

ADDENDUM TO MAGTEK INCORPORATED TEST REPORT FC07-013

FOR THE

INTELLISTRIPE 65 CONTACTLESS CARD READER, 211650XX

FCC PART 15 SUBPART C SECTIONS 15.207 & 15.225 AND SUBPART B SECTIONS 15.107 & 15.109 CLASS B

COMPLIANCE

DATE OF ISSUE: MARCH 23, 2007

PREPARED FOR:

PREPARED BY:

Magtek Incorporated 20725 South Annalee Avenue Carson, CA 90746 Mary Ellen Clayton CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

P.O. No.: 86878 W.O. No.: 84991 Date of test: February 23 - March 1, 2007

Report No.: FC07-013A

This report contains a total of 54 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Conditions for Compliance	3
FCC 15.31(m) Number Of Channels	4
FCC 15.33(a) Frequency Ranges Tested	4
FCC 15.203 Antenna Requirements	4
EUT Operating Frequency	4
Temperature And Humidity During Testing	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Report of Emissions Measurements	7
Testing Parameters	7
FCC 15.107 Conducted Emissions	9
FCC 15.109 Radiated Emissions	15
FCC 15.207 Conducted Emissions	24
FCC 15.225 Radiated Emissions	36
Occupied Bandwidth –20dB	46
FCC 15.225(a), (b), (c) Emissions Mask	48
Bandedge Plot	50
Frequency Stability and Voltage Variations	53

ADMINISTRATIVE INFORMATION

- **DATE OF TEST:** February 23 March 1, 2007
- DATE OF RECEIPT: February 23, 2007

MANUFACTURER: Magtek Incorporated 20725 South Annalee Avenue Carson, CA 90746

- **REPRESENTATIVE:** Brian Tahamzadeh
- **TEST LOCATION:** CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823
- **TEST METHOD:** ANSI C63.4 (2003)

PURPOSE OF TEST: Original Report: To demonstrate the compliance of the IntelliStripe 65 Contactless Card Reader, 211650XX with the requirements for FCC Part 15 Subpart C Sections 15.207 & 15.225 and Subpart B Sections 15.107 & 15.109 Class B devices.
 Addendum A: To clarify data on pages 25 and 28 with no new testing.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Joyce Walker, Quality Assurance Administrative Manager

TEST PERSONNEL:

Eddie Wong, EMC Engineer

CONDITIONS FOR COMPLIANCE No modifications to the EUT were necessary to comply.

FCC 15.31(m) Number Of Channels

This device operates on a single channel.

FCC 15.33(a) Frequency Ranges Tested

15.107 Conducted Emissions: 150 kHz – 30 MHz 15.109 Radiated Emissions: 9 kHz – 1000 MHz 15.207 Conducted Emissions: 150 kHz – 30 MHz 15.225 Radiated Emissions: 9 kHz – 1000 MHz

FCC 15.203 Antenna Requirements

The antenna is an integral part of the EUT and is non-removable; therefore the EUT complies with Section 15.203 of the FCC rules.

EUT Operating Frequency

The EUT was operating at 13.56 MHz.

Temperature And Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

The following model name at the time of testing by CKC Laboratories was: **21165046** It was actually 21165046 I65 B2,M3,C1,SG,L3,1H,H4,S1,LP,CF. I65 designates it is an Intellistripe 65 card reader and the 46 is for the contactless option. A description of the other options is on the following page.

Since the time of testing the manufacturer has chosen to use the following model name in its place. Any differences between the names does not affect their EMC characteristics and therefore complies to the level of testing equivalent to the tested model name shown on the data sheets: **211650XX.** A list of the options represented by XX is on the following page.

EQUIPMENT UNDER TEST

Power Sup	oply	<u>IntelliStrip</u>	IntelliStripe 65 Contactless Card Reader			
Manuf:	DVE	Manuf:	Magtek Incorporated			
Model:	DSA-0151D-12	Model:	211650XX			
Serial:	NA	Serial:	NA			
FCC ID:	NA	FCC ID:	pending			

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Laptop</u>	
Manuf:	Dell
Model:	Inspiron 8500
Serial:	00043-480-957-106
FCC ID:	NA

INTELLISTRIPE 60/65 OPTION ORDER SHEET

Customer	Date					
OPTION	CHOICE	MARK CHOICE	CODE			
DRINTED CIRCUIT ROAPD	Old IntelliStrine 65	MARCENOICE	DI			
PRINTED CIRCOIL BOARD	New IntelliString 65 w/ USP	-	 			
	New Internatipe 05 w/ 03B		D2			
	INORE		1/1			
MOUNTING BRACKET CONFIG.	FRONT	-	MI			
	SIDE		M2			
	FRONT AND SIDE		M3			
	NO MOUNT		M4			
SMARTCARD IC CONTACTS	EIGHT CONTACTS	-	C1			
	SIXTEEN CONTACTS		C2			
	NO CONTACTS					
DELETE SAM SUPPORT	YES		DS			
	NO					
SECURITY GATE	YES		SG			
	NO					
CARD LATCH	CARD LATCH W/SWITCH &PF		L3			
	PF THROUGH MAIN CONN.		L4			
	MOTOR ONLY		L5			
	NO LATCH					
MAGNETIC HEAD CONFIG.	1 HEAD		1H			
	2 HEADS		2H			
	1 HEAD on contact side		3H			
	MagnePrint	-	MP			
	NO HEAD					
MAGNETIC HEAD TYPE	TRACK 2		H1			
	TRACK 1 & 2		H2			
	TRACK 2 & 3		H3			
	TRACK 1.2. AND 3		H4			
	TRACK 1.2, AND 3 w/BACKING		H5			
	Shift-Out IntelliHead		H6			
GROUND LUG ON HEAD	YES		GL			
	NO		01			
CARD SEATED SWITCH CONFIG	CONTACT BLOCK		\$1			
CARD SEATED SWITCH CONTIG.	PCB WITH LEVER		53			
CONFORMAL COATING	VEC		CT			
CONFORMAL COATING	NO		CI			
CO CTANDOFF FOR CLICTCA FR DCD	NO		80			
PCB STANDOFF FOR CUSTOMER PCB	IES NO		50			
NO ZEDOS DEOLUBED A PTED I DO	NU		21/7			
NO ZEROS REQUIRED AFTER LRC	YES		NZ			
	NO					
BEZEL TYPE	International Plastic Bezel (21161202)		PB			
	Int'l Plastic Bezel w/LED (21161209)		LP			
	International Metal Bezel (21161204)		MB			
	M1-215 Style Bezel (21161206)		TB			
	Sankyo Bezel (21161208)	1	SB			
	M1-215 Bezel with LED (21161207)		LB			
	Desk Top Enclosure		DT			
	No Bezel					
CONTACTLESS SMART CARD	FULL (w/module & antenna installed)		CF			
	READY (without module installed)		CR			
	NONE (no circuitry included)					

FOR FACTORY USE ONLY: Unit Part Number _____

P/N 99875166-17 9/12/2006

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits to determine compliance. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit to determine compliance.

	SAMPLE CALCULATIONS								
	Meter reading	(dBµV)							
+	Antenna Factor	(dB)							
+	Cable Loss	(dB)							
-	Distance Correction	(dB)							
-	Preamplifier Gain	(dB)							
=	Corrected Reading	$(dB\mu V/m)$							

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

<u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

FCC 15.107 CONDUCTED EMISSIONS

Test Setup Photos

Page 9 of 54 Report No.: FC07-013A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.107 Class B COND [AVE]		
Work Order #:	84991	Date:	2/26/2007
Test Type:	Conducted Emissions	Time:	15:10:38
Equipment:	IntelliStripe 65 Contactless Card	Sequence#:	7
	Reader		
Manufacturer:	Magtek Incorporated	Tested By:	E. Wong
Model:	21165046		110V 60Hz
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
Conducted Emission Cable	Cable #21	05/09/2006	05/09/2008	P04358
150kHz HPF	G7755	05/09/2006	05/09/2007	02610
6dB Attenuator	None	11/21/2006	11/21/2008	P05611
LISN	1104	11/10/2006	11/10/2008	00847

<u>Equipment</u> Under Test (* =	= EUT):		
Function	Manufacturer	Model #	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:			
Function	Manufacturer	Model #	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. Frequency=13.56MHz. RF port connected to 50 Ohm load. Frequency range of measurement = 150kHz - 30MHz. Frequency 150 kHz- 30 MHz RBW=9 kHz, VBW=9 kHz; 20°C, 41% relative humidity.

Transducer Legend:

T1=150kHz HPF Asset 02610	T2=6dB Attenuator P05611
T3=Cable #21 Conducted Site A 050908	T4=(L1) Insertion Loss 00847 EMCO 3816/2NM

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	13.560M	40.9	+0.2	+6.1	+0.4	+0.7	+0.0	48.3	50.0	-1.7	Black
	Ave								Fundamen	ıtal	
۸	13.560M	41.7	+0.2	+6.1	+0.4	+0.7	+0.0	49.1	50.0	-0.9	Black
									Fundamen	ıtal	
3	296.168k	38.3	+0.2	+6.2	+0.1	+0.1	+0.0	44.9	50.3	-5.4	Black
4	603.777k	33.3	+0.2	+6.1	+0.1	+0.1	+0.0	39.8	46.0	-6.2	Black
5	608.140k	32.6	+0.2	+6.1	+0.1	+0.1	+0.0	39.1	46.0	-6.9	Black

6	611.049k	32.6	+0.2	+6.1	+0.1	+0.1	+0.0	39.1	46.0	-6.9	Black
7	429.247k	33.8	+0.2	+6.2	+0.1	+0.0	+0.0	40.3	47.3	-7.0	Black
8	1.009M	32.3	+0.1	+6.1	+0.0	+0.1	+0.0	38.6	46.0	-7.4	Black
9	614.685k	31.9	+0.2	+6.1	+0.1	+0.1	+0.0	38.4	46.0	-7.6	Black
10	609.594k	31.4	+0.2	+6.1	+0.1	+0.1	+0.0	37.9	46.0	-8.1	Black
11	461.971k	31.8	+0.2	+6.2	+0.1	+0.1	+0.0	38.4	46.7	-8.3	Black
12	859.026k	31.2	+0.1	+6.1	+0.0	+0.1	+0.0	37.5	46.0	-8.5	Black
13	898.468k	31.0	+0.1	+6.1	+0.0	+0.1	+0.0	37.3	46.0	-8.7	Black
14	151.295k Ave	31.9	+2.3	+6.2	+0.1	+0.1	+0.0	40.6	55.9	-15.3	Black
^	151.295k	50.9	+2.3	+6.2	+0.1	+0.1	+0.0	59.6	55.9	+3.7	Black

CKC Laboratories, Inc. Date: 2/26/2007 Time: 15:10:38 Magtek Incorporated WO#: 84991 FCC 15:107 Class B COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 7

Test Location:	CKC Laboratories, Inc. •110. N.	Olinda Place. • B	Brea, CA 92821 •	(714) 993-6112
----------------	---------------------------------	-------------------	------------------	----------------

Customer:	Magtek Incorporated		
Specification:	FCC 15.107 Class B COND [AVE]		
Work Order #:	84991	Date:	2/26/2007
Test Type:	Conducted Emissions	Time:	15:05:27
Equipment:	IntelliStripe 65 Contactless Card	Sequence#:	6
	Reader	-	
Manufacturer:	Magtek Incorporated	Tested By:	E. Wong
Model:	21165046		110V 60Hz
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
Conducted Emission Cable	Cable #21	05/09/2006	05/09/2008	P04358
150kHz HPF	G7755	05/09/2006	05/09/2007	02610
6dB Attenuator	None	11/21/2006	11/21/2008	P05611
LISN	1104	11/10/2006	11/10/2008	00847

Equipment Under Test (* = EUT):FunctionManufacturerModel #S/NPower SupplyDVEDSA-0151D-12NAIntelliStripe 65 ContactlessMagtek Incorporated21165046NACard Reader*

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. Frequency=13.56MHz. RF port connected to 50 Ohm load. Frequency range of measurement = 150kHz- 30MHz. Frequency150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 20°C, 41% relative humidity.

