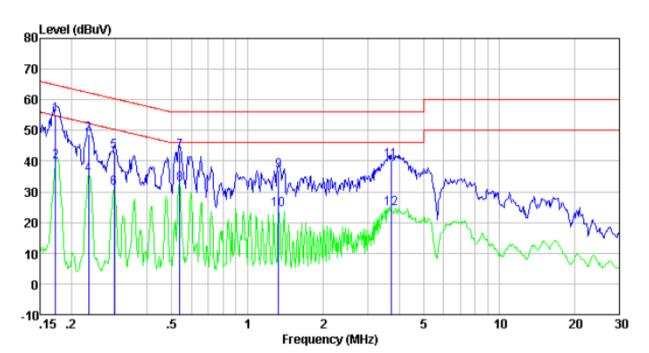
A transmitter can only be sold or operated with antennas with which it was approved.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

E.U.T Antenna:

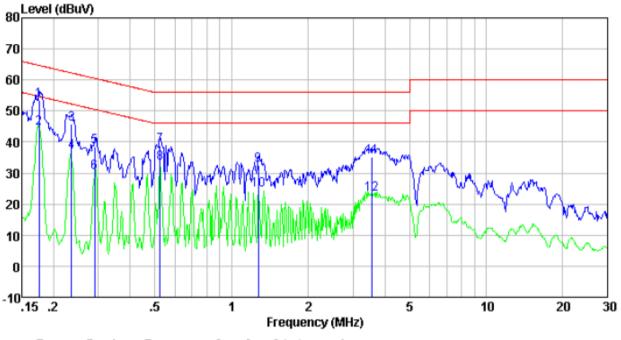
The antenna is Integral antenna, the best case gain of the antenna is 1.9dBi, reference to the appendix II for details

7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207				
Tool Made at	RSS-Gen 8.8				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	0.000	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto			
Limit:	Frequency range (MHz)		(dBuV)		
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56 60	46 50		
	* Decreases with the logarith		50		
Test setup:	Reference Plane				
Test procedure:	Remark EQUIT Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilization 500hm/50uH coupling imp 2. The peripheral devices are LISN that provides a 500h termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fir positions of equipment and according to ANSI C63.10	are connected to the on network (L.I.S.N.). bedance for the mease also connected to the m/50uH coupling impute the block diagram of the checked for maximum and the maximum emised all of the interface of	This provides a uring equipment. The main power through a pedance with 500hm of the test setup and the conducted sison, the relative stables must be changed		
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for detail	S			
Test environment:		mid.: 52%	Press.: 1012mbar		
Test voltage:	AC 120V, 60Hz	I	1		
Test results:	Pass				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data Line:


Report No.: GTS202007000071-05

Freq.	Read Level	Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	dB/m	dBu∀	dBu∜	dВ	
0.17	34.65	20.49	55.14	64.81	-9.67	QP
0.17	19.46	20.49	39.95	54.81	-14.86	Average
0.23	28.30	20.51	48.81	62.30	-13.49	QP
0.23	15.06	20.51	35.57	52.30	-16.73	Average
0.30	22.48	20.50	42.98	60.37	-17.39	QP
0.30	10.77	20.50	31.27	50.37	-19.10	Average
0.54	22.62	20.41	43.03	56.00	-12.97	QP
0.54	12.11	20.41	32.52	46.00	-13.48	Average
1.33	16.57	20.36	36.93	56.00	-19.07	QP
1.33	3.72	20.36	24.08	46.00	-21.92	Average
3.72	19.73	20.38	40.11	56.00	-15.89	QP
3.72	4.28	20.38	24.66	46.00	-21.34	Average

Neutral:

Freq.	Read Level	Factor	Level	Limit Line	Over Limit	Remark
\mathtt{MHz}	dBu∀	dB/m	dBu∜	dBu∀	dВ	
0.17	32.81	20.49	53.30	64.72	-11.42	QP
0.17	24.07	20.49	44.56	54.72	-10.16	Average
0.24	25.41	20.51	45.92	62.26	-16.34	QP
0.24	16.16	20.51	36.67	52.26	-15.59	Average
0.29	18.07	20.50	38.57	60.54	-21.97	QP
0.29	9.67	20.50	30.17	50.54	-20.37	Average
0.52	18.38	20.42	38.80	56.00	-17.20	QP
0.52	12.77	20.42	33.19	46.00	-12.81	Average
1.28	12.23	20.36	32.59	56.00	-23.41	QP
1.28	4.27	20.36	24.63	46.00	-21.37	Average
3.57	14.70	20.38	35.08	56.00	-20.92	QP
3.57	2.97	20.38	23.35	46.00	-22.65	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both *limits and measurement with the average detector receiver is unnecessary.*

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)		
	RSS-247 6.2.4.1		
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 & RSS-Gen		
Limit:	30dBm		
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

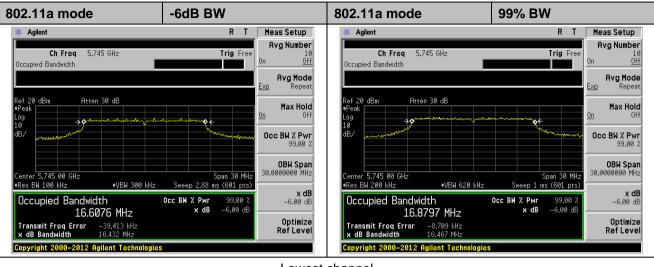
Measurement Data

Test CH	Peak Output	Power (dBm)	Limit(dBm)	Result
Test Cn	802.11a	802.11n(HT20)	Lillit(GBIII)	Nesuit
Lowest	15.95	14.92		
Middle	14.59	15.72	30.00	Pass
Highest	14.86	14.97		

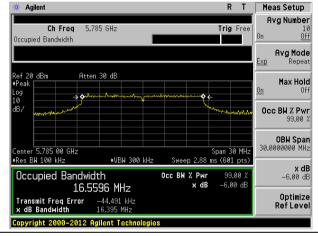
7.4 Channel Bandwidth and 99% Occupied Bandwidth

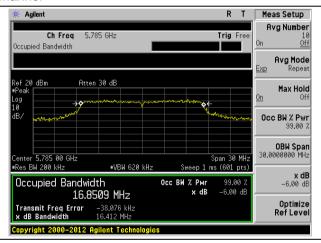
Test Requirement:	FCC Part15 E Section 15.407(e)	
	RSS-247 Section 5.2 & RSS-Gen Section 6.2.4.1	
Test Method:	ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 & RSS-Gen	
Limit:	>500KHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

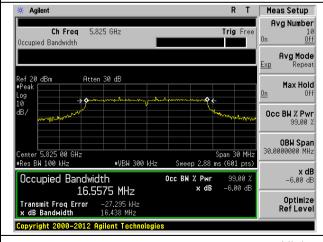

Test	Channel Band	lwidth (MHz)	Limit ///LL=\	Dogult
СН	802.11a	802.11n(HT20)	Limit (KHz)	Result
Lowest	16.432	17.420		
Middle	16.395	17.621	>500	Pass
Highest	16.438	17.619		

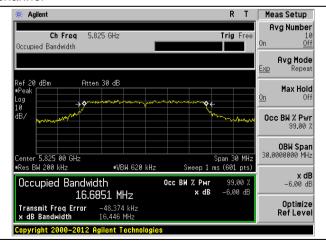
Test	99% Occupied B	andwidth (MHz)	1 :: (KII-)	Decult
СН	802.11a	802.11n(HT20)	Limit (KHz)	Result
Lowest	16.8797	18.0633		
Middle	16.8509	17.8648	>500	Pass
Highest	16.6851	17.8413		

