ADDENDUM TO MAGTEK INCORPORATED TEST REPORT FC07-013

FOR THE

INTELLISTRIPE 65 CONTACTLESS CARD READER, 211650XX

FCC PART 15 SUBPART C SECTIONS 15.207 \& 15.225 AND SUBPART B SECTIONS 15.107 \& 15.109 CLASS B

COMPLIANCE

DATE OF ISSUE: MARCH 23, 2007

PREPARED FOR:

Magtek Incorporated
20725 South Annalee Avenue
Carson, CA 90746
P.O. No.: 86878
W.O. No.: 84991

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338
Date of test: February 23 - March 1, 2007

Report No.: FC07-013A

This report contains a total of 54 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information 3
Approvals 3
Conditions for Compliance 3
FCC 15.31(m) Number Of Channels 4
FCC 15.33(a) Frequency Ranges Tested 4
FCC 15.203 Antenna Requirements 4
EUT Operating Frequency 4
Temperature And Humidity During Testing 4
Equipment Under Test (EUT) Description 5
Equipment Under Test 5
Peripheral Devices 5
Report of Emissions Measurements 7
Testing Parameters 7
FCC 15.107 Conducted Emissions 9
FCC 15.109 Radiated Emissions 15
FCC 15.207 Conducted Emissions 24
FCC 15.225 Radiated Emissions 36
Occupied Bandwidth -20dB 46
FCC 15.225(a), (b), (c) Emissions Mask 48
Bandedge Plot 50
Frequency Stability and Voltage Variations 53

ADMINISTRATIVE INFORMATION

DATE OF TEST: February 23 - March 1, 2007
DATE OF RECEIPT: February 23, 2007
MANUFACTURER: Magtek Incorporated
20725 South Annalee Avenue
Carson, CA 90746
REPRESENTATIVE: Brian Tahamzadeh
TEST LOCATION: CKC Laboratories, Inc.
110 Olinda Place
Bra, CA 92823
TEST METHOD: ANSI C63.4 (2003)
PURPOSE OF TEST: Original Report: To demonstrate the compliance of the IntelliStripe 65 Contactless Card Reader, 211650XX with the requirements for FCC Part 15 Subpart C Sections 15.207 \& 15.225 and Subpart B Sections 15.107 \& 15.109 Class B devices.
Addendum A: To clarify data on pages 25 and 28 with no new testing.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

TEST PERSONNEL:

Eddie Wong, EMC Engineer

FCC 15.31(m) Number Of Channels
This device operates on a single channel.
FCC 15.33(a) Frequency Ranges Tested
15.107 Conducted Emissions: $150 \mathrm{kHz}-30 \mathrm{MHz}$
15.109 Radiated Emissions: $9 \mathrm{kHz}-1000 \mathrm{MHz}$
15.207 Conducted Emissions: $150 \mathrm{kHz}-30 \mathrm{MHz}$
15.225 Radiated Emissions: $9 \mathrm{kHz}-1000 \mathrm{MHz}$

FCC 15.203 Antenna Requirements
The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

EUT Operating Frequency

The EUT was operating at 13.56 MHz .

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$.
The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

The following model name at the time of testing by CKC Laboratories was: 21165046 It was actually 21165046 I65 B2,M3,C1,SG,L3,1H,H4,S1,LP,CF. I65 designates it is an Intellistripe 65 card reader and the 46 is for the contactless option. A description of the other options is on the following page.

Since the time of testing the manufacturer has chosen to use the following model name in its place. Any differences between the names does not affect their EMC characteristics and therefore complies to the level of testing equivalent to the tested model name shown on the data sheets: 211650XX. A list of the options represented by XX is on the following page.

EQUIPMENT UNDER TEST

Power Supply

Manuf:	DVE
Model:	DSA-0151D-12
Serial:	NA
FCC ID:	NA

IntelliStripe 65 Contactless Card Reader
Manuf: Magtek Incorporated
Model: 211650XX
Serial: NA
FCC ID: pending

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):
Laptop
Manuf: Dell
Model: Inspiron 8500
Serial: 00043-480-957-106
FCC ID: NA

INTELLISTRIPE 60/65 OPTION ORDER SHEET

Customer \qquad Date \qquad

OPTION	CHOICE	MARK CHOICE	CODE
PRINTED CIRCUIT BOARD	Old IntelliStripe 65		B1
	New IntelliStripe $65 \mathrm{w} / \mathrm{USB}$		B2
	None		
MOUNTING BRACKET CONFIG.	FRONT		M1
	SIDE		M2
	FRONT AND SIDE		M3
	NO MOUNT		M4
SMARTCARD IC CONTACTS	EIGHT CONTACTS		C1
	SIXTEEN CONTACTS		C2
	NO CONTACTS		
DELETE SAM SUPPORT	YES		DS
	NO		
SECURITY GATE	YES		SG
	NO		
CARD LATCH	CARD LATCH W/SWITCH \&PF		L3
	PF THROUGH MAIN CONN.		L4
	MOTOR ONLY		L5
	NO LATCH		
MAGNETIC HEAD CONFIG.	1 HEAD		1H
	2 HEADS		2 H
	1 HEAD on contact side		3H
	MagnePrint		MP
	NO HEAD		
MAGNETIC HEAD TYPE	TRACK2		H1
	TRACK 1 \& 2		H2
	TRACK 2 \& 3		H3
	TRACK 1,2, AND 3		H4
	TRACK 1,2, AND 3 w/BACKING		H5
	Shift-Out IntelliHead		H6
GROUND LUG ON HEAD	YES		GL
	NO		
CARD SEATED SWITCH CONFIG.	CONTACT BLOCK		S1
	PCB WITH LEVER		S3
CONFORMAL COATING	YES		CT
	NO		
PCB STANDOFF FOR CUSTOMER PCB	YES		SO
	NO		
NO ZEROS REQUIRED AFTER LRC	YES		NZ
	NO		
BEZEL TYPE	International Plastic Bezel (21161202)		PB
	Int'l Plastic Bezel w/LED (21161209)		LP
	International Metal Bezel (21161204)		MB
	MT-215 Style Bezel (21161206)		TB
	Sankyo Bezel (21161208)		SB
	MT-215 Bezel with LED (21161207)		LB
	Desk Top Enclosure		DT
	No Bezel		
CONTACTLESS SMART CARD	FULL (w/module \& antenna installed)		CF
	READY (without module installed)		CR
	NONE (no circuitry included)		

\qquad

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits to determine compliance. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit to determine compliance.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE

TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

FCC 15.107 CONDUCTED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.107 Class B COND [AVE]		Date: 2/26/2007
Work Order \#:	84991	Time:	15:10:38
Test Type:	Conducted Emissions	Sequence\#:	7
Equipment:	IntelliStripe 65 Contactless Card		
	Reader	Tested By: E. Wong	
Manufacturer:	Magtek Incorporated		110 V 60 Hz
Model:	21165046		

S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
Conducted Emission Cable	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
150kHz HPF	G7755	$05 / 09 / 2006$	$05 / 09 / 2007$	02610
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. Frequency=13.56MHz. RF port connected to 50 Ohm load. Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$. Frequency $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW=9 kHz, VBW=9 $\mathrm{kHz} ; 20^{\circ} \mathrm{C}, 41 \%$ relative humidity.

Transducer Legend:

T1 $=150 \mathrm{kHz} \mathrm{HPF}$ Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L1) Insertion Loss 00847 EMCO 3816/2NM

Measurement Data:	Reading listed by margin.				Test Lead: Black					
\# $\begin{array}{r}\text { Freq } \\ \\ \\ \text { MHz }\end{array}$	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{~V}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 13.560 \mathrm{M} \\ & \text { Ave } \end{aligned}$	40.9	+0.2	+6.1	+0.4	+0.7	+0.0	48.3	50.0 Fundame	${ }^{-1.7}$	Black
$\wedge 13.560 \mathrm{M}$	41.7	+0.2	+6.1	+0.4	+0.7	+0.0	49.1	50.0 Fundame	${ }^{-0.9}$	Black
$3 \quad 296.168 \mathrm{k}$	38.3	+0.2	+6.2	+0.1	+0.1	+0.0	44.9	50.3	-5.4	Black
$4 \quad 603.777 \mathrm{k}$	33.3	+0.2	+6.1	+0.1	+0.1	+0.0	39.8	46.0	-6.2	Black
$5 \quad 608.140 \mathrm{k}$	32.6	+0.2	+6.1	+0.1	+0.1	+0.0	39.1	46.0	-6.9	Black

6	611.049k	32.6	+0.2	+6.1	+0.1	+0.1	+0.0	39.1	46.0	-6.9	Black
7	429.247k	33.8	+0.2	+6.2	+0.1	+0.0	+0.0	40.3	47.3	-7.0	Black
8	1.009M	32.3	+0.1	+6.1	+0.0	+0.1	+0.0	38.6	46.0	-7.4	Black
9	614.685k	31.9	+0.2	+6.1	+0.1	+0.1	+0.0	38.4	46.0	-7.6	Black
10	609.594k	31.4	+0.2	+6.1	+0.1	+0.1	+0.0	37.9	46.0	-8.1	Black
11	461.971k	31.8	+0.2	+6.2	+0.1	+0.1	+0.0	38.4	46.7	-8.3	Black
12	859.026k	31.2	+0.1	+6.1	+0.0	+0.1	+0.0	37.5	46.0	-8.5	Black
13	898.468k	31.0	+0.1	+6.1	+0.0	+0.1	+0.0	37.3	46.0	-8.7	Black
Ave											Black
\wedge	151.295k	50.9	+2.3	+6.2	+0.1	+0.1	+0.0	59.6	55.9	+3.7	Black

CKC Laboratories, Inc. Date: 2/26/2007 Tirne: 15:10:38 Magtek Incorporated WO\#: 84991 FCC 15.107 Class B COND [AVE] Test Lead: Black 110 V 60 Hz Sequence\#: 7

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.107 Class B COND [AVE]		Date: 2/26/2007
Work Order \#:	$\mathbf{8 4 9 9 1}$	Time:	15:05:27
Test Type:	Conducted Emissions	Sequence\#:	6
Equipment:	IntelliStripe 65 Contactless Card		
	Reader	Tested By: E. Wong	
Manufacturer:	Magtek Incorporated		110 V 60 Hz
Model:	21165046		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
Conducted Emission Cable	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
150kHz HPF	G7755	$05 / 09 / 2006$	$05 / 09 / 2007$	02610
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. Frequency=13.56MHz. RF port connected to 50 Ohm load. Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$. Frequency $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW=9 kHz, VBW=9 $\mathrm{kHz} ; 20^{\circ} \mathrm{C}, 41 \%$ relative humidity.

