Magtek Incorporated

ADDENDUM TEST REPORT TO 93565-28
IPAD EMV
Model:
30056015 (uses 30019320 USB cable) 30056017 (uses 30019319 Ethernet/USB combo cable)

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.225
and
RSS 210 Issue 8

Report No.: 93565-28B

Date of issue: July 18, 2013

Testing Certificates: 803.01,803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

[^0]
TABLE OF CONTENTS

Administrative Information 4
Test Report Information 4
Revision History 4
Report Authorization 4
Test Facility Information 5
Software Versions 5
Site Registration \& Accreditation Information 5
Summary of Results 6
Conditions During Testing 6
Equipment Under Test 7
Peripheral Devices 7
FCC Part 15 Subpart C 8
15.207 AC Conducted Emissions 8
15.225(a) RF Power Output 39
-20dBc \& 99\% Occupied Bandwidth 45
15.249(b)(c) Field Strength of Spurious Radiated Emissions 48
15.225(d)(e) Radiated Emissions / Frequency Stability 58
Appendix A: Modified EUT Test Results 73
Revision History 74
Report Authorization 74
Test Facility Information 75
Software Versions 75
Site Registration \& Accreditation Information 75
Summary of Results 76
Conditions During Testing 76
Equipment Under Test 77
Peripheral Devices 77
FCC Part 15 Subpart C 78
15.225(a) RF Power Output 78
15.225(d)Radiated Emissions 81
Supplemental Information 86
Measurement Uncertainty 86
Emissions Test Details 86

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Magtek Incorporated
1710 Apollo Court
Seal Beach, CA 90740

Representative: Alireza Ashani
Customer Reference Number: 96283

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 93565

April 11, 2013
April 11-18, 2013

Revision History

Original: Testing of IPAD EMV, 30056015 (uses 30019320 USB cable) and 30056017 (uses 30019319 Ethernet / USB combo cable) to FCC Part 15 Subpart C Sections 15.225 and RSS 210 Issue 8.
Addendum A: To add new partial 15.225 test data for the IPAD EMV, Model: 30056017 (uses 30019319 Ethernet/USB combo cable) due to modifications made to the EUT after the original testing had been completed. See appendix A for listing of modifications.
Addendum B: This change adds 15.207 test data and the equipment list used for frequency stability testing that were left out in the original testing, report 93565-28. In addition, to reduce confusion, the additional partial testing that appears in report 93565-28A was combined in Appendix A of this report in order to have one test report with all of the original testing and the testing that was performed after modifications were made to the EUT.
Note: the schematic that was in report 93565-28A was removed for confidentiality purposes.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00 .14
Immunity	5.00 .07

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Brea A	USO060	SL2-IN-E-1146R	$3082 D-1$	90473	A-0147

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.225 \& RSS 210 Issue 8

Description	Test Procedure/Method	Results
Conducted Emissions	FCC Part 15 Subpart C Section 15.207	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.225(a) / 2.1046	Pass
-20 dBc \& 99\% Occupied Bandwidth	FCC Part 15 Subpart C Section 15.225 / 2.1049 / RSS 210	Pass
Field Strength of Spurious Radiated Emissions	FCC Part 15 Subpart C Section 15.225(b)(c) / 2.1053	Pass
Radiated Emissions / Frequency Stability	FCC Part 15 Subpart C Section 15.225 (d)(e) / 2.1055(d) / 15.209 / ANSI C63.4 (2003)	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

Modifications during testing with Ethernet Interface: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover.
15.207 Testing: There were two test configurations: USB cable and Ethernet/USB combo cable. Since this EUT is transmitting at 13.56 MHz that fundamental emissions can be seen within the conducted emissions sweep $(150 \mathrm{kHz}$ to 30 MHz$)$. Since the fundamental emission exceeds the limit line for 15.207 it is allowed to replace the transmit antenna with an equivalent resistive load and repeat the test to show that it is not conducted. Therefore, the test was performed a second time with the transmitter output terminated into an equivalent resistor load.
Modifications during 15.225(d) radiated emissions testing with USB Interface: Jumper wire added on top of PCBA from sense line of stylus pen from board jack to signature capture screen.
Modification during 15.225 (d) radiated emissions testing with Ethernet Interface: Conductive paint over entire inside surface of back cover. Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen.

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

IPAD EMV
Manuf: Magtek Incorporated
Model: 30056017
Serial: 30

AC to 5VDC Power Supply
Manuf: DVE
Model: DSA-12PFA-05 FUS 050200
Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop Computer

Manuf: Dell Corporation
Model: Latitude D520
Serial: H2JFYC1

Fast Ethernet Switch

Manuf: Netgear
Model: FS105
Serial: 1D52173U01B60

LABORATORIES, INC.

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:
15.207 AC Mains - Average

93565
Conducted Emissions
IPAD EMV
Magtek Incorporated
30056017
30

Date: 4/16/2013
Time: 10:00:34
Sequence\#: 2
Tested By: S. Yamamoto 110 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 21 / 2011$	$11 / 21 / 2013$
T3	ANP04358	Cable	RG142	$4 / 10 / 2012$	$4 / 10 / 2014$
T4	ANP06084	Attenuator	SA18N10W-06	$12 / 14 / 2012$	$12 / 14 / 2014$
T5	AN00848.1	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
	AN00848.1	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
	AN00969A	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{NM}$	$3 / 12 / 2013$	$3 / 12 / 2015$
	AN00969A	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{NM}$	$3 / 12 / 2013$	$3 / 12 / 2015$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:
The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5 Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 1000 MHz .9 kHz to $150 \mathrm{kHz}, \mathrm{RBW}=\mathrm{VBW}=200 \mathrm{~Hz} .150 \mathrm{kHz}$ to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz} .30 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz}$. Highest fundamental frequency is 13.56 MHz . Temperature: $20^{\circ} \mathrm{C}$, Humidity: 50%, Pressure: 100 kPa . Site A. EUT with integral antenna.

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: L1(L)

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \end{aligned}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{~V}$	Margin dB	Polar Ant
1	13.562 M	55.8	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.2	+0.3	+5.8	+0.0	62.4	$\quad 50.0$ Fundamental emission	${ }^{+12.4}$	L1(L)
2	6.743M	40.6	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	46.9	50.0	-3.1	L1(L)
3	232.900k	43.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+5.8	+0.0	49.0	52.3	-3.3	L1(L)
4	4.892M	36.5	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	42.7	46.0	-3.3	L1(L)
5	304.167k	40.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.2	+0.1	+5.8	+0.0	46.3	50.1	-3.8	L1(L)
6	285.987k	40.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.2	+0.1	+5.8	+0.0	46.3	50.6	-4.3	L1(L)
7	3.501 M	35.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	41.6	46.0	-4.4	L1(L)
8	7.067M	39.1	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	45.4	50.0	-4.6	L1(L)
9	5.045 M	39.0	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	45.2	50.0	-4.8	L1(L)
10	9.409 M	38.6	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	45.1	50.0	-4.9	L1(L)
11	5.175M	38.8	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.2	+5.8	+0.0	45.0	50.0	-5.0	L1(L)
12	3.289M	34.7	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	40.9	46.0	-5.1	L1(L)
13	5.011 M	38.5	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	44.7	50.0	-5.3	L1(L)
14	9.481 M	38.2	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.7	50.0	-5.3	L1(L)
15	5.075M	38.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	44.6	50.0	-5.4	L1(L)
16	9.707 M	38.1	$\begin{aligned} & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.6	50.0	-5.4	L1(L)
17	3.382 M	34.3	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	40.5	46.0	-5.5	L1(L)
18	5.274 M	38.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	44.5	50.0	-5.5	L1(L)
19	3.340 M	33.8	$\begin{aligned} & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+5.8	$+0.0$	40.0	46.0	-6.0	L1(L)

	4.977M	24.3	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	30.5	$46.0 \quad-15.5$	L1(L)
\wedge	4.977 M	38.8	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	45.0	$46.0 \quad-1.0$ see average data above	L1(L)
22	$\begin{aligned} & \text { 4.777M } \\ & \hline \end{aligned}$	24.0	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	30.2	$46.0-15.8$	L1(L)
\wedge	4.777 M	38.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	44.3	$46.0 \quad-1.7$ see average data above	L1(L)
	$4.705 \mathrm{M}$	23.7	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	29.9	$46.0-16.1$	L1(L)
\wedge	4.705 M	37.9	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	44.1	$46.0 \quad-1.9$ see average data above	L1(L)
	$8.112 \mathrm{M}$	27.3	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	$+0.0$	33.7	$50.0-16.3$	L1(L)
\wedge	8.112M	41.5	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	47.9	$\quad 50.0 \quad-2.1$ see average data above	L1(L)
	4.313M	23.1	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	29.3	$46.0-16.7$	L1(L)
\wedge	4.313 M	37.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	43.6	$46.0 \quad-2.4$ see average data above	L1(L)
	$e^{7.355 \mathrm{M}}$	26.9	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	$+0.0$	33.3	$50.0-16.7$	L1(L)
\wedge	7.355M	41.3	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	47.7	$\quad 50.0 \quad-2.3$ see average data above	L1(L)
	$\mathrm{e}^{6.995 \mathrm{M}}$	26.7	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	$+0.0$	33.0	$50.0-17.0$	L1(L)
\wedge	6.995 M	41.8	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	48.1	$\quad 50.0 \quad-1.9$ see average data above	L1(L)
	$\begin{aligned} & \text { 6.950M } \\ & \hline \end{aligned}$	26.7	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+0.2	+5.8	+0.0	33.0	$50.0-17.0$	L1(L)
\wedge	6.950 M	41.0	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	47.3	$50.0 \quad-2.7$ see average data above	L1(L)
	6.815M	26.5	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	32.8	$50.0 \quad-17.2$	L1(L)
\wedge	6.815 M	41.8	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	$+0.0$	48.1	$\quad 50.0 \quad-1.9$ see average data above	L1(L)
	$\begin{aligned} & 161.634 \mathrm{k} \\ & \mathrm{e} \end{aligned}$	28.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$+0.5$	+0.0	+5.8	+0.0	35.1	$55.4-20.3$	L1(L)
\wedge	161.634 k	50.6	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.5	+0.0	+5.8	+0.0	56.9	$55.4+1.5$ see average data above	L1(L)

Ave		24.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+5.8	+0.0	30.8	53.8	-23.0	L1(L)
\wedge	195.813k	46.1	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+5.8	+0.0	see average data above			

CKC Laboratories, Inc Date: 4/16/2013 Time: 10:00:34 Magtek Incorporated WO\#: 93565 15.207 AC Mains - Average Test Lead: L1(L) 110 V 60 Hz Sequence\#: 2 Ext ATTN: 0 dB IPAD EMV

$\begin{array}{ll} & \text { Sweep Data } \\ \text { O } & \text { Peak Readings } \\ \text { * Average Readings } \\ & \text { 1-15.207 AC Mains - Average }\end{array}$
—— Readings
\times QP Readings
v Ambient
2-15.207 AC Mains - Quasi-peak

Test Location: CKC Laboratories, Inc • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
9356
Conducted Emissions
IPAD EMV

S/N:

Magtek Incorporated
30056017
30

Date: 4/16/2013
Time: 10:36:18
Sequence\#: 4
Tested By: S. Yamamoto 110 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T1	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 21 / 2011$	$11 / 21 / 2013$
T2	ANP04358	Cable	RG142	$4 / 10 / 2012$	$4 / 10 / 2014$
T3	ANP06084	Attenuator	SA18N10W-06	$12 / 14 / 2012$	$12 / 14 / 2014$
T4	AN00848.1	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
	AN00848.1	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
	AN00969A	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{NM}$	$3 / 12 / 2013$	$3 / 12 / 2015$
	AN00969A	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{NM}$	$3 / 12 / 2013$	$3 / 12 / 2015$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS	
		050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5 Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 1000 MHz .9 kHz to $150 \mathrm{kHz}, \mathrm{RBW}=\mathrm{VBW}=200 \mathrm{~Hz} .150 \mathrm{kHz}$ to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz} .30 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz}$. Highest fundamental frequency is 13.56 MHz . Temperature: $20^{\circ} \mathrm{C}$, Humidity: 50%, Pressure: 100 kPa . Site A. EUT with integral antenna replaced with 82.8 ohm resistor.

Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Lead: L1(L)

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	T 4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	302.713 k	40.2	+0.2	+0.1	+5.8	+0.0	+0.0	46.3	50.2	-3.9	$\mathrm{~L} 1(\mathrm{~L})$
2	257.626 k	41.5	+0.2	+0.0	+5.8	+0.0	+0.0	47.5	51.5	-4.0	$\mathrm{~L} 1(\mathrm{~L})$

3	$2.931 M$	35.5	+0.2	+0.2	+5.8	+0.1	+0.0	41.8	46.0	-4.2	L1(L)	
4	2.842 M	35.4	+0.2	+0.2	+5.8	+0.1	+0.0	41.7	46.0	-4.3	L1(L)	
5	2.770 M	34.8	+0.2	+0.2	+5.8	+0.1	+0.0	41.1	46.0	-4.9	L1(L)	
6												

\wedge	5.175M	40.9	+0.1	+0.2	+5.8	+0.1	+0.0	47.1	$50.0 \quad-2.9$ see average data above	L1(L)
47	$\begin{aligned} & 172.543 \mathrm{k} \\ & \text { ave } \end{aligned}$	27.9	+0.4	+0.0	+5.8	+0.0	+0.0	34.1	54.8 -20.7	L1(L)
\wedge	172.543 k	48.6	+0.4	+0.0	+5.8	+0.0	+0.0	54.8	$54.8 \quad+0.0$ see average data above	L1(L)
49	$\begin{aligned} & 213.994 \mathrm{k} \\ & \text { ve } \end{aligned}$	25.1	+0.2	+0.0	+5.8	+0.0	+0.0	31.1	53.0 -21.9	L1(L)
\wedge	213.994k	44.3	+0.2	+0.0	+5.8	+0.0	$+0.0$	50.3	$\quad 53.0 \quad-2.7$ see average data above	L1(L)

CKC Laboratories, Inc Date: 4/16/2013 Time: 10:36:18 Magtek Incorporated WO\#: 93565 15.207 AC Mains - Average Test Lead: L1(L) 110 V 60 Hz Sequence\#: 4 Ext ATTN: 0 dB IPAD EMV

$\begin{array}{ll} & \text { Sweep Data } \\ \text { O } & \text { Peak Readings } \\ \text { * Average Readings } \\ & 1-15.207 \text { AC Mains - Average }\end{array}$

Test Location: CKC Laboratories, Inc • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average
Work Order \#: 93565
Test Type:
Equipment:
Manufacturer:
Model:
Conducted Emissions
IPAD EMV
Date: 4/16/2013
Time: 10:04:18
Sequence\#: 3
Tested By: S. Yamamoto
110 V 60 Hz
S/N:
30056017
S/N: 30
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 21 / 2011$	$11 / 21 / 2013$
T3	ANP04358	Cable	RG142	$4 / 10 / 2012$	$4 / 10 / 2014$
T4	ANP06084	Attenuator	SA18N10W-06	$12 / 14 / 2012$	$12 / 14 / 2014$
	AN00848.1	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
T5	AN00848.1	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
	AN00969A	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{NM}$	$3 / 12 / 2013$	$3 / 12 / 2015$
	AN00969A	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{NM}$	$3 / 12 / 2013$	$3 / 12 / 2015$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS	
		050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5 Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 1000 MHz .9 kHz to $150 \mathrm{kHz}, \mathrm{RBW}=\mathrm{VBW}=200 \mathrm{~Hz} .150 \mathrm{kHz}$ to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz} .30 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz}$. Highest fundamental frequency is 13.56 MHz . Temperature: $20^{\circ} \mathrm{C}$, Humidity: 50%, Pressure: 100 kPa . Site A. EUT with integral antenna.

Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Lead: (N)L2

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	T3 dB	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{~V}$	Margin dB	Polar Ant
1	13.562 M	55.1	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	+0.2	+0.3	+5.8	+0.0	61.7	$\quad 50.0$ Fundamental Emission	$+11.7$	(N)L2
2	4.994M	36.2	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	42.4	46.0	-3.6	(N)L2
3	9.211 M	39.9	$\begin{aligned} & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	+0.2	+0.2	+5.8	+0.0	46.4	50.0	-3.6	(N)L2
4	256.899k	40.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+5.8	+0.0	46.8	51.5	-4.7	(N)L2
5	8.265M	38.6	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	45.0	50.0	-5.0	(N)L2
6	303.440k	38.8	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.2	+0.1	+5.8	+0.0	44.9	50.1	-5.2	(N)L2
7	280.897k	39.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+5.8	+0.0	45.3	50.8	-5.5	(N)L2
8	4.620 M	34.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	40.5	46.0	-5.5	(N)L2
9	8.734M	38.0	$\begin{aligned} & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.5	50.0	-5.5	(N)L2
10	4.832 M	34.2	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	40.4	46.0	-5.6	(N)L2
11	7.436M	38.0	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.4	50.0	-5.6	(N)L2
12	6.553 M	37.9	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	44.2	50.0	-5.8	(N)L2
13	7.562M	37.7	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.1	50.0	-5.9	(N)L2
14	7.770M	37.7	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.1	50.0	-5.9	(N)L2
15	320.166k	37.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.2	+0.1	+5.8	+0.0	43.7	49.7	-6.0	(N)L2
16	7.166M	37.6	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.0	50.0	-6.0	(N)L2
17	8.400M	37.6	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.0	50.0	-6.0	(N)L2
18	7.292M	37.5	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	43.9	50.0	-6.1	(N)L2
19	7.625M	37.4	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	43.8	50.0	-6.2	(N)L2
20	6.643 M	37.2	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	43.5	50.0	-6.5	(N)L2
21	8.580M	37.1	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	43.5	50.0	-6.5	(N)L2
22	4.160M	33.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	39.4	46.0	-6.6	(N)L2

23	3.863M	32.9	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	39.1	46.0	-6.9	(N)L2
24	4.003M	32.9	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.2	+5.8	+0.0	39.1	46.0	-6.9	(N)L2
25	6.707M	36.8	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	43.1	50.0	-6.9	(N)L2
26	4.471M	32.7	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	38.9	46.0	-7.1	(N)L2
27	4.220M	32.5	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0 . \end{aligned}$	+0.1	+0.2	+5.8	+0.0	38.7	46.0	-7.3	(N)L2
28	4.237M	32.5	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	38.7	46.0	-7.3	(N)L2
	$195.087 \mathrm{k}$ Ave	22.4	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+5.8	+0.0	28.4	53.8	-25.4	(N)L2
\wedge	195.087k	44.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.2$	+0.0	+5.8	+0.0	see average data above			
	$\begin{aligned} & 168.180 \mathrm{k} \\ & \text { Ave } \end{aligned}$	22.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	+0.4	+0.0	+5.8	+0.0	29.1	55.0	-25.9	(N)L2
\wedge	168.180k	48.5	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.4	+0.0	+5.8	+0.0	see average data above			

CKC Laboratories, Inc Date: 4/16/2013 Time: 10:04:18 Magtek Incorporated WO\#: 93565 15.207 AC Mains - Average Test Lead: (N)L2 110 V 60 Hz Sequence\#t: 3 Ext ATTN: 0 dB IPAD EMV

Test Location: CKC Laboratories, Inc • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average
Work Order \#: 93565
Test Type:
Equipment:
Manufacturer:
Model:
Conducted Emissions
IPAD EMV
Date: 4/16/2013
Time: 10:40:40
Sequence\#: 5
Tested By: S. Yamamoto
110 V 60 Hz
S/N:
30056017
S/N: 30
Test Equipment:

ID	Asset \# AN02672	Description Spectrum Analyzer	Model E4446A	Calibration Date $9 / 4 / 2012$	Cal Due Date $9 / 4 / 2014$
T1	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 21 / 2011$	$11 / 21 / 2013$
T2	ANP04358	Cable	RG142	$4 / 10 / 2012$	$4 / 10 / 2014$
T3	ANP06084	Attenuator	SA18N10W-06	$12 / 14 / 2012$	$12 / 14 / 2014$
	AN00848.1	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
T4	AN00848.1	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
	AN00969A	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{NM}$	$3 / 12 / 2013$	$3 / 12 / 2015$
	AN00969A	50uH LLSN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{NM}$	$3 / 12 / 2013$	$3 / 12 / 2015$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS	
		050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5 Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 1000 MHz .9 kHz to $150 \mathrm{kHz}, \mathrm{RBW}=\mathrm{VBW}=200 \mathrm{~Hz} .150 \mathrm{kHz}$ to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz} .30 \mathrm{MHz}$ to $1000 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz}$. Highest fundamental frequency is 13.56 MHz . Temperature: $20^{\circ} \mathrm{C}$, Humidity: 50%, Pressure: 100 kPa . Site A. EUT with integral antenna replaced with 82.8 ohm resistor.

Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Lead: (N)L2

\#	Freq MHz	$\begin{aligned} & \hline \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	5.716M	40.7	+0.1	+0.2	+5.8	+0.1	+0.0	46.9	50.0	-3.1	(N)L2
2	4.913 M	36.5	+0.1	+0.2	+5.8	+0.1	+0.0	42.7	46.0	-3.3	(N)L2
3	4.845M	35.7	+0.1	+0.2	+5.8	+0.1	+0.0	41.9	46.0	-4.1	(N)L2
4	7.616M	39.4	+0.2	+0.2	+5.8	+0.2	+0.0	45.8	50.0	-4.2	(N)L2
5	8.058M	39.4	+0.2	+0.2	+5.8	+0.2	+0.0	45.8	50.0	-4.2	(N)L2
6	8.373M	39.4	+0.2	+0.2	+5.8	+0.2	+0.0	45.8	50.0	-4.2	(N)L2
7	8.616M	39.2	+0.2	+0.2	+5.8	+0.2	+0.0	45.6	50.0	-4.4	(N)L2
8	4.394M	35.3	+0.1	+0.2	+5.8	+0.1	+0.0	41.5	46.0	-4.5	(N)L2
9	4.637M	35.1	+0.1	+0.2	+5.8	+0.1	+0.0	41.3	46.0	-4.7	(N)L2
10	6.923 M	39.0	+0.1	+0.2	+5.8	+0.2	+0.0	45.3	50.0	-4.7	(N)L2
11	6.544 M	38.8	+0.1	+0.2	+5.8	+0.2	+0.0	45.1	50.0	-4.9	(N)L2
12	218.357k	41.4	+0.2	+0.0	+5.8	+0.0	+0.0	47.4	52.9	-5.5	(N)L2
13	6.211 M	38.2	+0.1	+0.2	+5.8	+0.2	+0.0	44.5	50.0	-5.5	(N)L2
14	307.076k	38.2	+0.2	+0.1	+5.8	+0.0	+0.0	44.3	50.0	-5.7	(N)L2
15	6.725 M	38.0	+0.1	+0.2	+5.8	+0.2	+0.0	44.3	50.0	-5.7	(N)L2
16	6.337 M	37.8	+0.1	+0.2	+5.8	+0.2	+0.0	44.1	50.0	-5.9	(N)L2
17	5.616 M	37.8	+0.1	+0.2	+5.8	+0.1	+0.0	44.0	50.0	-6.0	(N)L2
18	9.779 M	37.3	+0.2	+0.2	+5.8	+0.3	+0.0	43.8	50.0	-6.2	(N)L2
19	10.067 M	37.2	+0.2	+0.2	+5.8	+0.3	+0.0	43.7	50.0	-6.3	(N)L2
20	7.085M	37.2	+0.2	+0.2	+5.8	+0.2	+0.0	43.6	50.0	-6.4	(N)L2
21	10.103 M	37.1	+0.2	+0.2	+5.8	+0.3	+0.0	43.6	50.0	-6.4	(N)L2
22	9.634 M	36.9	+0.2	+0.2	+5.8	+0.3	+0.0	43.4	50.0	-6.6	(N)L2
23	5.535 M	37.0	+0.1	+0.2	+5.8	+0.1	+0.0	43.2	50.0	-6.8	(N)L2

24	5.463M	36.7	+0.1	$+0.2$	+5.8	+0.1	+0.0	42.9	50.0	-7.1	(N)L2
25	3.233M	32.6	+0.1	+0.2	+5.8	+0.1	+0.0	38.8	46.0	-7.2	(N)L2
26	5.028M	35.9	+0.1	$+0.2$	+5.8	+0.1	+0.0	42.1	50.0	-7.9	(N)L2
27	$8.725 \mathrm{M}$	24.7	+0.2	+0.2	+5.8	+0.3	+0.0	31.2	50.0	-18.8	(N)L2
\wedge	8.725M	40.6	+0.2	+0.2	+5.8	+0.3	+0.0	47.1	see average data above		
	$\begin{aligned} & \hline 4.871 \mathrm{M} \\ & \text { ve } \end{aligned}$	20.2	+0.1	+0.2	+5.8	+0.1	+0.0	26.4	46.0	-19.6	(N)L2
\wedge	4.871 M	36.8	+0.1	$+0.2$	+5.8	+0.1	+0.0	43.0	$\begin{array}{r} \hline 46.0 \\ \text { see avera } \\ \text { above } \\ \hline \end{array}$	$\begin{aligned} & \hline-3.0 \\ & \text { lata } \end{aligned}$	(N)L2
	$4.815 \mathrm{M}$ ve	20.0	+0.1	$+0.2$	+5.8	+0.1	+0.0	26.2	46.0	-19.8	(N)L2
\wedge	4.815 M	37.6	+0.1	+0.2	+5.8	+0.1	+0.0	43.8	$\begin{gathered} 46.0 \\ \text { see avera } \end{gathered}$ above	$\begin{array}{r} -2.2 \\ \text { fata } \end{array}$	(N)L2
	$174.725 \mathrm{k}$ Ve	25.2	+0.4	+0.0	+5.8	+0.0	+0.0	31.4	54.7	-23.3	(N)L2
\wedge	174.725 k	45.6	+0.4	+0.0	+5.8	+0.0	+0.0	51.8	see average data above		

CKC Laboratories, Inc Date: 4/16/2013 Time: 10:40:40 Magtek Incorporated WO\#: 93565 15.207 AC Mains - Average Test Lead: (N)L2 110V 60Hz Sequence\#: 5 Ext ATTN: 0 dB IPAD EMV

Test Location: CKC Laboratories, Inc • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification:
15.207 AC Mains - Average

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
93565
Conducted Emissions
IPAD EMV
Magtek Incorporated
30056017
S/N:
30

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date							
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$	$	$	T2	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 21 / 2011$
:---	:---	:---	:---	:---								
T3	ANP04358	Cable	RG142	$4 / 10 / 2012$								
T4	ANP06084	Attenuator	SA18N10W-06	$12 / 14 / 2012$								
T5	AN00848.1	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$								
	AN00848.1	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$								

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5 Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 30 MHz .150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 36%, Pressure: 100 kPa . Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110 Vac 60 Hz . EUT transmitting ON into normal antenna.

Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Lead: L1(L)

4	4.194 M	35.9	+0.0 +0.1	+0.1	+0.2	+5.8	+0.0	42.1	46.0	-3.9	L1(L)
5	10.247 M	39.6	+0.0 +0.3	+0.2	+0.2	+5.8	+0.0	46.1	50.0	-3.9	L1(L)
6	11.463 M	39.6	+0.0 +0.3	+0.2	+0.2	+5.8	+0.0	46.1	50.0	-3.9	L1(L)
7	11.589 M	39.5	+0.0 +0.3	+0.2	+0.2	+5.8	+0.0	46.0	50.0	-4.0	L1(L)
8	11.706 M	39.5	+0.0	+0.2	+0.2	+5.8	+0.0	46.0	50.0	-4.0	L1(L)
9	11.652 M	39.1	+0.3	+0.0	+0.2	+0.2	+5.8	+0.0	45.6	50.0	-4.4

Page 24 of 87

\wedge	829.210k	38.8	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.2	+0.0	+5.8	+0.0	44.9	see average data above				
30	10.797M	31.5	+0.0	+0.2	+0.2	+5.8	+0.0	38.0	50.0	-12.0	L1(L)		
Ave			+0.3										
	10.797M	41.1	+0.0	+0.2	$+0.2$	+5.8	+0.0	47.6	$\begin{aligned} & \hline 50.0 \quad-2.4 \\ & \text { see average data } \\ & \text { above } \end{aligned}$		L1(L)		
			+0.3										
32	28.687M	29.4	+0.0	+0.3	+0.5	+5.8	+0.0	37.1	50.0	-12.9	L1(L)		
Ave			+1.1				$+0.0$						
33	28.684M	27.8	+0.0	+0.3	+0.5	+5.8		35.5	50.0	-14.5	L1(L)		
Ave			+1.1										
	28.684 M	39.4	+0.0	+0.3	+0.5	+5.8	+0.0	47.1	$\begin{array}{ll} \hline 50.0 & -2.9 \\ \text { see average data } \\ \text { above } \end{array}$		L1(L)		
			+1.1										
35	29.233M	26.5	$\begin{array}{r} +0.0 \\ +1.2 \end{array}$	+0.3	+0.5	+5.8	+0.0	34.3	50.0	-15.7	L1(L)		
	Ave												
\wedge	29.233 M	40.1		+0.3	$+0.5$	+5.8	+0.0	47.9	$\begin{aligned} & \hline 50.0 \quad-2.1 \\ & \begin{array}{l} \text { see average data } \\ \text { above } \end{array} \\ & \hline \end{aligned}$		L1(L)		
			+1.2										
37	$\begin{aligned} & \quad 4.726 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	22.0	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.2	+5.8	+0.0	28.2	46.0	-17.8	L1(L)		
\wedge	4.726M	37.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	43.6	\qquad		L1(L)		
		24.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.4	+0.0	+5.8	+0.0	30.9	55.0	-24.1	L1(L)		
^ 168.907 k		46.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.4	+0.0	+5.8	+0.0	52.2	$\quad 55.0 \quad-2.8$see average dataabove		L1(L)		

CKC Laboratories, Inc Date: 4/11/2013 Time: 14:50:42 Magtek Incorporated WO\#: 93565 15.207 AC Mains - Average Test Lead: L1(L) 110 V 60 Hz Sequence\#: 3 Ext ATTN: 0 dB IPAD EMV

Test Location: CKC Laboratories, Inc • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

Work Order \#:
Test Type:
Equipment:
Manufacturer
Model:
93565
Conducted Emissions
IPAD EMV

S/N:

Magtek Incorporated
30056017
30

Date: 4/11/2013
Time: 15:22:40
Sequence\#: 5
Tested By: S. Yamamoto 110 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$	
T1	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 21 / 2011$	$11 / 21 / 2013$
T2	ANP04358	Cable	RG142	$4 / 10 / 2012$	$4 / 10 / 2014$
T3	ANP06084	Attenuator	SA18N10W-06	$12 / 14 / 2012$	$12 / 14 / 2014$
T4	AN00848.1	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
	AN00848.1	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5 Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 30 MHz .150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 36%, Pressure: 100 kPa . Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110 Vac 60 Hz . EUT transmitting ON into 82.5 ohm resistive load.

Ext Attn: 0 dB

Measu	ment Data	Reading listed by margin. Rdng T 1 T 2 T 3				Test Lead: L1(L)					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	4.143 M	36.6	+0.1	+0.2	+5.8	+0.1	+0.0	42.8	46.0	-3.2	L1(L)
2	225.629 k	43.3	+0.2	+0.0	+5.8	+0.0	+0.0	49.3	52.6	-3.3	L1(L)
3	4.620 M	36.5	+0.1	+0.2	+5.8	+0.1	+0.0	42.7	46.0	-3.3	L1(L)

4	4.807M	36.5	+0.1	+0.2	+5.8	+0.1	+0.0	42.7	46.0	-3.3	L1(L)
5	4.841M	36.4	+0.1	+0.2	+5.8	+0.1	+0.0	42.6	46.0	-3.4	L1(L)
6	11.896M	39.5	+0.2	+0.2	+5.8	+0.3	+0.0	46.0	50.0	-4.0	L1(L)
7	11.463 M	39.3	+0.2	+0.2	+5.8	+0.3	+0.0	45.8	50.0	-4.2	L1(L)
8	11.706M	39.1	+0.2	+0.2	+5.8	+0.3	+0.0	45.6	50.0	-4.4	L1(L)
9	10.797M	39.0	+0.2	+0.2	+5.8	+0.3	+0.0	45.5	50.0	-4.5	L1(L)
10	11.589M	38.9	+0.2	+0.2	+5.8	+0.3	+0.0	45.4	50.0	-4.6	L1(L)
11	269.262k	40.4	+0.2	+0.0	+5.8	+0.0	+0.0	46.4	51.1	-4.7	L1(L)
12	7.589M	38.5	+0.2	+0.2	+5.8	+0.2	+0.0	44.9	50.0	-5.1	L1(L)
13	11.950M	38.2	+0.2	+0.2	+5.8	+0.3	+0.0	44.7	50.0	-5.3	L1(L)
14	639.410k	34.4	+0.2	+0.0	+5.8	+0.1	+0.0	40.5	46.0	-5.5	L1(L)
15	12.139 M	38.0	+0.2	+0.2	+5.8	+0.3	+0.0	44.5	50.0	-5.5	L1(L)
16	3.824M	34.2	+0.1	+0.2	+5.8	+0.1	+0.0	40.4	46.0	-5.6	L1(L)
17	10.734 M	37.9	+0.2	+0.2	+5.8	+0.3	+0.0	44.4	50.0	-5.6	L1(L)
18	12.752 M	37.5	+0.2	+0.3	+5.8	+0.3	+0.0	44.1	50.0	-5.9	L1(L)
19	3.437 M	33.8	+0.1	+0.2	+5.8	+0.1	+0.0	40.0	46.0	-6.0	L1(L)
20	11.652 M	37.5	+0.2	+0.2	+5.8	+0.3	+0.0	44.0	50.0	-6.0	L1(L)
21	9.274 M	37.4	+0.2	+0.2	+5.8	+0.3	+0.0	43.9	50.0	-6.1	L1(L)
22	12.202M	37.4	+0.2	+0.2	+5.8	+0.3	+0.0	43.9	50.0	-6.1	L1(L)
23	5.096M	37.6	+0.1	+0.2	+5.8	+0.1	+0.0	43.8	50.0	-6.2	L1(L)
24	7.004 M	37.4	+0.1	+0.2	+5.8	+0.2	+0.0	43.7	50.0	-6.3	L1(L)
	$1.190 \mathrm{M}$	31.5	+0.2	+0.1	+5.8	+0.1	+0.0	37.7	46.0	-8.3	L1(L)
	1.192M	30.4	+0.2	+0.1	+5.8	+0.1	+0.0	36.6	46.0	-9.4	L1(L)
\wedge	1.192M	39.2	+0.2	+0.1	+5.8	+0.1	+0.0	45.4	46.0 aver ve	$\begin{aligned} & -0.6 \\ & \text { ata } \end{aligned}$	L1(L)
28	$1.111 \mathrm{M}$	29.0	+0.2	+0.1	+5.8	+0.1	+0.0	35.2	46.0	-10.8	L1(L)

$\left.\begin{array}{|llllllllllll|}\hline \wedge & 1.111 \mathrm{M} & 38.6 & +0.2 & +0.1 & +5.8 & +0.1 & +0.0 & 44.8 & \begin{array}{c}46.0 \\ \text { see average data }\end{array} & \text { L1.2(L) } \\ \text { above }\end{array}\right]$

CKC Laboratories, Inc Date: 4/11/2013 Time: 15:22:40 Magtek Incorporated WO\#: 93565 15.207 AC Mains - Average Test Lead: L1(L) 110 V 60 Hz Sequence\#: 5 Ext ATTN: 0 dB IPAD EMV

Test Location: CKC Laboratories, Inc • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
15.207 AC Mains - Average

93565 Man
Conducted Emissions
IPAD EMV
Date: 4/11/2013
Time: 14:57:34
Sequence\#: 4
Tested By: S. Yamamoto
110 V 60 Hz
S/N:
30056017
S/N: 30
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 21 / 2011$	$11 / 21 / 2013$
T3	ANP04358	Cable	RG142	$4 / 10 / 2012$	$4 / 10 / 2014$
T4	ANP06084	Attenuator	SA18N10W-06	$12 / 14 / 2012$	$12 / 14 / 2014$
	AN00848.1	50uH LISN-Line 1 (L1) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$
T5	AN00848.1	50uH LISN-Line 2 (L2) (dB)	$3816 / 2 \mathrm{~nm}$	$3 / 14 / 2013$	$3 / 14 / 2015$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5 Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 30 MHz .150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 36%, Pressure: 100 kPa . Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110 Vac 60 Hz . EUT transmitting ON into normal antenna.

Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Lead: (N)L2

4	4.165M	36.2	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	42.4	46.0	-3.6	(N)L2
5	4.305M	35.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	$+0.0$	41.8	46.0	-4.2	(N)L2
6	7.427M	39.1	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	$+0.0$	45.5	50.0	-4.5	(N)L2
7	4.475M	35.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	41.4	46.0	-4.6	(N)L2
8	6.833 M	38.9	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	45.2	50.0	-4.8	(N)L2
9	29.116M	37.4	$\begin{aligned} & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	+0.3	+0.5	+5.8	+0.0	45.1	50.0	-4.9	(N)L2
10	4.011 M	34.8	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	41.0	46.0	-5.0	(N)L2
11	8.229M	38.5	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.9	50.0	-5.1	(N)L2
12	11.463 M	38.4	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.9	50.0	-5.1	(N)L2
13	11.589 M	38.4	$\begin{aligned} & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	+0.2	+0.2	+5.8	$+0.0$	44.9	50.0	-5.1	(N)L2
14	174.724k	43.4	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	+0.4	+0.0	+5.8	$+0.0$	49.6	54.7	-5.1	(N)L2
15	6.472M	38.5	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+5.8	$+0.0$	44.8	50.0	-5.2	(N)L2
16	7.679M	38.2	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	+0.2	+0.2	+5.8	$+0.0$	44.6	50.0	-5.4	(N)L2
17	4.224 M	34.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	$+0.0$	40.6	46.0	-5.4	(N)L2
18	13.355M	38.0	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.2	+0.3	+5.8	+0.0	44.6	50.0	-5.4	(N)L2
19	10.247M	38.1	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	+0.2	+0.2	+5.8	+0.0	44.6	50.0	-5.4	(N)L2
20	3.658 M	34.3	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	40.5	46.0	-5.5	(N)L2
21	4.097 M	34.3	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	40.5	46.0	-5.5	(N)L2
22	3.956M	34.2	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	40.4	46.0	-5.6	(N)L2
23	12.202M	37.9	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.2	+0.2	+5.8	$+0.0$	44.4	50.0	-5.6	(N)L2
24	10.797M	37.8	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.2	+0.2	+5.8	+0.0	44.3	50.0	-5.7	(N)L2
25	13.418M	37.6	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	+0.2	+0.3	+5.8	$+0.0$	44.2	50.0	-5.8	(N)L2
	$\begin{aligned} & \text { 29.237M } \\ & \text { ve } \end{aligned}$	34.0	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	$+0.3$	+0.5	+5.8	$+0.0$	41.7	50.0	-8.3	(N)L2
	$\begin{aligned} & 29.239 \mathrm{M} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	31.8	$\begin{aligned} & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	$+0.3$	+0.5	+5.8	$+0.0$	39.5	50.0	-10.5	(N)L2
\wedge	29.239M	40.1	$\begin{aligned} & \hline+0.0 \\ & +1.1 \end{aligned}$	+0.3	+0.5	+5.8	+0.0	47.8	50.0 aver ve	$\begin{aligned} & -2.2 \\ & \text { lata } \end{aligned}$	(N)L2

