Magtek Incorporated

TEST REPORT FOR

Handheld Secure Pin Entry Device Model: DynaPro Go (300562XX)

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.225 (13.110-14.010 MHz)

Report No.: 99423-19

Date of issue: November 1, 2017

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 36 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	6
FCC Part 15 Subpart C	7
15.215(c) Occupied Bandwidth (20dB BW)	7
15.225(a)-(c) Field Strength of Fundamental	10
15.225(e) Frequency Stability	16
15.225(d) Radiated Emissions & Band Edge	
15.207 AC Conducted Emissions	26
Supplemental Information	35
Measurement Uncertainty	35
Emissions Test Details	35

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Magtek Incorporated 1710 Apollo Court Seal Beach, CA 90740 **REPORT PREPARED BY:**

Terri Rayle & Joyce Walker CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

REPRESENTATIVE: Robert Rodriguez Customer Reference Number: 30004164

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING:

Project Number: 99423

September 14, 2017 September 14-25 & October 23, 2017

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Be

Steve Behm **Director of Quality Assurance & Engineering Services** CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version	
EMITest Emissions	5.03.02 & 5.03.11	

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Brea D, CA	US0060	SL2-IN-E-1146R	3082D-2	US1025	A-0147

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.225

Test Procedure	Description	Modifications	Results
15.215(c)	Occupied Bandwidth	NA	Pass
15.225(a)-(c)	Field Strength of Fundamental	NA	Pass
15.225(e)	Frequency Stability	NA	Pass
15.225(d)	Field Strength of Spurious Emissions	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions
No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

"

None

EQUIPMENT UNDER TEST (EUT)

The following device/model has been tested by CKC Laboratories: Point of Sale Device, Model: DynaPro Go

Since the time of testing, the manufacturer has chosen to change the device and model name and states that it identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they meet the level of testing equivalent to the tested device/model. **Device: Handheld Secure Pin Entry Device Model: DynaPro Go (300562XX)**

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 3

Equipment Tested:			
Device	Manufacturer	Model #	S/N
Handheld Secure Pin Entry	Magtek Incorporated	DynaPro Go(300562XX)	NA
Device			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Laptop	Dell	E6630	1486

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Modulation Type(s):	OOK
Maximum Duty Cycle:	100%
Antenna Type(s) and Gain:	Loop / NA
Antenna Connection Type:	Integral
Nominal Input Voltage:	5V
Firmware / Software used for Test:	IPADsim 9.0.2.69

FCC Part 15 Subpart C

15.215(c) Occupied Bandwidth (20dB BW)

Test Setup/Conditions				
Test Location:	Brea Lab D	Test Engineer:	E. Wong	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	9/14/2017	
Configuration:	3			
Test Setup:	The EUT containing a 13.56 MHz to transmitter is placed on Styrofoam WiFi Module FCCID: O7P-362 IC :10147A-362 Evaluation of 13.56MHz transmitte Frequency range: 13.56MHz The EUT is connected to a support The device is operating at rated 5V	ransmitter and single r n platform. er : laptop via a USB cable / DC from the USB por	with ferrite on the EUT end. t of the laptop, Transmit and	
	receive simultaneously. Emission profile of the EUT rotated along three orthogonal axis was investigated. Recorded data represent worse case emission			

Environmental Conditions				
Temperature (ºC) 23 Relative Humidity (%): 45				

Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
02869	Spectrum Analyzer	Agilent	E4440A	8/1/2017	8/1/2018
P05569	Cable	Pasternack	RG-214/U	12/7/2016	12/7/2018
00314	Loop Antenna	EMCO	6502	5/20/2016	5/20/2018
P04382	Cable	Andrew	LDF-50	6/6/2016	6/6/2018

Test Data Summary					
Frequency Antenna Modulation Measured Limit Results (MHz) Port					Results
13.56	1	OOK	0.0739	None	NA