Transducer Legend:

T1=150kHz HPF Asset 02610	T2=6dB Attenuator P05611
T3=Cable #21 Conducted Site A 050908	T4=(L2) Insertion Loss 00847 EMCO 3816/2NM

Measur	rement Data:	Reading listed by margin.				Test Lead: White					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	161.635k	45.3	+0.6	+6.2	+0.1	+0.2	+0.0	52.4	55.4	-3.0	White
2	13.562M	38.9	+0.2	+6.1	+0.4	+0.7	+0.0	46.3	50.0	-3.7	White
	Ave								Fundamen	ıtal	
^	13.562M	41.5	+0.2	+6.1	+0.4	+0.7	+0.0	48.9	50.0	-1.1	White
									Fundamen	ıtal	
4	291.805k	39.0	+0.2	+6.2	+0.1	+0.1	+0.0	45.6	50.5	-4.9	White
5	576.143k	32.4	+0.2	+6.1	+0.1	+0.1	+0.0	38.9	46.0	-7.1	White

6	1.013M	32.3	+0.1	+6.1	+0.0	+0.1	+0.0	38.6	46.0	-7.4	White
7	602.322k	31.3	+0.2	+6.1	+0.1	+0.1	+0.0	37.8	46.0	-8.2	White
8	426.338k	32.3	+0.2	+6.2	+0.1	+0.1	+0.0	38.9	47.3	-8.4	White
9	606.685k	31.0	+0.2	+6.1	+0.1	+0.1	+0.0	37.5	46.0	-8.5	White
10	608.867k	30.4	+0.2	+6.1	+0.1	+0.1	+0.0	36.9	46.0	-9.1	White
11	1.290M	30.2	+0.1	+6.1	+0.0	+0.1	+0.0	36.5	46.0	-9.5	White
12	452.518k	30.5	+0.2	+6.2	+0.1	+0.1	+0.0	37.1	46.8	-9.7	White
13	869.207k	29.9	+0.1	+6.1	+0.0	+0.1	+0.0	36.2	46.0	-9.8	White
14	453.972k	30.2	+0.2	+6.2	+0.1	+0.1	+0.0	36.8	46.8	-10.0	White
15	877.204k	29.2	+0.1	+6.1	+0.0	+0.1	+0.0	35.5	46.0	-10.5	White
16	152.704k Ave	24.3	+2.0	+6.2	+0.1	+0.2	+0.0	32.8	55.9	-23.1	White
^	152.704k	50.2	+2.0	+6.2	+0.1	+0.2	+0.0	58.7	55.9	+2.8	White

CKC Laboratories, Inc. Date: 2/26/2007 Time: 15:05:27 Magtek Incorporated WO#: 84991 FCC 15:107 Class B COND [AVE] Test Lead: White 110V 60Hz Sequence#: 6

FCC 15.109 RADIATED EMISSIONS

Test Setup Photos

Page 15 of 54 Report No.: FC07-013A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: Specification:	Magtek Incorporated FCC 15.109 Class B		
Work Order #:	84991	Date:	2/26/2007
Test Type:	Radiated Scan	Time:	14:07:40
Equipment:	IntelliStripe 65 Contactless Card	Sequence#:	3
	Reader		
Manufacturer:	Magtek Incorporated	Tested By:	E. Wong
Model:	21165046		
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Bilog Antenna	2451	02/02/2006	02/02/2008	01995
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
Pre amp to SA Cable	Cable #10	05/16/2005	05/16/2007	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	06/01/2006	06/01/2008	00309
Loop Antenna	2014	06/14/2006	06/14/2008	00314

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency=13.56MHz. 20°C, 41% relative humidity.

Transducer Legend:

T1=Preamp 8447D 060108	T2=Bilog AN01995 020208 Chase
T3=Cable #10 051607	T4=Cable #15, Site A, 010509

Measu	rement Data:	Re	eading lis	ted by ma	argin.	. Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	192.002M	56.1	-27.6	+8.9	+0.2	+2.5	+0.0	40.1	43.5	-3.4	Horiz
	QP										
^	192.002M	57.0	-27.6	+8.9	+0.2	+2.5	+0.0	41.0	43.5	-2.5	Horiz
3	224.006M	55.5	-27.6	+10.7	+0.2	+2.7	+0.0	41.5	46.0	-4.5	Horiz
	QP										
^	224.006M	57.1	-27.6	+10.7	+0.2	+2.7	+0.0	43.1	46.0	-2.9	Horiz
5	208.001M	54.0	-27.6	+9.5	+0.2	+2.6	+0.0	38.7	43.5	-4.8	Horiz

CKC AM Testing the Future

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	208.004M QP	53.8	-27.6	+9.5	+0.2	+2.6	+0.0	38.5	43.5	-5.0	Vert
8 256.006M 52.9 -27.7 $+12.6$ $+0.2$ $+2.9$ $+0.0$ 40.9 46.0 -5.1 Hor 9 192.002M 54.3 -27.6 $+8.9$ $+0.2$ $+2.5$ $+0.0$ 40.9 43.5 -2.6 Ver $^{-}$ 192.002M 56.9 -27.6 $+8.9$ $+0.2$ $+2.5$ $+0.0$ 40.9 43.5 -2.6 Ver 11 358.349M 48.9 -27.6 $+14.7$ $+0.3$ $+3.5$ $+0.0$ 39.8 46.0 -6.2 Hor 12 $411.599M$ 47.2 -27.8 $+16.1$ $+0.3$ $+3.8$ $+0.0$ 37.1 43.5 -6.4 Hor 13 $175.988M$ 52.9 -27.7 $+9.3$ $+0.2$ $+2.4$ $+0.0$ 37.1 43.5 -6.4 Hor 14 $67.800M$ 53.4 -27.7 $+11.2$ $+0.2$ $+2.2$ $+0.0$ 36.6 43.5 -6.9 Hor 16 $149.155M$ 50.8	٨	208.004M	54.7	-27.6	+9.5	+0.2	+2.6	+0.0	39.4	43.5	-4.1	Vert
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	256.006M	52.9	-27.7	+12.6	+0.2	+2.9	+0.0	40.9	46.0	-5.1	Horiz
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	192.002M	54.3	-27.6	+8.9	+0.2	+2.5	+0.0	38.3	43.5	-5.2	Vert
11358.349M48.9 -27.6 $+14.7$ $+0.3$ $+3.5$ $+0.0$ 39.8 46.0 -6.2 Hor12411.599M47.2 -27.8 $+16.1$ $+0.3$ $+3.8$ $+0.0$ 39.6 46.0 -6.4 Ver13175.988M 52.9 -27.7 $+9.3$ $+0.2$ $+2.4$ $+0.0$ 37.1 43.5 -6.4 Hor14 $67.800M$ 53.4 -27.7 $+6.0$ $+0.1$ $+1.5$ $+0.0$ 33.3 40.0 -6.7 Ver15 $144.009M$ 50.7 -27.7 $+11.2$ $+0.2$ $+2.2$ $+0.0$ 36.6 43.5 -6.9 Hor16 $149.155M$ 50.8 -27.7 $+11.0$ $+0.2$ $+2.2$ $+0.0$ 36.5 43.5 -7.0 Hor17 $224.009M$ 52.4 -27.6 $+10.7$ $+0.2$ $+2.7$ $+0.0$ 38.4 46.0 -7.6 Ver18 $128.045M$ 49.2 -27.6 $+11.5$ $+0.1$ $+2.0$ $+0.0$ 35.0 43.5 -8.5 Hor20 $160.002M$ 50.0 -27.7 $+10.2$ $+0.2$ $+2.3$ $+0.0$ 35.0 43.5 -8.5 Hor21 $149.140M$ 49.3 -27.7 $+10.2$ $+0.2$ $+2.2$ $+0.0$ 35.0 43.5 -8.5 Hor22 $135.597M$ 48.9 -27.6 $+11.4$ $+0.1$ $+2.1$ $+0.0$ 37.3 46.0 -8.7 <td>٨</td> <td>192.002M</td> <td>56.9</td> <td>-27.6</td> <td>+8.9</td> <td>+0.2</td> <td>+2.5</td> <td>+0.0</td> <td>40.9</td> <td>43.5</td> <td>-2.6</td> <td>Vert</td>	٨	192.002M	56.9	-27.6	+8.9	+0.2	+2.5	+0.0	40.9	43.5	-2.6	Vert
12411.599M47.2 -27.8 $+16.1$ $+0.3$ $+3.8$ $+0.0$ 39.6 46.0 -6.4 Ver13175.988M 52.9 -27.7 $+9.3$ $+0.2$ $+2.4$ $+0.0$ 37.1 43.5 -6.4 Hor14 $67.800M$ 53.4 -27.7 $+6.0$ $+0.1$ $+1.5$ $+0.0$ 33.3 40.0 -6.7 Ver15 $144.009M$ 50.7 -27.7 $+11.2$ $+0.2$ $+2.2$ $+0.0$ 36.6 43.5 -6.9 Hor16 $149.155M$ 50.8 -27.7 $+11.0$ $+0.2$ $+2.2$ $+0.0$ 36.5 43.5 -7.0 Hor17 $224.009M$ 52.4 -27.6 $+10.7$ $+0.2$ $+2.7$ $+0.0$ 35.2 43.5 -8.3 Ver19 $255.986M$ 49.6 -27.7 $+11.6$ $+0.2$ $+2.9$ $+0.0$ 37.6 46.0 -8.4 Ver20 $160.002M$ 50.0 -27.7 $+11.2$ $+0.2$ $+2.3$ $+0.0$ 35.0 43.5 -8.5 Hor21 $149.140M$ 49.3 -27.7 $+11.0$ $+0.2$ $+2.3$ $+0.0$ 37.6 46.0 -8.7 Hor23 $447.472M$ 43.6 -27.7 $+11.6$ $+0.2$ $+2.3$ $+0.0$ 37.3 46.0 -8.7 Hor24 $395.105M$ 45.4 -27.6 $+11.4$ $+0.1$ $+2.1$ $+0.0$ 37.3 46.0 -8.7	11	358.349M	48.9	-27.6	+14.7	+0.3	+3.5	+0.0	39.8	46.0	-6.2	Horiz
13175.988M52.9 -27.7 $+9.3$ $+0.2$ $+2.4$ $+0.0$ 37.1 43.5 -6.4 Hor1467.800M 53.4 -27.7 $+6.0$ $+0.1$ $+1.5$ $+0.0$ 33.3 40.0 -6.7 Ver15144.009M 50.7 -27.7 $+11.2$ $+0.2$ $+2.2$ $+0.0$ 36.6 43.5 -6.9 Hor16149.155M 50.8 -27.7 $+11.0$ $+0.2$ $+2.2$ $+0.0$ 36.5 43.5 -7.0 Hor17224.009M 52.4 -27.6 $+10.7$ $+0.2$ $+2.7$ $+0.0$ 38.4 46.0 -7.6 Ver18128.045M 49.2 -27.6 $+11.5$ $+0.1$ $+2.0$ $+0.0$ 35.2 43.5 -8.3 Ver19255.986M 49.6 -27.7 $+12.6$ $+0.2$ $+2.9$ $+0.0$ 37.6 46.0 -8.4 Ver20160.002M 50.0 -27.7 $+10.2$ $+0.2$ $+2.3$ $+0.0$ 35.0 43.5 -8.5 Hor21149.140M 49.3 -27.7 $+11.4$ $+0.1$ $+2.1$ $+0.0$ 37.3 46.0 -8.7 Hor23 $447.472M$ 43.6 -27.6 $+17.0$ $+0.3$ $+3.7$ $+0.0$ 37.3 46.0 -8.7 Hor24 $395.105M$ 45.4 -27.8 $+15.7$ $+0.3$ $+3.7$ $+0.0$ 37.0 46.0 -9.0 Hor </td <td>12</td> <td>411.599M</td> <td>47.2</td> <td>-27.8</td> <td>+16.1</td> <td>+0.3</td> <td>+3.8</td> <td>+0.0</td> <td>39.6</td> <td>46.0</td> <td>-6.4</td> <td>Vert</td>	12	411.599M	47.2	-27.8	+16.1	+0.3	+3.8	+0.0	39.6	46.0	-6.4	Vert
1467.800M 53.4 -27.7 $+6.0$ $+0.1$ $+1.5$ $+0.0$ 33.3 40.0 -6.7 Ver15144.009M 50.7 -27.7 $+11.2$ $+0.2$ $+2.2$ $+0.0$ 36.6 43.5 -6.9 Hor16149.155M 50.8 -27.7 $+11.0$ $+0.2$ $+2.2$ $+0.0$ 36.5 43.5 -7.0 Hor17 $224.009M$ 52.4 -27.6 $+10.7$ $+0.2$ $+2.7$ $+0.0$ 38.4 46.0 -7.6 Ver18 $128.045M$ 49.2 -27.6 $+11.5$ $+0.1$ $+2.0$ $+0.0$ 35.2 43.5 -8.3 Ver19 $255.986M$ 49.6 -27.7 $+12.6$ $+0.2$ $+2.9$ $+0.0$ 37.6 46.0 -8.4 Ver20 $160.002M$ 50.0 -27.7 $+11.2$ $+0.2$ $+2.3$ $+0.0$ 35.0 43.5 -8.5 Hor21 $149.140M$ 49.3 -27.7 $+11.0$ $+0.2$ $+2.2$ $+0.0$ 35.0 43.5 -8.6 Hor23 $447.472M$ 43.6 -27.6 $+11.4$ $+0.1$ $+2.1$ $+0.0$ 37.3 46.0 -8.7 Hor24 $395.105M$ 45.4 -27.6 $+17.0$ $+0.3$ $+3.7$ $+0.0$ 37.3 46.0 -9.0 Hor25 $391.424M$ 45.2 -27.8 $+15.7$ $+0.3$ $+3.7$ $+0.0$ 36.9 46.0 -9.1	13	175.988M	52.9	-27.7	+9.3	+0.2	+2.4	+0.0	37.1	43.5	-6.4	Horiz
15144.009M50.7 -27.7 $+11.2$ $+0.2$ $+2.2$ $+0.0$ 36.6 43.5 -6.9 Hor16149.155M50.8 -27.7 $+11.0$ $+0.2$ $+2.2$ $+0.0$ 36.5 43.5 -7.0 Hor17224.009M 52.4 -27.6 $+10.7$ $+0.2$ $+2.7$ $+0.0$ 38.4 46.0 -7.6 Vet18128.045M 49.2 -27.6 $+11.5$ $+0.1$ $+2.0$ $+0.0$ 35.2 43.5 -8.3 Vet19255.986M 49.6 -27.7 $+12.6$ $+0.2$ $+2.9$ $+0.0$ 37.6 46.0 -8.4 Vet20160.002M 50.0 -27.7 $+10.2$ $+0.2$ $+2.3$ $+0.0$ 35.0 43.5 -8.5 Hor21149.140M 49.3 -27.7 $+11.4$ $+0.2$ $+2.2$ $+0.0$ 35.0 43.5 -8.6 Hor23 $447.472M$ 43.6 -27.6 $+11.4$ $+0.1$ $+2.1$ $+0.0$ 37.3 46.0 -8.7 Hor24395.105M 45.4 -27.8 $+15.7$ $+0.3$ $+3.7$ $+0.0$ 37.3 46.0 -9.0 Hor25391.424M 45.2 -27.7 $+16.2$ $+0.3$ $+3.7$ $+0.0$ 36.9 46.0 -9.1 Hor26 $413.428M$ 44.3 -27.7 $+16.2$ $+0.3$ $+3.8$ $+0.0$ 36.9 46.0 -9.1 Hor<	14	67.800M	53.4	-27.7	+6.0	+0.1	+1.5	+0.0	33.3	40.0	-6.7	Vert
16149.155M 50.8 -27.7 $+11.0$ $+0.2$ $+2.2$ $+0.0$ 36.5 43.5 -7.0 Hor17 $224.009M$ 52.4 -27.6 $+10.7$ $+0.2$ $+2.7$ $+0.0$ 38.4 46.0 -7.6 Ver18 $128.045M$ 49.2 -27.6 $+11.5$ $+0.1$ $+2.0$ $+0.0$ 35.2 43.5 -8.3 Ver19 $255.986M$ 49.6 -27.7 $+12.6$ $+0.2$ $+2.9$ $+0.0$ 37.6 46.0 -8.4 Ver20 $160.002M$ 50.0 -27.7 $+10.2$ $+0.2$ $+2.3$ $+0.0$ 35.0 43.5 -8.5 Hor21 $149.140M$ 49.3 -27.7 $+11.0$ $+0.2$ $+2.2$ $+0.0$ 35.0 43.5 -8.6 Hor22 $135.597M$ 48.9 -27.6 $+11.4$ $+0.1$ $+2.1$ $+0.0$ 34.9 43.5 -8.6 Hor23 $447.472M$ 43.6 -27.6 $+17.0$ $+0.3$ $+4.0$ $+0.0$ 37.3 46.0 -8.7 Hor24 $395.105M$ 45.4 -27.8 $+15.7$ $+0.3$ $+3.7$ $+0.0$ 37.0 46.0 -9.0 Hor25 $391.424M$ 45.2 -27.8 $+15.6$ $+0.3$ $+3.7$ $+0.0$ 36.9 46.0 -9.1 Ver27 $664.442M$ 38.0 -27.7 $+16.2$ $+0.3$ $+3.8$ $+0.0$ 36.9 46.0 <td< td=""><td>15</td><td>144.009M</td><td>50.7</td><td>-27.7</td><td>+11.2</td><td>+0.2</td><td>+2.2</td><td>+0.0</td><td>36.6</td><td>43.5</td><td>-6.9</td><td>Horiz</td></td<>	15	144.009M	50.7	-27.7	+11.2	+0.2	+2.2	+0.0	36.6	43.5	-6.9	Horiz
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	149.155M	50.8	-27.7	+11.0	+0.2	+2.2	+0.0	36.5	43.5	-7.0	Horiz
18128.045M49.2 -27.6 $+11.5$ $+0.1$ $+2.0$ $+0.0$ 35.2 43.5 -8.3 Ver19255.986M49.6 -27.7 $+12.6$ $+0.2$ $+2.9$ $+0.0$ 37.6 46.0 -8.4 Ver20160.002M 50.0 -27.7 $+10.2$ $+0.2$ $+2.3$ $+0.0$ 35.0 43.5 -8.5 Hor21149.140M49.3 -27.7 $+11.0$ $+0.2$ $+2.2$ $+0.0$ 35.0 43.5 -8.5 Ver22135.597M 48.9 -27.6 $+11.4$ $+0.1$ $+2.1$ $+0.0$ 34.9 43.5 -8.6 Hor23447.472M 43.6 -27.6 $+17.0$ $+0.3$ $+4.0$ $+0.0$ 37.3 46.0 -8.7 Hor24395.105M 45.4 -27.8 $+15.7$ $+0.3$ $+3.7$ $+0.0$ 37.0 46.0 -9.0 Hor25391.424M 45.2 -27.8 $+15.6$ $+0.3$ $+3.7$ $+0.0$ 37.0 46.0 -9.1 Hor26 $413.428M$ 44.3 -27.7 $+16.2$ $+0.3$ $+3.8$ $+0.0$ 36.9 46.0 -9.1 Hor28154.648M 48.9 -27.7 $+10.6$ $+0.2$ $+2.2$ $+0.0$ 34.2 43.5 -9.3 Hor29 $420.355M$ 43.8 -27.7 $+16.3$ $+0.3$ $+3.8$ $+0.0$ 36.5 46.0 -9.5 Ver <td>17</td> <td>224.009M</td> <td>52.4</td> <td>-27.6</td> <td>+10.7</td> <td>+0.2</td> <td>+2.7</td> <td>+0.0</td> <td>38.4</td> <td>46.0</td> <td>-7.6</td> <td>Vert</td>	17	224.009M	52.4	-27.6	+10.7	+0.2	+2.7	+0.0	38.4	46.0	-7.6	Vert
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	128.045M	49.2	-27.6	+11.5	+0.1	+2.0	+0.0	35.2	43.5	-8.3	Vert
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	255.986M	49.6	-27.7	+12.6	+0.2	+2.9	+0.0	37.6	46.0	-8.4	Vert
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	160.002M	50.0	-27.7	+10.2	+0.2	+2.3	+0.0	35.0	43.5	-8.5	Horiz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	149.140M	49.3	-27.7	+11.0	+0.2	+2.2	+0.0	35.0	43.5	-8.5	Vert
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	135.597M	48.9	-27.6	+11.4	+0.1	+2.1	+0.0	34.9	43.5	-8.6	Horiz
24 395.105M 45.4 -27.8 +15.7 +0.3 +3.7 +0.0 37.3 46.0 -8.7 Hor 25 391.424M 45.2 -27.8 +15.6 +0.3 +3.7 +0.0 37.0 46.0 -9.0 Hor 26 413.428M 44.3 -27.7 +16.2 +0.3 +3.8 +0.0 36.9 46.0 -9.1 Ver 27 664.442M 38.0 -27.1 +20.5 +0.5 +5.0 +0.0 36.9 46.0 -9.1 Hor 28 154.648M 48.9 -27.7 +10.6 +0.2 +2.2 +0.0 34.2 43.5 -9.3 Hor 29 420.355M 43.8 -27.7 +16.3 +0.3 +3.8 +0.0 36.5 46.0 -9.5 Ver	23	447.472M	43.6	-27.6	+17.0	+0.3	+4.0	+0.0	37.3	46.0	-8.7	Horiz
25 391.424M 45.2 -27.8 +15.6 +0.3 +3.7 +0.0 37.0 46.0 -9.0 Hor 26 413.428M 44.3 -27.7 +16.2 +0.3 +3.8 +0.0 36.9 46.0 -9.1 Ver 27 664.442M 38.0 -27.1 +20.5 +0.5 +5.0 +0.0 36.9 46.0 -9.1 Hor 28 154.648M 48.9 -27.7 +10.6 +0.2 +2.2 +0.0 34.2 43.5 -9.3 Hor 29 420.355M 43.8 -27.7 +16.3 +0.3 +3.8 +0.0 36.5 46.0 -9.5 Ver	24	395.105M	45.4	-27.8	+15.7	+0.3	+3.7	+0.0	37.3	46.0	-8.7	Horiz
26 413.428M 44.3 -27.7 +16.2 +0.3 +3.8 +0.0 36.9 46.0 -9.1 Ver 27 664.442M 38.0 -27.1 +20.5 +0.5 +5.0 +0.0 36.9 46.0 -9.1 Hor 28 154.648M 48.9 -27.7 +10.6 +0.2 +2.2 +0.0 34.2 43.5 -9.3 Hor 29 420.355M 43.8 -27.7 +16.3 +0.3 +3.8 +0.0 36.5 46.0 -9.5 Ver	25	391.424M	45.2	-27.8	+15.6	+0.3	+3.7	+0.0	37.0	46.0	-9.0	Horiz
27 664.442M 38.0 -27.1 +20.5 +0.5 +5.0 +0.0 36.9 46.0 -9.1 Hor 28 154.648M 48.9 -27.7 +10.6 +0.2 +2.2 +0.0 34.2 43.5 -9.3 Hor 29 420.355M 43.8 -27.7 +16.3 +0.3 +3.8 +0.0 36.5 46.0 -9.5 Ver	26	413.428M	44.3	-27.7	+16.2	+0.3	+3.8	+0.0	36.9	46.0	-9.1	Vert
28 154.648M 48.9 -27.7 +10.6 +0.2 +2.2 +0.0 34.2 43.5 -9.3 Hor 29 420.355M 43.8 -27.7 +16.3 +0.3 +3.8 +0.0 36.5 46.0 -9.5 Ver	27	664.442M	38.0	-27.1	+20.5	+0.5	+5.0	+0.0	36.9	46.0	-9.1	Horiz
29 420.355M 43.8 -27.7 +16.3 +0.3 +3.8 +0.0 36.5 46.0 -9.5 Ver	28	154.648M	48.9	-27.7	+10.6	+0.2	+2.2	+0.0	34.2	43.5	-9.3	Horiz
	29	420.355M	43.8	-27.7	+16.3	+0.3	+3.8	+0.0	36.5	46.0	-9.5	Vert
30 160.003M 48.8 -27.7 +10.2 +0.2 +2.3 +0.0 33.8 43.5 -9.7 Ven	30	160.003M	48.8	-27.7	+10.2	+0.2	+2.3	+0.0	33.8	43.5	-9.7	Vert