	$28.686 \mathrm{M}$	31.7	$\begin{aligned} & \hline+0.0 \\ & +1.1 \end{aligned}$	+0.3	+0.5	+5.8	+0.0	39.4	50.0	-10.6	(N)L2
30	$\begin{aligned} & \text { 28.684M } \\ & \text { ve } \end{aligned}$	30.1	$\begin{aligned} & +0.0 \\ & +1.1 \\ & \hline \end{aligned}$	+0.3	+0.5	+5.8	+0.0	37.8	50.0	-12.2	(N)L2
\wedge	28.684M	39.3	$\begin{aligned} & +0.0 \\ & +1.1 \end{aligned}$	+0.3	+0.5	+5.8	+0.0	47.0	$50.0 \quad-3.0$ see average data above		(N)L2
32	$1.188 \mathrm{M}$ ve	27.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.2	+0.1	+5.8	+0.0	33.6	46.0	-12.4	(N)L2
\wedge	1.188M	38.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.2	+0.1	+5.8	+0.0	44.6	$46.0 \quad-1.4$ see average data above		(N)L2
	$829.209 \mathrm{k}$ ve	26.2	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+5.8	+0.0	32.2	46.0	-13.8	(N)L2
\wedge	829.209k	39.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	+0.2	+0.0	+5.8	+0.0	45.8	$\quad 46.0 \quad-0.2$see average dataabove		(N)L2
36	$\begin{aligned} & 4.947 \mathrm{M} \\ & \text { ve } \\ & \hline \end{aligned}$	21.9	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	28.1	46.0	-17.9	(N)L2
\wedge	4.947 M	37.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+5.8	+0.0	43.8	$46.0 \quad-2.2$ see average data above		(N)L2

CKC Laboratories, Inc Date: 4/11/2013 Time: 14:57:34 Magtek Incorporated WO\#: 93565 15.207 AC Mains - Average Test Lead: (N)L2 110 V 60 Hz Sequence\#: 4 Ext ATTN: 0 dB IPAD EMV

Test Location: CKC Laboratories, Inc • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification: 15.207 AC Mains - Average

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
93565
Conducted Emissions
IPAD EMV

S/N:

Magtek Incorporated
30056017
30

Date: 4/11/2013
Time: 15:26:29
Sequence\#: 6
Tested By: S. Yamamoto 110 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T1	AN02610	High Pass Filter	$\begin{aligned} & \text { HE9615-150K- } \\ & 50-720 \mathrm{~B} \end{aligned}$	11/21/2011	11/21/2013
T2	ANP04358	Cable	RG142	4/10/2012	4/10/2014
T3	ANP06084	Attenuator	SA18N10W-06	12/14/2012	12/14/2014
	AN00848.1	50uH LISN-Line 1 (L1) (dB)	3816/2nm	3/14/2013	3/14/2015
T4	AN00848.1	50uH LISN-Line 2 $(\mathrm{L} 2)(\mathrm{dB})$	3816/2nm	3/14/2013	3/14/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5 Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 30 MHz .150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 36%, Pressure: 100 kPa . Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110 Vac 60 Hz . EUT transmitting ON into 82.5 ohm resistive load.

Ext Attn: 0 dB

Measurement Data:
$\#$ Freq Rdng T 1 T 2 T 3 T 4 Dist Test Lead: (N)L2 MHz $\mathrm{dB} \mu \mathrm{V}$ dB dB dB dB Table $\mathrm{dB} \mu \mathrm{V}$ Spec $\mathrm{dB} \mu \mathrm{V}$
1

4	4.747M	36.1	+0.1	+0.2	+5.8	+0.1	+0.0	42.3	46.0	-3.7	(N)L2
5	1.111 M	35.8	+0.2	+0.1	+5.8	+0.1	+0.0	42.0	46.0	-4.0	(N)L2
6	4.509 M	35.8	+0.1	+0.2	+5.8	+0.1	+0.0	42.0	46.0	-4.0	(N)L2
7	155.818k	44.6	+1.2	+0.0	+5.8	+0.0	+0.0	51.6	55.7	-4.1	(N)L2
8	4.080M	35.6	+0.1	+0.2	+5.8	+0.1	+0.0	41.8	46.0	-4.2	(N)L2
9	4.615 M	35.2	+0.1	+0.2	+5.8	+0.1	+0.0	41.4	46.0	-4.6	(N)L2
10	4.020 M	35.1	+0.1	+0.2	+5.8	+0.1	+0.0	41.3	46.0	-4.7	(N)L2
11	4.122 M	35.0	+0.1	+0.2	+5.8	+0.1	+0.0	41.2	46.0	-4.8	(N)L2
12	4.211 M	34.9	+0.1	+0.2	+5.8	+0.1	+0.0	41.1	46.0	-4.9	(N)L2
13	11.950M	38.6	+0.2	+0.2	+5.8	+0.3	+0.0	45.1	50.0	-4.9	(N)L2
14	238.719k	40.9	+0.2	+0.0	+5.8	+0.0	+0.0	46.9	52.1	-5.2	(N)L2
15	4.688M	34.5	+0.1	+0.2	+5.8	+0.1	+0.0	40.7	46.0	-5.3	(N)L2
16	3.956 M	34.2	+0.1	+0.2	+5.8	+0.1	+0.0	40.4	46.0	-5.6	(N)L2
17	248.900k	40.1	+0.2	+0.0	+5.8	+0.0	+0.0	46.1	51.8	-5.7	(N)L2
18	3.829 M	34.0	+0.1	+0.2	+5.8	+0.1	+0.0	40.2	46.0	-5.8	(N)L2
19	4.313 M	34.0	+0.1	+0.2	+5.8	+0.1	+0.0	40.2	46.0	-5.8	(N)L2
20	3.573 M	33.9	+0.1	$+0.2$	+5.8	+0.1	$+0.0$	40.1	46.0	-5.9	(N)L2
21	3.386 M	33.8	+0.1	+0.2	+5.8	+0.1	+0.0	40.0	46.0	-6.0	(N)L2
22	3.799 M	33.7	+0.1	+0.2	+5.8	+0.1	+0.0	39.9	46.0	-6.1	(N)L2
23	12.139 M	37.4	+0.2	+0.2	+5.8	+0.3	+0.0	43.9	50.0	-6.1	(N)L2
24	9.238 M	37.2	+0.2	+0.2	+5.8	+0.3	+0.0	43.7	50.0	-6.3	(N)L2
25	10.797M	37.2	+0.2	+0.2	+5.8	+0.3	+0.0	43.7	50.0	-6.3	(N)L2
26	6.265 M	37.2	+0.1	+0.2	+5.8	+0.2	+0.0	43.5	50.0	-6.5	(N)L2
27	6.833 M	37.2	+0.1	+0.2	+5.8	+0.2	+0.0	43.5	50.0	-6.5	(N)L2
28	11.652 M	37.0	+0.2	+0.2	+5.8	+0.3	+0.0	43.5	50.0	-6.5	(N)L2
29	$1.190 \mathrm{M}$	29.1	+0.2	$+0.1$	+5.8	+0.1	$+0.0$	35.3	46.0	-10.7	(N)L2

Page 35 of 87

30	${ }^{1.192 \mathrm{M}}$	28.1	+0.2	+0.1	+5.8	+0.1	+0.0	34.3	46.0	-11.7	(N)L2
\wedge	1.192M	38.9	+0.2	+0.1	+5.8	+0.1	+0.0	45.1	see average data above		
32	$\begin{aligned} & 829.210 \mathrm{k} \\ & \hline \end{aligned}$	26.4	$+0.2$	+0.0	+5.8	$+0.0$	+0.0	32.4	46.0	-13.6	(N)L2
\wedge	829.210k	37.8	+0.2	+0.0	+5.8	+0.0	+0.0	43.8	see average data above		

> CKC Laboratories, Inc Date: 4/11/2013 Time: $15: 26: 29$ Magtek Incorporated WO\#: 93565 15.207 AC Mains - Average Test Lead: (N)L2 110 V 60 Hz Sequence\#: 6 Ext ATTN: 0 dB IPAD EMV

Test Setup Photos

USB Setup - Front

Ethernet Setup - Front

Ethernet Setup - Side

15.225(a) RF Power Output

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
15.225 (a) Field strength of any emissions within the band 13.553 MHz to 13.567 MHz

93565 Date: 4/16/2013
Maximized Emissions
Time: 08:34:50
IPAD EMV
Sequence\#: 1
Magtek Incorporated

S/N:
30056015

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05198	Cable-Amplitude 15 to $45^{\circ} \mathrm{C}$ (dB)	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T3	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056015	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB cable is connected to the remotely located laptop. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.551 MHz to 13.57 MHz .150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 51%, Pressure: 100 kPa . Site A OATS. Voltage to EUT is 110 Vac 60 Hz .

Test Data

Ext Attn: 0 dB
Measurement Data: Reading listed by order taken. Test Distance: 10 Meters

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	T 3 dB	dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	13.560 M	37.8	+0.0	+0.6	+8.5		-19.1	27.8	84.0	-56.2	Axis 2
2	13.560 M	35.8	+0.0	+0.6	+8.5	-19.1	25.8	84.0	-58.2	Axis 3	
3	13.560 M	38.3	+0.0	+0.6	+8.5	-19.1	28.3	84.0	-55.7	Axis 1	
4	13.560 M	38.3	+0.0	+0.6	+8.5	-19.1	28.3	84.0 85% Rated Voltage	Axis 1		
5	13.560 M	38.3	+0.0	+0.6	+8.5	-19.1	28.3	84.0 115% Rated Voltage	-55.7	Axis 1	

USB

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification:
15.225(a) Carrier and Spurious Emissions (13.553-13.567 MHz Transmitter)

Work Order \#:
93565
Maximized Emissions
IPAD EMV
Equipment:
Manufacturer:
Model:
Magtek Incorporated
30056017
S/N:

Date: 4/11/2013
Time: 08:38:38
Sequence\#: 3
Tested By: S. Yamamoto

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05198	Cable-Amplitude 15 to $45^{\circ} \mathrm{C}($ dB $)$	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T3	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS	NA
		050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.553 MHz to 13.567 MHz . 150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 40%, Pressure: 100 kPa . Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110 Vac 60 Hz .

Ext Attn: 0 dB

Measu	ent Data	Reading listed by margin.					Test Distance: 10 Meters				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	13.560M	37.9	+0.0	+0.6	+8.5		-19.1	27.9	84.0	-56.1	Axis 1
2	13.560M	36.3	+0.0	+0.6	+8.5		-19.1	26.3	84.0	-57.7	Axis 2
3	13.560M	34.2	+0.0	+0.6	+8.5		-19.1	24.2	84.0	-59.8	Axis 3

Ethernet

Test Setup Photos

USB, Front View

USB, Front View

Ethernet, Front View

Ethernet, Back View

-20dBc \& 99\% Occupied Bandwidth

Test Conditions / Setup

Test Location:	CKC Laboratories, Inc. - 110 North Olinda Place - Brea, CA 92823 - 7149936112
Customer:	Magtek Incorporated
Specification:	2.1049-20dBc \& 99\% RSS Occupied Bandwidth
Work Order \#:	93565 Date: 4/11/2013
	Time: 08:38:38
Equipment:	IPAD EMV Sequence\#: 3
Manufacturer:	Magtek Incorporated Tested By: S. Yamamoto
Model:	30056017
S/N:	30

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05198	Cable-Amplitude 15 to $45^{\circ} \mathrm{C}($ dB $)$	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T3	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (${ }^{*}=$ EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:		Model \#	S/N
Function	Manufacturer	Latitude D520	H2JFYC1
Laptop Computer	Dell Corporation	FS105	1D52173U01B60
Fast Ethernet Switch	Netgear		

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 40%, Pressure: 100 kPa . Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110 Vac 60 Hz .

Test Data

Test Setup Photos

LABORATORIES, INC.

15.249(b)(c) Field Strength of Spurious Radiated Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification: $\quad 15.225(b)$ Field strength of any emissions within the band 13.410 MHz to 13.553 MHz and 13.567MHz to 13.710 MHz

Work Order \#:	93565	Date: $4 / 16 / 2013$
Test Type:	Maximized Emissions	
Equipment:	IPAD EMV	
Manufacturer:	Magtek Incorporated	Tested By: S. Yamamoto
Model:	30056015	
S/N:	30	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05198	Cable-Amplitude 15 to $45^{\circ} \mathrm{C}($ dB $)$	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T3	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056015	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB cable is connected to the remotely located laptop. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.4 MHz to 13.72 MHz . 150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 51%, Pressure: 100 kPa . Site A OATS. Voltage to EUT is 110 Vac 60 Hz .