NA = Not Applicable

Plot

Test Setup Photos

Page 9 of 36 Report No.: 99423-19

15.225(a)-(c) Field Strength of Fundamental

Test Setup/Conditions				
Test Location:	Brea Lab D	Test Engineer:	E. Wong	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	9/14/2017	
Configuration:	3			
Test Setup:	The EUT containing a 13.56 MHz transmitter and single modular approved WiFi transmitter is placed on Styrofoam platform. WiFi Module FCCID: 07P-362 IC :10147A-362			
	Evaluation of 13.56MHz transmitter			
	Frequency range: 13.56MHz			
	The EUT is connected to a support laptop via a USB cable with ferrite on the EUT end.			
	The device is operating at rated 5V DC from the USB port of the laptop, Transmit and receive simultaneously.			
	Emission profile of the EUT rotated along three orthogonal axis was investigated. Recorded data represent worse case emission			

Environmental Conditions								
Temperature (ºC)	23	Relative Humidity (%):	45					

Test Equipment										
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due					
02869	Spectrum Analyzer	Agilent	E4440A	8/1/2017	8/1/2018					
P05569	Cable	Pasternack	RG-214/U	12/7/2016	12/7/2018					
00314	Loop Antenna	EMCO	6502	5/20/2016	5/20/2018					
P04382	Cable	Andrew	LDF-50	6/6/2016	6/6/2018					
01438	DC Power Supply	Topward	6306D	1/25/2017	1/25/2019					
01878	Temperature Chamber	Thermotron Corp.	S 1.2 Mini-Max	5/15/2017	5/15/2019					
P05947	Thermometer	Fluke	51	5/24/2016	5/24/2018					

Test Data Summary - Voltage Variations									
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBuV/m@30m)	V _{Nominal} (dBuV/m@30m)	V _{Maximum} (dBuV/m@30m)	Max Deviation from V _{Nominal} (dB)				
13.56	OOK/ Integral Loop	43.0	43.0	43.0	0				

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	5V DC
V _{Minimum} :	4.25 Vdc
V _{Maximum} :	5.75 Vdc

Emissions Mask Data

Test Setup Photos

X Axis

Y Axis

Z Axis

Temperature Chamber

Temperature Chamber

15.225(e) Frequency Stability

Test Setup/Conditions									
Test Location:	Brea Lab D	Test Engineer:	E. Wong						
Test Method:	ANSI C63.10 (2013)	Test Date(s):	9/22/2017						
Configuration:	3								
Test Setup:	Setup: The EUT containing a 13.56 MHz transmitter and single modular approved WiFi transmitter is placed in temperature chamber. A near field probe was used for free deviation measurement.								
	WiFi Module								
	FCCID: O7P-362								
	IC :10147A-362								
	Evaluation of 13.56MHz transmitte	Evaluation of 13.56MHz transmitter							
	Frequency range: 13.56MHz								
	The EUT is connected to a support laptop via a USB cable with ferrite on the EUT end.								
	The device is operating at rated 5\ receive simultaneously.	/ DC from the USB por	t of the laptop, Transmit and						

Environmental Conditions								
Temperature (ºC)	23	Relative Humidity (%):	45					

	Test Equipment										
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due						
02869	Spectrum Analyzer	Agilent	E4440A	8/1/2017	8/1/2018						
01878	Temperature Chamber	Thermotron Corp.	S 1.2 Mini-Max	5/15/2017	5/15/2019						
P05947	Thermometer	Fluke	51	5/24/2016	5/24/2018						
01438	DC Power Supply	Topward	6306D	1/25/2017	1/25/2019						

	Test Data Summary										
Temperature (ºC)	Voltage	Frequency (MHz)	Deviation (%)	Limit (%)	Results						
-10	5V dc	13.558850	0.000030000	±0.01							
0	5V dc	13.558888	0.000068000	±0.01							
10	5V dc	13.558780	0.000040000	±0.01	Daca						
20	5V dc	13.558820	0.000000000	±0.01	Pass						
30	5V dc	13.558850	0.000030000	±0.01							
40	5V dc	13.558780	0.000040000	±0.01							
50	5V dc	13.558780	0.000040000	±0.01							
Nominal F	requency:	13.560000									

Manufacture declared temperature range of operation -10 – 55DegC Note: recorded frequency at -6dBc