Transducer Legend:

T1 $=150 \mathrm{kHz} \mathrm{HPF}$ Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L2) Insertion Loss 00847 EMCO 3816/2NM

6	1.013 M	32.3	+0.1	+6.1	+0.0	+0.1	+0.0	38.6	46.0	-7.4	White
7	602.322 k	31.3	+0.2	+6.1	+0.1	+0.1	+0.0	37.8	46.0	-8.2	White
8	426.338 k	32.3	+0.2	+6.2	+0.1	+0.1	+0.0	38.9	47.3	-8.4	White
9	606.685 k	31.0	+0.2	+6.1	+0.1	+0.1	+0.0	37.5	46.0	-8.5	White
10	608.867 k	30.4	+0.2	+6.1	+0.1	+0.1	+0.0	36.9	46.0	-9.1	White
11	1.290 M	30.2	+0.1	+6.1	+0.0	+0.1	+0.0	36.5	46.0	-9.5	White
12	452.518 k	30.5	+0.2	+6.2	+0.1	+0.1	+0.0	37.1	46.8	-9.7	White
13	869.207 k	29.9	+0.1	+6.1	+0.0	+0.1	+0.0	36.2	46.0	-9.8	White
14	453.972 k	30.2	+0.2	+6.2	+0.1	+0.1	+0.0	36.8	46.8	-10.0	White
15	877.204 k	29.2	+0.1	+6.1	+0.0	+0.1	+0.0	35.5	46.0	-10.5	White
16	152.704 k	24.3	+2.0	+6.2	+0.1	+0.2	+0.0	32.8	55.9	-23.1	White
Ave	152.704 k	50.2	+2.0	+6.2	+0.1	+0.2	+0.0	58.7	55.9	+2.8	White
14											

CKC Laboratories, Inc. Date: 2/26/2007 Time: 15:05:27 Magtek Incorporated WO\#: 84991 FCC 15.107 Class B COND [AVE] Test Lead: White 110 V 60Hz Sequence\#: 6

——1-FCC 15.107 Class B COND [AVE]
—— 2 - FCC 15.107 Class B COND [QP]

FCC 15.109 RADIATED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.109 Class B		Date:
2/26/2007			
Work Order \#:	$\mathbf{8 4 9 9 1}$	Time:	14:07:40
Test Type:	Radiated Scan	Sequence\#:	3
Equipment:	IntelliStripe 65 Contactless Card	Reader	Tested By: E. Wong

Model:
21165046
S/N: NA
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Bilog Antenna	2451	$02 / 02 / 2006$	$02 / 02 / 2008$	01995
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
Pre amp to SA Cable	Cable \#10	$05 / 16 / 2005$	$05 / 16 / 2007$	P05050
Cable	Cable15	$01 / 05 / 2007$	$01 / 05 / 2009$	P05198
Pre Amp	1937 A02548	$06 / 01 / 2006$	$06 / 01 / 2008$	00309
Loop Antenna	2014	$06 / 14 / 2006$	$06 / 14 / 2008$	00314

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency $=13.56 \mathrm{MHz} .20^{\circ} \mathrm{C}, 41 \%$ relative humidity.

Transducer Legend:

T1=Preamp 8447D 060108	T2=Bilog AN01995 020208 Chase
T3=Cable \#10 051607	T4=Cable \#15, Site A, 010509

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 18192.002 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	56.1	-27.6	+8.9	+0.2	+2.5	+0.0	40.1	43.5	-3.4	Horiz
$\wedge 192.002 \mathrm{M}$	57.0	-27.6	+8.9	+0.2	+2.5	+0.0	41.0	43.5	-2.5	Horiz
$\begin{aligned} & \hline 3 \quad 224.006 \mathrm{M} \\ & \mathrm{QP} \\ & \hline \end{aligned}$	55.5	-27.6	+10.7	+0.2	+2.7	+0.0	41.5	46.0	-4.5	Horiz
$\wedge 224.006 \mathrm{M}$	57.1	-27.6	+10.7	+0.2	+2.7	+0.0	43.1	46.0	-2.9	Horiz
$5 \quad 208.001 \mathrm{M}$	54.0	-27.6	+9.5	+0.2	+2.6	+0.0	38.7	43.5	-4.8	Horiz

	$208.004 \mathrm{M}$ QP	53.8	-27.6	+9.5	+0.2	+2.6	+0.0	38.5	43.5	-5.0	Vert
\wedge	208.004M	54.7	-27.6	+9.5	+0.2	+2.6	$+0.0$	39.4	43.5	-4.1	Vert
8	256.006M	52.9	-27.7	+12.6	+0.2	+2.9	$+0.0$	40.9	46.0	-5.1	Horiz
9	$192.002 \mathrm{M}$	54.3	-27.6	+8.9	+0.2	+2.5	+0.0	38.3	43.5	-5.2	Vert
\wedge	192.002M	56.9	-27.6	+8.9	+0.2	+2.5	+0.0	40.9	43.5	-2.6	Vert
11	358.349M	48.9	-27.6	+14.7	+0.3	+3.5	+0.0	39.8	46.0	-6.2	Horiz
12	411.599M	47.2	-27.8	+16.1	+0.3	+3.8	$+0.0$	39.6	46.0	-6.4	Vert
13	175.988M	52.9	-27.7	+9.3	+0.2	+2.4	+0.0	37.1	43.5	-6.4	Horiz
14	67.800M	53.4	-27.7	+6.0	+0.1	+1.5	$+0.0$	33.3	40.0	-6.7	Vert
15	144.009M	50.7	-27.7	+11.2	+0.2	+2.2	$+0.0$	36.6	43.5	-6.9	Horiz
16	149.155M	50.8	-27.7	+11.0	+0.2	+2.2	$+0.0$	36.5	43.5	-7.0	Horiz
17	224.009M	52.4	-27.6	+10.7	+0.2	+2.7	$+0.0$	38.4	46.0	-7.6	Vert
18	128.045M	49.2	-27.6	+11.5	+0.1	+2.0	+0.0	35.2	43.5	-8.3	Vert
19	255.986M	49.6	-27.7	+12.6	+0.2	+2.9	$+0.0$	37.6	46.0	-8.4	Vert
20	160.002M	50.0	-27.7	+10.2	+0.2	+2.3	+0.0	35.0	43.5	-8.5	Horiz
21	149.140M	49.3	-27.7	+11.0	$+0.2$	+2.2	+0.0	35.0	43.5	-8.5	Vert
22	135.597M	48.9	-27.6	+11.4	+0.1	+2.1	$+0.0$	34.9	43.5	-8.6	Horiz
23	447.472M	43.6	-27.6	+17.0	+0.3	+4.0	$+0.0$	37.3	46.0	-8.7	Horiz
24	395.105M	45.4	-27.8	+15.7	$+0.3$	+3.7	$+0.0$	37.3	46.0	-8.7	Horiz
25	391.424M	45.2	-27.8	+15.6	$+0.3$	+3.7	$+0.0$	37.0	46.0	-9.0	Horiz
26	413.428M	44.3	-27.7	+16.2	$+0.3$	+3.8	+0.0	36.9	46.0	-9.1	Vert
27	664.442M	38.0	-27.1	+20.5	+0.5	+5.0	+0.0	36.9	46.0	-9.1	Horiz
28	154.648M	48.9	-27.7	+10.6	+0.2	+2.2	+0.0	34.2	43.5	-9.3	Horiz
29	420.355M	43.8	-27.7	+16.3	+0.3	+3.8	$+0.0$	36.5	46.0	-9.5	Vert
30	160.003M	48.8	-27.7	+10.2	+0.2	+2.3	$+0.0$	33.8	43.5	-9.7	Vert

Page 17 of 54

31	399.986M	44.2	-27.8	+15.8	+0.3	+3.7	+0.0	36.2	46.0	-9.8	Horiz
32	271.992 M	47.8	-27.7	+12.8	+0.3	+3.0	+0.0	36.2	46.0	-9.8	Horiz
33	127.991M	47.6	-27.6	+11.5	+0.1	+2.0	+0.0	33.6	43.5	-9.9	Horiz
34	240.000 M	48.9	-27.7	+11.8	+0.2	+2.8	+0.0	36.0	46.0	-10.0	Horiz
35	366.114M	44.2	-27.7	+14.9	+0.3	+3.6	+0.0	35.3	46.0	-10.7	Horiz
36	406.780M	43.0	-27.8	+16.0	+0.3	+3.7	+0.0	35.2	46.0	-10.8	Horiz
37	704.053M	35.8	-27.1	+20.7	+0.5	+5.1	+0.0	35.0	46.0	-11.0	Horiz
38	122.035M	46.5	-27.6	+11.4	+0.1	+2.0	+0.0	32.4	43.5	-11.1	Horiz
39	383.374M	43.3	-27.7	+15.4	+0.3	+3.6	+0.0	34.9	46.0	-11.1	Horiz
40	173.412M	47.7	-27.7	+9.5	+0.2	+2.4	+0.0	32.1	43.5	-11.4	Horiz
41	432.031M	41.2	-27.7	+16.7	+0.3	+3.9	+0.0	34.4	46.0	-11.6	Vert
42	196.041M	47.6	-27.6	+8.8	+0.2	+2.6	+0.0	31.6	43.5	-11.9	Horiz
43	175.995M	47.4	-27.7	+9.3	+0.2	+2.4	+0.0	31.6	43.5	-11.9	Vert
44	151.544M	45.7	-27.7	+10.9	+0.2	+2.2	+0.0	31.3	43.5	-12.2	Vert
45	144.008M	45.4	-27.7	+11.2	+0.2	+2.2	+0.0	31.3	43.5	-12.2	Vert
46	379.674M	42.3	-27.7	+15.3	+0.3	+3.6	+0.0	33.8	46.0	-12.2	Horiz
47	259.972 M	45.5	-27.7	+12.7	+0.2	+2.9	+0.0	33.6	46.0	-12.4	Horiz
48	135.610M	45.1	-27.6	+11.4	+0.1	+2.1	+0.0	31.1	43.5	-12.4	Vert
49	135.973M	45.0	-27.6	+11.4	+0.1	+2.1	+0.0	31.0	43.5	-12.5	Horiz
50	420.352M	40.8	-27.7	+16.3	+0.3	+3.8	+0.0	33.5	46.0	-12.5	Vert
51	271.998M	44.7	-27.7	+12.8	+0.3	+3.0	+0.0	33.1	46.0	-12.9	Vert
52	650.870M	34.4	-27.1	+20.4	+0.5	+4.9	+0.0	33.1	46.0	-12.9	Horiz
53	140.007 M	44.5	-27.7	+11.3	+0.2	+2.1	+0.0	30.4	43.5	-13.1	Horiz
54	122.038 M	44.4	-27.6	+11.4	+0.1	+2.0	+0.0	30.3	43.5	-13.2	Vert
55	387.848M	41.1	-27.8	+15.5	+0.3	+3.7	+0.0	32.8	46.0	-13.2	Vert