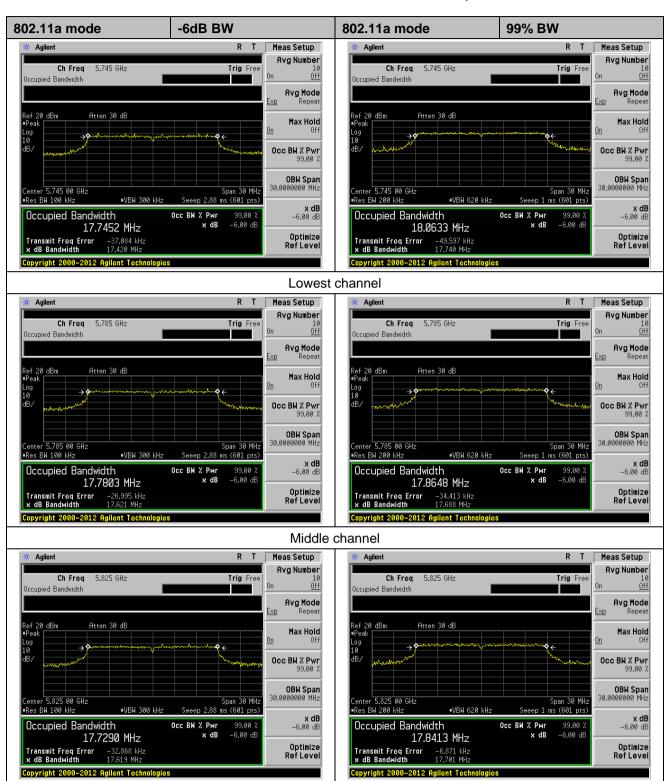



Test plot as follows:

Report No.: GTS202007000071-05




Lowest channel

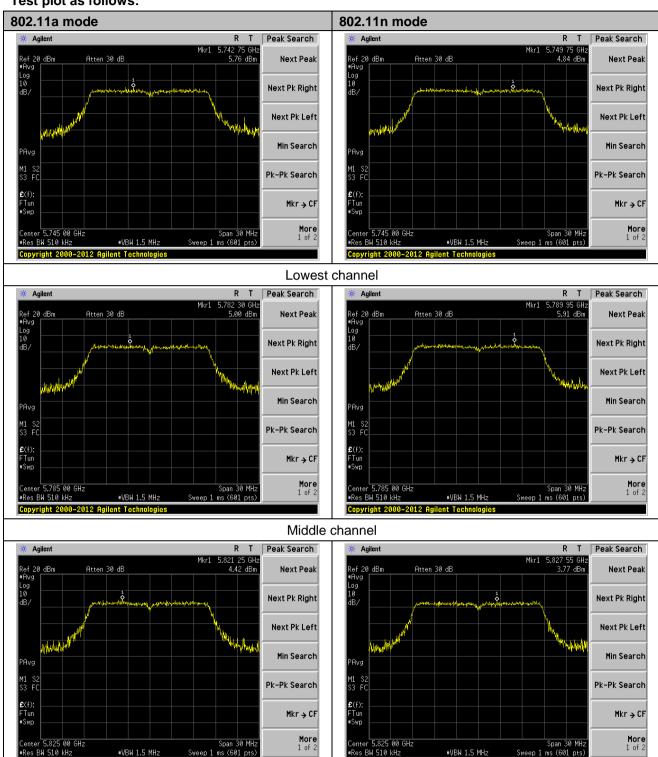

Middle channel

Highest channel

Highest channel

7.5 Power Spectral Density

Test Requirement: Test Method:	FCC Part15 E Section 15.407(a)(3) RSS-247 Section 6.2.4.1 ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 & RSS-Gen	
Limit:	30dBm/500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	


Measurement Data

Test	Power Spectral De	Limit	Result						
СН	802.11a	802.11n(HT20)	(dBm/500kHz)	Result					
Lowest	5.76	4.84							
Middle	5.00	5.91	30.00	Pass					
Highest	4.42	3.77							

Test plot as follows:

Report No.: GTS202007000071-05

Copyright 2000-2012 Agilent Technologies

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 19 of 34

Highest channel

Copyright 2000-2012 Agilent Technologies

7.6 Band edge

7.6.1 Radiated Emission Method

Test Requirement:		Section 15.209 a on 6.2.4.2 & RS					
Test Method:		013 & RSS-Ger					
Test Frequency Range:		, only worse cas		·d			
Test site:	Measurement D	•					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
. τουσίτοι συτάβι		Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	RMS		
Limit:	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.						
Test setup:	Tum Table 150cm > 4	< 3m	Test Antenna	?			
Test Procedure:	the ground a determine the 2. The EUT was antenna, whistower. 3. The antenna ground to de horizontal and measuremer. 4. For each sus and then the and the rota the maximum. 5. The test-rece Specified Ba. 6. If the emission the limit specified Ba. 6. If the emission the EUT was have 10dB may peak or averisheet.	t a 3 meter came position of the set 3 meters a ch was mounted the maximum that the maximum	ber. The take highest race way from the don the top from one make the properties of the highest set to Peak as set to Peak as could be done of the peak as could be done of the peak as could be done of the peak as the peak	ole was rotaliation. The interferer of a variable of the field one antennal was arrangents from 1 regrees to 360 kb Detect Full Mode. The mode was astopped and the emission of the report of the report of the report of the property of the	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find function and 10dB lower than ad the peak values sions that did not ising peak, quasi-		

Test results:

	Report No.: GTS202007000071-05
	And found the X axis positioning which it is worse case, only the test
	worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details

Remarks:

- 1. Only the worst case Main Antenna test data..
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor

Pass

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

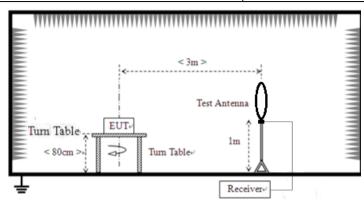
E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

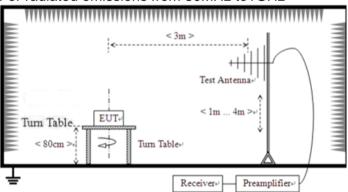
Measurement data:

	IEEE 802.11a HT20									
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5650.00	27.37	32.36	9.72	23.83	45.62	68.2	-22.58	Horizontal		
5700.00	27.10	32.5	9.79	23.84	45.55	105.2	-59.65	Horizontal		
5720.00	26.84	32.53	9.81	23.85	45.33	110.8	-65.47	Horizontal		
5725.00	29.27	32.53	9.83	23.86	47.77	122.2	-74.43	Horizontal		
5850.00	26.98	32.7	9.99	23.87	45.8	122.2	-76.4	Horizontal		
5855.00	29.52	32.72	9.99	23.88	48.35	110.8	-62.45	Horizontal		
5875.00	26.95	32.74	10.04	23.89	45.84	105.2	-59.36	Horizontal		
5925.00	28.23	32.8	10.11	23.9	47.24	68.2	-20.96	Horizontal		
5650.00	25.69	32.36	9.72	23.83	43.94	68.2	-24.26	Vertical		
5700.00	27.99	32.5	9.79	23.84	46.44	105.2	-58.76	Vertical		
5720.00	25.85	32.53	9.81	23.85	44.34	110.8	-66.46	Vertical		
5725.00	26.52	32.53	9.83	23.86	45.02	122.2	-77.18	Vertical		
5850.00	27.38	32.7	9.99	23.87	46.2	122.2	-76	Vertical		
5855.00	29.50	32.72	9.99	23.88	48.33	110.8	-62.47	Vertical		
5875.00	25.26	32.74	10.04	23.89	44.15	105.2	-61.05	Vertical		
5925.00	25.95	32.8	10.11	23.9	44.96	68.2	-23.24	Vertical		