31	399.986M	44.2	-27.8	+15.8	+0.3	+3.7	+0.0	36.2	46.0	-9.8	Horiz
32	271.992M	47.8	-27.7	+12.8	+0.3	+3.0	+0.0	36.2	46.0	-9.8	Horiz
33	127.991M	47.6	-27.6	+11.5	+0.1	+2.0	+0.0	33.6	43.5	-9.9	Horiz
34	240.000M	48.9	-27.7	+11.8	+0.2	+2.8	+0.0	36.0	46.0	-10.0	Horiz
35	366.114M	44.2	-27.7	+14.9	+0.3	+3.6	+0.0	35.3	46.0	-10.7	Horiz
36	406.780M	43.0	-27.8	+16.0	+0.3	+3.7	+0.0	35.2	46.0	-10.8	Horiz
37	704.053M	35.8	-27.1	+20.7	+0.5	+5.1	+0.0	35.0	46.0	-11.0	Horiz
38	122.035M	46.5	-27.6	+11.4	+0.1	+2.0	+0.0	32.4	43.5	-11.1	Horiz
39	383.374M	43.3	-27.7	+15.4	+0.3	+3.6	+0.0	34.9	46.0	-11.1	Horiz
40	173.412M	47.7	-27.7	+9.5	+0.2	+2.4	+0.0	32.1	43.5	-11.4	Horiz
41	432.031M	41.2	-27.7	+16.7	+0.3	+3.9	+0.0	34.4	46.0	-11.6	Vert
42	196.041M	47.6	-27.6	+8.8	+0.2	+2.6	+0.0	31.6	43.5	-11.9	Horiz
43	175.995M	47.4	-27.7	+9.3	+0.2	+2.4	+0.0	31.6	43.5	-11.9	Vert
44	151.544M	45.7	-27.7	+10.9	+0.2	+2.2	+0.0	31.3	43.5	-12.2	Vert
45	144.008M	45.4	-27.7	+11.2	+0.2	+2.2	+0.0	31.3	43.5	-12.2	Vert
46	379.674M	42.3	-27.7	+15.3	+0.3	+3.6	+0.0	33.8	46.0	-12.2	Horiz
47	259.972M	45.5	-27.7	+12.7	+0.2	+2.9	+0.0	33.6	46.0	-12.4	Horiz
48	135.610M	45.1	-27.6	+11.4	+0.1	+2.1	+0.0	31.1	43.5	-12.4	Vert
49	135.973M	45.0	-27.6	+11.4	+0.1	+2.1	+0.0	31.0	43.5	-12.5	Horiz
50	420.352M	40.8	-27.7	+16.3	+0.3	+3.8	+0.0	33.5	46.0	-12.5	Vert
51	271.998M	44.7	-27.7	+12.8	+0.3	+3.0	+0.0	33.1	46.0	-12.9	Vert
52	650.870M	34.4	-27.1	+20.4	+0.5	+4.9	+0.0	33.1	46.0	-12.9	Horiz
53	140.007M	44.5	-27.7	+11.3	+0.2	+2.1	+0.0	30.4	43.5	-13.1	Horiz
54	122.038M	44.4	-27.6	+11.4	+0.1	+2.0	+0.0	30.3	43.5	-13.2	Vert
55	387.848M	41.1	-27.8	+15.5	+0.3	+3.7	+0.0	32.8	46.0	-13.2	Vert