Page 18 of 54

56	728.007M	32.6	-27.0	+21.5	+0.5	+5.2	+0.0	32.8	46.0	-13.2	Horiz
57	386.045M	40.9	-27.7	+15.5	+0.3	+3.6	+0.0	32.6	46.0	-13.4	Vert
58	360.508M	41.6	-27.6	+14.8	+0.3	+3.5	+0.0	32.6	46.0	-13.4	Vert
59	393.240M	40.7	-27.8	+15.6	+0.3	+3.7	+0.0	32.5	46.0	-13.5	Vert
60	384.490M	40.9	-27.7	+15.4	+0.3	+3.6	+0.0	32.5	46.0	-13.5	Horiz
61	336.002M	42.1	-27.6	+14.2	+0.3	+3.4	+0.0	32.4	46.0	-13.6	Vert
62	321.082M	42.5	-27.6	+13.8	+0.3	+3.3	+0.0	32.3	46.0	-13.7	Horiz
63	336.005M	41.9	-27.6	+14.2	+0.3	+3.4	+0.0	32.2	46.0	-13.8	Horiz
64	269.966M	43.7	-27.7	+12.8	+0.3	+3.0	+0.0	32.1	46.0	-13.9	Horiz
65	211.887 M	44.6	-27.6	+9.8	+0.2	+2.6	+0.0	29.6	43.5	-13.9	Horiz
66	393.197M	40.3	-27.8	+15.6	+0.3	+3.7	+0.0	32.1	46.0	-13.9	Horiz
67	394.564M	40.1	-27.8	+15.7	+0.3	+3.7	+0.0	32.0	46.0	-14.0	Vert
68	203.419M	45.1	-27.6	+9.1	+0.2	+2.6	+0.0	29.4	43.5	-14.1	Vert
69	433.904M	38.7	-27.7	+16.7	+0.3	+3.9	+0.0	31.9	46.0	-14.1	Vert
70	311.878M	42.4	-27.6	+13.5	+0.3	+3.3	+0.0	31.9	46.0	-14.1	Horiz
71	332.017 M	41.6	-27.6	+14.1	+0.3	+3.4	+0.0	31.8	46.0	-14.2	Horiz
72	732.235M	31.5	-27.0	+21.6	+0.5	+5.2	+0.0	31.8	46.0	-14.2	Horiz
73	325.420M	41.4	-27.6	+13.9	+0.3	+3.4	+0.0	31.4	46.0	-14.6	Horiz
74	300.017M	42.3	-27.6	+13.2	+0.3	+3.2	+0.0	31.4	46.0	-14.6	Horiz
75	352.539M	40.5	-27.6	+14.6	+0.3	+3.5	+0.0	31.3	46.0	-14.7	Vert
76	379.678M	39.8	-27.7	+15.3	+0.3	+3.6	+0.0	31.3	46.0	-14.7	Vert
77	220.005 M	45.5	-27.6	+10.4	+0.2	+2.7	+0.0	31.2	46.0	-14.8	Horiz
78	162.460M	43.8	-27.7	+10.1	+0.2	+2.3	+0.0	28.7	43.5	-14.8	Horiz
79	164.026M	43.9	-27.7	+10.0	+0.2	+2.3	+0.0	28.7	43.5	-14.8	Horiz
80	319.997M	41.4	-27.6	+13.7	+0.3	+3.3	+0.0	31.1	46.0	-14.9	Vert

Page 19 of 54

81	274.973M	42.6	-27.7	+12.9	+0.3	+3.0	+0.0	31.1	46.0	-14.9	Horiz
82	320.011M	41.4	-27.6	+13.7	+0.3	+3.3	+0.0	31.1	46.0	-14.9	Horiz
83	447.456M	37.3	-27.6	+17.0	+0.3	+4.0	+0.0	31.0	46.0	-15.0	Vert
84	204.025M	44.1	-27.6	+9.1	+0.2	+2.6	+0.0	28.4	43.5	-15.1	Vert
85	169.888M	43.8	-27.7	+9.7	+0.2	+2.4	+0.0	28.4	43.5	-15.1	Horiz
86	288.004M	42.1	-27.6	+13.0	+0.3	+3.1	+0.0	30.9	46.0	-15.1	Vert
87	420.365M	38.2	-27.7	+16.3	+0.3	+3.8	+0.0	30.9	46.0	-15.1	Horiz
88	338.998M	40.5	-27.6	+14.2	+0.3	+3.4	+0.0	30.8	46.0	-15.2	Horiz
89	338.987 M	40.5	-27.6	+14.2	+0.3	+3.4	+0.0	30.8	46.0	-15.2	Vert
90	416.691M	38.0	-27.7	+16.3	+0.3	+3.8	+0.0	30.7	46.0	-15.3	Vert
91	94.919M	44.7	-27.7	+9.3	+0.1	+1.8	+0.0	28.2	43.5	-15.3	Horiz
92	264.027M	42.3	-27.7	+12.7	+0.3	+3.0	+0.0	30.6	46.0	-15.4	Horiz
93	383.987M	38.8	-27.7	+15.4	+0.3	+3.6	+0.0	30.4	46.0	-15.6	Vert
94	188.007M	43.8	-27.6	+8.9	+0.2	+2.5	+0.0	27.8	43.5	-15.7	Horiz
95	447.463M	36.6	-27.6	+17.0	+0.3	+4.0	+0.0	30.3	46.0	-15.7	Vert
96	813.553M	28.9	-27.1	+22.3	+0.6	+5.6	+0.0	30.3	46.0	-15.7	Horiz
97	172.002M	43.1	-27.7	+9.6	+0.2	+2.4	+0.0	27.6	43.5	-15.9	Vert
98	152.012M	42.1	-27.7	+10.8	+0.2	+2.2	+0.0	27.6	43.5	-15.9	Vert
99	139.978M	41.6	-27.7	+11.3	+0.2	+2.1	+0.0	27.5	43.5	-16.0	Vert
100	324.711M	40.0	-27.6	+13.9	+0.3	+3.4	+0.0	30.0	46.0	-16.0	Horiz
101	432.059M	36.6	-27.7	+16.7	+0.3	+3.9	+0.0	29.8	46.0	-16.2	Horiz
102	659.987 M	31.0	-27.1	+20.4	+0.5	+4.9	+0.0	29.7	46.0	-16.3	Horiz
103	247.991M	41.9	-27.7	+12.4	+0.2	+2.9	+0.0	29.7	46.0	-16.3	Horiz
104	406.416M	37.4	-27.8	+16.0	+0.3	+3.7	+0.0	29.6	46.0	-16.4	Vert
105	692.029M	30.4	-27.1	+20.6	+0.5	+5.1	+0.0	29.5	46.0	-16.5	Horiz

Page 20 of 54

106	202.536M	42.6	-27.6	+9.0	+0.2	+2.6	+0.0	26.8	43.5	-16.7	Vert
107	164.896M	42.1	-27.7	+9.9	+0.2	+2.3	+0.0	26.8	43.5	-16.7	Horiz
108	257.640M	41.3	-27.7	+12.6	+0.2	+2.9	+0.0	29.3	46.0	-16.7	Vert
109	235.981M	42.3	-27.6	+11.5	+0.2	+2.8	+0.0	29.2	46.0	-16.8	Horiz
110	474.591M	34.7	-27.6	+17.6	+0.4	+4.1	+0.0	29.2	46.0	-16.8	Horiz
111	268.004M	40.6	-27.7	+12.8	+0.3	+3.0	+0.0	29.0	46.0	-17.0	Horiz
112	328.009M	38.7	-27.6	+14.0	+0.3	+3.4	+0.0	28.8	46.0	-17.2	Vert
113	475.164M	34.3	-27.6	+17.6	+0.4	+4.1	+0.0	28.8	46.0	-17.2	Vert
114	716.029M	28.9	-27.1	+21.1	+0.5	+5.2	+0.0	28.6	46.0	-17.4	Horiz
115	357.296M	37.6	-27.6	+14.7	+0.3	+3.5	+0.0	28.5	46.0	-17.5	Vert
116	207.029M	41.4	-27.6	+9.4	+0.2	+2.6	+0.0	26.0	43.5	-17.5	Horiz
117	325.436M	38.4	-27.6	+13.9	+0.3	+3.4	+0.0	28.4	46.0	-17.6	Vert
118	352.563M	37.6	-27.6	+14.6	+0.3	+3.5	+0.0	28.4	46.0	-17.6	Horiz
119	299.996M	39.2	-27.6	+13.2	+0.3	+3.2	+0.0	28.3	46.0	-17.7	Vert
120	840.663M	26.1	-27.1	+23.0	+0.6	+5.7	+0.0	28.3	46.0	-17.7	Horiz
121	215.985M	40.4	-27.6	+10.1	+0.2	+2.7	+0.0	25.8	43.5	-17.7	Horiz
122	338.987M	37.9	-27.6	+14.2	+0.3	+3.4	+0.0	28.2	46.0	-17.8	Vert
123	216.940M	42.6	-27.6	+10.1	+0.2	+2.7	+0.0	28.0	46.0	-18.0	Vert
124	134.980M	39.4	-27.6	+11.4	+0.1	+2.1	+0.0	25.4	43.5	-18.1	Horiz
125	178.339M	41.2	-27.7	+9.1	+0.2	+2.4	+0.0	25.2	43.5	-18.3	Horiz
126	227.975M	41.4	-27.6	+11.0	+0.2	+2.7	+0.0	27.7	46.0	-18.3	Horiz
127	287.953M	38.9	-27.6	+13.0	+0.3	+3.1	+0.0	27.7	46.0	-18.3	Horiz
128	465.188M	32.9	-27.6	+17.4	+0.3	+4.1	+0.0	27.1	46.0	-18.9	Vert
129	162.714M	39.7	-27.7	+10.0	+0.2	+2.3	+0.0	24.5	43.5	-19.0	Vert
130	284.745M	38.3	-27.7	+13.0	+0.3	+3.1	+0.0	27.0	46.0	-19.0	Vert