USB

USB

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated
Specification: $\quad 15.225(b)$ Field Strength of Emissions within $13.410-13.553 \mathrm{MHz}$ and $13.567-13.710 \mathrm{MHz}$
Work Order \#: 93565 Date: 4/11/2013
Test Type: Maximized Emissions
Equipment: IPAD EMV
Manufacturer: Magtek Incorporated
Time: 08:38:38

Model: 30056017
S/N: 30
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05198	Cable-Amplitude 15 to $45^{\circ} \mathrm{C}($ dB $)$	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T3	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.40 MHz to 13.80 MHz . 150 kHz to 30 MHz , RBW=VBW= 9 kHz . Temperature: $20^{\circ} \mathrm{C}$, Humidity: 40%, Pressure: 100 kPa . Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110 Vac 60 Hz .

Ethernet

Ethernet

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification: $\quad 15.225(\mathrm{c})$ Field strength of any emissions within the band 13.110 MHz to 13.410 MHz and $\mathbf{1 3 . 7 1 0 M H z}$ to $\mathbf{1 4 . 0 1 0 M H z}$

Work Order \#:	93565	Date: $4 / 16 / 2013$
Test Type:	Maximized Emissions	
Equipment:	IPAD EMV	
Manufacturer:	Magtek Incorporated	Tested By: S. Yamamoto
Model:	30056015	
S/N:	30	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05198	Cable-Amplitude 15 to $45^{\circ} \mathrm{C}(\mathrm{dB})$	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T3	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under $\boldsymbol{\text { Test }}$ ($*=$ EUT):		S/N	
Function	Manufacturer	Model \#	30
IPAD EMV $*$	Magtek Incorporated	30056015	NA
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB cable is connected to the remotely located laptop. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.1 MHz to 14.1 MHz . 150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 51%, Pressure: 100 kPa . Site A OATS. Voltage to EUT is 110 Vac 60 Hz .

USB

USB

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated
Specification: $\quad 15.225(c)$ Field Strength of Emissions within $13.110-13.410 \mathrm{MHz}$ and $13.710-14.010 \mathrm{MHz}$

Work Order \#: 93565
Test Type:
Equipment:
Manufacturer:
Model:
S/N: 30

Maximized Emissions
IPAD EMV
Magtek Incorporated 30056017

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05198	Cable-Amplitude 15 to $45^{\circ} \mathrm{C}($ dB $)$	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T3	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.110 MHz to 14.10 MHz . 150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 40%, Pressure: 100 kPa . Site A OATS. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110 Vac 60 Hz .

Ethernet

Ethernet

Test Setup Photos

USB, Front View

USB, Front View

Ethernet, Front View

Ethernet, Back View

LABORATORIES, INC.

15.225(d)(e) Radiated Emissions / Frequency Stability

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated
Specification: 15.209 Radiated Emissions
Work Order \#:
93565
Maximized Emissions
IPAD EMV
Date: 4/17/2013
Time: 14:20:52
Sequence\#: 1
Tested By: S. Yamamoto
Manufacturer:
Magtek Incorporated
30056015
Model:
30
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05050	Cable	RG223/U	$1 / 21 / 2013$	$1 / 21 / 2015$
T3	AN00309	Preamp	8447 D	$3 / 29 / 2012$	$3 / 29 / 2014$
T4	ANP05198	Cable-Amplitude 15 to $45^{\circ} \mathrm{C}($ dB $)$	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
	ANP05198	Cable-Amplitude -15 to $15^{\circ} \mathrm{C}$	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T5	AN01995	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056015	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1

Test Conditions / Notes:

The equipment under test (EUT) is stand alone on the Styrofoam tabletop. The EUT USB port is connected to a remotely located laptop. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 1000 MHz .9 kHz to $150 \mathrm{kHz}, \mathrm{RBW}=\mathrm{VBW}=200 \mathrm{~Hz} .150 \mathrm{kHz}$ to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz} .30 \mathrm{MHz}$ to 1000 MHz , RBW=VBW $=120 \mathrm{kHz}$. Highest fundamental frequency is 13.56 MHz . Modification: Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen. Temperature: $19^{\circ} \mathrm{C}$, Humidity: 59%, Pressure: 100 kPa . Site A OATS. Voltage to EUT is 110 Vac 60 Hz .

Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\wedge	949.175 M	39.5	$\begin{array}{r} +0.0 \\ +23.5 \end{array}$	+0.7	-27.3	+6.0	+0.0	42.4	46.0	-3.6	Horiz
25	719.988M	42.4	$\begin{array}{r} +0.0 \\ +21.2 \end{array}$	+0.5	-27.1	+5.1	+0.0	42.1	46.0	-3.9	Vert
26	596.625M	44.6	$\begin{array}{r} +0.0 \\ +19.7 \end{array}$	+0.4	-27.4	+4.6	+0.0	41.9	46.0	-4.1	Horiz
27	515.266M	47.1	$\begin{array}{r} +0.0 \\ +17.8 \end{array}$	+0.4	-27.7	+4.2	+0.0	41.8	46.0	-4.2	Vert
28	$\begin{aligned} & 527.990 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$		$\begin{array}{r} +0.0 \\ +18.1 \end{array}$	+0.4	-27.7	+4.3	+0.0	41.7	46.0	-4.3	Vert
\wedge	527.991 M	50.3	$\begin{array}{r} +0.0 \\ +18.1 \end{array}$	+0.4	-27.7	+4.3	+0.0	45.4	46.0	-0.6	Vert
\wedge	527.990 M	48.1	$\begin{array}{r} +0.0 \\ +18.1 \end{array}$	+0.4	-27.7	+4.3	+0.0	43.2	46.0	-2.8	Vert
31	527.991 M	46.6	$\begin{array}{r} +0.0 \\ +18.1 \end{array}$	+0.4	-27.7	+4.3	+0.0	41.7	46.0	-4.3	Horiz
32	$\begin{aligned} & \text { 542.386M } \\ & \mathrm{QP} \\ & \hline \end{aligned}$	45.8	$\begin{array}{r} +0.0 \\ +18.5 \end{array}$	+0.4	-27.6	+4.4	+0.0	41.5	46.0	-4.5	Horiz
\wedge	542.386 M	47.9	$\begin{array}{r} +0.0 \\ +18.5 \\ \hline \end{array}$	+0.4	-27.6	+4.4	+0.0	43.6	46.0	-2.4	Horiz
34	677.982 M	42.6	$\begin{array}{r} +0.0 \\ +20.6 \\ \hline \end{array}$	+0.5	-27.1	+4.9	+0.0	41.5	46.0	-4.5	Vert
35	596.624 M	44.0	$\begin{array}{r} +0.0 \\ +19.7 \\ \hline \end{array}$	+0.4	-27.4	+4.6	+0.0	41.3	46.0	-4.7	Vert
	$\begin{aligned} & \text { 677.983M } \\ & \mathrm{QP} \\ & \hline \end{aligned}$	42.4	$\begin{array}{r} +0.0 \\ +20.6 \\ \hline \end{array}$	+0.5	-27.1	+4.9	+0.0	41.3	46.0	-4.7	Horiz
\wedge	677.983 M	44.1	$\begin{array}{r} +0.0 \\ +20.6 \\ \hline \end{array}$	$+0.5$	-27.1	+4.9	$+0.0$	43.0	46.0	-3.0	Horiz
38	959.999M	38.1	$\begin{array}{r} +0.0 \\ +23.5 \\ \hline \end{array}$	+0.7	-27.3	+6.1	$+0.0$	41.1	46.0	-4.9	Horiz
39	569.505 M	44.4	$\begin{array}{r} +0.0 \\ +19.1 \\ \hline \end{array}$	+0.4	-27.5	+4.5	$+0.0$	40.9	46.0	-5.1	Horiz
40	325.432 M	51.1	$\begin{array}{r} +0.0 \\ +13.9 \\ \hline \end{array}$	+0.3	-27.9	+3.3	$+0.0$	40.7	46.0	-5.3	Horiz
41	650.853 M	42.3	$\begin{array}{r} +0.0 \\ +20.3 \\ \hline \end{array}$	$+0.5$	-27.2	+4.8	+0.0	40.7	46.0	-5.3	Horiz
42	325.431 M	50.8	$\begin{array}{r} +0.0 \\ +13.9 \\ \hline \end{array}$	+0.3	-27.9	+3.3	+0.0	40.4	46.0	-5.6	Horiz
43	325.432M	50.7	$\begin{array}{r} +0.0 \\ +13.9 \\ \hline \end{array}$	+0.3	-27.9	+3.3	+0.0	40.3	46.0	-5.7	Vert
44	298.313M	51.3	$\begin{array}{r} +0.0 \\ +13.1 \end{array}$	+0.3	-27.8	+3.1	+0.0	40.0	46.0	-6.0	Horiz
45	922.055 M	37.4	$\begin{array}{r} +0.0 \\ +23.3 \end{array}$	+0.6	-27.2	+5.9	+0.0	40.0	46.0	-6.0	Horiz
46	863.997M	37.7	$\begin{array}{r} +0.0 \\ +23.0 \end{array}$	+0.7	-27.2	+5.7	+0.0	39.9	46.0	-6.1	Horiz
47	815.986M	38.3	$\begin{array}{r} +0.0 \\ +22.7 \end{array}$	+0.6	-27.3	+5.5	$+0.0$	39.8	46.0	-6.2	Horiz
48	650.862M	41.1	$\begin{array}{r} +0.0 \\ +20.3 \\ \hline \end{array}$	$+0.5$	-27.2	+4.8	$+0.0$	39.5	46.0	-6.5	Vert
49	95.998 M	53.5	$\begin{aligned} & +0.0 \\ & +9.5 \end{aligned}$	+0.1	-28.0	+1.7	$+0.0$	36.8	43.5	-6.7	Vert

50	406.789 M	46.7	+0.0 +16.1	+0.4	-27.9	+3.6	+0.0	38.9	46.0	-7.1	Horiz
51	119.996 M	50.2	+0.0 +11.7	+0.1	-28.0	+1.9	+0.0	35.9	43.5	-7.6	Vert
52	488.147 M	44.3	+0.0 +17.2	+0.4	-27.8	+4.1	+0.0	38.2	46.0	-7.8	Vert
53	383.993 M	46.5	+0.0 +15.6	+0.4	-27.9	+3.5	+0.0	38.1	46.0	-7.9	Horiz
54	949.174 M	34.9	+0.0 +23.5	+0.7	-27.3	+6.0	+0.0	37.8	46.0	-8.2	Vert
55	976.294 M	42.4	+0.0 +23.6	+0.6	-27.3	+6.2	+0.0	45.5	54.0	-8.5	Horiz
56	431.975 M	44.3	+0.0 +16.5	+0.4	-27.8	+3.8	+0.0	37.2	46.0	-8.8	Vert
57	319.998 M	47.4	+0.0 +13.8	+0.3	-27.8	+3.2	+0.0	36.9	46.0	-9.1	Vert
58	239.995 M	49.2	+0.0 +11.8	+0.3	-27.8	+2.8	+0.0	36.3	46.0	-9.7	Vert
59	433.909 M	42.6	+0.0 +16.5	+0.4	-27.8	+3.8	+0.0	35.5	46.0	-10.5	Vert
60	705.102 M	33.8	+0.0 +20.9	+0.5	-27.1	+5.0	+0.0	33.1	46.0	-12.9	Horiz
61	379.671 M	40.0	+0.0 +15.5	+0.4	-27.9	+3.5	+0.0	31.5	46.0	-14.5	Horiz

CKC Laboratories, Inc Date: 4/17/2013 Time: 14:20:52 Magtek Incorporated WO\#: 93565 15.209 Radiated Emissions Test Distance: 3 Meters Sequence\#: 1 Ext ATTN: 0 dB IPAD EMV

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112

Customer: Magtek Incorporated
Specification: 15.209 Radiated Emissions
Work Order \#: 93565
Test Type: Maximized Emissions
Equipment:
Manufacturer:
IPAD EMV

Model:
Magtek Incorporated
30056017
S/N:
30
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05050	Cable	RG223/U	$1 / 21 / 2013$	$1 / 21 / 2015$
T3	AN00309	Preamp	8447 D	$3 / 29 / 2012$	$3 / 29 / 2014$
T4	ANP05198	Cable-Amplitude 15 to 45 ${ }^{\circ}$ C (dB)	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
	ANP05198	Cable-Amplitude -15 to 15degC	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T5	AN01995	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under $\boldsymbol{T e s t}(*=$ EUT): Manufacturer	Model \#	S/N	
Function	Magtek Incorporated	30056017	30
IPAD EMV*	DSA-12PFA-05 FUS 050200	NA	
AC to 5VDC Power Supply	DVE		

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 1000 MHz .9 kHz to $150 \mathrm{kHz}, \mathrm{RBW}=\mathrm{VBW}=200 \mathrm{~Hz} .150 \mathrm{kHz}$ to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz} .30 \mathrm{MHz}$ to 1000 MHz , $\mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz}$. Highest fundamental frequency is 13.56 MHz . Temperature: $20^{\circ} \mathrm{C}$, Humidity: 36%, Pressure: 100 kPa . Site A OATS. Modification: Conductive paint over entire inside surface of back cover. Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen. Voltage to EUT is 110 Vac 60 Hz .