Test Setup Photos

Temperature Chamber

Temperature Chamber

15.225(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 110 N.	Olinda Place • Brea, CA	92821 • 714 993 6112					
Customer:	Magtek Incorporated							
Specification:	15.225 Carrier and Spurious E	missions (13.110-14.01	0 MHz Transmitter)					
Work Order #:	99423	Da	te: 9/15/2017					
Test Type:	Radiated Scan Time: 15:57:14							
Tested By:	F Wong	Sequence	μ· Δ					
Software:	EMITest 5 03 02	bequenee	л. т					
Software.	Livit rest 5.05.02							
Equipment Test	ed:							
Device	Manufacturer	Model #	S/N					
Configuration 3								
Support Equipm	ient:							
Device	Manufacturer	Model #	S/N					
Configuration 3								
	1 37 - 4							
Test Conditions	/ Notes:	1 2 1 1 1						
The EUT conta	uning a 13.56 MHz transmitter	and single modular ap	oproved W1F1 transmitter is placed on					
Styrofoam platfor	m.							
WiFi Module								
FCCID: O7P-362) •							
IC :10147A-362								
Evaluation of 13.	56MHz transmitter							
Eraguanay ranga	12 56MHz							
Frequency range	13.30MHZ							
The manufacture	r declares the highest FUT freque	new generated or used	other than the fundamental frequency is					
	declares the highest EOT frequen	icy generated of used, o	other than the fundamental frequency, is					
Frequency range	of massurement $= 0 \text{ kHz} + 1 \text{ GHz}$							
Okuz 150kuz P	$\frac{1}{2} \frac{1}{2} \frac{1}$	Uz 20 MUz DDW_01-						
9KHZ -130KHZ, N	10 W = 200 Hz, V D W = 200 Hz, 130 K	.пz-эџ ічіпz, кd үү –9кі Га	$\Pi Z, V B W = 9K\Pi Z,$					
JUNIEZ-1000 MIF	12, KD W = 120 KHZ, V D W = 120 KHZ	1Z.						
Test environment	conditions							
Test environment								
Temperature: 23								
Relative Humidit	y: 45%							
Pressure: 100.8kl	'a							
The EUT is serve	acted to a support lepton via - USI	able with family and	a FUT and					
The EUT is conne	scied to a support laptop via a USE	s cable with territe on th	le EUT end.					
The device is one	rating at rated 5V DC from the US	B port of the lepton Tr	ansmit and receive simultaneously					
The device is ope	rading at rated 5 v DC from the US	b port of the taptop, 11	ansint and receive simulaneously.					
Emission profile	of the FUT rotated along three orth	nogonal axis was investi	gated					
Recorded data rei	present worse case emission	1050 mar axis was investi	Survu.					
	resent worse case emission							
Site D								

Magtek Incorporated WO# 99423 Sequence# 4 Date: 9/15/2017 15.225 Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter) Test Distance: 3 Meters Horiz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/1/2017	8/1/2018
T2	ANP04382	Cable	LDF-50	6/6/2016	6/6/2018
T3	AN01994	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T4	ANP05283	Attenuator	ATT-0218-06-	5/5/2016	5/5/2018
			NNN-02		
T5	ANP05569	Cable-Amplitude	RG-214/U	12/7/2016	12/7/2018
		+15C to +45C (dB)			
T6	AN00010	Preamp	8447D	3/14/2016	3/14/2018
T7	ANP06978	Cable	Sucoflex 104A	4/5/2016	4/5/2018
T8	AN00314	Loop Antenna	6502	5/20/2016	5/20/2018