Page 21 of 54

131	170.034 M	39.9	-27.7	+9.7	+0.2	+2.4	+0.0	24.5	43.5	-19.0	Vert
132	196.002M	40.4	-27.6	+8.8	+0.2	+2.6	+0.0	24.4	43.5	-19.1	Vert
133	224.994M	40.7	-27.6	+10.8	+0.2	+2.7	+0.0	26.8	46.0	-19.2	Horiz
134	400.887M	34.5	-27.8	+15.8	+0.3	+3.7	+0.0	26.5	46.0	-19.5	Vert
135	260.023M	38.2	-27.7	+12.7	+0.2	+2.9	+0.0	26.3	46.0	-19.7	Vert
136	375.010M	34.7	-27.7	+15.2	+0.3	+3.6	+0.0	26.1	46.0	-19.9	Horiz
137	242.985 M	38.6	-27.7	+12.0	+0.2	+2.8	+0.0	25.9	46.0	-20.1	Vert
138	406.789M	33.6	-27.8	+16.0	+0.3	+3.7	+0.0	25.8	46.0	-20.2	Vert
139	404.991M	33.6	-27.8	+15.9	+0.3	+3.7	+0.0	25.7	46.0	-20.3	Vert
140	786.470M	24.5	-27.1	+22.0	+0.6	+5.4	+0.0	25.4	46.0	-20.6	Horiz
141	235.358 M	38.5	-27.6	+11.5	+0.2	+2.8	+0.0	25.4	46.0	-20.6	Vert
142	303.990M	36.0	-27.6	+13.3	+0.3	+3.2	+0.0	25.2	46.0	-20.8	Vert
143	242.990 M	37.7	-27.7	+12.0	+0.2	+2.8	+0.0	25.0	46.0	-21.0	Horiz
144	189.840M	38.5	-27.6	+8.9	+0.2	+2.5	+0.0	22.5	43.5	-21.0	Vert
145	447.042M	31.2	-27.6	+17.0	+0.3	+4.0	+0.0	24.9	46.0	-21.1	Vert
146	113.398M	37.1	-27.6	+10.9	+0.1	+1.9	+0.0	22.4	43.5	-21.1	Horiz
147	298.777M	35.6	-27.6	+13.2	+0.3	+3.2	+0.0	24.7	46.0	-21.3	Vert
148	374.976M	33.2	-27.7	+15.2	+0.3	+3.6	+0.0	24.6	46.0	-21.4	Vert
149	337.917 M	34.2	-27.6	+14.2	+0.3	+3.4	+0.0	24.5	46.0	-21.5	Vert
150	366.118M	33.2	-27.7	+14.9	+0.3	+3.6	+0.0	24.3	46.0	-21.7	Vert
151	240.004 M	36.8	-27.7	+11.8	+0.2	+2.8	+0.0	23.9	46.0	-22.1	Vert
152	230.545 M	36.9	-27.6	+11.2	+0.2	+2.7	+0.0	23.4	46.0	-22.6	Horiz
153	343.998M	32.6	-27.6	+14.4	+0.3	+3.5	+0.0	23.2	46.0	-22.8	Vert

Page 22 of 54

154	244.078 M	34.3	-27.7	+12.1	+0.2	+2.9	+0.0	21.8	46.0	-24.2	Vert
155	406.800 M	29.4	-27.8	+16.0	+0.3	+3.7	+0.0	21.6	46.0	-24.4	Vert
156	311.880 M	32.0	-27.6	+13.5	+0.3	+3.3	+0.0	21.5	46.0	-24.5	Vert
157	230.520 M	34.3	-27.6	+11.2	+0.2	+2.7	+0.0	20.8	46.0	-25.2	Vert

FCC 15.207 CONDUCTED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.207 COND [AVE]		Date: 2/26/2007
Work Order \#:	84991	Time:	14:39:11
Test Type:	Conducted Emissions	Sequence\#:	4
Equipment:	IntelliStripe 65 Contactless Card		
	Reader	Tested By: E. Wong	
Manufacturer:	Magtek Incorporated		110 V 60 Hz
Model:	21165046		

S/N: NA

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
Conducted Emission Cable	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
150kHz HPF	G7755	$05 / 09 / 2006$	$05 / 09 / 2007$	02610
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency $=13.56 \mathrm{MHz}$. RF port connected to Antenna. Frequency range of measurement $=150 \mathrm{kHz}-$ 30 MHz . Frequency $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \mathrm{VBW}=9 \mathrm{kHz} ; 20^{\circ} \mathrm{C}, 41 \%$ relative humidity.

Transducer Legend:

T1 $=150 \mathrm{kHz}$ HPF Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L1) Insertion Loss 00847 EMCO 3816/2NM

Measurement Data:

| $\#$ | Freq | Rdng | T1 | T2 | T3 | T4 | Dist | Corr | Spec | Margin | Polar |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | MHz | $\mathrm{dB} \mu \mathrm{V}$ | dB | dB | dB | dB | Table | $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ | $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ | dB | Ant |
| 1 | 13.562 M | 76.4 | +0.2 | +6.1 | +0.4 | +0.7 | +0.0 | 83.8 | $*$ | $*$ | Black |
| | | | | | | | | | Fundamental | | |
| | | | | | | | | | | | |
| | | | | | | | | | frequency | | |

*This reading is the fundamental frequency of the transmitter with the antenna installed. No limits exists for this reading. Compliant data is shown on page 31 with load attached.

$\begin{aligned} & \hline 2 \quad 182.338 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	42.6	+0.3	+6.1	+0.1	+0.1	$+0.0$	49.2	54.4	-5.2	Black
182.338k	50.0	+0.3	+6.1	+0.1	+0.1	$+0.0$	56.6	54.4	+2.2	Black
$\begin{aligned} & 43.634 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	17.4	+0.2	+6.1	+0.4	+0.7	$+0.0$	24.8	50.0	-25.2	Black
$\wedge 13.634 \mathrm{M}$	56.2	+0.2	+6.1	+0.4	+0.7	$+0.0$	63.6	50.0	+13.6	Black
$\begin{aligned} & \hline 6 \text { 13.697M } \\ & \text { Ave } \\ & \hline \end{aligned}$	16.1	+0.2	+6.1	+0.4	+0.7	+0.0	23.5	50.0	-26.5	Black
$\wedge 13.697 \mathrm{M}$	54.6	+0.2	+6.1	+0.4	+0.7	$+0.0$	62.0	50.0	+12.0	Black
$\begin{aligned} & \hline 8 \text { 13.346M } \\ & \text { Ave } \\ & \hline \end{aligned}$	15.8	+0.2	+6.1	+0.4	+0.7	$+0.0$	23.2	50.0	-26.8	Black
$\wedge 13.346 \mathrm{M}$	52.4	+0.2	+6.1	+0.4	+0.7	+0.0	59.8	50.0	+9.8	Black
$\begin{gathered} \hline 10 \begin{array}{c} 13.770 \mathrm{M} \\ \text { Ave } \\ \hline \end{array}{ }^{2} \\ \hline \end{gathered}$	15.7	+0.2	+6.1	+0.4	+0.7	+0.0	23.1	50.0	-26.9	Black
$\wedge 13.770 \mathrm{M}$	54.2	+0.2	+6.1	+0.4	+0.7	$+0.0$	61.6	50.0	+11.6	Black
$\begin{gathered} 12 \begin{array}{c} 13.986 \mathrm{M} \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	11.5	+0.2	+6.1	+0.4	+0.7	$+0.0$	18.9	50.0	-31.1	Black
$\wedge 13.986 \mathrm{M}$	47.0	+0.2	+6.1	+0.4	+0.7	$+0.0$	54.4	50.0	+4.4	Black
$\begin{aligned} & \hline 14 \begin{array}{l} 14.409 \mathrm{M} \\ \text { Ave } \\ \hline \end{array}{ }^{2} \\ & \hline \end{aligned}$	11.1	+0.2	+6.1	+0.4	+0.8	+0.0	18.6	50.0	-31.4	Black
$\wedge 14.409 \mathrm{M}$	44.5	+0.2	+6.1	+0.4	+0.8	+0.0	52.0	50.0	+2.0	Black
$\begin{gathered} 16 \begin{array}{c} 14.058 \mathrm{M} \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	10.8	+0.2	+6.1	+0.4	+0.7	+0.0	18.2	50.0	-31.8	Black
$\wedge 14.058 \mathrm{M}$	45.0	+0.2	+6.1	+0.4	+0.7	+0.0	52.4	50.0	+2.4	Black
$\begin{gathered} 18 \quad 15.049 \mathrm{M} \\ \text { Ave } \end{gathered}$	9.8	+0.2	+6.1	+0.4	+0.8	+0.0	17.3	50.0	-32.7	Black
$\wedge 15.049 \mathrm{M}$	41.6	+0.2	+6.1	+0.4	+0.8	+0.0	49.1	50.0	-0.9	Black
$\begin{gathered} 20 \quad 12.995 \mathrm{M} \\ \text { Ave } \end{gathered}$	9.7	+0.2	+6.1	+0.4	+0.7	+0.0	17.1	50.0	-32.9	Black
$\wedge 12.995 \mathrm{M}$	43.8	+0.2	+6.1	+0.4	+0.7	$+0.0$	51.2	50.0	+1.2	Black

CKC Laboratories, Inc. Date: 2/26/2007 Time: 14:39:11 Magtek Incorporated WO\#: 84991 FCC 15.207 COND [AVE] Test Lead: Black 110V 60Hz Sequence\#: 4

—— Sweep Data $\quad 1-\mathrm{FCC} 15.207 \mathrm{COND}[\mathrm{AVE}]$ 2-FCC 15.207 COND [QP]

Page 27 of 54

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.207 COND [AVE]		
Work Order \#:	$\mathbf{8 4 9 9 1}$	Date:	2/26/2007
Test Type:	Conducted Emissions	Time:	14:50:18
Equipment:	IntelliStripe Contactless Card Reader	Sequence\#:	5
Manufacturer:	Magtek Incorporated	Tested By:	E. Wong
Model:	21165046		110 V 60 Hz
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
Conducted Emission Cable	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
150kHz HPF	G7755	$05 / 09 / 2006$	$05 / 09 / 2007$	02610
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847

Equipment Under Test (* = EUT):

Function IntelliStripe Contactless Card Reader* Power Supply	Manufacturer	Model \#	S/N

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 8500	$00043-480-957-106$

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency $=13.56 \mathrm{MHz}$. RF port connected to 50 Ohm load. Frequency range of measurement $=150 \mathrm{kHz}-$ 30 MHz . Frequency $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \mathrm{VBW}=9 \mathrm{kHz} ; 20^{\circ} \mathrm{C}, 41 \%$ relative humidity.