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Distance: 3 Meters

$\begin{gathered} 24 \underset{\mathrm{QP}}{ }{ }^{58.794 \mathrm{M}} \\ \hline \end{gathered}$	57.6	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.1	-28.1	+1.3	$+0.0$	37.0	40.0	-3.0	Vert
$25 \quad 33.989 \mathrm{M}$	48.0	$\begin{array}{r} +0.0 \\ +16.1 \\ \hline \end{array}$	+0.0	-28.1	+1.0	+0.0	37.0	40.0	-3.0	Vert
$\begin{gathered} 26569.505 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	46.3	$\begin{array}{r} +0.0 \\ +19.1 \end{array}$	+0.4	-27.5	+4.5	+0.0	42.8	46.0	-3.2	Vert
$\wedge 569.505 \mathrm{M}$	47.1	$\begin{array}{r} +0.0 \\ +19.1 \\ \hline \end{array}$	+0.4	-27.5	+4.5	+0.0	43.6	46.0	-2.4	Vert
$\begin{gathered} 28{ }^{59.253 \mathrm{M}} \\ \mathrm{QP} \\ \hline \end{gathered}$	57.5	$\begin{aligned} & +0.0 \\ & +6.0 \end{aligned}$	+0.1	-28.1	+1.3	+0.0	36.8	40.0	-3.2	Vert
$\wedge 59.253 \mathrm{M}$	58.5	$\begin{aligned} & \hline+0.0 \\ & +6.0 \end{aligned}$	+0.1	-28.1	+1.3	+0.0	37.8	40.0	-2.2	Vert
$30 \quad 67.798 \mathrm{M}$	57.3	$\begin{aligned} & +0.0 \\ & +6.0 \end{aligned}$	+0.1	-28.1	+1.4	+0.0	36.7	40.0	-3.3	Vert
$\begin{aligned} & 3106.764 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	55.7	$\begin{array}{r} +0.0 \\ +10.5 \\ \hline \end{array}$	+0.1	-28.0	+1.8	$+0.0$	40.1	43.5	-3.4	Vert
$\wedge 106.764 \mathrm{M}$	58.3	$\begin{array}{r} +0.0 \\ +10.5 \\ \hline \end{array}$	+0.1	-28.0	+1.8	$+0.0$	42.7	43.5	-0.8	Vert
$\begin{gathered} 33{ }^{34.121 \mathrm{M}} \\ \mathrm{QP} \\ \hline \end{gathered}$	47.7	$\begin{array}{r} +0.0 \\ +16.0 \\ \hline \end{array}$	+0.0	-28.1	+1.0	$+0.0$	36.6	40.0	-3.4	Vert
$\begin{gathered} 34104.690 \mathrm{M} \\ \mathrm{QP} \\ \hline \end{gathered}$	55.8	$\begin{array}{r} +0.0 \\ +10.4 \\ \hline \end{array}$	+0.1	-28.0	+1.7	+0.0	40.0	43.5	-3.5	Vert
$\wedge 104.690 \mathrm{M}$	58.2	$\begin{array}{r} +0.0 \\ +10.4 \end{array}$	+0.1	-28.0	+1.7	$+0.0$	42.4	43.5	-1.1	Vert
$\wedge 104.749 \mathrm{M}$	57.1	$\begin{array}{r} +0.0 \\ +10.4 \end{array}$	+0.1	-28.0	+1.7	+0.0	41.3	43.5	-2.2	Vert
$\begin{gathered} 37569.505 \mathrm{M} \\ \mathrm{QP} \\ \hline \end{gathered}$	45.9	$\begin{array}{r} +0.0 \\ +19.1 \end{array}$	+0.4	-27.5	+4.5	+0.0	42.4	46.0	-3.6	Horiz
$\wedge 569.505 \mathrm{M}$	46.9	$\begin{array}{r} +0.0 \\ +19.1 \end{array}$	+0.4	-27.5	+4.5	$+0.0$	43.4	46.0	-2.6	Horiz
39719.988 M	42.5	$\begin{array}{r} +0.0 \\ +21.2 \\ \hline \end{array}$	$+0.5$	-27.1	+5.1	$+0.0$	42.2	46.0	-3.8	Horiz
$\begin{gathered} { }^{40}{ }^{56.016 \mathrm{M}} \\ \mathrm{QP} \\ \hline \end{gathered}$	56.1	$\begin{aligned} & +0.0 \\ & +6.8 \\ & \hline \end{aligned}$	+0.1	-28.1	+1.3	$+0.0$	36.2	40.0	-3.8	Vert
$\wedge 56.016 \mathrm{M}$	58.8	$\begin{aligned} & +0.0 \\ & +6.8 \\ & \hline \end{aligned}$	+0.1	-28.1	+1.3	+0.0	38.9	40.0	-1.1	Vert
$42 \quad 596.625 \mathrm{M}$	44.9	$\begin{array}{r} +0.0 \\ +19.7 \\ \hline \end{array}$	+0.4	-27.4	+4.6	$+0.0$	42.2	46.0	-3.8	Horiz
$\begin{gathered} 43{ }^{58.791 \mathrm{M}} \\ \mathrm{QP} \\ \hline \end{gathered}$	56.7	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.1	-28.1	+1.3	$+0.0$	36.1	40.0	-3.9	Vert
$\begin{gathered} 443^{32.899 \mathrm{M}} \\ \mathrm{QP} \\ \hline \end{gathered}$	46.6	$\begin{array}{r} +0.0 \\ +16.5 \\ \hline \end{array}$	+0.0	-28.1	+1.0	+0.0	36.0	40.0	-4.0	Vert
$\wedge 32.899 \mathrm{M}$	48.1	$\begin{array}{r} +0.0 \\ +16.5 \\ \hline \end{array}$	+0.0	-28.1	+1.0	+0.0	37.5	40.0	-2.5	Vert
$46 \quad 677.982 \mathrm{M}$	43.1	$\begin{array}{r} +0.0 \\ +20.6 \\ \hline \end{array}$	+0.5	-27.1	+4.9	+0.0	42.0	46.0	-4.0	Vert
$47 \quad 623.989 \mathrm{M}$	44.0	$\begin{array}{r} +0.0 \\ +20.1 \end{array}$	+0.4	-27.3	+4.7	+0.0	41.9	46.0	-4.1	Horiz
$\begin{aligned} & 48 \quad 108.817 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	54.8	$\begin{array}{r} +0.0 \\ +10.7 \\ \hline \end{array}$	+0.1	-28.0	+1.8	$+0.0$	39.4	43.5	-4.1	Vert
$\begin{aligned} & 49105.847 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	55.0	$\begin{array}{r} +0.0 \\ +10.5 \\ \hline \end{array}$	$+0.1$	-28.0	+1.8	$+0.0$	39.4	43.5	-4.1	Vert

Page 65 of 87

\wedge	105.847 M	57.5	$\begin{array}{r} +0.0 \\ +10.5 \end{array}$	+0.1	-28.0	+1.8	+0.0	41.9	43.5	-1.6	Vert
	$\begin{aligned} & \text { 949.175M } \\ & \text { QP } \end{aligned}$	39.0	$\begin{array}{r} +0.0 \\ +23.5 \end{array}$	+0.7	-27.3	+6.0	+0.0	41.9	46.0	-4.1	Horiz
\wedge	949.175 M	40.2	$\begin{array}{r} +0.0 \\ +23.5 \end{array}$	+0.7	-27.3	+6.0	+0.0	43.1	46.0	-2.9	Horiz
53	596.624 M	44.5	$\begin{array}{r} +0.0 \\ +19.7 \\ \hline \end{array}$	+0.4	-27.4	+4.6	+0.0	41.8	46.0	-4.2	Vert
54	$\begin{aligned} & \text { 911.983M } \\ & \text { QP } \\ & \hline \end{aligned}$	39.3	$\begin{array}{r} +0.0 \\ +23.3 \\ \hline \end{array}$	+0.6	-27.2	+5.8	+0.0	41.8	46.0	-4.2	Vert
\wedge	911.983 M	40.8	$\begin{array}{r} +0.0 \\ +23.3 \end{array}$	+0.6	-27.2	+5.8	+0.0	43.3	46.0	-2.7	Vert
56	200.014 M	55.4	$\begin{array}{r} +0.0 \\ +9.1 \\ \hline \end{array}$	+0.2	-27.9	+2.5	+0.0	39.3	43.5	-4.2	Horiz
57	$\begin{aligned} & 108.780 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	54.7	$\begin{array}{r} +0.0 \\ +10.7 \\ \hline \end{array}$	+0.1	-28.0	+1.8	$+0.0$	39.3	43.5	-4.2	Vert
\wedge	108.780 M	58.1	$\begin{array}{r} +0.0 \\ +10.7 \\ \hline \end{array}$	+0.1	-28.0	+1.8	+0.0	42.7	43.5	-0.8	Vert
\wedge	108.817M	56.3	$\begin{array}{r} +0.0 \\ +10.7 \\ \hline \end{array}$	+0.1	-28.0	+1.8	$+0.0$	40.9	43.5	-2.6	Vert
60	32.002 M	46.0	$\begin{array}{r} +0.0 \\ +16.9 \\ \hline \end{array}$	+0.0	-28.1	+0.9	+0.0	35.7	40.0	-4.3	Vert
61	105.298 M	54.9	$\begin{array}{r} +0.0 \\ +10.4 \end{array}$	+0.1	-28.0	+1.7	+0.0	39.1	43.5	-4.4	Vert
62	719.986M	41.9	$\begin{array}{r} +0.0 \\ +21.2 \\ \hline \end{array}$	+0.5	-27.1	+5.1	+0.0	41.6	46.0	-4.4	Vert
	107.070M QP	54.5	$\begin{array}{r} +0.0 \\ +10.6 \end{array}$	+0.1	-28.0	+1.8	+0.0	39.0	43.5	-4.5	Vert
\wedge	107.070 M	55.5	$\begin{array}{r} +0.0 \\ +10.6 \end{array}$	+0.1	-28.0	+1.8	+0.0	40.0	43.5	-3.5	Vert
65	81.488M	54.4	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	+0.1	-28.1	+1.5	+0.0	35.5	40.0	-4.5	Vert
	$\begin{aligned} & \text { QP } \\ & \hline \end{aligned}$	56.1	$\begin{array}{r} +0.0 \\ +6.1 \\ \hline \end{array}$	+0.1	-28.1	+1.3	$+0.0$	35.5	40.0	-4.5	Vert
67	108.182M	54.3	$\begin{array}{r} +0.0 \\ +10.7 \\ \hline \end{array}$	+0.1	-28.0	+1.8	$+0.0$	38.9	43.5	-4.6	Vert
68	200.014 M	55.0	$\begin{array}{r} +0.0 \\ +9.1 \\ \hline \end{array}$	+0.2	-27.9	+2.5	+0.0	38.9	43.5	-4.6	Vert
	$\begin{aligned} & 58.731 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	55.8	$\begin{array}{r} +0.0 \\ +6.1 \\ \hline \end{array}$	+0.1	-28.1	+1.3	$+0.0$	35.2	40.0	-4.8	Vert
	$\begin{aligned} & 150.010 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	53.4	$\begin{array}{r} +0.0 \\ +10.9 \\ \hline \end{array}$	+0.2	-27.9	+2.1	$+0.0$	38.7	43.5	-4.8	Vert
\wedge	150.010 M	55.8	$\begin{array}{r} +0.0 \\ +10.9 \end{array}$	+0.2	-27.9	+2.1	+0.0	41.1	43.5	-2.4	Vert
72	250.017 M	53.4	$\begin{array}{r} +0.0 \\ +12.4 \end{array}$	+0.3	-27.8	+2.8	+0.0	41.1	46.0	-4.9	Horiz
	$\mathrm{QP}^{58.700 \mathrm{M}}$	55.7	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.1	-28.1	+1.3	$+0.0$	35.1	40.0	-4.9	Vert
\wedge	58.700 M	60.2	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.1	-28.1	+1.3	+0.0	39.6	40.0	-0.4	Vert
\wedge	58.700 M	58.9	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.1	-28.1	+1.3	$+0.0$	38.3	40.0	-1.7	Vert