56	728.007M	32.6	-27.0	+21.5	+0.5	+5.2	+0.0	32.8	46.0	-13.2	Horiz
57	386.045M	40.9	-27.7	+15.5	+0.3	+3.6	+0.0	32.6	46.0	-13.4	Vert
58	360.508M	41.6	-27.6	+14.8	+0.3	+3.5	+0.0	32.6	46.0	-13.4	Vert
59	393.240M	40.7	-27.8	+15.6	+0.3	+3.7	+0.0	32.5	46.0	-13.5	Vert
60	384.490M	40.9	-27.7	+15.4	+0.3	+3.6	+0.0	32.5	46.0	-13.5	Horiz
61	336.002M	42.1	-27.6	+14.2	+0.3	+3.4	+0.0	32.4	46.0	-13.6	Vert
62	321.082M	42.5	-27.6	+13.8	+0.3	+3.3	+0.0	32.3	46.0	-13.7	Horiz
63	336.005M	41.9	-27.6	+14.2	+0.3	+3.4	+0.0	32.2	46.0	-13.8	Horiz
64	269.966M	43.7	-27.7	+12.8	+0.3	+3.0	+0.0	32.1	46.0	-13.9	Horiz
65	211.887M	44.6	-27.6	+9.8	+0.2	+2.6	+0.0	29.6	43.5	-13.9	Horiz
66	393.197M	40.3	-27.8	+15.6	+0.3	+3.7	+0.0	32.1	46.0	-13.9	Horiz
67	394.564M	40.1	-27.8	+15.7	+0.3	+3.7	+0.0	32.0	46.0	-14.0	Vert
68	203.419M	45.1	-27.6	+9.1	+0.2	+2.6	+0.0	29.4	43.5	-14.1	Vert
69	433.904M	38.7	-27.7	+16.7	+0.3	+3.9	+0.0	31.9	46.0	-14.1	Vert
70	311.878M	42.4	-27.6	+13.5	+0.3	+3.3	+0.0	31.9	46.0	-14.1	Horiz
71	332.017M	41.6	-27.6	+14.1	+0.3	+3.4	+0.0	31.8	46.0	-14.2	Horiz
72	732.235M	31.5	-27.0	+21.6	+0.5	+5.2	+0.0	31.8	46.0	-14.2	Horiz
73	325.420M	41.4	-27.6	+13.9	+0.3	+3.4	+0.0	31.4	46.0	-14.6	Horiz
74	300.017M	42.3	-27.6	+13.2	+0.3	+3.2	+0.0	31.4	46.0	-14.6	Horiz
75	352.539M	40.5	-27.6	+14.6	+0.3	+3.5	+0.0	31.3	46.0	-14.7	Vert
76	379.678M	39.8	-27.7	+15.3	+0.3	+3.6	+0.0	31.3	46.0	-14.7	Vert
77	220.005M	45.5	-27.6	+10.4	+0.2	+2.7	+0.0	31.2	46.0	-14.8	Horiz
78	162.460M	43.8	-27.7	+10.1	+0.2	+2.3	+0.0	28.7	43.5	-14.8	Horiz
79	164.026M	43.9	-27.7	+10.0	+0.2	+2.3	+0.0	28.7	43.5	-14.8	Horiz
80	319.997M	41.4	-27.6	+13.7	+0.3	+3.3	+0.0	31.1	46.0	-14.9	Vert

81	274.973M	42.6	-27.7	+12.9	+0.3	+3.0	+0.0	31.1	46.0	-14.9	Horiz
82	320.011M	41.4	-27.6	+13.7	+0.3	+3.3	+0.0	31.1	46.0	-14.9	Horiz
83	447.456M	37.3	-27.6	+17.0	+0.3	+4.0	+0.0	31.0	46.0	-15.0	Vert
84	204.025M	44.1	-27.6	+9.1	+0.2	+2.6	+0.0	28.4	43.5	-15.1	Vert
85	169.888M	43.8	-27.7	+9.7	+0.2	+2.4	+0.0	28.4	43.5	-15.1	Horiz
86	288.004M	42.1	-27.6	+13.0	+0.3	+3.1	+0.0	30.9	46.0	-15.1	Vert
87	420.365M	38.2	-27.7	+16.3	+0.3	+3.8	+0.0	30.9	46.0	-15.1	Horiz
88	338.998M	40.5	-27.6	+14.2	+0.3	+3.4	+0.0	30.8	46.0	-15.2	Horiz
89	338.987M	40.5	-27.6	+14.2	+0.3	+3.4	+0.0	30.8	46.0	-15.2	Vert
90	416.691M	38.0	-27.7	+16.3	+0.3	+3.8	+0.0	30.7	46.0	-15.3	Vert
91	94.919M	44.7	-27.7	+9.3	+0.1	+1.8	+0.0	28.2	43.5	-15.3	Horiz
92	264.027M	42.3	-27.7	+12.7	+0.3	+3.0	+0.0	30.6	46.0	-15.4	Horiz
93	383.987M	38.8	-27.7	+15.4	+0.3	+3.6	+0.0	30.4	46.0	-15.6	Vert
94	188.007M	43.8	-27.6	+8.9	+0.2	+2.5	+0.0	27.8	43.5	-15.7	Horiz
95	447.463M	36.6	-27.6	+17.0	+0.3	+4.0	+0.0	30.3	46.0	-15.7	Vert
96	813.553M	28.9	-27.1	+22.3	+0.6	+5.6	+0.0	30.3	46.0	-15.7	Horiz
97	172.002M	43.1	-27.7	+9.6	+0.2	+2.4	+0.0	27.6	43.5	-15.9	Vert
98	152.012M	42.1	-27.7	+10.8	+0.2	+2.2	+0.0	27.6	43.5	-15.9	Vert
99	139.978M	41.6	-27.7	+11.3	+0.2	+2.1	+0.0	27.5	43.5	-16.0	Vert
100	324.711M	40.0	-27.6	+13.9	+0.3	+3.4	+0.0	30.0	46.0	-16.0	Horiz
101	432.059M	36.6	-27.7	+16.7	+0.3	+3.9	+0.0	29.8	46.0	-16.2	Horiz
102	659.987M	31.0	-27.1	+20.4	+0.5	+4.9	+0.0	29.7	46.0	-16.3	Horiz
103	247.991M	41.9	-27.7	+12.4	+0.2	+2.9	+0.0	29.7	46.0	-16.3	Horiz
104	406.416M	37.4	-27.8	+16.0	+0.3	+3.7	+0.0	29.6	46.0	-16.4	Vert
105	692.029M	30.4	-27.1	+20.6	+0.5	+5.1	+0.0	29.5	46.0	-16.5	Horiz

106	202.536M	42.6	-27.6	+9.0	+0.2	+2.6	+0.0	26.8	43.5	-16.7	Vert
107	164.896M	42.1	-27.7	+9.9	+0.2	+2.3	+0.0	26.8	43.5	-16.7	Horiz
108	257.640M	41.3	-27.7	+12.6	+0.2	+2.9	+0.0	29.3	46.0	-16.7	Vert
109	235.981M	42.3	-27.6	+11.5	+0.2	+2.8	+0.0	29.2	46.0	-16.8	Horiz
110	474.591M	34.7	-27.6	+17.6	+0.4	+4.1	+0.0	29.2	46.0	-16.8	Horiz
111	268.004M	40.6	-27.7	+12.8	+0.3	+3.0	+0.0	29.0	46.0	-17.0	Horiz
112	328.009M	38.7	-27.6	+14.0	+0.3	+3.4	+0.0	28.8	46.0	-17.2	Vert
113	475.164M	34.3	-27.6	+17.6	+0.4	+4.1	+0.0	28.8	46.0	-17.2	Vert
114	716.029M	28.9	-27.1	+21.1	+0.5	+5.2	+0.0	28.6	46.0	-17.4	Horiz
115	357.296M	37.6	-27.6	+14.7	+0.3	+3.5	+0.0	28.5	46.0	-17.5	Vert
116	207.029M	41.4	-27.6	+9.4	+0.2	+2.6	+0.0	26.0	43.5	-17.5	Horiz
117	325.436M	38.4	-27.6	+13.9	+0.3	+3.4	+0.0	28.4	46.0	-17.6	Vert
118	352.563M	37.6	-27.6	+14.6	+0.3	+3.5	+0.0	28.4	46.0	-17.6	Horiz
119	299.996M	39.2	-27.6	+13.2	+0.3	+3.2	+0.0	28.3	46.0	-17.7	Vert
120	840.663M	26.1	-27.1	+23.0	+0.6	+5.7	+0.0	28.3	46.0	-17.7	Horiz
121	215.985M	40.4	-27.6	+10.1	+0.2	+2.7	+0.0	25.8	43.5	-17.7	Horiz
122	338.987M	37.9	-27.6	+14.2	+0.3	+3.4	+0.0	28.2	46.0	-17.8	Vert
123	216.940M	42.6	-27.6	+10.1	+0.2	+2.7	+0.0	28.0	46.0	-18.0	Vert
124	134.980M	39.4	-27.6	+11.4	+0.1	+2.1	+0.0	25.4	43.5	-18.1	Horiz
125	178.339M	41.2	-27.7	+9.1	+0.2	+2.4	+0.0	25.2	43.5	-18.3	Horiz
126	227.975M	41.4	-27.6	+11.0	+0.2	+2.7	+0.0	27.7	46.0	-18.3	Horiz
127	287.953M	38.9	-27.6	+13.0	+0.3	+3.1	+0.0	27.7	46.0	-18.3	Horiz
128	465.188M	32.9	-27.6	+17.4	+0.3	+4.1	+0.0	27.1	46.0	-18.9	Vert
129	162.714M	39.7	-27.7	+10.0	+0.2	+2.3	+0.0	24.5	43.5	-19.0	Vert
130	284.745M	38.3	-27.7	+13.0	+0.3	+3.1	+0.0	27.0	46.0	-19.0	Vert

131	170.034M	39.9	-27.7	+9.7	+0.2	+2.4	+0.0	24.5	43.5	-19.0	Vert
132	196.002M	40.4	-27.6	+8.8	+0.2	+2.6	+0.0	24.4	43.5	-19.1	Vert
133	224.994M	40.7	-27.6	+10.8	+0.2	+2.7	+0.0	26.8	46.0	-19.2	Horiz
134	400.887M	34.5	-27.8	+15.8	+0.3	+3.7	+0.0	26.5	46.0	-19.5	Vert
135	260.023M	38.2	-27.7	+12.7	+0.2	+2.9	+0.0	26.3	46.0	-19.7	Vert
136	375.010M	34.7	-27.7	+15.2	+0.3	+3.6	+0.0	26.1	46.0	-19.9	Horiz
137	242.985M	38.6	-27.7	+12.0	+0.2	+2.8	+0.0	25.9	46.0	-20.1	Vert
138	406.789M	33.6	-27.8	+16.0	+0.3	+3.7	+0.0	25.8	46.0	-20.2	Vert
139	404.991M	33.6	-27.8	+15.9	+0.3	+3.7	+0.0	25.7	46.0	-20.3	Vert
140	786.470M	24.5	-27.1	+22.0	+0.6	+5.4	+0.0	25.4	46.0	-20.6	Horiz
141	235.358M	38.5	-27.6	+11.5	+0.2	+2.8	+0.0	25.4	46.0	-20.6	Vert
142	303.990M	36.0	-27.6	+13.3	+0.3	+3.2	+0.0	25.2	46.0	-20.8	Vert
143	242.990M	37.7	-27.7	+12.0	+0.2	+2.8	+0.0	25.0	46.0	-21.0	Horiz
144	189.840M	38.5	-27.6	+8.9	+0.2	+2.5	+0.0	22.5	43.5	-21.0	Vert
145	447.042M	31.2	-27.6	+17.0	+0.3	+4.0	+0.0	24.9	46.0	-21.1	Vert
146	113.398M	37.1	-27.6	+10.9	+0.1	+1.9	+0.0	22.4	43.5	-21.1	Horiz
147	298.777M	35.6	-27.6	+13.2	+0.3	+3.2	+0.0	24.7	46.0	-21.3	Vert
148	374.976M	33.2	-27.7	+15.2	+0.3	+3.6	+0.0	24.6	46.0	-21.4	Vert
149	337.917M	34.2	-27.6	+14.2	+0.3	+3.4	+0.0	24.5	46.0	-21.5	Vert
150	366.118M	33.2	-27.7	+14.9	+0.3	+3.6	+0.0	24.3	46.0	-21.7	Vert
151	240.004M	36.8	-27.7	+11.8	+0.2	+2.8	+0.0	23.9	46.0	-22.1	Vert
152	230.545M	36.9	-27.6	+11.2	+0.2	+2.7	+0.0	23.4	46.0	-22.6	Horiz
153	343.998M	32.6	-27.6	+14.4	+0.3	+3.5	+0.0	23.2	46.0	-22.8	Vert

154	244.078M	34.3	-27.7	+12.1	+0.2	+2.9	+0.0	21.8	46.0	-24.2	Vert
155	406.800M	29.4	-27.8	+16.0	+0.3	+3.7	+0.0	21.6	46.0	-24.4	Vert
156	311.880M	32.0	-27.6	+13.5	+0.3	+3.3	+0.0	21.5	46.0	-24.5	Vert
157	230.520M	34.3	-27.6	+11.2	+0.2	+2.7	+0.0	20.8	46.0	-25.2	Vert

FCC 15.207 CONDUCTED EMISSIONS

Test Setup Photos

Page 24 of 54 Report No.: FC07-013A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.207 COND [AVE]		
Work Order #:	84991	Date:	2/26/2007
Test Type:	Conducted Emissions	Time:	14:39:11
Equipment:	IntelliStripe 65 Contactless Card	Sequence#:	4
	Reader		
Manufacturer:	Magtek Incorporated	Tested By:	E. Wong
Model:	21165046		110V 60Hz
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672	
Conducted Emission Cable	Cable #21	05/09/2006	05/09/2008	P04358	
150kHz HPF	G7755	05/09/2006	05/09/2007	02610	
6dB Attenuator	None	11/21/2006	11/21/2008	P05611	
LISN	1104	11/10/2006	11/10/2008	00847	

Equipment Under Test (* = EUT):										
Function	Manufacturer	Model #	S/N							
Power Supply	DVE	DSA-0151D-12	NA							
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA							
Card Reader*										

Support Devices:FunctionManufacturerModel #S/NLaptopDellInspiron 850000043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency=13.56MHz. RF port connected to Antenna. Frequency range of measurement = 150kHz - 30MHz. Frequency150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 20°C, 41% relative humidity.