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				T5	T6	T7	T8					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	406.775M	38.9	+0.0	+2.1	+17.0	+5.8	+0.0	38.8	46.0	-7.2	Horiz
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		QP		+2.1	-27.4	+0.3	+0.0					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	^	406.775M	39.3	+0.0	+2.1	+17.0	+5.8	+0.0	39.2	46.0	-6.8	Horiz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+2.1	-27.4	+0.3	+0.0					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	^	406.803M	34.9	+0.0	+2.1	+17.0	+5.8	+0.0	34.8	46.0	-11.2	Horiz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+2.1	-27.4	+0.3	+0.0					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	^	406.850M	31.5	+0.0	+2.1	+17.0	+5.8	+0.0	31.4	46.0	-14.6	Horiz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+2.1	-27.4	+0.3	+0.0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	433.880M	38.1	+0.0	+2.2	+17.5	+5.8	+0.0	38.5	46.0	-7.5	Horiz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+2.2	-27.6	+0.3	+0.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	352.558M	36.4	+0.0	+2.0	+15.7	+5.8	+0.0	35.3	46.0	-10.7	Vert
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+2.0	-26.9	+0.3	+0.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	515.250M	31.7	+0.0	+2.4	+18.9	+5.8	+0.0	33.5	46.0	-12.5	Horiz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+2.4	-28.0	+0.3	+0.0					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	433.880M	32.4	+0.0	+2.2	+17.5	+5.8	+0.0	32.8	46.0	-13.2	Horiz
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				+2.2	-27.6	+0.3	+0.0					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	13.110M	23.5	+0.0	+0.3	+0.0	+0.0	-19.1	13.9	29.5	-15.6	Perpe
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+0.3	+0.0	+0.0	+8.9			Bandedge		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	379.650M	30.5	+0.0	+2.1	+16.4	+5.8	+0.0	30.0	46.0	-16.0	Horiz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+2.1	-27.2	+0.3	+0.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	27.120M	25.2	+0.0	+0.5	+0.0	+0.0	-19.1	12.9	29.5	-16.6	Perpe
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				+0.4	+0.0	+0.0	+5.9					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	386.142M	29.5	+0.0	+2.1	+16.6	+5.8	+0.0	29.1	46.0	-16.9	Horiz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+2.1	-27.3	+0.3	+0.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	298.300M	31.5	+0.0	+1.8	+14.2	+5.8	+0.0	28.7	46.0	-17.3	Vert
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+1.8	-26.6	+0.2	+0.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	400.025M	28.1	+0.0	+2.1	+16.9	+5.8	+0.0	27.9	46.0	-18.1	Horiz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+2.1	-27.4	+0.3	+0.0					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	393.275M	28.1	+0.0	+2.1	+16.7	+5.8	+0.0	27.8	46.0	-18.2	Horiz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+2.1	-27.3	+0.3	+0.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	411.892M	27.7	+0.0	+2.1	+17.1	+5.8	+0.0	27.6	46.0	-18.4	Vert
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				+2.1	-27.5	+0.3	+0.0					
+1.6 -26.6 $+0.2$ $+0.0$	17	240.000M	31.2	+0.0	+1.6	+13.0	+5.8	+0.0	26.8	46.0	-19.2	Vert
				+1.6	-26.6	+0.2	+0.0					

18	14.010M	19.3	+0.0	+0.3	+0.0	+0.0	-19.1	9.6	29.5	-19.9	Perpe
			+0.3	+0.0	+0.0	+8.8			Bandedge		
19	335.983M	27.5	+0.0	+1.9	+15.3	+5.8	+0.0	25.9	46.0	-20.1	Vert
			+1.9	-26.8	+0.3	+0.0					
20	325.480M	27.5	+0.0	+1.9	+15.0	+5.8	+0.0	25.6	46.0	-20.4	Horiz
			+1.9	-26.8	+0.3	+0.0					
21	244.130M	28.9	+0.0	+1.6	+13.4	+5.8	+0.0	24.9	46.0	-21.1	Horiz
			+1.6	-26.6	+0.2	+0.0					
22	27.120M	16.5	+0.0	+0.5	+0.0	+0.0	-19.1	4.2	29.5	-25.3	Paral
			+0.4	+0.0	+0.0	+5.9					

Band Edge

Band Edge Summary									
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @30m)	Limit (dBuV/m @30m)	Results				
13.110	OOK	Integral Loop	13.9	≤29.5	Pass				
14.010	OOK	Integral Loop	9.6	≤29.5	Pass				