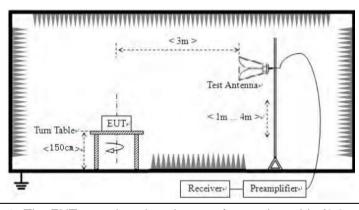
	IEEE 802.11n									
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5650.00	27.68	32.36	9.72	23.83	45.93	68.2	-22.27	Horizontal		
5700.00	29.20	32.5	9.79	23.84	47.65	105.2	-57.55	Horizontal		
5720.00	28.47	32.53	9.81	23.85	46.96	110.8	-63.84	Horizontal		
5725.00	26.87	32.53	9.83	23.86	45.37	122.2	-76.83	Horizontal		
5850.00	27.93	32.7	9.99	23.87	46.75	122.2	-75.45	Horizontal		
5855.00	29.30	32.72	9.99	23.88	48.13	110.8	-62.67	Horizontal		
5875.00	28.80	32.74	10.04	23.89	47.69	105.2	-57.51	Horizontal		
5925.00	29.35	32.8	10.11	23.9	48.36	68.2	-19.84	Horizontal		
5650.00	29.10	32.36	9.72	23.83	47.35	68.2	-20.85	Vertical		
5700.00	29.44	32.5	9.79	23.84	47.89	105.2	-57.31	Vertical		
5720.00	29.99	32.53	9.81	23.85	48.48	110.8	-62.32	Vertical		
5725.00	27.49	32.53	9.83	23.86	45.99	122.2	-76.21	Vertical		
5850.00	29.86	32.7	9.99	23.87	48.68	122.2	-73.52	Vertical		
5855.00	26.57	32.72	9.99	23.88	45.4	110.8	-65.4	Vertical		
5875.00	27.12	32.74	10.04	23.89	46.01	105.2	-59.19	Vertical		
5925.00	25.11	32.8	10.11	23.9	44.12	68.2	-24.08	Vertical		