Transducer Legend:

T1 $=150 \mathrm{kHz} \mathrm{HPF}$ Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L2) Insertion Loss 00847 EMCO 3816/2NM

*This reading is the fundamental frequency of the transmitter with the antenna installed. No limits exists for this reading. Compliant data is shown on page 33 with load attached.

$\begin{aligned} & \hline 4 \text { 13.490M } \\ & \text { Ave } \\ & \hline \end{aligned}$	19.2	+0.2	+6.1	+0.4	+0.7	+0.0	26.6	50.0	-23.4	White
$\wedge 13.490 \mathrm{M}$	56.5	+0.2	+6.1	+0.4	+0.7	+0.0	63.9	50.0	+13.9	White
$\begin{aligned} & 613.625 \mathrm{M} \\ & \text { Ave } \\ & \hline \end{aligned}$	18.3	+0.2	+6.1	+0.4	+0.7	$+0.0$	25.7	50.0	-24.3	White
$\wedge 13.625 \mathrm{M}$	56.2	+0.2	+6.1	+0.4	+0.7	+0.0	63.6	50.0	+13.6	White
$\begin{aligned} & \hline 8 \text { 13.418M } \\ & \text { Ave } \\ & \hline \end{aligned}$	16.9	+0.2	+6.1	+0.4	+0.7	+0.0	24.3	50.0	-25.7	White
$\wedge 13.418 \mathrm{M}$	54.9	+0.2	+6.1	+0.4	+0.7	+0.0	62.3	50.0	+12.3	White
$\begin{gathered} 10 \begin{array}{c} 15.040 \mathrm{M} \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	10.6	+0.2	+6.1	+0.4	+0.8	+0.0	18.1	50.0	-31.9	White
$\wedge 15.040 \mathrm{M}$	41.2	+0.2	+6.1	+0.4	+0.8	$+0.0$	48.7	50.0	-1.3	White
$\begin{gathered} 12 \begin{array}{l} 14.121 \mathrm{M} \\ \text { Ave } \end{array} \\ \hline \end{gathered}$	10.1	+0.2	+6.1	+0.4	+0.7	+0.0	17.5	50.0	-32.5	White
$\wedge 14.121 \mathrm{M}$	42.5	+0.2	+6.1	+0.4	+0.7	+0.0	49.9	50.0	-0.1	White
$\begin{aligned} & 14{ }^{13.076 \mathrm{M}} \\ & \text { Ave } \\ & \hline \end{aligned}$	9.3	+0.2	+6.1	+0.4	+0.7	+0.0	16.7	50.0	-33.3	White
$\wedge 13.076 \mathrm{M}$	43.0	+0.2	+6.1	+0.4	+0.7	$+0.0$	50.4	50.0	+0.4	White
$\begin{aligned} & \hline 16 \quad 14.058 \mathrm{M} \\ & \text { Ave } \end{aligned}$	9.0	+0.2	+6.1	+0.4	+0.7	+0.0	16.4	50.0	-33.6	White
$\wedge 14.058 \mathrm{M}$	45.0	+0.2	+6.1	+0.4	+0.7	$+0.0$	52.4	50.0	+2.4	White
$\begin{gathered} 18 \quad 14.625 \mathrm{M} \\ \text { Ave } \end{gathered}$	8.7	+0.2	+6.1	+0.4	+0.8	+0.0	16.2	50.0	-33.8	White
$\wedge 14.625 \mathrm{M}$	39.7	+0.2	+6.1	+0.4	+0.8	$+0.0$	47.2	50.0	-2.8	White
$\begin{gathered} 20 \quad 13.283 \mathrm{M} \\ \text { Ave } \end{gathered}$	8.1	+0.2	+6.1	+0.4	+0.7	+0.0	15.5	50.0	-34.5	White
$\wedge 13.283 \mathrm{M}$	43.9	+0.2	+6.1	+0.4	+0.7	$+0.0$	51.3	50.0	+1.3	White
$\begin{aligned} & 22 \quad 12.716 \mathrm{M} \\ & \text { Ave } \end{aligned}$	6.1	+0.2	+6.1	+0.4	+0.6	+0.0	13.4	50.0	-36.6	White
$\wedge 12.716 \mathrm{M}$	39.9	+0.2	+6.1	+0.4	+0.6	+0.0	47.2	50.0	-2.8	White

CKC Laboratories, Inc. Date: 2/26/2007 Time: 14:50:18 Magtek Incorporated WO\#: 84991 FCC 15.207 COND [AVE] Test Lead: White 110 V 60 Hz Sequence\#: 5

—— Sweep Data $\quad 1-\mathrm{FCC} 15.207 \mathrm{COND}[\mathrm{AVE}]$ 2-FCC 15.207 COND [QP]

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.207 COND [AVE]		Date: 2/26/2007
Work Order \#:	$\mathbf{8 4 9 9 1}$	Time:	15:10:38
Test Type:	Conducted Emissions	Sequence\#:	7
Equipment:	IntelliStripe 65 Contactless Card		
	Reader	Tested By:	E. Wong
Manufacturer:	Magtek Incorporated		110 V 60 Hz
Model:	21165046		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
Conducted Emission Cable	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
150kHz HPF	G7755	$05 / 09 / 2006$	$05 / 09 / 2007$	02610
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. Frequency=13.56MHz. RF port connected to 50 Ohm load. Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$. Frequency $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW=9 kHz, VBW=9 $\mathrm{kHz} ; 20^{\circ} \mathrm{C}, 41 \%$ relative humidity.

Transducer Legend:

T1 $=150 \mathrm{kHz}$ HPF Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L1) Insertion Loss 00847 EMCO 3816/2NM

6	611.049k	32.6	+0.2	+6.1	+0.1	+0.1	+0.0	39.1	46.0	-6.9	Black
7	429.247k	33.8	+0.2	+6.2	+0.1	+0.0	+0.0	40.3	47.3	-7.0	Black
8	1.009M	32.3	+0.1	+6.1	+0.0	+0.1	+0.0	38.6	46.0	-7.4	Black
9	614.685k	31.9	+0.2	+6.1	+0.1	+0.1	+0.0	38.4	46.0	-7.6	Black
10	609.594k	31.4	+0.2	+6.1	+0.1	+0.1	+0.0	37.9	46.0	-8.1	Black
11	461.971k	31.8	+0.2	+6.2	+0.1	+0.1	+0.0	38.4	46.7	-8.3	Black
12	859.026k	31.2	+0.1	+6.1	+0.0	+0.1	+0.0	37.5	46.0	-8.5	Black
13	898.468k	31.0	+0.1	+6.1	+0.0	+0.1	+0.0	37.3	46.0	-8.7	Black
Ave											Black
\wedge	151.295k	50.9	+2.3	+6.2	+0.1	+0.1	+0.0	59.6	55.9	+3.7	Black

CKC Laboratories, Inc. Date: 2/26/2007 Time: 15:10:38 Magtek Incorporated WO\#: 84991 FCC 15.207 COND [AVE] Test Lead: Black 110V 60Hz Sequence\#: 7

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.207 COND [AVE]		Date: 2/26/2007
Work Order \#:	$\mathbf{8 4 9 9 1}$	Time:	15:05:27
Test Type:	Conducted Emissions	Sequence\#:	6
Equipment:	IntelliStripe 65 Contactless Card		
	Reader	Tested By: E. Wong	
Manufacturer:	Magtek Incorporated		110 V 60 Hz
Model:	21165046		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
Conducted Emission Cable	Cable \#21	$05 / 09 / 2006$	$05 / 09 / 2008$	P04358
150kHz HPF	G7755	$05 / 09 / 2006$	$05 / 09 / 2007$	02610
6dB Attenuator	None	$11 / 21 / 2006$	$11 / 21 / 2008$	P05611
LISN	1104	$11 / 10 / 2006$	$11 / 10 / 2008$	00847

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. Frequency $=13.56 \mathrm{MHz}$. RF port connected to 50 Ohm load. Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$. Frequency $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW=9 kHz, VBW=9 $\mathrm{kHz} ; 20^{\circ} \mathrm{C}, 41 \%$ relative humidity.

Transducer Legend:

T1 $=150 \mathrm{kHz} \mathrm{HPF}$ Asset 02610	T2=6dB Attenuator P05611
T3=Cable \#21 Conducted Site A 050908	T4=(L2) Insertion Loss 00847 EMCO 3816/2NM

6	1.013 M	32.3	+0.1	+6.1	+0.0	+0.1	+0.0	38.6	46.0	-7.4	White
7	602.322 k	31.3	+0.2	+6.1	+0.1	+0.1	+0.0	37.8	46.0	-8.2	White
8	426.338 k	32.3	+0.2	+6.2	+0.1	+0.1	+0.0	38.9	47.3	-8.4	White
9	606.685 k	31.0	+0.2	+6.1	+0.1	+0.1	+0.0	37.5	46.0	-8.5	White
10	608.867 k	30.4	+0.2	+6.1	+0.1	+0.1	+0.0	36.9	46.0	-9.1	White
11	1.290 M	30.2	+0.1	+6.1	+0.0	+0.1	+0.0	36.5	46.0	-9.5	White
12	452.518 k	30.5	+0.2	+6.2	+0.1	+0.1	+0.0	37.1	46.8	-9.7	White
13	869.207 k	29.9	+0.1	+6.1	+0.0	+0.1	+0.0	36.2	46.0	-9.8	White
14	453.972 k	30.2	+0.2	+6.2	+0.1	+0.1	+0.0	36.8	46.8	-10.0	White
15	877.204 k	29.2	+0.1	+6.1	+0.0	+0.1	+0.0	35.5	46.0	-10.5	White
16	152.704 k	24.3	+2.0	+6.2	+0.1	+0.2	+0.0	32.8	55.9	-23.1	White
Ave	152.704 k	50.2	+2.0	+6.2	+0.1	+0.2	+0.0	58.7	55.9	+2.8	White
14											