Page 66 of 87

\wedge	58.731 M	57.8	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.1	-28.1	+1.3	+0.0	37.2	40.0	-2.8	Vert
\wedge	58.791 M	57.4	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.1	-28.1	+1.3	+0.0	36.8	40.0	-3.2	Vert
\wedge	58.761 M	55.9	$\begin{aligned} & +0.0 \\ & +6.1 \end{aligned}$	+0.1	-28.1	+1.3	+0.0	35.3	40.0	-4.7	Vert
79	$\begin{aligned} & \text { 527.988M } \\ & \mathrm{QP} \\ & \hline \end{aligned}$	45.9	$\begin{array}{r} +0.0 \\ +18.1 \\ \hline \end{array}$	+0.4	-27.7	+4.3	+0.0	41.0	46.0	-5.0	Vert
\wedge	527.988 M	47.6	$\begin{array}{r} +0.0 \\ +18.1 \end{array}$	+0.4	-27.7	+4.3	+0.0	42.7	46.0	-3.3	Vert
81	922.051 M	38.3	$\begin{array}{r} +0.0 \\ +23.3 \end{array}$	+0.6	-27.2	+5.9	+0.0	40.9	46.0	-5.1	Horiz
82	103.344M	54.2	$\begin{array}{r} +0.0 \\ +10.2 \\ \hline \end{array}$	+0.1	-28.0	+1.7	+0.0	38.2	43.5	-5.3	Vert
83	325.430 M	51.1	$\begin{array}{r} +0.0 \\ +13.9 \\ \hline \end{array}$	+0.3	-27.9	+3.3	+0.0	40.7	46.0	-5.3	Horiz
84	515.267 M	43.4	$\begin{array}{r} +0.0 \\ +17.8 \\ \hline \end{array}$	+0.4	-27.7	+4.2	$+0.0$	38.1	43.4	-5.3	Horiz
85	650.862 M	41.8	$\begin{array}{r} +0.0 \\ +20.3 \\ \hline \end{array}$	$+0.5$	-27.2	+4.8	+0.0	40.2	46.0	-5.8	Horiz
86	106.092M	53.2	$\begin{array}{r} +0.0 \\ +10.5 \\ \hline \end{array}$	+0.1	-28.0	+1.8	+0.0	37.6	43.5	-5.9	Vert
87	325.431 M	50.4	$\begin{array}{r} +0.0 \\ +13.9 \\ \hline \end{array}$	+0.3	-27.9	+3.3	+0.0	40.0	46.0	-6.0	Vert
88	515.266M	45.3	$\begin{array}{r} +0.0 \\ +17.8 \end{array}$	+0.4	-27.7	+4.2	+0.0	40.0	46.0	-6.0	Vert
	$\begin{aligned} & 55.890 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	53.8	$\begin{array}{r} +0.0 \\ +6.9 \\ \hline \end{array}$	+0.1	-28.1	+1.3	+0.0	34.0	40.0	-6.0	Vert
\wedge	55.890 M	57.3	$\begin{array}{r} +0.0 \\ +6.9 \\ \hline \end{array}$	+0.1	-28.1	+1.3	+0.0	37.5	40.0	-2.5	Vert
91	488.147 M	43.5	$\begin{array}{r} +0.0 \\ +17.2 \\ \hline \end{array}$	+0.4	-27.8	+4.1	$+0.0$	37.4	43.4	-6.0	Vert
	$\begin{aligned} & 677.983 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	41.0	$\begin{array}{r} +0.0 \\ +20.6 \\ \hline \end{array}$	$+0.5$	-27.1	+4.9	+0.0	39.9	46.0	-6.1	Horiz
\wedge	677.983 M	44.7	$\begin{array}{r} +0.0 \\ +20.6 \\ \hline \end{array}$	$+0.5$	-27.1	+4.9	+0.0	43.6	46.0	-2.4	Horiz
94	527.989 M	44.5	$\begin{array}{r} +0.0 \\ +18.1 \\ \hline \end{array}$	+0.4	-27.7	+4.3	+0.0	39.6	46.0	-6.4	Horiz
95	81.198 M	52.5	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	+0.1	-28.1	+1.5	+0.0	33.6	40.0	-6.4	Vert
96	102.485M	53.0	$\begin{array}{r} +0.0 \\ +10.1 \\ \hline \end{array}$	+0.1	-28.0	+1.7	+0.0	36.9	43.5	-6.6	Vert
97	275.019 M	51.0	$\begin{array}{r} +0.0 \\ +12.8 \\ \hline \end{array}$	+0.3	-27.9	+3.0	+0.0	39.2	46.0	-6.8	Horiz
98	894.936M	36.2	$\begin{array}{r} +0.0 \\ +23.2 \\ \hline \end{array}$	+0.6	-27.2	+5.8	+0.0	38.6	46.0	-7.4	Horiz
99	352.549 M	48.0	$\begin{array}{r} +0.0 \\ +14.7 \\ \hline \end{array}$	+0.3	-27.9	+3.4	+0.0	38.5	46.0	-7.5	Vert
100	98.460 M	51.3	$\begin{array}{r} +0.0 \\ +9.8 \\ \hline \end{array}$	+0.1	-28.0	+1.7	+0.0	34.9	43.5	-8.6	Vert
101	275.003 M	49.1	$\begin{array}{r} +0.0 \\ +12.8 \\ \hline \end{array}$	+0.3	-27.9	+3.0	$+0.0$	37.3	46.0	-8.7	Vert

102	319.998M	47.4	$\begin{array}{r} +0.0 \\ +13.8 \end{array}$	+0.3	-27.8	+3.2	+0.0	36.9	46.0	-9.1	Vert
103	433.910M	43.8	$\begin{array}{r} +0.0 \\ +16.5 \\ \hline \end{array}$	+0.4	-27.8	+3.8	+0.0	36.7	46.0	-9.3	Vert
104	298.313M	47.7	$\begin{array}{r} +0.0 \\ +13.1 \end{array}$	+0.3	-27.8	+3.1	+0.0	36.4	46.0	-9.6	Horiz
105	454.621 M	43.1	$\begin{array}{r} +0.0 \\ +16.8 \\ \hline \end{array}$	+0.4	-27.8	+3.9	+0.0	36.4	46.0	-9.6	Vert
106	239.995 M	49.2	$\begin{array}{r} +0.0 \\ +11.8 \\ \hline \end{array}$	+0.3	-27.8	+2.8	+0.0	36.3	46.0	-9.7	Vert
107	650.864 M	37.6	$\begin{array}{r} +0.0 \\ +20.3 \end{array}$	$+0.5$	-27.2	+4.8	+0.0	36.0	46.0	-10.0	Vert
108	250.016M	48.3	$\begin{array}{r} +0.0 \\ +12.4 \end{array}$	+0.3	-27.8	+2.8	$+0.0$	36.0	46.0	-10.0	Vert
109	976.295M	40.7	$\begin{array}{r} +0.0 \\ +23.6 \\ \hline \end{array}$	+0.6	-27.3	+6.2	+0.0	43.8	54.0	-10.2	Horiz
110	786.460M	34.7	$\begin{array}{r} +0.0 \\ +22.4 \\ \hline \end{array}$	+0.6	-27.3	+5.3	+0.0	35.7	46.0	-10.3	Horiz
111	352.551M	44.8	$\begin{array}{r} +0.0 \\ +14.7 \\ \hline \end{array}$	$+0.3$	-27.9	+3.4	$+0.0$	35.3	46.0	-10.7	Horiz
112	832.061M	33.0	$\begin{array}{r} +0.0 \\ +22.8 \\ \hline \end{array}$	+0.7	-27.2	+5.5	+0.0	34.8	46.0	-11.2	Vert
113	125.006M	46.3	$\begin{array}{r} +0.0 \\ +11.6 \end{array}$	+0.1	-28.0	+1.9	$+0.0$	31.9	43.5	-11.6	Vert
114	976.295M	38.1	$\begin{array}{r} +0.0 \\ +23.6 \end{array}$	+0.6	-27.3	+6.2	+0.0	41.2	54.0	-12.8	Vert
115	275.019 M	44.9	$\begin{array}{r} +0.0 \\ +12.8 \end{array}$	+0.3	-27.9	+3.0	+0.0	33.1	46.0	-12.9	Vert
116	705.102M	33.8	$\begin{array}{r} +0.0 \\ +20.9 \\ \hline \end{array}$	$+0.5$	-27.1	+5.0	$+0.0$	33.1	46.0	-12.9	Horiz
117	488.147M	36.6	$\begin{array}{r} +0.0 \\ +17.2 \\ \hline \end{array}$	$+0.4$	-27.8	+4.1	$+0.0$	30.5	43.4	-12.9	Horiz
118	379.671M	40.0	$\begin{array}{r} +0.0 \\ +15.5 \end{array}$	$+0.4$	-27.9	+3.5	+0.0	31.5	46.0	-14.5	Horiz
119	216.955M	45.9	$\begin{array}{r} +0.0 \\ +10.3 \\ \hline \end{array}$	+0.2	-27.8	+2.6	+0.0	31.2	46.0	-14.8	Horiz
120	230.508 M	43.2	$\begin{array}{r} +0.0 \\ +11.2 \\ \hline \end{array}$	+0.2	-27.8	+2.7	+0.0	29.5	46.0	-16.5	Vert
121	431.983M	48.6	$\begin{array}{r} +0.0 \\ +16.5 \\ \hline \end{array}$	$+0.4$	-27.8	+3.8	$+0.0$	41.5	61.4	-19.9	Horiz
\wedge	431.983 M	49.8	$\begin{array}{r} +0.0 \\ +16.5 \\ \hline \end{array}$	+0.4	-27.8	+3.8	+0.0	42.7	61.4	-18.7	Horiz
123	431.992M	45.3	$\begin{array}{r} +0.0 \\ +16.5 \\ \hline \end{array}$	+0.4	-27.8	+3.8	+0.0	38.2	61.4	-23.2	Vert
124	150.010M	50.8	$\begin{array}{r} +0.0 \\ +10.9 \\ \hline \end{array}$	+0.2	-27.9	+2.1	+0.0	36.1	61.4	-25.3	Horiz
125	36.000 M	43.8	$\begin{array}{r} +0.0 \\ +15.2 \end{array}$	+0.0	-28.1	+1.0	+0.0	31.9	61.4	-29.5	Vert
126	35.973 M	39.4	$\begin{array}{r} +0.0 \\ +15.2 \\ \hline \end{array}$	+0.0	-28.1	+1.0	+0.0	27.5	61.4	-33.9	Horiz

CKC Laboratories, Inc Date: 4/17/2013 Time: 11:25:08 Magtek Incorporated WO\#: 93565 15.209 Radiated Emissions Test Distance: 3 Meters Sequence\#: 2 Ext ATTN: 0 dB IPAD EMV

Frequency Stability

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Bra, CA 92823 • 7149936112

Customer:	Magtek Incorporated	
Specification:	$\mathbf{1 5 . 2 5 (\text { e })}$	
Work Order \#:	93565	Date: $4 / 11 / 2013$
Test Type:	Frequency Stability	
Equipment:	IPAD EMU	
Manufacturer:	Magtek Incorporated	Tested By:
Model: Yamamoto	30056017	

S / N :
30

Test Equipment:

Asset \#	Description	Model	Calibration Date	Cal Due Date
02869/MY46186290	Spectrum Analyzer	E4440A	020613	020615
$01878 / 25-1758-25$	Temperature Chamber	S 1.2 Mini-Max	040213	040215
P04358/cable21	Cable	RG142	041012	041014
(none)/(none)	Near field probe	(none)	VCR	VCR
$01695 / 0250$	AC Power Source	345AMXT/UPC32	012213	012215
$01696 / 0245$				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5VDC Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) is placed inside the temperature chamber. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. Site A. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Voltage to EUT is 110 VAC 60 Hz . Near field probe placed on top of EUT to measure frequency and amplitude.

Test Setup Photos

Frequency Stability

APPENDIX A MODIFIED EUT TEST RESULTS

MANUFACTURER'S DESCRIPTION OF CHANGES TO
 ANTENNA DRIVER BOARD IPAD EMV (30050735.5.01)
 Robert Rodriguez
 Thursday, May 23, 2013

The antenna driver board was modified in order to pass EMVCo load modulation tests. The changes affect mainly capacitors C16, C49.

Capacitors C16, and C49 changed from 130 pF to 100 pF . This reflects the latest changes to the hardware and MagTek Documentation.

The changes impact load modulation reception for EMVCo specifications, and do not affect power transmission for FCC/CE radiated emissions.

To confirm this change didn't affect the radiated emission, pre-scans were performed on the fundamental frequency (i.e., 13.56 MHz) and its harmonics. Test results at CKC laboratory for FCC Class B show there is no performance change when comparing before and after the capacitor magnitude changes.

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Magtek Incorporated
1710 Apollo Court
Seal Beach, CA 90740

Representative: Alireza Ashani
Customer Reference Number: 96283

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Dianne Dudley
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 93565

May 20, 2013
May 20-23, 2013

Revision History

Original: Testing of IPAD EMV, 30056015 (uses 30019320 USB cable) and 30056017 (uses 30019319 Ethernet / USB combo cable) to FCC Part 15 Subpart C Sections 15.225 and RSS 210 Issue 8.
Addendum A: To add new partial 15.225 test data for the IPAD EMV, Model: 30056017 (uses 30019319
Ethernet/USB combo cable) due to modifications made to the EUT after the original testing had been completed.
See appendix A for listing of modifications.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00 .14
Immunity	5.00 .07

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Brea A	USO060	SL2-IN-E-1146R	$3082 D-1$	90473	A-0147

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.225 \& RSS 210 Issue 8

Description	Test Procedure/Method	Results
		Pass
RF Power Output	FCC Part 15 Subpart C Section 15.225(a) /2.1046	
		Pass
Radiated Emissions / Frequency Stability	FCC Part 15 Subpart C Section 15.225 (d) / 2.1055(d) / $15.209 ~ / ~ A N S I ~ C 63.4 ~(2003) ~$	

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

Modifications 15.225(a) RF Power testing: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Changed values of C16, C49 on the Antenna Driver PCB from 130pf to 100 pf. Voltage to EUT is 110 Vac 60 Hz .

Modifications $15.225(\mathrm{~d})$ radiated emissions testing: Conductive paint over entire inside surface of back cover. Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen. Changed values of C16, C49 on the Antenna Driver PCB from 130pf to 100pf. Voltage to EUT is 110 Vac 60 Hz .