Band Edge Plots

Test Setup Photos

X Axis

Y Axis

Z Axis

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N. Olinda Place •	Brea, CA 9282	21 • 714 993 6112
Customer:	Magtek Incorporated		
Specification:	15.207 AC Mains - Quasi-peak		
Work Order #:	99423	Date:	10/30/2017
Test Type:	Conducted Emissions	Time:	09:21:51
Tested By:	E. Wong	Sequence#:	10
Software:	EMITest 5.03.11		110V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

The EUT containing a 13.56 MHz transmitter and single modular approved WiFi transmitter is placed on the test bench. WiFi Module FCCID: O7P-362 IC :10147A-362 Evaluation of 13.56MHz transmitter

TX Frequency :13.56MHz

The manufacturer declares the highest EUT frequency generated or used, other than the fundamental frequency, is 12MHz

Frequency range of measurement = 150kHz- 30MHz. 150 kHz-30 MHz; RBW=9 kHz, VBW=9kHz

Test environment conditions: 23°C, 45% Relative Humidity, 100.8kPa

The EUT is connected to a support laptop via a USB cable with ferrite on the EUT end.

The device is operating at rated 5V DC from the USB port of the laptop, Transmit and receive simultaneously.

AC Conducted emission performed at AC main of the support Laptop Power supply

TX 0n, reading at fundamental measured with antenna, and with load attached.

Magtek Incorporated W/O#: 99423 Sequence#: 10 Date: 10/30/2017 15.207 AC Mains - Quasi-peak Test Lead: 110V 60Hz L1-Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/1/2017	8/1/2018
T2	ANP06085	Attenuator	SA18N10W-09	11/14/2016	11/14/2018
T3	AN02343	High Pass Filter	HE9615-150K-	1/25/2017	1/25/2019
			50-720B		
T4	ANP01910	Cable	RG-142	11/30/2015	11/30/2017
T5	AN00969A	50uH LISN-Line 1	3816/2NM	3/14/2017	3/14/2019
		(L1)			
	AN00969A	50uH LISN-Line2	3816/2NM	3/14/2017	3/14/2019
		(L2)			

Measu	irement Data:	Re	ading lis	ted by ma	argin.			Test Lea	ad: L1-Line		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.562M	77.7	+0.0	+5.8	+0.1	+0.1	+0.0	83.9	50.0	+33.9	L1-Li
			+0.2						fundament	tal data	
									with anten	na	
									attached		
2	13.625M	48.3	+0.0	+5.8	+0.1	+0.1	+0.0	54.5	60.0	-5.5	L1-Li
	QP		+0.2								
3	13.770M	48.2	+0.0	+5.8	+0.1	+0.1	+0.0	54.4	60.0	-5.6	L1-Li
L	QP 12 400M	40.0	+0.2	. 5.0	.0.1	.0.1	.0.0	54.0	(0.0	5.0	T 1 T '
4	13.490M	48.0	+0.0	+5.8	+0.1	+0.1	+0.0	54.2	60.0	-5.8	LI-L1
5	<u>QP</u>	21.1	+0.2	50	+0.1	+0.1		27.2	50.0	22.7	T 1 T :
5	15.025M	21.1	+0.0	+3.8	+0.1	+0.1	+0.0	27.5	30.0	-22.1	LI-LI
^	13 625M	54.5	+0.2	15.8	+0.1	+0.1		60.7	50.0	+ 10.7	TIT
	15.025101	54.5	+0.0 +0.2	+3.0	± 0.1	± 0.1	± 0.0	00.7	50.0	+10.7	L1-LI
7	13 490M	20.0	+0.0	+5.8	+0.1	+0.1	+0.0	26.2	50.0	-23.8	L1-Li
,	Ave	20.0	+0.0	10.0	10.1	10.1	10.0	20.2	50.0	23.0	
^	13.490M	54.3	+0.0	+5.8	+0.1	+0.1	+0.0	60.5	50.0	+10.5	L1-Li
			+0.2								
9	13.562M	29.1	+0.0	+5.8	+0.1	+0.1	+0.0	35.3	60.0	-24.7	L1-Li
			+0.2						fundament	tal data	
									with load	attached	
10	164.544k	22.6	+0.0	+5.7	+0.5	+0.0	+0.0	28.8	55.2	-26.4	L1-Li
	Ave		+0.0								
^	164.544k	48.2	+0.0	+5.7	+0.5	+0.0	+0.0	54.4	55.2	-0.8	L1-Li
			+0.0								
^	167.452k	48.1	+0.0	+5.7	+0.4	+0.0	+0.0	54.2	55.1	-0.9	L1-Li
			+0.0								
13	13.661M	17.4	+0.0	+5.8	+0.1	+0.1	+0.0	23.6	50.0	-26.4	L1-Li
	Ave	511	+0.2	. 5.0	.0.1	.0.1	.0.0	67.0	50.0	. 7. 2	T 1 T '
~	13.001M	51.1	+0.0	+5.8	+0.1	+0.1	+0.0	57.5	50.0	+1.3	L1-L1
15	13 607M	17.2	+0.2	15.9	+0.1	+0.1		22.5	50.0	26.5	111;
15	15.07/M	17.5	+0.0	+3.0	± 0.1	± 0.1	± 0.0	25.5	50.0	-20.3	LI-LI
^	13 697M	53.7	+0.0	+5.8	+0.1	+0.1	+0.0	59.9	50.0	0 Q_	I 1-I i
	15.077141	55.7	+0.0	15.0	10.1	10.1	10.0	57.7	50.0	1 2.2	