CKC Laboratories, Inc. Date: 2/26/2007 Time: 15:05:27 Magtek Incorporated WO\#: 84991 FCC 15.207 COND [AVE] Test Lead: White 110 V 60 Hz Sequence\#: 6

Page 35 of 54

FCC 15.225 RADIATED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.225 Field Strength of Emission		Date: 2/26/2007
Work Order \#:	$\mathbf{8 4 9 9 1}$	Time:	09:54:49
Test Type:	Radiated Scan	Sequence\#: 2	
Equipment:	IntelliStripe 65 Contactless Card		
	Reader	Tested By: E. Wong	
Manufacturer:	Magtek Incorporated		
Model:	21165046		
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Bilog Antenna	2451	$02 / 02 / 2006$	$02 / 02 / 2008$	01995
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
Pre amp to SA Cable	Cable \#10	$05 / 16 / 2005$	$05 / 16 / 2007$	P05050
Cable	Cable15	$01 / 05 / 2007$	$01 / 05 / 2009$	P05198
Pre Amp	1937A02548	$06 / 01 / 2006$	$06 / 01 / 2008$	00309
Loop Antenna	2014	$06 / 14 / 2006$	$06 / 14 / 2008$	00314

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency $=13.56 \mathrm{MHz}$. Frequency range of measurement $=9 \mathrm{kHz}-1 \mathrm{GHz}$. Frequency $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW=200 Hz, VBW=200 Hz; $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW=9 kHz, VBW=9 kHz; $30 \mathrm{MHz}-1000 \mathrm{MHz}$ RBW=120 $\mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz} .20^{\circ} \mathrm{C}, 41 \%$ relative humidity.

Transducer Legend:

T1=Active loop antenna $061408 \quad$ T2=Cable \#15, Site A, 010509

Measu	ment Data:	Reading listed by margin.					Test Distance: 10 Meters				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	13.560M	54.7	+10.7	+0.6			-19.0	47.0	84.0	-37.0	Paral
2	13.560M	52.7	+10.7	+0.6			-19.0	45.0	84.0	-39.0	Paral

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.225(d) Spurious emission		Date: 2/26/2007
Work Order \#:	84991	Time:	14:07:40
Test Type:	Radiated Scan	Sequence\#:	3
Equipment:	IntelliStripe 65 Contactless Card Reader	Tested By: E. Wong	
Manufacturer:	Magtek Incorporated		
Model:	21165046		
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Bilog Antenna	2451	$02 / 02 / 2006$	$02 / 02 / 2008$	01995
Spectrum Analyzer	US44300438	$01 / 03 / 2007$	$01 / 03 / 2009$	02672
Pre amp to SA Cable	Cable \#10	$05 / 16 / 2005$	$05 / 16 / 2007$	P05050
Cable	Cable15	$01 / 05 / 2007$	$01 / 05 / 2009$	P05198
Pre Amp	$1937 A 02548$	$06 / 01 / 2006$	$06 / 01 / 2008$	00309
Loop Antenna	2014	$06 / 14 / 2006$	$06 / 14 / 2008$	00314

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 8500	$00043-480-957-106$

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency $=13.56 \mathrm{MHz}$. Frequency range of measurement $=9 \mathrm{kHz}-1 \mathrm{GHz}$. Frequency $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW=200 Hz, VBW=200 Hz; $150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW=9 kHz, VBW=9 kHz; $30 \mathrm{MHz}-1000 \mathrm{MHz}$ RBW=120 kHz, VBW $=120 \mathrm{kHz} .20^{\circ} \mathrm{C}, 41 \%$ relative humidity.

Transducer Legend:

T1=Active loop antenna 061408	T2=Cable \#15, Site A, 010509
T3=Preamp 8447D 060108	T4=Bilog AN01995 020208 Chase
T5=Cable \#10 051607	T6=Cable \#15, Site A, 010509

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6							
MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
1 192.002M	56.1	+0.0	+0.0	-27.6	+8.9	+0.0	40.1	43.5	-3.4	Horiz
QP		+0.2	+2.5							
$\wedge 192.002 \mathrm{M}$	57.0	+0.0	+0.0	-27.6	+8.9	+0.0	41.0	43.5	-2.5	Horiz
		+0.2	+2.5							

	224.006M QP	55.5	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-27.6	+10.7	+0.0	41.5	46.0	-4.5	Horiz
\wedge	224.006 M	57.1	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-27.6	+10.7	+0.0	43.1	46.0	-2.9	Horiz
5	208.001M	54.0	$\begin{array}{r} +0.0 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.6 \\ \hline \end{array}$	-27.6	+9.5	+0.0	38.7	43.5	-4.8	Horiz
	$\begin{aligned} & \text { 208.004M } \\ & \text { QP } \\ & \hline \end{aligned}$	53.8	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	-27.6	+9.5	+0.0	38.5	43.5	-5.0	Vert
\wedge	208.004M	54.7	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	-27.6	+9.5	+0.0	39.4	43.5	-4.1	Vert
8	256.006M	52.9	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.9 \end{aligned}$	-27.7	+12.6	+0.0	40.9	46.0	-5.1	Horiz
	192.002M QP	54.3	$\begin{aligned} & \hline+0.0 \\ & +0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	-27.6	+8.9	+0.0	38.3	43.5	-5.2	Vert
\wedge	192.002M	56.9	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	-27.6	+8.9	+0.0	40.9	43.5	-2.6	Vert
11	358.349M	48.9	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	-27.6	+14.7	+0.0	39.8	46.0	-6.2	Horiz
12	175.988M	52.9	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	-27.7	+9.3	+0.0	37.1	43.5	-6.4	Horiz
13	411.599M	47.2	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.8 \\ & \hline \end{aligned}$	-27.8	+16.1	+0.0	39.6	46.0	-6.4	Vert
14	67.800 M	53.4	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ +1.5 \\ \hline \end{array}$	-27.7	+6.0	+0.0	33.3	40.0	-6.7	Vert
15	144.009M	50.7	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	-27.7	+11.2	+0.0	36.6	43.5	-6.9	Horiz
16	149.155M	50.8	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	-27.7	+11.0	+0.0	36.5	43.5	-7.0	Horiz
17	224.009M	52.4	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.7 \\ \hline \end{array}$	-27.6	+10.7	+0.0	38.4	46.0	-7.6	Vert
18	128.045M	49.2	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & \hline \end{aligned}$	-27.6	+11.5	+0.0	35.2	43.5	-8.3	Vert
19	255.986M	49.6	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.9 \end{aligned}$	-27.7	+12.6	+0.0	37.6	46.0	-8.4	Vert
20	160.002M	50.0	$\begin{array}{r} +0.0 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.3 \\ \hline \end{array}$	-27.7	+10.2	+0.0	35.0	43.5	-8.5	Horiz
21	149.140M	49.3	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.2 \\ \hline \end{array}$	-27.7	+11.0	+0.0	35.0	43.5	-8.5	Vert
22	135.597M	48.9	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.1 \end{aligned}$	-27.6	+11.4	+0.0	34.9	43.5	-8.6	Horiz
23	447.472M	43.6	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +4.0 \end{aligned}$	-27.6	+17.0	+0.0	37.3	46.0	-8.7	Horiz
24	395.105M	45.4	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.7 \\ \hline \end{array}$	-27.8	+15.7	+0.0	37.3	46.0	-8.7	Horiz
25	391.424M	45.2	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.7 \\ \hline \end{array}$	-27.8	+15.6	+0.0	37.0	46.0	-9.0	Horiz
26	664.442M	38.0	$\begin{array}{r} +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +5.0 \\ \hline \end{array}$	-27.1	+20.5	+0.0	36.9	46.0	-9.1	Horiz
27	413.428M	44.3	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.8 \\ & \hline \end{aligned}$	-27.7	+16.2	+0.0	36.9	46.0	-9.1	Vert

Page 39 of 54

28	154.648M	48.9	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.2 \\ \hline \end{array}$	-27.7	+10.6	+0.0	34.2	43.5	-9.3	Horiz
29	420.355M	43.8	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.8 \end{aligned}$	-27.7	+16.3	+0.0	36.5	46.0	-9.5	Vert
30	160.003M	48.8	$\begin{aligned} & \hline+0.0 \\ & +0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \end{aligned}$	-27.7	+10.2	+0.0	33.8	43.5	-9.7	Vert
31	399.986M	44.2	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.7 \\ \hline \end{array}$	-27.8	+15.8	+0.0	36.2	46.0	-9.8	Horiz
32	271.992M	47.8	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.0 \\ \hline \end{array}$	-27.7	+12.8	+0.0	36.2	46.0	-9.8	Horiz
33	127.991M	47.6	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \end{aligned}$	-27.6	+11.5	+0.0	33.6	43.5	-9.9	Horiz
34	240.000M	48.9	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$	-27.7	+11.8	+0.0	36.0	46.0	-10.0	Horiz
35	366.114M	44.2	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.6 \\ \hline \end{array}$	-27.7	+14.9	+0.0	35.3	46.0	-10.7	Horiz
36	406.780M	43.0	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.7 \\ \hline \end{array}$	-27.8	+16.0	+0.0	35.2	46.0	-10.8	Horiz
37	704.053M	35.8	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.1 \end{aligned}$	-27.1	+20.7	+0.0	35.0	46.0	-11.0	Horiz
38	383.374M	43.3	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.6 \end{aligned}$	-27.7	+15.4	+0.0	34.9	46.0	-11.1	Horiz
39	122.035 M	46.5	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.0 \\ \hline \end{array}$	-27.6	+11.4	+0.0	32.4	43.5	-11.1	Horiz
40	173.412M	47.7	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \end{aligned}$	-27.7	+9.5	+0.0	32.1	43.5	-11.4	Horiz
41	432.031M	41.2	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.9 \\ \hline \end{array}$	-27.7	+16.7	+0.0	34.4	46.0	-11.6	Vert
42	196.041M	47.6	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	-27.6	+8.8	+0.0	31.6	43.5	-11.9	Horiz
43	175.995M	47.4	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \end{aligned}$	-27.7	+9.3	+0.0	31.6	43.5	-11.9	Vert
44	379.674M	42.3	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.6 \end{aligned}$	-27.7	+15.3	+0.0	33.8	46.0	-12.2	Horiz
45	151.544M	45.7	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.2 \end{aligned}$	-27.7	+10.9	+0.0	31.3	43.5	-12.2	Vert
46	144.008M	45.4	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.2 \\ \hline \end{array}$	-27.7	+11.2	+0.0	31.3	43.5	-12.2	Vert
47	259.972M	45.5	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.9 \end{aligned}$	-27.7	+12.7	+0.0	33.6	46.0	-12.4	Horiz
48	135.610M	45.1	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.1 \end{aligned}$	-27.6	+11.4	+0.0	31.1	43.5	-12.4	Vert
49	420.352M	40.8	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.8 \\ \hline \end{array}$	-27.7	+16.3	+0.0	33.5	46.0	-12.5	Vert
50	135.973M	45.0	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.1 \\ \hline \end{array}$	-27.6	+11.4	+0.0	31.0	43.5	-12.5	Horiz
51	650.870M	34.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.9 \end{aligned}$	-27.1	+20.4	+0.0	33.1	46.0	-12.9	Horiz
52	271.998M	44.7	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.0 \\ \hline \end{array}$	-27.7	+12.8	+0.0	33.1	46.0	-12.9	Vert