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

IPAD EMV
Manuf: Magtek Incorporated
Model: 30056017
Serial: 30

AC to 5VDC Power Supply
Manuf: DVE
Model: DSA-12PFA-05 FUS 050200
Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop Computer

Manuf: Dell Corporation
Model: Latitude D520
Serial: H2JFYC1

Fast Ethernet Switch

Manuf: Netgear
Model: FS105
Serial: 1D52173U01B60

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.225(a) RF Power Output

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
15.225(a) Carrier and Spurious Emissions (13.110-14.010 MHz Transmitter)

Model:
93565
Maximized Emissions
IPAD EMV
Date: 5/23/2013
Time: 11:34:35
Sequence\#: 3
Tested By: S. Yamamoto

S/N:
30056017
30
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T1	ANP05198	Cable-Amplitude 15 to 45degC (dB)	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T2	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (* = EUT):			
Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:

The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. Also connected to the remotely located switch is the laptop computer. The AC to 5 Vdc power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 13.56 MHz . 150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 49%, Pressure: 100 kPa . Site A OATS. Data sheet is only a measurement of the fundamental frequency. Modification: Copper tape shield installed into bottom cover over interface connections. Shield covers entire internal surface of the cover. Changed values of C16, C49 on the Antenna Driver PCB from 130pf to 100pf. Voltage to EUT is 110 Vac 60 Hz .

Ext Attn: 0 dB
Measurement Data:
Reading listed by margin.
Test Distance: 10 Meters

$\#$	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	T 1 dB	T 2 dB	dB	dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
1	13.560 M	37.9	+0.6	+8.5			-19.1	27.9	84.0	-56.1	Axis
2	13.560 M	36.3	+0.6	+8.5			-19.1	26.3	84.0	-57.7	Axis
3	13.560 M	34.1	+0.6	+8.5			-19.1	24.1	84.0	-59.9	Axis

Test Setup Photos

Ethernet, Front View

Ethernet, Back View

15.225(d) Radiated Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Bra, CA 92823 • 7149936112
Customer: Magtek Incorporated
Specification: 15.209 Radiated Emissions
Work Order \#:

93565
Maximized Emissions
IPAD EMV
Magtek Incorporated
30056017
30

Date: 5/23/2013
Time: 11:02:26
Sequence\#: 2
Tested By: S. Yamamoto

Manufacturer:
Model:
SN:

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T2	ANP05050	Cable	RG223/U	$1 / 21 / 2013$	$1 / 21 / 2015$
T3	AN00309	Preamp	8447 D	$3 / 29 / 2012$	$3 / 29 / 2014$
T4	ANP05198	Cable-Amplitude 15 to 45degC (dB)	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
	ANP05198	Cable-Amplitude -15 to 15degC	8268	$12 / 11 / 2012$	$12 / 11 / 2014$
T5	AN01995	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
IPAD EMV*	Magtek Incorporated	30056017	30
AC to 5Vdc Power Supply	DVE	DSA-12PFA-05 FUS 050200	NA

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell Corporation	Latitude D520	H2JFYC1
Fast Ethernet Switch	Netgear	FS105	1D52173U01B60

Test Conditions / Notes:
The equipment under test (EUT) and its AC to DC adapter are stand alone on the Styrofoam tabletop. The EUT Ethernet port is connected to a remotely located switch. The EUT combo interface cable is part number 30019319. Also connected to the remotely located switch is the laptop computer. The AC to 5VDC power adapter is connected to the interface cable and providing power to the EUT. The EUT wireless 13.56 MHz is on and continuously transmitting. Frequency range of this data sheet: 9 kHz to 1000 MHz .9 kHz to 150 kHz , RBW $=\mathrm{VBW}=200 \mathrm{~Hz}$. 150 kHz to $30 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$. 30 MHz to $1000 \mathrm{MHz}, \mathrm{RBW}=\mathrm{VBW}=120 \mathrm{kHz}$. Highest fundamental frequency is 13.56 MHz . This data sheet contains only harmonics of the 13.56 MHz fundamental. Temperature: $20^{\circ} \mathrm{C}$, Humidity: 49%, Pressure: 100 kPa . Site A OATS. Modification: Conductive paint over entire inside surface of back cover. Added jumper wire on top of PCBA from sense line of stylus pen from board jack to signature capture screen. Changed values of C16, C49 on the Antenna Driver PCB from 130pf to 100 pf. Voltage to EUT is 110 Vac 60 Hz .

Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	T2 dB	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	T4 dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \end{gathered}$	Margin dB	Polar Ant
	$542.386 \mathrm{M}$	48.3	$\begin{array}{r} +0.0 \\ +18.5 \end{array}$	+0.4	-27.6	+4.4	+0.0	44.0	46.0	-2.0	Horiz
\wedge	542.386M	48.5	$\begin{array}{r} +0.0 \\ +18.5 \end{array}$	+0.4	-27.6	+4.4	+0.0	44.2	46.0	-1.8	Horiz
3	623.743M	45.2	$\begin{array}{r} +0.0 \\ +20.1 \end{array}$	+0.4	-27.3	+4.7	+0.0	43.1	46.0	-2.9	Vert
4	949.178M	39.5	$\begin{array}{r} +0.0 \\ +23.5 \\ \hline \end{array}$	+0.7	-27.3	+6.0	+0.0	42.4	46.0	-3.6	Horiz
	$\begin{aligned} & \text { 569.505M } \\ & \text { OP } \end{aligned}$	45.8	$\begin{array}{r} +0.0 \\ +19.1 \end{array}$	+0.4	-27.5	+4.5	+0.0	42.3	46.0	-3.7	Vert
\wedge	569.505M	46.9	$\begin{array}{r} +0.0 \\ +19.1 \end{array}$	+0.4	-27.5	+4.5	+0.0	43.4	46.0	-2.6	Vert
7	596.622M	44.7	$\begin{array}{r} +0.0 \\ +19.7 \\ \hline \end{array}$	+0.4	-27.4	+4.6	+0.0	42.0	46.0	-4.0	Horiz
	$569.505 \mathrm{M}$ QP	45.4	$\begin{array}{r} +0.0 \\ +19.1 \end{array}$	+0.4	-27.5	+4.5	+0.0	41.9	46.0	-4.1	Horiz
\wedge	569.505M	46.3	$\begin{array}{r} +0.0 \\ +19.1 \\ \hline \end{array}$	+0.4	-27.5	+4.5	+0.0	42.8	46.0	-3.2	Horiz
10	677.982M	42.9	$\begin{array}{r} +0.0 \\ +20.6 \end{array}$	+0.5	-27.1	+4.9	+0.0	41.8	46.0	-4.2	Vert
11	623.743M	43.9	$\begin{array}{r} +0.0 \\ +20.1 \end{array}$	+0.4	-27.3	+4.7	+0.0	41.8	46.0	-4.2	Horiz
12	596.625M	44.2	$\begin{array}{r} +0.0 \\ +19.7 \end{array}$	+0.4	-27.4	+4.6	+0.0	41.5	46.0	-4.5	Vert
13	67.798M	56.0	$\begin{aligned} & +0.0 \\ & +6.0 \end{aligned}$	+0.1	-28.1	+1.4	+0.0	35.4	40.0	-4.6	Vert
	$542.385 \mathrm{M}$ QP	45.5	$\begin{array}{r} +0.0 \\ +18.5 \\ \hline \end{array}$	+0.4	-27.6	+4.4	+0.0	41.2	46.0	-4.8	Vert
\wedge	542.385 M	48.0	$\begin{array}{r} +0.0 \\ +18.5 \\ \hline \end{array}$	+0.4	-27.6	+4.4	+0.0	43.7	46.0	-2.3	Vert
16	922.042M	38.1	$\begin{array}{r} +0.0 \\ +23.3 \\ \hline \end{array}$	+0.6	-27.2	+5.9	+0.0	40.7	46.0	-5.3	Horiz
17	325.437 M	50.5	$\begin{array}{r} +0.0 \\ +13.9 \end{array}$	+0.3	-27.9	+3.3	+0.0	40.1	46.0	-5.9	Horiz

18	515.266M	45.3	$\begin{array}{r} +0.0 \\ +17.8 \end{array}$	$+0.4$	-27.7	+4.2	+0.0	40.0	46.0	-6.0	Vert
19	$\begin{aligned} & \text { 677.982M } \\ & \text { QP } \end{aligned}$	40.7	$\begin{array}{r} +0.0 \\ +20.6 \\ \hline \end{array}$	+0.5	-27.1	+4.9	+0.0	39.6	46.0	-6.4	Horiz
\wedge	677.982M	43.3	$\begin{array}{r} +0.0 \\ +20.6 \end{array}$	$+0.5$	-27.1	+4.9	+0.0	42.2	46.0	-3.8	Horiz
21	650.866M	40.9	$\begin{array}{r} +0.0 \\ +20.3 \\ \hline \end{array}$	+0.5	-27.2	+4.8	+0.0	39.3	46.0	-6.7	Horiz
22	81.358M	52.0	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	+0.1	-28.1	+1.5	+0.0	33.1	40.0	-6.9	Vert
23	54.239 M	52.4	$\begin{aligned} & +0.0 \\ & +7.3 \end{aligned}$	+0.1	-28.2	+1.2	+0.0	32.8	40.0	-7.2	Vert
24	894.962M	36.1	$\begin{array}{r} +0.0 \\ +23.2 \end{array}$	+0.6	-27.2	+5.8	$+0.0$	38.5	46.0	-7.5	Horiz
25	325.429 M	48.7	$\begin{array}{r} +0.0 \\ +13.9 \\ \hline \end{array}$	+0.3	-27.9	+3.3	+0.0	38.3	46.0	-7.7	Vert
26	515.267M	43.3	$\begin{array}{r} +0.0 \\ +17.8 \\ \hline \end{array}$	+0.4	-27.7	+4.2	+0.0	38.0	46.0	-8.0	Horiz
27	352.547 M	47.3	$\begin{array}{r} +0.0 \\ +14.7 \\ \hline \end{array}$	+0.3	-27.9	+3.4	$+0.0$	37.8	46.0	-8.2	Vert
28	433.912M	43.2	$\begin{array}{r} +0.0 \\ +16.5 \\ \hline \end{array}$	+0.4	-27.8	+3.8	+0.0	36.1	46.0	-9.9	Vert
29	488.150M	42.1	$\begin{array}{r} +0.0 \\ +17.2 \\ \hline \end{array}$	+0.4	-27.8	+4.1	+0.0	36.0	46.0	-10.0	Vert
30	650.863 M	37.6	$\begin{array}{r} +0.0 \\ +20.3 \\ \hline \end{array}$	$+0.5$	-27.2	+4.8	+0.0	36.0	46.0	-10.0	Vert
31	298.311M	47.2	$\begin{array}{r} +0.0 \\ +13.1 \end{array}$	+0.3	-27.8	+3.1	+0.0	35.9	46.0	-10.1	Horiz
32	108.477M	48.6	$\begin{array}{r} +0.0 \\ +10.7 \\ \hline \end{array}$	+0.1	-28.0	+1.8	$+0.0$	33.2	43.5	-10.3	Vert
33	352.550 M	44.8	$\begin{array}{r} +0.0 \\ +14.7 \\ \hline \end{array}$	$+0.3$	-27.9	+3.4	$+0.0$	35.3	46.0	-10.7	Horiz
34	786.463 M	33.9	$\begin{array}{r} +0.0 \\ +22.4 \\ \hline \end{array}$	+0.6	-27.3	+5.3	+0.0	34.9	46.0	-11.1	Horiz
35	976.320M	39.7	$\begin{array}{r} +0.0 \\ +23.6 \\ \hline \end{array}$	+0.6	-27.3	+6.2	+0.0	42.8	54.0	-11.2	Horiz
36	976.294M	38.0	$\begin{array}{r} +0.0 \\ +23.6 \\ \hline \end{array}$	+0.6	-27.3	+6.2	+0.0	41.1	54.0	-12.9	Vert
37	705.099 M	33.7	$\begin{array}{r} +0.0 \\ +20.9 \\ \hline \end{array}$	$+0.5$	-27.1	+5.0	$+0.0$	33.0	46.0	-13.0	Horiz
38	216.954M	45.9	$\begin{array}{r} +0.0 \\ +10.3 \\ \hline \end{array}$	+0.2	-27.8	+2.6	+0.0	31.2	46.0	-14.8	Horiz
39	379.664M	39.6	$\begin{array}{r} +0.0 \\ +15.5 \\ \hline \end{array}$	+0.4	-27.9	+3.5	+0.0	31.1	46.0	-14.9	Horiz
40	488.148M	36.4	$\begin{array}{r} +0.0 \\ +17.2 \\ \hline \end{array}$	+0.4	-27.8	+4.1	+0.0	30.3	46.0	-15.7	Horiz
41	230.514 M	42.8	$\begin{array}{r} +0.0 \\ +11.2 \\ \hline \end{array}$	+0.2	-27.8	+2.7	+0.0	29.1	46.0	-16.9	Vert

CKC Laboratories, Inc Date: 5/23/2013 Time: 11:02:26 Magtek Incorporated WO\#: 93565 15.209 Radiated Emissions Test Distance: 3 Meters Sequence\#: 2 Ext ATTN: 0 dB IPAD EMV

Test Setup Photos

Ethernet, Front View

Ethernet, Front View

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

LABORATORIES, INC.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mathrm{\mu V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mathrm{\mu V/m)}$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: This report contains a total of 87 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