Transducer Legend:

I unsu	iucei Legein	<i>u</i> .										
T1=150	kHz HPF As	sset 02610				T2=6dB Attenuator P05611						
T3=Cable #21 Conducted Site A 050908					T4=(L1) Insertion Loss 00847 EMCO 3816/2NM							
<i>Measurement Data:</i> Reading listed by margin.								Test Lead	l: Black			
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant	
1	13.562M	76.4	+0.2	+6.1	+0.4	+0.7	+0.0	83.8	*	*	Black	
						Fundamental						

*This reading is the fundamental frequency of the transmitter with the antenna installed. No limits exists for this reading. Compliant data is shown on page 31 with load attached.

frequency

CKC AM Testing the Future

2	182.338k Ave	42.6	+0.3	+6.1	+0.1	+0.1	+0.0	49.2	54.4	-5.2	Black
^	182.338k	50.0	+0.3	+6.1	+0.1	+0.1	+0.0	56.6	54.4	+2.2	Black
4	13.634M Ave	17.4	+0.2	+6.1	+0.4	+0.7	+0.0	24.8	50.0	-25.2	Black
^	13.634M	56.2	+0.2	+6.1	+0.4	+0.7	+0.0	63.6	50.0	+13.6	Black
6	13.697M Ave	16.1	+0.2	+6.1	+0.4	+0.7	+0.0	23.5	50.0	-26.5	Black
^	13.697M	54.6	+0.2	+6.1	+0.4	+0.7	+0.0	62.0	50.0	+12.0	Black
8	13.346M Ave	15.8	+0.2	+6.1	+0.4	+0.7	+0.0	23.2	50.0	-26.8	Black
^	13.346M	52.4	+0.2	+6.1	+0.4	+0.7	+0.0	59.8	50.0	+9.8	Black
10	13.770M Ave	15.7	+0.2	+6.1	+0.4	+0.7	+0.0	23.1	50.0	-26.9	Black
^	13.770M	54.2	+0.2	+6.1	+0.4	+0.7	+0.0	61.6	50.0	+11.6	Black
12	13.986M Ave	11.5	+0.2	+6.1	+0.4	+0.7	+0.0	18.9	50.0	-31.1	Black
^	13.986M	47.0	+0.2	+6.1	+0.4	+0.7	+0.0	54.4	50.0	+4.4	Black
14	14.409M Ave	11.1	+0.2	+6.1	+0.4	+0.8	+0.0	18.6	50.0	-31.4	Black
^	14.409M	44.5	+0.2	+6.1	+0.4	+0.8	+0.0	52.0	50.0	+2.0	Black
16	14.058M Ave	10.8	+0.2	+6.1	+0.4	+0.7	+0.0	18.2	50.0	-31.8	Black
^	14.058M	45.0	+0.2	+6.1	+0.4	+0.7	+0.0	52.4	50.0	+2.4	Black
18	15.049M Ave	9.8	+0.2	+6.1	+0.4	+0.8	+0.0	17.3	50.0	-32.7	Black
^	15.049M	41.6	+0.2	+6.1	+0.4	+0.8	+0.0	49.1	50.0	-0.9	Black
20	12.995M Ave	9.7	+0.2	+6.1	+0.4	+0.7	+0.0	17.1	50.0	-32.9	Black
^	12.995M	43.8	+0.2	+6.1	+0.4	+0.7	+0.0	51.2	50.0	+1.2	Black

CKC Laboratories, Inc. Date: 2/26/2007 Time: 14:39:11 Magtek Incorporated WO#: 84991 FCC 15:207 COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 4

Test Location:	CKC Lai	ooratories. In	ic. •110. N	Olinda Place.	• Brea. CA	92821 • (7	14) 993	3-6112		
Customer: Specification: Work Order #: Test Type: Equipment: Manufacturer: Model: S/N:	l Reader	Da Tin Sequence Tested E	te: 2/26/20 ne: 14:50:1 #: 5 By: E. Wor 110V 6	007 18 ng 50Hz						
Test Equipment:	Test Equipment:									
Function		S/N		Calibration	Date	Cal Due Da	ate	Asset #		
Spectrum Analyze	r	US4430	0438	01/03/2007	Duit	01/03/2009)	02672		
Conducted Emissi	on Cable	Cable #	21	05/09/2006		05/09/2008		P04358		
150kHz HPF		G7755	21	05/09/2006		05/09/2007		02610		
6dB Attenuator		None		11/21/2006		11/21/2008		P05611		
LISN		1104		11/10/2006		11/10/2008		00847		
Fauinment Unda	r Tost (* ·	- EUT)•								
Equipment Onde	11031 (Manufactur	or	Mode	1#		S/N			
IntelliStripe Conts	otless	Magtek Inc	ornorated	21164	50/16		NΔ			
Card Reader*	icticss	Magter me	orporated	2110.	040		INA			
Power Supply		DVF		DSA	01510-12		NΔ			
1 ower Suppry		DVL		DSA	0151D-12		INA			
Support Devices:										
Function		Manufactur	er	Mode	1#		S/N			
Laptop		Dell		Inspir	on 8500		00043	3-480-957-10	6	
Test Conditions	Notes:									
The EUT is place support laptop. A card. Frequency= 30MHz. Frequence	The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency=13.56MHz. RF port connected to 50 Ohm load. Frequency range of measurement = 150kHz - 30MHz. Frequency150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 20°C, 41% relative humidity.									
Transducer Lege	Transducar Lagand:									
T1=150kHz HPF	$\Gamma_{1=150kHz}$ HPF Asset 02610 T2=6dB Attenuator P05611									
T3=Cable $#21$ Co	$T_{2}=Cable #21 Conducted Site A 050908$ $T_{4}=(L_{2}) Insertion Loss 00847 EMCO 3816/2NM$									
				- (-	/					
Measurement Dat	ta:	Reading list	ed by mar	gin.		Test Lead:	White	e		
# Freq	Rdng	T1	T2	T3 T4	Dist	Corr	Spec	Margin	Polar	

#	Freq	Rang	11	12	13	14	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	13.562M	76.3	+0.2	+6.1	+0.4	+0.7	+0.0	83.7	*	*	White
									Fundamen	tal	
2	183.793k	38.9	+0.3	+6.1	+0.1	+0.2	+0.0	45.6	54.3	-8.7	White
	Ave										
^	183.793k	48.8	+0.3	+6.1	+0.1	+0.2	+0.0	55.5	54.3	+1.2	White

*This reading is the fundamental frequency of the transmitter with the antenna installed. No limits exists for this reading. Compliant data is shown on page 33 with load attached.

CKC AM Testing the Future

4	13.490M	19.2	+0.2	+6.1	+0.4	+0.7	+0.0	26.6	50.0	-23.4	White
	Ave										
^	13.490M	56.5	+0.2	+6.1	+0.4	+0.7	+0.0	63.9	50.0	+13.9	White
6	13.625M	18.3	+0.2	+6.1	+0.4	+0.7	+0.0	25.7	50.0	-24.3	White
^	13.625M	56.2	+0.2	+6.1	+0.4	+0.7	+0.0	63.6	50.0	+13.6	White
8	13.418M Ave	16.9	+0.2	+6.1	+0.4	+0.7	+0.0	24.3	50.0	-25.7	White
٨	13.418M	54.9	+0.2	+6.1	+0.4	+0.7	+0.0	62.3	50.0	+12.3	White
10	15.040M Ave	10.6	+0.2	+6.1	+0.4	+0.8	+0.0	18.1	50.0	-31.9	White
^	15.040M	41.2	+0.2	+6.1	+0.4	+0.8	+0.0	48.7	50.0	-1.3	White
12	14.121M Ave	10.1	+0.2	+6.1	+0.4	+0.7	+0.0	17.5	50.0	-32.5	White
٨	14.121M	42.5	+0.2	+6.1	+0.4	+0.7	+0.0	49.9	50.0	-0.1	White
14	13.076M Ave	9.3	+0.2	+6.1	+0.4	+0.7	+0.0	16.7	50.0	-33.3	White
^	13.076M	43.0	+0.2	+6.1	+0.4	+0.7	+0.0	50.4	50.0	+0.4	White
16	14.058M Ave	9.0	+0.2	+6.1	+0.4	+0.7	+0.0	16.4	50.0	-33.6	White
٨	14.058M	45.0	+0.2	+6.1	+0.4	+0.7	+0.0	52.4	50.0	+2.4	White
18	14.625M Ave	8.7	+0.2	+6.1	+0.4	+0.8	+0.0	16.2	50.0	-33.8	White
٨	14.625M	39.7	+0.2	+6.1	+0.4	+0.8	+0.0	47.2	50.0	-2.8	White
20	13.283M Ave	8.1	+0.2	+6.1	+0.4	+0.7	+0.0	15.5	50.0	-34.5	White
^	13.283M	43.9	+0.2	+6.1	+0.4	+0.7	+0.0	51.3	50.0	+1.3	White
22	12.716M Ave	6.1	+0.2	+6.1	+0.4	+0.6	+0.0	13.4	50.0	-36.6	White
^	12.716M	39.9	+0.2	+6.1	+0.4	+0.6	+0.0	47.2	50.0	-2.8	White

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.207 COND [AVE]		
Work Order #:	84991	Date:	2/26/2007
Test Type:	Conducted Emissions	Time:	15:10:38
Equipment:	IntelliStripe 65 Contactless Card	Sequence#:	7
	Reader		
Manufacturer:	Magtek Incorporated	Tested By:	E. Wong
Model:	21165046		110V 60Hz
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
Conducted Emission Cable	Cable #21	05/09/2006	05/09/2008	P04358
150kHz HPF	G7755	05/09/2006	05/09/2007	02610
6dB Attenuator	None	11/21/2006	11/21/2008	P05611
LISN	1104	11/10/2006	11/10/2008	00847

Equipment Under Test (* = EUT):										
Function	Manufacturer	Model #	S/N							
Power Supply	DVE	DSA-0151D-12	NA							
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA							
Card Reader*										

Support Devices:

Laptop Dell Inspiron 8500 00043-480-957-106	Function	Manufacturer	Model #	S/N
	Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. Frequency=13.56MHz. RF port connected to 50 Ohm load. Frequency range of measurement = 150kHz - 30MHz. Frequency150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 20°C, 41% relative humidity.

Transducer Legend:

T1=150kHz HPF Asset 02610	T2=6dB Attenuator P05611
T3=Cable #21 Conducted Site A 050908	T4=(L1) Insertion Loss 00847 EMCO 3816/2NM

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Black		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	13.560M	40.9	+0.2	+6.1	+0.4	+0.7	+0.0	48.3	50.0	-1.7	Black
	Ave								Fundament	tal	
^	13.560M	41.7	+0.2	+6.1	+0.4	+0.7	+0.0	49.1	50.0	-0.9	Black
									Fundament	tal	
3	296.168k	38.3	+0.2	+6.2	+0.1	+0.1	+0.0	44.9	50.3	-5.4	Black
4	603.777k	33.3	+0.2	+6.1	+0.1	+0.1	+0.0	39.8	46.0	-6.2	Black
5	608.140k	32.6	+0.2	+6.1	+0.1	+0.1	+0.0	39.1	46.0	-6.9	Black

6	611.049k	32.6	+0.2	+6.1	+0.1	+0.1	+0.0	39.1	46.0	-6.9	Black
7	429.247k	33.8	+0.2	+6.2	+0.1	+0.0	+0.0	40.3	47.3	-7.0	Black
8	1.009M	32.3	+0.1	+6.1	+0.0	+0.1	+0.0	38.6	46.0	-7.4	Black
9	614.685k	31.9	+0.2	+6.1	+0.1	+0.1	+0.0	38.4	46.0	-7.6	Black
10	609.594k	31.4	+0.2	+6.1	+0.1	+0.1	+0.0	37.9	46.0	-8.1	Black
11	461.971k	31.8	+0.2	+6.2	+0.1	+0.1	+0.0	38.4	46.7	-8.3	Black
12	859.026k	31.2	+0.1	+6.1	+0.0	+0.1	+0.0	37.5	46.0	-8.5	Black
13	898.468k	31.0	+0.1	+6.1	+0.0	+0.1	+0.0	37.3	46.0	-8.7	Black
14	151.295k Ave	31.9	+2.3	+6.2	+0.1	+0.1	+0.0	40.6	55.9	-15.3	Black
^	151.295k	50.9	+2.3	+6.2	+0.1	+0.1	+0.0	59.6	55.9	+3.7	Black

CKC Laboratories, Inc. Date: 2/26/2007 Time: 15:10:38 Magtek Incorporated WO#: 84991 FCC 15:207 COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 7

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer:	Magtek Incorporated		
Specification:	FCC 15.207 COND [AVE]		
Work Order #:	84991	Date:	2/26/2007
Test Type:	Conducted Emissions	Time:	15:05:27
Equipment:	IntelliStripe 65 Contactless Card	Sequence#:	6
	Reader		
Manufacturer:	Magtek Incorporated	Tested By:	E. Wong
Model:	21165046		110V 60Hz
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
Conducted Emission Cable	Cable #21	05/09/2006	05/09/2008	P04358
150kHz HPF	G7755	05/09/2006	05/09/2007	02610
6dB Attenuator	None	11/21/2006	11/21/2008	P05611
LISN	1104	11/10/2006	11/10/2008	00847

Equipment Under Test (* = EUT):					
Function	Manufacturer	Model #	S/N		
Power Supply	DVE	DSA-0151D-12	NA		
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA		
Card Reader*	- •				

Support Devices:

Laptop Dell Inspiron 8500 00043-480-957-106	Function	Manufacturer	Model #	S/N
	Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. Frequency=13.56MHz. RF port connected to 50 Ohm load. Frequency range of measurement = 150kHz - 30MHz. Frequency150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 20°C, 41% relative humidity.