17	13.770M	16.9	+0.0	+5.8	+0.1	+0.1	+0.0	23.1	50.0	-26.9	L1-Li
	Ave		+0.2								
^	13.770M	54.3	+0.0	+5.8	+0.1	+0.1	+0.0	60.5	50.0	+10.5	L1-Li
			+0.2								
19	580.506k	12.4	+0.0	+5.7	+0.2	+0.0	+0.0	18.3	46.0	-27.7	L1-Li
	Ave		+0.0								
^	580.505k	42.1	+0.0	+5.7	+0.2	+0.0	+0.0	48.0	46.0	+2.0	L1-Li
			+0.0								
21	13.418M	16.0	+0.0	+5.8	+0.1	+0.1	+0.0	22.2	50.0	-27.8	L1-Li
	Ave		+0.2								
^	13.418M	52.4	+0.0	+5.8	+0.1	+0.1	+0.0	58.6	50.0	+8.6	L1-Li
			+0.2								
23	613.957k	11.9	+0.0	+5.7	+0.2	+0.0	+0.0	17.8	46.0	-28.2	L1-Li
	Ave		+0.0								
^	613.957k	39.4	+0.0	+5.7	+0.2	+0.0	+0.0	45.3	46.0	-0.7	L1-Li
			+0.0								
25	13.346M	15.6	+0.0	+5.8	+0.1	+0.1	+0.0	21.8	50.0	-28.2	L1-Li
	Ave		+0.2								
^	13.346M	52.8	+0.0	+5.8	+0.1	+0.1	+0.0	59.0	50.0	+9.0	L1-Li
			+0.2								
27	13.445M	15.3	+0.0	+5.8	+0.1	+0.1	+0.0	21.5	50.0	-28.5	L1-Li
	Ave		+0.2								
^	13.445M	50.0	+0.0	+5.8	+0.1	+0.1	+0.0	56.2	50.0	+6.2	L1-Li
			+0.2								
29	13.842M	12.8	+0.0	+5.8	+0.1	+0.1	+0.0	19.0	50.0	-31.0	L1-Li
	Ave		+0.2								
^	13.842M	46.3	+0.0	+5.8	+0.1	+0.1	+0.0	52.5	50.0	+2.5	L1-Li
			+0.2								
31	13.274M	11.5	+0.0	+5.8	+0.1	+0.1	+0.0	17.7	50.0	-32.3	L1-Li
	Ave		+0.2								
^	13.274M	43.2	+0.0	+5.8	+0.1	+0.1	+0.0	49.4	50.0	-0.6	L1-Li
			+0.2								