7.7 Spurious Emission


7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)								
	RSS-247 Sect	ion 6.2.4.2	& RSS	Gen Sectio	n 8.9					
Test Method:	ANSI C63.10:2	2013 & RS	S-Gen							
Test Frequency Range:	9kHz to 40GH	Z								
Test site:	Measurement	Distance: 3	3m							
Receiver setup:	Frequency		ector	RBW	VBV		Valu	е		
	9kHz-150KH	+	i-peak	200Hz	1kH		uasi-pea			
	150kHz-30M		i-peak	9kHz	30kF		uasi-pea			
	30MHz-1GH		i-peak	120KHz	300K		uasi-pea			
	Above 1GH	7	eak .V	1MHz 1MHz	3MH 3MH		<u>Peak V</u> Average			
FCC Limit:			ı v	I IVII IZ	JIVII	12 1	Average	value		
FGG Limit.	Frequency (MHz)	Field strength	h (microvo	lts/meter)	Measur	ement dis	tance (mete			
	0.009-0.490 0.490-1.705	2400/F(kHz) 24000/F(kHz)						300 30		
	1.705-30.0	30						30		
	30-88	100**						3		
	88-216 216-960	150** 200**						3		
	Above 960	500						3		
	the frequency	y bands 9-	90 kHz	•	kHz aı	nd abo	ve 1000			
IC Limit:	the frequency MHz. Radiate measuremen	y bands 9- ed emissio its employi	90 kHz on limits ing an	z, 110-490 s in these t	kHz ar hree b etector	nd abo ands a ·.	ve 1000 ire base			
IC Limit:	the frequency MHz. Radiate measuremen	y bands 9- ed emissio its employ - General fiel Freque	90 kHz on limits ing an d strengt ncy	z, 110-490 s in these t average de h limits at fre	kHz ai hree b etector quencies strength	nd abo ands a f. s above 3	ve 1000 ire base			
IC Limit:	the frequency MHz. Radiate measuremen	y bands 9- ed emissio its employi - General fiel	90 kHz on limits ing an d strengt ncy	z, 110-490 s in these t average de h limits at fre (µV/n	kHz ar hree betector	nd abo ands a f. s above 3	ve 1000 ire base			
IC Limit:	the frequency MHz. Radiate measuremen	y bands 9- ed emissio its employi - General fiel Frequer (MHz	90 kHz on limits ing an d strengt ncy z)	z, 110-490 s in these t average de h limits at fre (µV/m	kHz and hree betector quencies strength at 3 m)	nd abo ands a f. s above 3	ve 1000 ire base			
IC Limit:	the frequency MHz. Radiate measuremen	y bands 9- ed emissio its employi - General fiel Frequer (MHz	90 kHz on limits ing an d strengt ncy z)	z, 110-490 s in these t average de h limits at fre	kHz and hree betector quencies strength at 3 m)	nd abo ands a f. s above 3	ve 1000 ire base			
IC Limit:	the frequency MHz. Radiate measuremen	y bands 9- ed emissio its employ General fiel (MHz 30-8 88-2	90 kHz on limits ing an d strengt ncy z) 88 16	z, 110-490 s in these t average de h limits at fre Field : (µV/n	kHz and hree betector quencies strength at 3 m)	nd abo ands a f. s above 3	ve 1000 ire base			
IC Limit:	the frequency MHz. Radiate measuremen Table 5 -	y bands 9- ed emissio its employits General field Frequer (MHz 30 - 8 88 - 2 216 - 9 Above 9	90 kHz on limits ing an d strengt ncy z) 88 16 960	z, 110-490 s in these t average de h limits at fre Field : (µV/n	kHz anhree betector quencies strength a at 3 m) .00 .50 .50	nd abo pands a f. s above 3	ve 1000 are base			
IC Limit:	the frequency MHz. Radiate measuremen Table 5 -	y bands 9- ed emissio its employits General field Frequer (MHz 30 - 8 88 - 2 216 - 9 Above 9	90 kHz on limits ing an d strengt ncy z) 88 16 960 960	r, 110-490 s in these to average de h limits at fre (µV/m th limits at fre control of the limits at free fice field strength field)	kHz and hree betector quencies strength a at 3 m) 000 000 000 000 quencies	s below 3	ve 1000 are base 0 MHz 0 MHz ement nce			
IC Limit:	the frequency MHz. Radiate measuremen Table 5 -	y bands 9- ed emission its employits employits - General field Frequer (MHz 30 - 8 88 - 2 216 - 9 Above 9	90 kHz on limits ing an d strengt ncy z) 88 16 960 d strengt Magneti	z, 110-490 s in these t average de h limits at fre (μV/m h limits at fre c field strengt Field) (μA/m)	kHz ai hree b etector quencies strength a at 3 m) .00 .50 .00 .00 quencies	s below 3	0 MHz 0 MHz ement			
IC Limit:	the frequency MHz. Radiate measuremen Table 5 - Freq 9 - 49	y bands 9- ed emission its employithments Frequence (MHz) 30 - 8 88 - 2 216 - 9 Above 9 - General field quency	90 kHz on limits ing an d strengt ncy z) 38 16 260 960 d strengt Magneti	r, 110-490 s in these to average de h limits at fre (µV/m th limits at fre control of the limits at free fice field strength field)	kHz ai hree b etector quencies strength a at 3 m) 00 50 600 quencies th (H-	s below 3 Measurdistate (m	0 MHz 0 MHz ement nce			
IC Limit:	Table 6 - Free 9 - 49 490 - 1	y bands 9- ed emission its employ General field (MHz 30 - 8 88 - 2 216 - 9 Above 9 General field Quency OO kHz 1	90 kHz on limits ing an d strengt ncy z) 38 16 260 960 d strengt Magneti	z, 110-490 s in these t average de h limits at fre (μV/m h limits at fre c field strengt Field) (μA/m) 17/F (F in kHz)	kHz ai hree b etector quencies strength a at 3 m) 00 50 600 quencies th (H-	s below 3 Measurdistar (m 300	0 MHz 0 MHz ement			
IC Limit:	Table 5 - Table 6 - Freq 9 - 49 490 - 1 1.705 - Note 1: The	y bands 9- ed emission its employ General field (MHz 30 - 8 88 - 2 216 - 9 Above 9 - General field Quency 00 kHz 1 1705 kHz - 30 MHz ne emission limited	e90 kHz on limits ing an d strengt ncy z) 38 16 260 960 d strengt Magneti 6.3	z, 110-490 s in these t average de h limits at fre Field (μV/m h limits at fre c field strengt Field) (μA/m) 7/F (F in kHz)	kHz ai hree b etector quencies strength a at 3 m) 00 500 guencies th (H-	s below 3 Measurdistan (m 300 30 110-490	0 MHz 0 MHz ement nce 0			