Transducer Legend:

T1=150kHz HPF Asset 02610	T2=6dB Attenuator P05611
T3=Cable #21 Conducted Site A 050908	T4=(L2) Insertion Loss 00847 EMCO 3816/2NM

Measur	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: White		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	161.635k	45.3	+0.6	+6.2	+0.1	+0.2	+0.0	52.4	55.4	-3.0	White
2	13.562M	38.9	+0.2	+6.1	+0.4	+0.7	+0.0	46.3	50.0	-3.7	White
1	Ave					Fundamental					
^	13.562M	41.5	+0.2	+6.1	+0.4	+0.7	+0.0	48.9	50.0	-1.1	White
									Fundament	tal	
4	291.805k	39.0	+0.2	+6.2	+0.1	+0.1	+0.0	45.6	50.5	-4.9	White
5	576.143k	32.4	+0.2	+6.1	+0.1	+0.1	+0.0	38.9	46.0	-7.1	White

6	1.013M	32.3	+0.1	+6.1	+0.0	+0.1	+0.0	38.6	46.0	-7.4	White
7	602.322k	31.3	+0.2	+6.1	+0.1	+0.1	+0.0	37.8	46.0	-8.2	White
8	426.338k	32.3	+0.2	+6.2	+0.1	+0.1	+0.0	38.9	47.3	-8.4	White
9	606.685k	31.0	+0.2	+6.1	+0.1	+0.1	+0.0	37.5	46.0	-8.5	White
10	608.867k	30.4	+0.2	+6.1	+0.1	+0.1	+0.0	36.9	46.0	-9.1	White
11	1.290M	30.2	+0.1	+6.1	+0.0	+0.1	+0.0	36.5	46.0	-9.5	White
12	452.518k	30.5	+0.2	+6.2	+0.1	+0.1	+0.0	37.1	46.8	-9.7	White
13	869.207k	29.9	+0.1	+6.1	+0.0	+0.1	+0.0	36.2	46.0	-9.8	White
14	453.972k	30.2	+0.2	+6.2	+0.1	+0.1	+0.0	36.8	46.8	-10.0	White
15	877.204k	29.2	+0.1	+6.1	+0.0	+0.1	+0.0	35.5	46.0	-10.5	White
16	152.704k Ave	24.3	+2.0	+6.2	+0.1	+0.2	+0.0	32.8	55.9	-23.1	White
^	152.704k	50.2	+2.0	+6.2	+0.1	+0.2	+0.0	58.7	55.9	+2.8	White

CKC Laboratories, Inc. Date: 2/26/2007 Time: 15:05:27 Magtek Incorporated WO#: 84991 FCC 15:207 COND [AVE] Test Lead: White 110V 60Hz Sequence#: 6

FCC 15.225 RADIATED EMISSIONS

Test Setup Photos

Page 36 of 54 Report No.: FC07-013A

Test Data Sheets

Test Location: CKC Laboratories, Inc. •110. N. Olinda Place. • Brea, CA 92821 • (714) 993-6112

Customer: Specification:	Magtek Incorporated FCC 15.225 Field Strength of Emission		
Work Order #:	84991	Date:	2/26/2007
Test Type:	Radiated Scan	Time:	09:54:49
Equipment:	IntelliStripe 65 Contactless Card	Sequence#:	2
	Reader		
Manufacturer:	Magtek Incorporated	Tested By:	E. Wong
Model:	21165046		
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
Bilog Antenna	2451	02/02/2006	02/02/2008	01995	
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672	
Pre amp to SA Cable	Cable #10	05/16/2005	05/16/2007	P05050	
Cable	Cable15	01/05/2007	01/05/2009	P05198	
Pre Amp	1937A02548	06/01/2006	06/01/2008	00309	
Loop Antenna	2014	06/14/2006	06/14/2008	00314	

Equipment Under Test (* = EUT):

-1r			
Function	Manufacturer	Model #	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency=13.56MHz. Frequency range of measurement = 9 kHz - 1 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz. 20°C, 41% relative humidity.

Transducer Legend:

T1=Active loop antenna 061408	T2=Cable #15, Site A, 010509

Measure	ement Data:	Re	ading lis	ted by ma	argin.		Test Distance: 10 Meters					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar	
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant	
1	13.560M	54.7	+10.7	+0.6			-19.0	47.0	84.0	-37.0	Paral	
2	13.560M	52.7	+10.7	+0.6			-19.0	45.0	84.0	-39.0	Paral	

Test Location:	CKC Laboratories, Inc.	•110. N. Olinda Place.	• Brea, CA 92821	• (714) 993-6112
----------------	------------------------	------------------------	------------------	------------------

Customer:	Magtek Incorporated		
Specification:	FCC 15.225(d) Spurious emission		
Work Order #:	84991	Date:	2/26/2007
Test Type:	Radiated Scan	Time:	14:07:40
Equipment:	IntelliStripe 65 Contactless Card	Sequence#:	3
	Reader		
Manufacturer:	Magtek Incorporated	Tested By:	E. Wong
Model:	21165046		
S/N:	NA		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Bilog Antenna	2451	02/02/2006	02/02/2008	01995
Spectrum Analyzer	US44300438	01/03/2007	01/03/2009	02672
Pre amp to SA Cable	Cable #10	05/16/2005	05/16/2007	P05050
Cable	Cable15	01/05/2007	01/05/2009	P05198
Pre Amp	1937A02548	06/01/2006	06/01/2008	00309
Loop Antenna	2014	06/14/2006	06/14/2008	00314

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Power Supply	DVE	DSA-0151D-12	NA
IntelliStripe 65 Contactless	Magtek Incorporated	21165046	NA
Card Reader*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	Dell	Inspiron 8500	00043-480-957-106

Test Conditions / Notes:

The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency=13.56MHz. Frequency range of measurement = 9 kHz - 1 GHz. Frequency 9 kHz - 150 kHz RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz RBW=120 kHz, VBW=120 kHz. 20°C, 41% relative humidity.

Transducer Legend:

T1=Active loop antenna 061408	T2=Cable #15, Site A, 010509
T3=Preamp 8447D 060108	T4=Bilog AN01995 020208 Chase
T5=Cable #10 051607	T6=Cable #15, Site A, 010509

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	192.002M	56.1	+0.0	+0.0	-27.6	+8.9	+0.0	40.1	43.5	-3.4	Horiz
	QP		+0.2	+2.5							
^	192.002M	57.0	+0.0	+0.0	-27.6	+8.9	+0.0	41.0	43.5	-2.5	Horiz
			+0.2	+2.5							

CKC Masting the Future

3	224.006M	55.5	+0.0	+0.0	-27.6	+10.7	+0.0	41.5	46.0	-4.5	Horiz
	QP		+0.2	+2.7							
^	224.006M	57.1	+0.0	+0.0	-27.6	+10.7	+0.0	43.1	46.0	-2.9	Horiz
			+0.2	+2.7							
5	208.001M	54.0	+0.0	+0.0	-27.6	+9.5	+0.0	38.7	43.5	-4.8	Horiz
			+0.2	+2.6							
6	208.004M	53.8	+0.0	+0.0	-27.6	+9.5	+0.0	38.5	43.5	-5.0	Vert
	QP		+0.2	+2.6							
^	208.004M	54.7	+0.0	+0.0	-27.6	+9.5	+0.0	39.4	43.5	-4.1	Vert
			+0.2	+2.6							
8	256.006M	52.9	+0.0	+0.0	-27.7	+12.6	+0.0	40.9	46.0	-5.1	Horiz
			+0.2	+2.9							
9	192.002M	54.3	+0.0	+0.0	-27.6	+8.9	+0.0	38.3	43.5	-5.2	Vert
	QP		+0.2	+2.5							
^	192.002M	56.9	+0.0	+0.0	-27.6	+8.9	+0.0	40.9	43.5	-2.6	Vert
			+0.2	+2.5							
11	358.349M	48.9	+0.0	+0.0	-27.6	+14.7	+0.0	39.8	46.0	-6.2	Horiz
	155.0003.6	73 0	+0.3	+3.5		0.0	0.0	07.1	10.5		
12	175.988M	52.9	+0.0	+0.0	-27.7	+9.3	+0.0	37.1	43.5	-6.4	Horiz
10	411 5003 6	17.0	+0.2	+2.4	07.0	1 < 1	0.0	20.6	16.0	<i>c</i> 1	X 7 .
13	411.599M	47.2	+0.0	+0.0	-27.8	+16.1	+0.0	39.6	46.0	-6.4	Vert
1.4	(7.000) (52.4	+0.3	+3.8	07.7	6.0	0.0		10.0	< 7	X 7 .
14	67.800M	53.4	+0.0	+0.0	-27.7	+6.0	+0.0	33.3	40.0	-6.7	Vert
1.7	144.00034	50 7	+0.1	+1.5	07.7	. 11.0	.0.0	26.6	42.5	6.0	TT '
15	144.009M	50.7	+0.0	+0.0	-27.7	+11.2	+0.0	30.0	43.5	-6.9	Horiz
16	140 155M	50.9	+0.2	+2.2	777	+11.0	+0.0	265	12 5	7.0	Homia
10	149.133101	30.8	+0.0	+0.0	-21.1	+11.0	+0.0	50.5	45.5	-7.0	HOLIZ
17	224 000M	52.4	+0.2	+2.2	27.6	+ 10.7		29.4	46.0	76	Vort
1/	224.009M	52.4	+0.0	+0.0 +2.7	-27.0	+10.7	+0.0	30.4	40.0	-7.0	ven
18	128 045M	40.2	+0.0	+0.0	27.6	<u>⊥11 5</u>	+0.0	35.2	13.5	83	Vort
10	120.045101	49.2	+0.0 +0.1	+0.0 $+2.0$	-27.0	± 11.3	± 0.0	55.2	45.5	-0.5	ven
19	255 986M	49.6	+0.0	+0.0	-27.7	+12.6	+0.0	37.6	46.0	-84	Vert
17	255.900101	17.0	+0.2	+2.9	27.7	112.0	10.0	57.0	10.0	0.1	ven
20	160 002M	50.0	+0.0	+0.0	-277	+10.2	+0.0	35.0	43 5	-8.5	Horiz
20	100.002.01	20.0	+0.2	+2.3	27.7	110.2	10.0	55.0	10.0	0.0	110112
21	149.140M	49.3	+0.0	+0.0	-27.7	+11.0	+0.0	35.0	43.5	-8.5	Vert
	,	.,	+0.2	+2.2							
22	135.597M	48.9	+0.0	+0.0	-27.6	+11.4	+0.0	34.9	43.5	-8.6	Horiz
			+0.1	+2.1							
23	447.472M	43.6	+0.0	+0.0	-27.6	+17.0	+0.0	37.3	46.0	-8.7	Horiz
			+0.3	+4.0							
24	395.105M	45.4	+0.0	+0.0	-27.8	+15.7	+0.0	37.3	46.0	-8.7	Horiz
			+0.3	+3.7							
25	391.424M	45.2	+0.0	+0.0	-27.8	+15.6	+0.0	37.0	46.0	-9.0	Horiz
			+0.3	+3.7							
26	664.442M	38.0	+0.0	+0.0	-27.1	+20.5	+0.0	36.9	46.0	-9.1	Horiz
			+0.5	+5.0							
27	413.428M	44.3	+0.0	+0.0	-27.7	+16.2	+0.0	36.9	46.0	-9.1	Vert
			+0.3	+3.8							