Test Location:	CKC Laboratories, Inc • 110 N. Olinda Place •	Brea, CA 9282	21 • 714 993 6112
Customer:	Magtek Incorporated		
Specification:	15.207 AC Mains - Quasi-peak		
Work Order #:	99423	Date:	9/25/2017
Test Type:	Conducted Emissions	Time:	10:49:40
Tested By:	E. Wong	Sequence#:	11
Software:	EMITest 5.03.11		110V 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 3				
Support Equipment:				

Support Bquipmenn				
Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

The EUT containing a 13.56 MHz transmitter and single modular approved WiFi transmitter is placed on the test bench. WiFi Module

FCCID: 07P-362 IC:10147A-362

Evaluation of 13.56MHz transmitter

TX Frequency :13.56MHz

The manufacturer declares the highest EUT frequency generated or used, other than the fundamental frequency, is 12MHz

Frequency range of measurement = 150kHz- 30MHz. 150 kHz-30 MHz; RBW=9 kHz, VBW=9kHz

Test environment conditions: 23°C, 45% relative humidity, 100.8kPa

The EUT is connected to a support laptop via a USB cable with ferrite on the EUT end.

The device is operating at rated 5V DC from the USB port of the laptop, Transmit and receive simultaneously.

AC Conducted emission performed at AC main of the support Laptop Power supply

TX 0n, reading at fundamental measured with antenna, and with load attached.

Magtek Incorporated W/O#: 99423 Sequence#: 11 Date: 9/25/2017 15.207 AC Mains - Quasi-peak Test Lead: 110V 60Hz L2-Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	8/1/2017	8/1/2018
T2	ANP06085	Attenuator	SA18N10W-09	11/14/2016	11/14/2018
T3	AN02343	High Pass Filter	HE9615-150K-	1/25/2017	1/25/2019
			50-720B		
T4	ANP01910	Cable	RG-142	11/30/2015	11/30/2017
	AN00969A	50uH LISN-Line 1	3816/2NM	3/14/2017	3/14/2019
		(L1)			
T5	AN00969A	50uH LISN-Line2	3816/2NM	3/14/2017	3/14/2019
		(L2)			

Meası	irement Data:	Re	eading lis	ted by ma	argin.	Test Lead: L2-Neutral					
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.562M	78.3	+0.0	+5.8	+0.1	+0.1	+0.0	84.6	50.0	+34.6	L2-Ne
			+0.3						fundament	tal data	
									with anten	na	
									attached"		
2	13.770M	48.6	+0.0	+5.8	+0.1	+0.1	+0.0	54.9	60.0	-5.1	L2-Ne
	QP		+0.3								
3	13.490M	48.3	+0.0	+5.8	+0.1	+0.1	+0.0	54.6	60.0	-5.4	L2-Ne
	QP		+0.3								
4	13.634M	48.1	+0.0	+5.8	+0.1	+0.1	+0.0	54.4	60.0	-5.6	L2-Ne
	QP		+0.3								
5	13.490M	19.4	+0.0	+5.8	+0.1	+0.1	+0.0	25.7	50.0	-24.3	L2-Ne
	Ave		+0.3								
^	13.490M	54.5	+0.0	+5.8	+0.1	+0.1	+0.0	60.8	50.0	+10.8	L2-Ne
			+0.3								
7	13.634M	18.1	+0.0	+5.8	+0.1	+0.1	+0.0	24.4	50.0	-25.6	L2-Ne
	Ave		+0.3								
^	13.634M	54.6	+0.0	+5.8	+0.1	+0.1	+0.0	60.9	50.0	+10.9	L2-Ne
			+0.3								
9	13.661M	16.6	+0.0	+5.8	+0.1	+0.1	+0.0	22.9	50.0	-27.1	L2-Ne
	Ave	51.0	+0.3	. 5.0	.0.1	.0.1	. 0. 0	50.0	50.0		
~	13.661M	51.9	+0.0	+5.8	+0.1	+0.1	+0.0	58.2	50.0	+8.2	L2-Ne
11	12 (07)	164	+0.3	50	+0.1	+0.1		22.7	50.0	27.2	LO N.
11	15.09/M	10.4	+0.0	+3.8	+0.1	± 0.1	+0.0	22.1	30.0	-27.5	L2-INC
	12 607M	52.4	+0.0	15 9	+0.1	+0.1		50.7	50.0	+0.7	L2 No
	15.097101	55.4	+0.0	+3.0	± 0.1	± 0.1	+0.0	39.7	50.0	+9.7	L2-INC
13	13 562M	26.1	+0.0	+5.8	+0.1	+0.1	+0.0	32 /	60.0	27.6	L 2 No
15	15.502101	20.1	+0.0 +0.3	+5.0	± 0.1	+0.1	± 0.0	52.4	fundament	-27.0 tal data	L2-INC
			10.5						with load a	attached	
14	13 463M	15 5	+0.0	+5.8	+0.1	+0.1	+0.0	21.8	50.0	_28.2	L2-Ne
	Ave	15.5	+0.3	10.0	10.1	10.1	10.0	21.0	50.0	20.2	12 110
٨	13.463M	51.1	+0.0	+5.8	+0.1	+0.1	+0.0	574	50.0	+7 4	L2-Ne
	10.10011	21.1	+0.3	12.0	10.1	10.1	10.0	27.1	20.0		