Page 40 of 54

53	140.007M	44.5	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.1 \\ \hline \end{array}$	-27.7	+11.3	+0.0	30.4	43.5	-13.1	Horiz
54	728.007M	32.6	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +5.2 \end{aligned}$	-27.0	+21.5	+0.0	32.8	46.0	-13.2	Horiz
55	387.848M	41.1	$\begin{aligned} & \hline+0.0 \\ & +03 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.7 \end{aligned}$	-27.8	+15.5	+0.0	32.8	46.0	-13.2	Vert
56	122.038 M	44.4	$\begin{aligned} & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \end{aligned}$	-27.6	+11.4	+0.0	30.3	43.5	-13.2	Vert
57	386.045M	40.9	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.6 \\ \hline \end{array}$	-27.7	+15.5	+0.0	32.6	46.0	-13.4	Vert
58	360.508M	41.6	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	-27.6	+14.8	+0.0	32.6	46.0	-13.4	Vert
59	393.240M	40.7	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.7 \\ \hline \end{array}$	-27.8	+15.6	+0.0	32.5	46.0	-13.5	Vert
60	384.490M	40.9	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.6 \\ \hline \end{array}$	-27.7	+15.4	+0.0	32.5	46.0	-13.5	Horiz
61	336.002M	42.1	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ \hline \end{array}$	-27.6	+14.2	+0.0	32.4	46.0	-13.6	Vert
62	321.082M	42.5	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	-27.6	+13.8	+0.0	32.3	46.0	-13.7	Horiz
63	336.005M	41.9	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.4 \\ \hline \end{array}$	-27.6	+14.2	+0.0	32.2	46.0	-13.8	Horiz
64	393.197M	40.3	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.7 \\ \hline \end{array}$	-27.8	+15.6	+0.0	32.1	46.0	-13.9	Horiz
65	269.966M	43.7	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.0 \\ \hline \end{array}$	-27.7	+12.8	+0.0	32.1	46.0	-13.9	Horiz
66	211.887 M	44.6	$\begin{array}{r} +0.0 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.6 \\ \hline \end{array}$	-27.6	+9.8	+0.0	29.6	43.5	-13.9	Horiz
67	394.564M	40.1	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.7 \\ \hline \end{array}$	-27.8	+15.7	+0.0	32.0	46.0	-14.0	Vert
68	311.878M	42.4	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.3 \end{aligned}$	-27.6	+13.5	+0.0	31.9	46.0	-14.1	Horiz
69	433.904M	38.7	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.9 \\ \hline \end{array}$	-27.7	+16.7	+0.0	31.9	46.0	-14.1	Vert
70	203.419M	45.1	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.6 \\ \hline \end{array}$	-27.6	+9.1	+0.0	29.4	43.5	-14.1	Vert
71	732.235M	31.5	$\begin{array}{r} +0.0 \\ +0.5 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +5.2 \\ \hline \end{array}$	-27.0	+21.6	+0.0	31.8	46.0	-14.2	Horiz
72	332.017M	41.6	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.4 \end{aligned}$	-27.6	+14.1	+0.0	31.8	46.0	-14.2	Horiz
73	325.420M	41.4	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.4 \end{aligned}$	-27.6	+13.9	+0.0	31.4	46.0	-14.6	Horiz
74	300.017M	42.3	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & \hline \end{aligned}$	-27.6	+13.2	+0.0	31.4	46.0	-14.6	Horiz
75	379.678M	39.8	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.6 \\ \hline \end{array}$	-27.7	+15.3	+0.0	31.3	46.0	-14.7	Vert
76	352.539M	40.5	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.5 \end{array}$	-27.6	+14.6	+0.0	31.3	46.0	-14.7	Vert
77	220.005M	45.5	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.7 \\ \hline \end{array}$	-27.6	+10.4	+0.0	31.2	46.0	-14.8	Horiz

Page 41 of 54

78	164.026M	43.9	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.3 \\ \hline \end{array}$	-27.7	+10.0	+0.0	28.7	43.5	-14.8	Horiz
79	162.460 M	43.8	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \end{aligned}$	-27.7	+10.1	+0.0	28.7	43.5	-14.8	Horiz
80	320.011 M	41.4	$\begin{aligned} & \hline+0.0 \\ & +03 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \end{aligned}$	-27.6	+13.7	+0.0	31.1	46.0	-14.9	Horiz
81	274.973M	42.6	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.0 \\ \hline \end{array}$	-27.7	+12.9	+0.0	31.1	46.0	-14.9	Horiz
82	319.997M	41.4	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.3 \\ \hline \end{array}$	-27.6	+13.7	+0.0	31.1	46.0	-14.9	Vert
83	447.456M	37.3	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +4.0 \end{aligned}$	-27.6	+17.0	+0.0	31.0	46.0	-15.0	Vert
84	27.120M	24.1	$\begin{array}{r} +8.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.8 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	-19.0	14.5	29.5	-15.0	Perpe
85	420.365M	38.2	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.8 \\ \hline \end{array}$	-27.7	+16.3	+0.0	30.9	46.0	-15.1	Horiz
86	169.888M	43.8	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	-27.7	+9.7	+0.0	28.4	43.5	-15.1	Horiz
87	288.004M	42.1	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \end{aligned}$	-27.6	+13.0	+0.0	30.9	46.0	-15.1	Vert
88	204.025M	44.1	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.6 \end{aligned}$	-27.6	+9.1	+0.0	28.4	43.5	-15.1	Vert
89	338.998 M	40.5	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ \hline \end{array}$	-27.6	+14.2	+0.0	30.8	46.0	-15.2	Horiz
90	338.987 M	40.5	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.4 \end{aligned}$	-27.6	+14.2	+0.0	30.8	46.0	-15.2	Vert
91	94.919M	44.7	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +1.8 \\ \hline \end{array}$	-27.7	+9.3	+0.0	28.2	43.5	-15.3	Horiz
92	416.691M	38.0	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.8 \\ \hline \end{array}$	-27.7	+16.3	+0.0	30.7	46.0	-15.3	Vert
93	264.027M	42.3	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \end{aligned}$	-27.7	+12.7	+0.0	30.6	46.0	-15.4	Horiz
94	383.987M	38.8	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.6 \end{aligned}$	-27.7	+15.4	+0.0	30.4	46.0	-15.6	Vert
95	813.553M	28.9	$\begin{array}{r} +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +5.6 \\ \hline \end{array}$	-27.1	+22.3	+0.0	30.3	46.0	-15.7	Horiz
96	188.007M	43.8	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.5 \end{aligned}$	-27.6	+8.9	+0.0	27.8	43.5	-15.7	Horiz
97	447.463M	36.6	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	-27.6	+17.0	+0.0	30.3	46.0	-15.7	Vert
98	172.002M	43.1	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	-27.7	+9.6	+0.0	27.6	43.5	-15.9	Vert
99	152.012M	42.1	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.2 \\ & \hline \end{aligned}$	-27.7	+10.8	+0.0	27.6	43.5	-15.9	Vert
100	324.711M	40.0	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.4 \\ \hline \end{array}$	-27.6	+13.9	+0.0	30.0	46.0	-16.0	Horiz
101	139.978M	41.6	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.1 \end{aligned}$	-27.7	+11.3	+0.0	27.5	43.5	-16.0	Vert
102	432.059M	36.6	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.9 \\ \hline \end{array}$	-27.7	+16.7	+0.0	29.8	46.0	-16.2	Horiz

Page 42 of 54

103	659.987 M	31.0	$\begin{aligned} & \hline+0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +4.9 \end{aligned}$	-27.1	+20.4	+0.0	29.7	46.0	-16.3	Horiz
104	247.991M	41.9	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.9 \end{aligned}$	-27.7	+12.4	+0.0	29.7	46.0	-16.3	Horiz
105	406.416M	37.4	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.7 \end{aligned}$	-27.8	+16.0	+0.0	29.6	46.0	-16.4	Vert
106	692.029M	30.4	$\begin{aligned} & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.1 \end{aligned}$	-27.1	+20.6	+0.0	29.5	46.0	-16.5	Horiz
107	257.640M	41.3	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.9 \\ \hline \end{array}$	-27.7	+12.6	+0.0	29.3	46.0	-16.7	Vert
108	164.896M	42.1	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \end{aligned}$	-27.7	+9.9	+0.0	26.8	43.5	-16.7	Horiz
109	202.536 M	42.6	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	-27.6	+9.0	+0.0	26.8	43.5	-16.7	Vert
110	474.591M	34.7	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +4.1 \end{aligned}$	-27.6	+17.6	+0.0	29.2	46.0	-16.8	Horiz
111	235.981M	42.3	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$	-27.6	+11.5	+0.0	29.2	46.0	-16.8	Horiz
112	268.004 M	40.6	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \end{aligned}$	-27.7	+12.8	+0.0	29.0	46.0	-17.0	Horiz
113	475.164M	34.3	$\begin{aligned} & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	-27.6	+17.6	+0.0	28.8	46.0	-17.2	Vert
114	328.009M	38.7	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.4 \\ \hline \end{array}$	-27.6	+14.0	+0.0	28.8	46.0	-17.2	Vert
115	716.029M	28.9	$\begin{aligned} & \hline+0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.2 \end{aligned}$	-27.1	+21.1	+0.0	28.6	46.0	-17.4	Horiz
116	207.029M	41.4	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.6 \end{aligned}$	-27.6	+9.4	+0.0	26.0	43.5	-17.5	Horiz
117	357.296M	37.6	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \end{aligned}$	-27.6	+14.7	+0.0	28.5	46.0	-17.5	Vert
118	352.563M	37.6	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.5 \\ \hline \end{array}$	-27.6	+14.6	+0.0	28.4	46.0	-17.6	Horiz
119	325.436M	38.4	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ \hline \end{array}$	-27.6	+13.9	+0.0	28.4	46.0	-17.6	Vert
120	840.663M	26.1	$\begin{array}{r} +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +5.7 \\ \hline \end{array}$	-27.1	+23.0	+0.0	28.3	46.0	-17.7	Horiz
121	215.985 M	40.4	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.7 \end{aligned}$	-27.6	+10.1	+0.0	25.8	43.5	-17.7	Horiz
122	299.996M	39.2	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.2 \\ \hline \end{array}$	-27.6	+13.2	+0.0	28.3	46.0	-17.7	Vert
123	338.987 M	37.9	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.4 \end{aligned}$	-27.6	+14.2	+0.0	28.2	46.0	-17.8	Vert
124	216.940M	42.6	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	-27.6	+10.1	+0.0	28.0	46.0	-18.0	Vert
125	134.980M	39.4	$\begin{array}{r} +0.0 \\ +0.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.1 \\ \hline \end{array}$	-27.6	+11.4	+0.0	25.4	43.5	-18.1	Horiz
126	287.953M	38.9	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.1 \\ \hline \end{array}$	-27.6	+13.0	+0.0	27.7	46.0	-18.3	Horiz
127	227.975M	41.4	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.7 \\ \hline \end{array}$	-27.6	+11.0	+0.0	27.7	46.0	-18.3	Horiz