For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

- The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case

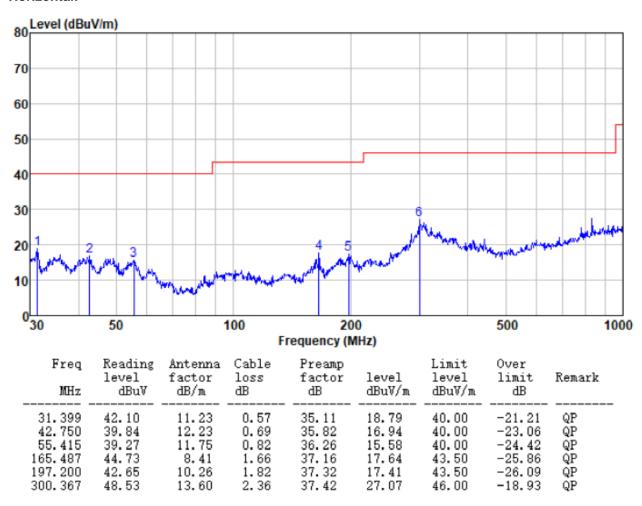
Report No.: GTS202007000071-05								
	and the r	and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.							
	And four	nd the X axis	rements are p positioning wecorded in the	hich it is wor		-		
Test Instruments:	Refer to sec	ction 6.0 for o	details					
Test mode:	Refer to sec	ction 5.2 for o	details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz							
Test results:	Pass							

Remarks:

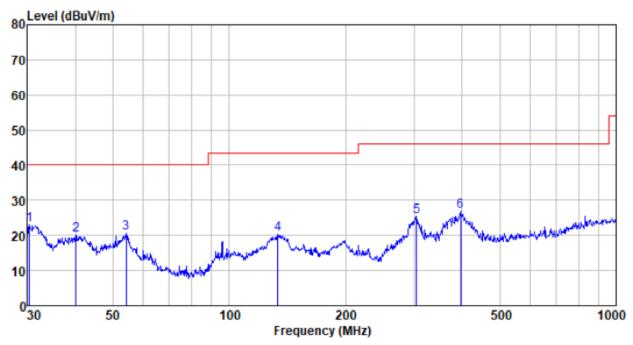
- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

9 kHz ~ 30 MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz


Pre-scan all test modes, found worst case at 802.11ac(HT80) 5775MHz, and so only show the test result of 802.11ac(HT80) 5775MHz

Horizontal:

Vertical:

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
30.424	46.19	11.21	0.56	35.03	22.93	40.00	-17.07	QP
40.135	42.89	12.20	0.66	35.67	20.08	40.00	-19.92	QP
54.071	44.17	11.88	0.81	36.24	20.62	40.00	-19.38	QP
133.619	47.94	7.92	1.46	36.98	20.34	43.50	-23.16	QP
304.610	46.70	13.68	2.38	37.43	25.33	46.00	-20.67	QP
396.242	46.29	15.25	2.83	37.52	26.85	46.00	-19.15	QP

Above 1GHz:

Test mod	e:	802.11a		Test channel:		lowest	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11490	28.65	21.64	50.29	74	-23.71	PK
V	17235	27.66	21.8	49.46	74	-24.54	PK
Н	11490	28.05	21.83	49.88	74	-24.12	PK
Н	17235	30.02	21.67	51.69	74	-22.31	PK

Test mod	e:	802.11a		Test channel:		Middle	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11570	29.65	21.64	51.29	74	-22.71	PK
V	17355	29.14	21.8	50.94	74	-23.06	PK
Н	11570	28.44	21.83	50.27	74	-23.73	PK
Н	17355	30.95	21.67	52.62	74	-21.38	PK

Test mod	e:	802.11a		Test channel:		Highest	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11650	26.87	21.64	48.51	74	-25.49	PK
V	17475	25.22	21.8	47.02	74	-26.98	PK
Н	11650	24.86	21.83	46.69	74	-27.31	PK
Н	17475	27.05	21.67	48.72	74	-25.28	PK