16	13.770M	15.3	+0.0	+5.8	+0.1	+0.1	+0.0	21.6	50.0	-28.4	L2-Ne
	Ave		+0.3								
^	13.770M	54.8	+0.0	+5.8	+0.1	+0.1	+0.0	61.1	50.0	+11.1	L2-Ne
			+0.3								
18	13.418M	15.1	+0.0	+5.8	+0.1	+0.1	+0.0	21.3	50.0	-28.7	L2-Ne
	Ave		+0.2								
^	13.418M	52.7	+0.0	+5.8	+0.1	+0.1	+0.0	58.9	50.0	+8.9	L2-Ne
			+0.2								
20	13.445M	14.7	+0.0	+5.8	+0.1	+0.1	+0.0	21.0	50.0	-29.0	L2-Ne
	Ave		+0.3								
^	13.445M	50.3	+0.0	+5.8	+0.1	+0.1	+0.0	56.6	50.0	+6.6	L2-Ne
			+0.3								
22	13.346M	13.9	+0.0	+5.8	+0.1	+0.1	+0.0	20.1	50.0	-29.9	L2-Ne
	Ave		+0.2								
^	13.346M	53.1	+0.0	+5.8	+0.1	+0.1	+0.0	59.3	50.0	+9.3	L2-Ne
			+0.2								
24	13.833M	12.4	+0.0	+5.8	+0.1	+0.1	+0.0	18.7	50.0	-31.3	L2-Ne
	Ave		+0.3								
^	13.833M	45.8	+0.0	+5.8	+0.1	+0.1	+0.0	52.1	50.0	+2.1	L2-Ne
			+0.3								
26	360.162k	10.6	+0.0	+5.7	+0.1	+0.0	+0.0	16.4	48.7	-32.3	L2-Ne
	Ave		+0.0								
^	360.161k	49.0	+0.0	+5.7	+0.1	+0.0	+0.0	54.8	48.7	+6.1	L2-Ne
			+0.0								
28	13.283M	10.9	+0.0	+5.8	+0.1	+0.1	+0.0	17.1	50.0	-32.9	L2-Ne
	Ave		+0.2								
^	13.283M	43.8	+0.0	+5.8	+0.1	+0.1	+0.0	50.0	50.0	+0.0	L2-Ne
			+0.2								
30	517.238k	5.3	+0.0	+5.7	+0.2	+0.0	+0.0	11.2	46.0	-34.8	L2-Ne
Ave		+0.0									
^	517.238k	40.5	+0.0	+5.7	+0.2	+0.0	+0.0	46.4	46.0	+0.4	L2-Ne
			+0.0								
^	518.692k	40.5	+0.0	+5.7	+0.2	+0.0	+0.0	46.4	46.0	+0.4	L2-Ne
			+0.0								

Test Setup Photos

Page 34 of 36 Report No.: 99423-19

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.

Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS						
	Meter reading	(dBµV)				
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.