Page 43 of 54

128	178.339M	41.2	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \end{aligned}$	-27.7	+9.1	+0.0	25.2	43.5	-18.3	Horiz
129	465.188M	32.9	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	-27.6	+17.4	+0.0	27.1	46.0	-18.9	Vert
130	284.745M	38.3	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.1 \\ \hline \end{array}$	-27.7	+13.0	+0.0	27.0	46.0	-19.0	Vert
131	170.034M	39.9	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \end{aligned}$	-27.7	+9.7	+0.0	24.5	43.5	-19.0	Vert
132	162.714 M	39.7	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \end{aligned}$	-27.7	+10.0	+0.0	24.5	43.5	-19.0	Vert
133	196.002M	40.4	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.6 \end{aligned}$	-27.6	+8.8	+0.0	24.4	43.5	-19.1	Vert
134	224.994M	40.7	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.7 \end{aligned}$	-27.6	+10.8	+0.0	26.8	46.0	-19.2	Horiz
135	400.887 M	34.5	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.7 \end{aligned}$	-27.8	+15.8	+0.0	26.5	46.0	-19.5	Vert
136	27.120M	19.5	$\begin{array}{r} +8.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.8 \\ +0.0 \\ \hline \end{array}$	+0.0	+0.0	-19.0	9.9	29.5	-19.6	Paral
137	260.023M	38.2	$\begin{aligned} & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.9 \end{aligned}$	-27.7	+12.7	+0.0	26.3	46.0	-19.7	Vert
138	375.010M	34.7	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.6 \end{aligned}$	-27.7	+15.2	+0.0	26.1	46.0	-19.9	Horiz
139	242.985 M	38.6	$\begin{array}{r} +0.0 \\ +0.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.8 \\ \hline \end{array}$	-27.7	+12.0	+0.0	25.9	46.0	-20.1	Vert
140	406.789M	33.6	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.7 \end{aligned}$	-27.8	+16.0	+0.0	25.8	46.0	-20.2	Vert
141	404.991M	33.6	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.7 \\ \hline \end{array}$	-27.8	+15.9	+0.0	25.7	46.0	-20.3	Vert
142	786.470M	24.5	$\begin{aligned} & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +5.4 \end{aligned}$	-27.1	+22.0	+0.0	25.4	46.0	-20.6	Horiz
143	235.358M	38.5	$\begin{aligned} & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.8 \\ \hline \end{array}$	-27.6	+11.5	+0.0	25.4	46.0	-20.6	Vert
144	303.990M	36.0	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \end{aligned}$	-27.6	+13.3	+0.0	25.2	46.0	-20.8	Vert
145	189.840M	38.5	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.5 \\ \hline \end{array}$	-27.6	+8.9	+0.0	22.5	43.5	-21.0	Vert
146	242.990 M	37.7	$\begin{aligned} & \hline+0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +2.8 \\ \hline \end{array}$	-27.7	+12.0	+0.0	25.0	46.0	-21.0	Horiz
147	113.398M	37.1	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.9 \\ & \hline \end{aligned}$	-27.6	+10.9	+0.0	22.4	43.5	-21.1	Horiz
148	447.042M	31.2	$\begin{aligned} & \hline+0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +4.0 \\ \hline \end{array}$	-27.6	+17.0	+0.0	24.9	46.0	-21.1	Vert
149	298.777 M	35.6	$\begin{aligned} & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.2 \\ \hline \end{array}$	-27.6	+13.2	+0.0	24.7	46.0	-21.3	Vert
150	374.976M	33.2	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.6 \\ \hline \end{array}$	-27.7	+15.2	+0.0	24.6	46.0	-21.4	Vert
151	337.917M	34.2	$\begin{array}{r} +0.0 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.4 \\ \hline \end{array}$	-27.6	+14.2	+0.0	24.5	46.0	-21.5	Vert
152	366.118M	33.2	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.6 \\ \hline \end{array}$	-27.7	+14.9	+0.0	24.3	46.0	-21.7	Vert

Page 44 of 54

153	240.004M	36.8	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.8 \end{aligned}$	-27.7	+11.8	+0.0	23.9	46.0	-22.1	Vert
154	230.545M	36.9	+0.0	+0.0	-27.6	+11.2	+0.0	23.4	46.0	-22.6	Horiz
			+0.2	+2.7							
155	343.998M	32.6	+0.0	+0.0	-27.6	+14.4	+0.0	23.2	46.0	-22.8	Vert
			+0.3	+3.5							
156	244.078M	34.3	+0.0	+0.0	-27.7	+12.1	+0.0	21.8	46.0	-24.2	Vert
			+0.2	+2.9							
157	406.800M	29.4	+0.0	+0.0	-27.8	+16.0	+0.0	21.6	46.0	-24.4	Vert
			+0.3	+3.7							
158	311.880M	32.0	+0.0	+0.0	-27.6	+13.5	+0.0	21.5	46.0	-24.5	Vert
			+0.3	+3.3							
159	230.520M	34.3	+0.0	+0.0	-27.6	+11.2	+0.0	20.8	46.0	-25.2	Vert
			+0.2	+2.7							

OCCUPIED BANDWIDTH -20dB

Test Equipment

Equipment	Asset \#	Manufacturer	Model	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309
Bilog Antenna	01995	Chase	CBL6111C	2451	020206	020208
Pre-amp	00309	HP	8447 D	$1937 A 02548$	060106	060108
Antenna cable	P05198	Belden	8268 $($ RG-214 $)$	Cable\#15	010507	010509
Pre-amp to SA cable	P05050	Pasternack	RG223/U	Cable\#10	051605	051607

Test Setup Photos

Test Conditions: The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency $=13.56 \mathrm{MHz}$. Emission properties evaluated via radiated field.

FCC 15.225(a), (b), (c) EMISSIONS MASK
Test Equipment

Equipment	Asset \#	Manufacturer	Model	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309
Bilog Antenna	01995	Chase	CBL6111C	2451	020206	020208
Pre-amp	00309	HP	8447 D	$1937 A 02548$	060106	060108
Antenna cable	P05198	Belden	8268 $($ RG-214 $)$	Cable\#15	010507	010509
Pre-amp to SA cable	P05050	Pasternack	RG223/U	Cable\#10	051605	051607

Test Setup Photos

Test Conditions: The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency $=13.56 \mathrm{MHz}$. Emission properties evaluated via radiated field.

BANDEDGE PLOTS

Test Equipment

Equipment	Asset \#	Manufacturer	Model	Serial \#	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309
Bilog Antenna	01995	Chase	CBL6111C	2451	020206	020208
Pre-amp	00309	HP	8447 D	$1937 A 02548$	060106	060108
Antenna cable	P05198	Belden	8268 $($ RG-214 $)$	Cable\#15	010507	010509
Pre-amp to SA cable	P05050	Pasternack	RG223/U	Cable\#10	051605	051607

Test Setup Photos

Test Conditions: The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency=13.56MHz. Emission properties evaluated via radiated field.

BANDEDGE PLOT LOW

BANDEDGE PLOT HIGH

FREQUENCY STABILITY AND VOLTAGE VARIATIONS

Test Equipment

Equipment	Asset \#	Manufacturer	Model	Serial \#	Cal Date	Cal Due
Temperature Chamber	01878	Thermaltron	S1.2	NA	060106	060108
Temperature Data logger	01620	HP	34970 A	US70131892	052206	052208
20 Ch Thermalcouple module	01849	HP	$34901 A$	US37603966	052206	052208
AC Power Source	$01695 /$ 01696	Pacific Power	$345 A M X /$ UPC32	$250 / 245$	052305	052307
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309

Test Setup Photos

Test Conditions: The EUT is placed in the temperature chamber. RF signal is monitored from the antenna port. A spectrum analyzer is employed to measure the frequency stability of the EUT.

Customer:	Magtek Incorporated
WO\#:	84991
Test Engineer:	E. wong
Device Model \#:	IntelliStripe 65 Contactless Card Reader
Operating Voltage:	110 Vac
Frequency Limit:	0.01%

Temperature Variations

			Channel 1 (MHz)
Channel Frequency:	Dev. (MHz)		
Temp (C)	Voltage		
-20	110	13.55955	0.00001
-10	110	13.559597	0.00004
0	110	13.559610	0.00006
10	110	13.559607	0.00005
20	110	13.55955	0.00000
30	110	13.559543	0.00001
40	110	13.559527	0.00003
50	110	13.559517	0.00004

Voltage Variations ($\mathbf{\pm 1 5 \%}$)

Temp (C)	Voltage	Channel 1 (MHz)	Dev. (MHz)
20	93.5	13.55953	0.00002
20	110.0	13.55955	0.00000
20	126.5	13.55953	0.00002

Max Deviation (MHz)	0.00006
Max Deviation (\%)	$\mathbf{0 . 0 0 0 4 2}$
	PASS