CKC Masting the Future

28	154.648M	48.9	+0.0 +0.2	$^{+0.0}_{+2.2}$	-27.7	+10.6	+0.0	34.2	43.5	-9.3	Horiz
29	420.355M	43.8	+0.0	+0.0	-27.7	+16.3	+0.0	36.5	46.0	-9.5	Vert
30	160.003M	48.8	+0.3 +0.0	+3.8 +0.0 +2.3	-27.7	+10.2	+0.0	33.8	43.5	-9.7	Vert
31	399.986M	44.2	+0.2 +0.0	+2.3 +0.0	-27.8	+15.8	+0.0	36.2	46.0	-9.8	Horiz
32	271.992M	47.8	+0.0 +0.3	+3.7 +0.0 +3.0	-27.7	+12.8	+0.0	36.2	46.0	-9.8	Horiz
33	127.991M	47.6	+0.0 +0.1	+0.0 +2.0	-27.6	+11.5	+0.0	33.6	43.5	-9.9	Horiz
34	240.000M	48.9	+0.0 +0.2	+0.0 +2.8	-27.7	+11.8	+0.0	36.0	46.0	-10.0	Horiz
35	366.114M	44.2	+0.0 +0.3	+0.0 +3.6	-27.7	+14.9	+0.0	35.3	46.0	-10.7	Horiz
36	406.780M	43.0	+0.0 +0.3	+0.0 +3.7	-27.8	+16.0	+0.0	35.2	46.0	-10.8	Horiz
37	704.053M	35.8	+0.0 +0.5	+0.0 +5.1	-27.1	+20.7	+0.0	35.0	46.0	-11.0	Horiz
38	383.374M	43.3	+0.0 +0.3	+0.0 +3.6	-27.7	+15.4	+0.0	34.9	46.0	-11.1	Horiz
39	122.035M	46.5	+0.0 +0.1	+0.0 +2.0	-27.6	+11.4	+0.0	32.4	43.5	-11.1	Horiz
40	173.412M	47.7	+0.0 +0.2	+0.0 +2.4	-27.7	+9.5	+0.0	32.1	43.5	-11.4	Horiz
41	432.031M	41.2	+0.0 +0.3	+0.0 +3.9	-27.7	+16.7	+0.0	34.4	46.0	-11.6	Vert
42	196.041M	47.6	+0.0 +0.2	+0.0 +2.6	-27.6	+8.8	+0.0	31.6	43.5	-11.9	Horiz
43	175.995M	47.4	+0.0 +0.2	+0.0 +2.4	-27.7	+9.3	+0.0	31.6	43.5	-11.9	Vert
44	379.674M	42.3	+0.0 +0.3	+0.0 +3.6	-27.7	+15.3	+0.0	33.8	46.0	-12.2	Horiz
45	151.544M	45.7	+0.0 +0.2	+0.0 +2.2	-27.7	+10.9	+0.0	31.3	43.5	-12.2	Vert
46	144.008M	45.4	$^{+0.0}_{+0.2}$	$^{+0.0}_{+2.2}$	-27.7	+11.2	+0.0	31.3	43.5	-12.2	Vert
47	259.972M	45.5	+0.0 +0.2	+0.0 +2.9	-27.7	+12.7	+0.0	33.6	46.0	-12.4	Horiz
48	135.610M	45.1	+0.0 +0.1	+0.0 +2.1	-27.6	+11.4	+0.0	31.1	43.5	-12.4	Vert
49	420.352M	40.8	+0.0 +0.3	+0.0 +3.8	-27.7	+16.3	+0.0	33.5	46.0	-12.5	Vert
50	135.973M	45.0	+0.0 +0.1	+0.0 +2.1	-27.6	+11.4	+0.0	31.0	43.5	-12.5	Horiz
51	650.870M	34.4	$^{+0.0}_{+0.5}$	+0.0 +4.9	-27.1	+20.4	+0.0	33.1	46.0	-12.9	Horiz
52	271.998M	44.7	+0.0 +0.3	+0.0 +3.0	-27.7	+12.8	+0.0	33.1	46.0	-12.9	Vert

CKC M Testing the Future

53	140.007M	44.5	+0.0 +0.2	+0.0 +2.1	-27.7	+11.3	+0.0	30.4	43.5	-13.1	Horiz
54	728.007M	32.6	+0.2 $+0.0$	+0.0	-27.0	+21.5	+0.0	32.8	46.0	-13.2	Horiz
			+0.5	+5.2							
55	387.848M	41.1	+0.0	+0.0	-27.8	+15.5	+0.0	32.8	46.0	-13.2	Vert
			+0.3	+3.7							
56	122.038M	44.4	+0.0	+0.0	-27.6	+11.4	+0.0	30.3	43.5	-13.2	Vert
			+0.1	+2.0							
57	386.045M	40.9	+0.0	+0.0	-27.7	+15.5	+0.0	32.6	46.0	-13.4	Vert
			+0.3	+3.6							
58	360.508M	41.6	+0.0	+0.0	-27.6	+14.8	+0.0	32.6	46.0	-13.4	Vert
	202.24014	10.7	+0.3	+3.5	07.0	15 6	0.0	22.5	16.0	10.5	X 7
59	393.240M	40.7	+0.0	+0.0	-27.8	+15.6	+0.0	32.5	46.0	-13.5	Vert
(0)	204 40014	10.0	+0.3	+3.7	07.7	15 4	.0.0	20.5	16.0	12.5	
60	384.490M	40.9	+0.0	+0.0	-27.7	+15.4	+0.0	32.5	46.0	-13.5	Horiz
(1	226.00214	40.1	+0.5	+3.0	27.6	14.2	.0.0	20.4	16.0	12.0	V
61	336.002M	42.1	+0.0	+0.0	-27.6	+14.2	+0.0	32.4	46.0	-13.6	vert
()	221 0021	42.5	+0.5	+5.4	27.6	+ 12.0		20.2	16.0	127	Harin
02	521.082IVI	42.3	+0.0	+0.0	-27.0	+15.8	+0.0	52.5	40.0	-15.7	HOUT
63	336 005M	41.0	+0.3	+3.5	27.6	+14.2		32.2	46.0	12.8	Horiz
05	550.005IVI	41.9	+0.0	+0.0	-27.0	+14.2	+0.0	52.2	40.0	-13.0	HOLIZ
64	303 107M	40.3		+3.4	27.8	15.6		32.1	46.0	13.0	Horiz
04	393.197IVI	40.5	+0.0	$^{+0.0}_{\pm 3.7}$	-27.0	+15.0	± 0.0	52.1	40.0	-13.9	HOHZ
65	269 966M	13.7	+0.0	+0.0	_27.7	±12.8	+0.0	32.1	46.0	-13.9	Horiz
05	207.700101	+J.7	+0.0	+3.0	-27.7	112.0	10.0	52.1	+0.0	-15.7	HOHZ
66	211 887M	44.6	+0.0	+0.0	-27.6	+9.8	+0.0	29.6	43.5	-13.9	Horiz
00	211.007.01	11.0	+0.2	+2.6	27.0	19.0	10.0	27.0	10.0	10.9	HOLE
67	394 564M	40.1	+0.0	+0.0	-27.8	+157	+0.0	32.0	46.0	-14.0	Vert
0,	0, 10,0,11,1		+0.3	+3.7	2/10	12017		0210		1	
68	311.878M	42.4	+0.0	+0.0	-27.6	+13.5	+0.0	31.9	46.0	-14.1	Horiz
			+0.3	+3.3							
69	433.904M	38.7	+0.0	+0.0	-27.7	+16.7	+0.0	31.9	46.0	-14.1	Vert
			+0.3	+3.9							
70	203.419M	45.1	+0.0	+0.0	-27.6	+9.1	+0.0	29.4	43.5	-14.1	Vert
			+0.2	+2.6							
71	732.235M	31.5	+0.0	+0.0	-27.0	+21.6	+0.0	31.8	46.0	-14.2	Horiz
			+0.5	+5.2							
72	332.017M	41.6	+0.0	+0.0	-27.6	+14.1	+0.0	31.8	46.0	-14.2	Horiz
			+0.3	+3.4							
73	325.420M	41.4	+0.0	+0.0	-27.6	+13.9	+0.0	31.4	46.0	-14.6	Horiz
			+0.3	+3.4							
74	300.017M	42.3	+0.0	+0.0	-27.6	+13.2	+0.0	31.4	46.0	-14.6	Horiz
			+0.3	+3.2							
75	379.678M	39.8	+0.0	+0.0	-27.7	+15.3	+0.0	31.3	46.0	-14.7	Vert
			+0.3	+3.6							
76	352.539M	40.5	+0.0	+0.0	-27.6	+14.6	+0.0	31.3	46.0	-14.7	Vert
			+0.3	+3.5							
77	220.005M	45.5	+0.0	+0.0	-27.6	+10.4	+0.0	31.2	46.0	-14.8	Horiz
			+0.2	+2.7							

CKC -M-Testing the Future

78	164.026M	43.9	+0.0 +0.2	+0.0 +2.3	-27.7	+10.0	+0.0	28.7	43.5	-14.8	Horiz
79	162.460M	43.8	+0.2 +0.0	+2.3 +0.0	-27.7	+10.1	+0.0	28.7	43.5	-14.8	Horiz
.,	102.100101	15.0	+0.2	+2.3	27.7	10.1	10.0	20.7	10.0	11.0	HOLL
80	320.011M	41.4	+0.0	+0.0	-27.6	+13.7	+0.0	31.1	46.0	-14.9	Horiz
			+0.3	+3.3							
81	274.973M	42.6	+0.0	+0.0	-27.7	+12.9	+0.0	31.1	46.0	-14.9	Horiz
			+0.3	+3.0							
82	319.997M	41.4	+0.0	+0.0	-27.6	+13.7	+0.0	31.1	46.0	-14.9	Vert
			+0.3	+3.3							
83	447.456M	37.3	+0.0	+0.0	-27.6	+17.0	+0.0	31.0	46.0	-15.0	Vert
			+0.3	+4.0							_
84	27.120M	24.1	+8.6	+0.8	+0.0	+0.0	-19.0	14.5	29.5	-15.0	Perpe
0.5	100.06514	20.2	+0.0	+0.0	07.7	160	0.0	20.0	16.0	15.1	
85	420.365M	38.2	+0.0	+0.0	-27.7	+16.3	+0.0	30.9	46.0	-15.1	Horiz
96	1.00.0001	42.0	+0.3	+3.8	27.7	.07	.0.0	20.4	12 5	15 1	II.
86	169.888M	43.8	+0.0	+0.0	-21.1	+9.7	+0.0	28.4	43.5	-15.1	Horiz
87	288 004M	42.1	+0.2	+2.4	27.6	+13.0		30.0	46.0	15.1	Vort
07	200.004101	42.1	+0.0	+0.0 +3.1	-27.0	+15.0	± 0.0	50.9	40.0	-13.1	Vert
88	204.025M	44.1	+0.3	+0.0	-27.6	+9.1	+0.0	28.4	43.5	-15.1	Vert
00	204.025101	77.1	+0.0	+2.6	-27.0	17.1	10.0	20.4	чэ.э	-15.1	VCIT
89	338 998M	40.5	+0.0	+0.0	-27.6	+14.2	+0.0	30.8	46.0	-15.2	Horiz
07	5501770111	10.5	+0.3	+3.4	27.0	111.2	10.0	20.0	10.0	10.2	110112
90	338.987M	40.5	+0.0	+0.0	-27.6	+14.2	+0.0	30.8	46.0	-15.2	Vert
			+0.3	+3.4							
91	94.919M	44.7	+0.0	+0.0	-27.7	+9.3	+0.0	28.2	43.5	-15.3	Horiz
			+0.1	+1.8							
92	416.691M	38.0	+0.0	+0.0	-27.7	+16.3	+0.0	30.7	46.0	-15.3	Vert
			+0.3	+3.8							
93	264.027M	42.3	+0.0	+0.0	-27.7	+12.7	+0.0	30.6	46.0	-15.4	Horiz
			+0.3	+3.0							
94	383.987M	38.8	+0.0	+0.0	-27.7	+15.4	+0.0	30.4	46.0	-15.6	Vert
			+0.3	+3.6							
95	813.553M	28.9	+0.0	+0.0	-27.1	+22.3	+0.0	30.3	46.0	-15.7	Horiz
0.6	100.00714	42.0	+0.6	+5.6	07.6	.0.0	.0.0	27.0	42.5	157	
96	188.00/M	43.8	+0.0	+0.0	-27.6	+8.9	+0.0	27.8	43.5	-15./	Horiz
07	117 162M	26.6	+0.2	+2.5	27.6	+ 17.0	+0.0	20.2	16.0	157	Vort
91	447.405M	50.0	+0.0	+0.0	-27.0	+17.0	+0.0	30.5	40.0	-13.7	ven
08	172 002M	/3.1	+0.5	+4.0	777	<u>+</u> 0.6	+0.0	27.6	13.5	15.0	Vort
90	172.002101	45.1	+0.0	$^{+0.0}_{+2.4}$	-27.7	+9.0	± 0.0	27.0	45.5	-15.9	ven
99	152.012M	42.1	+0.0	+0.0	-27.7	+10.8	+0.0	27.6	43.5	-159	Vert
,,,	152.012.01	12.1	+0.2	+2.2	27.7	110.0	10.0	27.0	15.5	15.9	vert
100	324.711M	40.0	+0.0	+0.0	-27.6	+13.9	+0.0	30.0	46.0	-16.0	Horiz
			+0.3	+3.4							
101	139.978M	41.6	+0.0	+0.0	-27.7	+11.3	+0.0	27.5	43.5	-16.0	Vert
			+0.2	+2.1							
102	432.059M	36.6	+0.0	+0.0	-27.7	+16.7	+0.0	29.8	46.0	-16.2	Horiz
			+0.3	+3.9							