Test mode:		802.11n		Test channel:		lowest	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11490	29.68	21.64	51.32	74	-22.68	PK
V	17235	28.50	21.8	50.3	74	-23.7	PK
Н	11490	26.97	21.83	48.8	74	-25.2	PK
Н	17235	26.99	21.67	48.66	74	-25.34	PK

Test mode:		802.11n		Test channel:		Middle	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11570	25.35	21.64	46.99	74	-27.01	PK
V	17355	26.66	21.8	48.46	74	-25.54	PK
Н	11570	28.81	21.83	50.64	74	-23.36	PK
Н	17355	26.59	21.67	48.26	74	-25.74	PK

Test mode:		802.11n		Test channel:		Highest	
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dBuV/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
V	11650	30.34	21.64	51.98	74	-22.02	PK
V	17475	30.89	21.8	52.69	74	-21.31	PK
Н	11650	28.84	21.83	50.67	74	-23.33	PK
Н	17475	25.00	21.67	46.67	74	-27.33	PK

Notes:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. The test result on peak is lower than average limit, then average measurement needn't be performed.

7.8 Frequency stability

Toot Deguirement	FCC Double C Continue 45 407(a)					
Test Requirement:	FCC Part15 C Section 15.407(g)					
	RSS-Gen Section 8.11					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055 & RSS-Gen					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:						
	Temperature Chamber					
	Spectrum analyzer	EUT				
	Att. Variable Power Supply					
	Note: Measurement setup for testing on Antenna connector					
Test Instruments:	Refer to section 6 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement data:

Report No.: GTS202007000071-05

		Frequen	cy stability versus T	emp.	
		Pov	wer Supply: DC 7.4V		
Tomp	Operating	0 minute	2 minute	5 minute	10 minute
Temp. (°C)	Frequency	Measured	Measured	Measured	Measured
	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5745	5745.879	5745.427	5745.896	5745.596
-30	5785	5785.434	5785.878	5785.169	5785.245
	5825	5825.406	5825.374	5825.399	5825.547
	5745	5745.216	5745.250	5745.276	5745.369
-20	5785	5785.790	5785.344	5785.999	5785.610
	5825	5825.760	5825.171	5825.216	5825.050
	5745	5745.565	5745.639	5745.172	5745.246
-10	5785	5785.546	5785.681	5785.018	5785.082
	5825	5825.928	5825.989	5825.994	5825.569
	5745	5745.455	5745.055	5745.940	5745.047
0	5785	5785.715	5785.921	5785.044	5785.898
	5825	5825.505	5825.175	5825.678	5825.629
	5745	5745.635	5745.835	5745.706	5745.367
10	5785	5785.389	5785.105	5785.488	5785.694
	5825	5825.737	5825.903	5825.754	5825.509
	5745	5745.540	5745.224	5745.803	5745.794
20	5785	5785.699	5785.926	5785.876	5785.584
	5825	5825.665	5825.795	5825.392	5825.861
	5745	5745.123	5745.079	5745.685	5745.554
30	5785	5785.959	5785.439	5785.573	5785.292
	5825	5825.591	5825.651	5825.144	5825.529
40	5745	5745.074	5745.681	5745.129	5745.902
	5785	5785.749	5785.153	5785.629	5785.250
	5825	5825.306	5825.958	5825.731	5825.606
	5745	5745.866	5745.438	5745.052	5745.795
50	5785	5785.311	5785.931	5785.206	5785.910
	5825	5825.038	5825.117	5825.432	5825.152

	Frequency stability versus Voltage								
	Temperature: 25°C								
Power	Operating	0 minute	2 minute	5 minute	10 minute				
Supply	Frequency	Measured	Measured	Measured	Measured				
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5745	5745.788	5745.511	5745.202	5745.343				
7.8	5785	5785.890	5785.834	5785.952	5785.107				
	5825	5825.884	5825.401	5825.654	5825.866				
	5745	5745.995	5745.453	5745.736	5745.555				
6.7	5785	5785.222	5785.001	5785.486	5785.991				
	5825	5825.773	5825.455	5825.769	5825.918				

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the appendix II for details.

----END-----