CKC MTosting the Future

103	659.987M	31.0	+0.0	+0.0	-27.1	+20.4	+0.0	29.7	46.0	-16.3	Horiz
104	247.991M	41.9	+0.0	+4.9 +0.0	-27.7	+12.4	+0.0	29.7	46.0	-16.3	Horiz
			+0.2	+2.9				_,			
105	406.416M	37.4	+0.0	+0.0	-27.8	+16.0	+0.0	29.6	46.0	-16.4	Vert
			+0.3	+3.7							
106	692.029M	30.4	+0.0	+0.0	-27.1	+20.6	+0.0	29.5	46.0	-16.5	Horiz
			+0.5	+5.1							
107	257.640M	41.3	+0.0	+0.0	-27.7	+12.6	+0.0	29.3	46.0	-16.7	Vert
100	164.00614	40.1	+0.2	+2.9	27.7	.0.0	.0.0	0(0	42.5	167	
108	164.896M	42.1	+0.0	+0.0	-27.7	+9.9	+0.0	26.8	43.5	-16./	Horiz
100	202 536M	12.6	+0.2	+2.3	27.6	0 <u>0</u>	+0.0	26.8	13.5	167	Vort
109	202.330101	42.0	+0.0	+0.0 $+2.6$	-27.0	+9.0	± 0.0	20.8	45.5	-10.7	ven
110	474 591M	34 7	+0.0	+0.0	-27.6	+17.6	+0.0	29.2	46.0	-16.8	Horiz
110	17 1.39 1101	51.7	+0.4	+4.1	27.0	117.0	10.0	27.2	10.0	10.0	HOLE
111	235.981M	42.3	+0.0	+0.0	-27.6	+11.5	+0.0	29.2	46.0	-16.8	Horiz
			+0.2	+2.8				_,			
112	268.004M	40.6	+0.0	+0.0	-27.7	+12.8	+0.0	29.0	46.0	-17.0	Horiz
			+0.3	+3.0							
113	475.164M	34.3	+0.0	+0.0	-27.6	+17.6	+0.0	28.8	46.0	-17.2	Vert
			+0.4	+4.1							
114	328.009M	38.7	+0.0	+0.0	-27.6	+14.0	+0.0	28.8	46.0	-17.2	Vert
			+0.3	+3.4							
115	716.029M	28.9	+0.0	+0.0	-27.1	+21.1	+0.0	28.6	46.0	-17.4	Horiz
			+0.5	+5.2							
116	207.029M	41.4	+0.0	+0.0	-27.6	+9.4	+0.0	26.0	43.5	-17.5	Horiz
117	257 206M	276	+0.2	+2.0	27.6	+147		20 5	16.0	17.5	Vort
11/	557.290M	57.0	+0.0 ±0.3	+0.0 +3.5	-27.0	+14.7	+0.0	28.3	40.0	-17.3	ven
118	352 563M	37.6	+0.0	+0.0	-27.6	+14.6	+0.0	28.4	46.0	-17.6	Horiz
110	552.505141	57.0	+0.0	+3.5	27.0	114.0	10.0	20.4	40.0	17.0	HOHL
119	325.436M	38.4	+0.0	+0.0	-27.6	+13.9	+0.0	28.4	46.0	-17.6	Vert
_			+0.3	+3.4							
120	840.663M	26.1	+0.0	+0.0	-27.1	+23.0	+0.0	28.3	46.0	-17.7	Horiz
			+0.6	+5.7							
121	215.985M	40.4	+0.0	+0.0	-27.6	+10.1	+0.0	25.8	43.5	-17.7	Horiz
			+0.2	+2.7							
122	299.996M	39.2	+0.0	+0.0	-27.6	+13.2	+0.0	28.3	46.0	-17.7	Vert
			+0.3	+3.2							
123	338.987M	37.9	+0.0	+0.0	-27.6	+14.2	+0.0	28.2	46.0	-17.8	Vert
104	21604014	10.6	+0.3	+3.4	27.6	10.1	0.0	20.0	16.0	10.0	X 7 .
124	216.940M	42.6	+0.0	+0.0	-27.6	+10.1	+0.0	28.0	46.0	-18.0	Vert
125	124 0901	20.4	+0.2	+2.7	27.6	1114		25.4	12 5	10.1	Homia
125	134.980IVI	39.4	+0.0 +0.1	+0.0 +2 1	-27.0	+11.4	+0.0	23.4	43.3	-18.1	nonz
126	287 053M	38.0	+0.1	+2.1	_27.6	±13.0	±0.0	27.7	46.0	-183	Horiz
120	201.7551 v1	30.7	+0.0	+0.0 +3.1	-27.0	+13.0	± 0.0	21.1	+0.0	-10.5	TIOUT
127	227.975M	414	+0.0	+0.0	-27.6	+11.0	+0.0	27.7	46.0	-183	Horiz
127	22,.2,51,1		+0.2	+2.7	27.0	111.0	10.0	2	10.0	10.5	110112
+											

CKC -M-Testing the Future

128	178.339M	41.2	+0.0 +0.2	+0.0	-27.7	+9.1	+0.0	25.2	43.5	-18.3	Horiz
129	465.188M	32.9	+0.0	+0.0	-27.6	+17.4	+0.0	27.1	46.0	-18.9	Vert
130	284.745M	38.3	+0.3 +0.0	+4.1 +0.0	-27.7	+13.0	+0.0	27.0	46.0	-19.0	Vert
131	170.034M	39.9	+0.0 +0.2	+3.1 +0.0 +2.4	-27.7	+9.7	+0.0	24.5	43.5	-19.0	Vert
132	162.714M	39.7	+0.0 +0.2	+2.4 +0.0 +2.3	-27.7	+10.0	+0.0	24.5	43.5	-19.0	Vert
133	196.002M	40.4	+0.2 +0.0 +0.2	+0.0 +2.6	-27.6	+8.8	+0.0	24.4	43.5	-19.1	Vert
134	224.994M	40.7	+0.0 +0.2	+0.0 +2.7	-27.6	+10.8	+0.0	26.8	46.0	-19.2	Horiz
135	400.887M	34.5	+0.0 +0.3	+0.0 +3.7	-27.8	+15.8	+0.0	26.5	46.0	-19.5	Vert
136	27.120M	19.5	+8.6 +0.0	$^{+0.8}_{+0.0}$	+0.0	+0.0	-19.0	9.9	29.5	-19.6	Paral
137	260.023M	38.2	+0.0 +0.2	+0.0 +2.9	-27.7	+12.7	+0.0	26.3	46.0	-19.7	Vert
138	375.010M	34.7	+0.0 +0.3	+0.0 +3.6	-27.7	+15.2	+0.0	26.1	46.0	-19.9	Horiz
139	242.985M	38.6	+0.0 +0.2	$^{+0.0}_{+2.8}$	-27.7	+12.0	+0.0	25.9	46.0	-20.1	Vert
140	406.789M	33.6	+0.0 +0.3	+0.0 +3.7	-27.8	+16.0	+0.0	25.8	46.0	-20.2	Vert
141	404.991M	33.6	+0.0 +0.3	+0.0 +3.7	-27.8	+15.9	+0.0	25.7	46.0	-20.3	Vert
142	786.470M	24.5	$^{+0.0}_{+0.6}$	+0.0 +5.4	-27.1	+22.0	+0.0	25.4	46.0	-20.6	Horiz
143	235.358M	38.5	+0.0 +0.2	+0.0 +2.8	-27.6	+11.5	+0.0	25.4	46.0	-20.6	Vert
144	303.990M	36.0	+0.0 +0.3	+0.0 +3.2	-27.6	+13.3	+0.0	25.2	46.0	-20.8	Vert
145	189.840M	38.5	+0.0 +0.2	+0.0 +2.5	-27.6	+8.9	+0.0	22.5	43.5	-21.0	Vert
146	242.990M	37.7	$^{+0.0}_{+0.2}$	+0.0 +2.8	-27.7	+12.0	+0.0	25.0	46.0	-21.0	Horiz
147	113.398M	37.1	$^{+0.0}_{+0.1}$	+0.0 +1.9	-27.6	+10.9	+0.0	22.4	43.5	-21.1	Horiz
148	447.042M	31.2	+0.0 +0.3	$^{+0.0}_{+4.0}$	-27.6	+17.0	+0.0	24.9	46.0	-21.1	Vert
149	298.777M	35.6	+0.0 +0.3	+0.0 +3.2	-27.6	+13.2	+0.0	24.7	46.0	-21.3	Vert
150	374.976M	33.2	+0.0 +0.3	+0.0 +3.6	-27.7	+15.2	+0.0	24.6	46.0	-21.4	Vert
151	337.917M	34.2	+0.0 +0.3	+0.0 +3.4	-27.6	+14.2	+0.0	24.5	46.0	-21.5	Vert
152	366.118M	33.2	+0.0 +0.3	+0.0 +3.6	-27.7	+14.9	+0.0	24.3	46.0	-21.7	Vert

153	240.004M	36.8	+0.0	+0.0	-27.7	+11.8	+0.0	23.9	46.0	-22.1	Vert
			+0.2	+2.8							
154	230.545M	36.9	+0.0	+0.0	-27.6	+11.2	+0.0	23.4	46.0	-22.6	Horiz
			+0.2	+2.7							
155	343.998M	32.6	+0.0	+0.0	-27.6	+14.4	+0.0	23.2	46.0	-22.8	Vert
			+0.3	+3.5							
156	244.078M	34.3	+0.0	+0.0	-27.7	+12.1	+0.0	21.8	46.0	-24.2	Vert
			+0.2	+2.9							
157	406.800M	29.4	+0.0	+0.0	-27.8	+16.0	+0.0	21.6	46.0	-24.4	Vert
			+0.3	+3.7							
158	311.880M	32.0	+0.0	+0.0	-27.6	+13.5	+0.0	21.5	46.0	-24.5	Vert
			+0.3	+3.3							
159	230.520M	34.3	+0.0	+0.0	-27.6	+11.2	+0.0	20.8	46.0	-25.2	Vert
			+0.2	+2.7							

OCCUPIED BANDWIDTH -20dB

Test Equipment

Fauinmont	Assot #	Monufacturar	Model	Sorial #	Col Doto	Col Duo
Equipment	Assel #	Manufacturer	WIGHEI	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309
Bilog Antenna	01995	Chase	CBL6111C	2451	020206	020208
Pre-amp	00309	HP	8447D	1937A02548	060106	060108
Antenna cable	P05198	Belden	8268	Cable#15	010507	010509
			(RG-214)			
Pre-amp to SA cable	P05050	Pasternack	RG223/U	Cable#10	051605	051607

Test Setup Photos

Test Conditions: The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency=13.56MHz. Emission properties evaluated via radiated field.

FCC 15.225(a), (b), (c) EMISSIONS MASK

Test Equipment

Equipment	Asset #	Manufacturer	Model	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309
Bilog Antenna	01995	Chase	CBL6111C	2451	020206	020208
Pre-amp	00309	HP	8447D	1937A02548	060106	060108
Antenna cable	P05198	Belden	8268	Cable#15	010507	010509
			(RG-214)			
Pre-amp to SA cable	P05050	Pasternack	RG223/U	Cable#10	051605	051607

Test Setup Photos

Test Conditions: The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency=13.56MHz. Emission properties evaluated via radiated field.

BANDEDGE PLOTS

Test Equipment

Equipment	Asset #	Manufacturer	Model	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309
Bilog Antenna	01995	Chase	CBL6111C	2451	020206	020208
Pre-amp	00309	HP	8447D	1937A02548	060106	060108
Antenna cable	P05198	Belden	8268	Cable#15	010507	010509
			(RG-214)			
Pre-amp to SA cable	P05050	Pasternack	RG223/U	Cable#10	051605	051607

Test Setup Photos

Test Conditions: The EUT is placed on the wooden table with Styrofoam surface. The USB port is connected to the USB port of a support laptop. A RFID card is placed in front of the EUT. The EUT continuously detects and reads the RFID card. Frequency=13.56MHz. Emission properties evaluated via radiated field.

BANDEDGE PLOT LOW

BANDEDGE PLOT HIGH

FREQUENCY STABILITY AND VOLTAGE VARIATIONS

Test Equipment

Equipment	Asset #	Manufacturer	Model	Serial #	Cal Date	Cal Due
Temperature Chamber	01878	Thermaltron	S1.2	NA	060106	060108
Temperature Data	01620	HP	34970A	US70131892	052206	052208
logger						
20 Ch Thermalcouple	01849	HP	34901A	US37603966	052206	052208
module						
AC Power Source	01695 /	Pacific Power	345AMX /	250 / 245	052305	052307
	01696		UPC32			
Spectrum Analyzer	02672	Agilent	E4446A	US44300438	010307	010309

Test Setup Photos

Test Conditions: The EUT is placed in the temperature chamber. RF signal is monitored from the antenna port. A spectrum analyzer is employed to measure the frequency stability of the EUT.

Customer:	Magtek Incorporated
WO#:	84991
Test Engineer:	E. wong
Device Model #:	IntelliStripe 65 Contactless Card Reader
Operating Voltage:	110 Vac
Frequency Limit:	0.01 %

Temperature Variations

		Channel 1 (MHz)	Dev. (MHz)
Channel Fr	requency:	13.55955	
Temp (C)	Voltage		
-20	110	13.559560	0.00001
-10	110	13.559597	0.00004
0	110	13.559610	0.00006
10	110	13.559607	0.00005
20	110	13.55955	0.00000
30	110	13.559543	0.00001
40	110	13.559527	0.00003
50	110	13.559517	0.00004

Voltage Variations (±15%)

Temp (C)	Voltage	Channel 1 (MHz)	Dev. (MHz)
20	93.5	13.55953	0.00002
20	110.0	13.55955	0.00000
20	126.5	13.55953	0.00002

Max Deviation (MHz)	0.00006
Max Deviation (%)	0.00042
	PASS