Panasonic Avionics Corp.

TEST REPORT FOR
Bluetooth Radio
Model: Laird BT-850

Tested to The Following Standards:

FCC Part 15 Subpart C Section 15.247
(FHSS 2400-2483.5 MHz)

Report No.: 103959-9

Date of issue: January 14, 2021

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate \# 803.01

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 6
FCC Part 15 Subpart C 10
15.247(b)(1) Output Power 10
15.247(d) Radiated Emissions \& Band Edge 18
Supplemental Information 50
Measurement Uncertainty 50
Emissions Test Details 50

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:
Panasonic Avionics Corp.
26200 Enterprise Way
Lake Forrest, CA 92630
REPORT PREPARED BY:
Samantha Mossman
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338
Project Number: 103959
DATE OF EQUIPMENT RECEIPT:
December 16, 2020
DATES) OF TESTING:
December 16-17, 2020

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .19

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html
$-\sqrt{\text { Tessting the Future }}$ LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 2.4GHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)$	Occupied Bandwidth	NA	NP
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	NP
$15.247(\mathrm{a})(1)$ (iii)	Number of Hopping Channels	NA	NP
$15.247(\mathrm{a})(1)($ (iii)	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(1)$	Output Power	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	NP
15.247 (d)	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NP

NA = Not Applicable
NP = CKC laboratories was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

Note PCII of a single modular approved radio, Original FCCID: U6YBT850 with new antennas and cable. Power setting: Specific Power Table index 0

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Bluetooth Radio	Panasonic Avionics Corp.	Laird BT-850	NA

Support Equipment:

Device	Manufacturer	Model \#	S/N
Laptop	Dell	Inspiron 15	PA004933
Development board	Laird	DVK-BT850-1.0	PA004933

General Product Information:

\(\left.$$
\begin{array}{|c|c|}\hline \text { Product Information } & \text { Manufacturer-Provided Details } \\
\hline \text { Equipment Type: } & \text { Radio Module } \\
\hline \text { Type of Wideband System: } & \text { FHSS } \\
\hline \text { Operating Frequency Range: } & 2402-2480 \mathrm{MHz} \\
\hline \text { Number of Hopping Channels: } & 78 \\
\hline \text { Receiver Bandwidth and } \\
\text { Synchronization: }\end{array}
$$ \begin{array}{c}The manufacturer declares the receiver input bandwidth matches the

transmit channel bandwidth and shifts frequencies in synchronization with

the transmitter.\end{array}\right]\)| Modulation Type(s): | GFSK, п/4 DQPSK, 8DPSK |
| :---: | :---: |
| Maximum Duty Cycle: | 98\% |
| Number of TX Chains: | Ant: PCB trace, R8U2FJ8436Z, ant gain +3.0dBi, paired with Cable 43 |
| Antenna Type(s) and Gain: | Ant: PCB trace, R8U5FJ8946Z, ant gain -1.2dBi, paired with Cable 24 |

EUT and Accessory Photos)

Antenna

Support Equipment Photo(s)

Development Board

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(b)(1) Output Power

Test Setup/Conditions			
Test Location:	Brea Lab D	Test Engineer:	E. Wong
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$12 / 16 / 2020$
Configuration:	1	The single modulator approved radio is placed on the test bench conducted measurement measured at antenna port. $2402 \mathrm{Mhz}, 2441 \mathrm{MHz}, 2480 \mathrm{MHz}$. Test Setup: Power setting: Specific Power Table index 0	
Environmental Conditions Temperature (으) 20 Relative Humidity (\%): 23			

Test Equipment						
Asset\#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440A	$8 / 3 / 2020$	$8 / 3 / 2021$	
03430	Attenuator	Aeroflex/Weinschel	$75 A-10-12$	$12 / 20 / 2019$	$12 / 20 / 2021$	
07243	Cable	H\&S	$32022-29094 K-$ $29094 K-24 T C ~$	$5 / 29 / 2020$	$5 / 29 / 2022$	

Test Data Summary - RF Conducted Measurement
Limit $=\left\{\begin{array}{l}30 \mathrm{dBm} \text { Conducted } / 36 \mathrm{dBm} \text { EIRP } \mid \geq 75 \text { Channels } \\ 21 \mathrm{dBm} \text { Conducted } / 27 \mathrm{dBm} \text { EIRP } \mid<75 \text { Channels (min 15) }\end{array}\right.$

Frequency $(\mathbf{M H z})$	Modulation	Ant. Type / Gain (dBi)	Measured $\mathbf{(d B m)}$	Limit $\mathbf{(d B m)}$	Results
2402	GFSK	PCB Trace *	-0.95	≤ 30	Pass
2441	GFSK	PCB Trace *	-0.51	≤ 30	Pass
2480	GFSK	PCB Trace *	-0.93	≤ 30	Pass
2402	$\pi / 4$ DQPSK	PCB Trace *	0.87	≤ 30	Pass
2441	$\pi / 4$ DQPSK	PCB Trace *	1.24	≤ 30	Pass
2480	$\pi / 4$ DQPSK	PCB Trace *	0.63	≤ 30	Pass
2402	8DPSK	PCB Trace *	1.24	≤ 30	Pass
2441	8DPSK	PCB Trace ${ }^{*}$	1.58	≤ 30	Pass
2480	8DPSK	PCB Trace ${ }^{*}$	0.98	≤ 30	Pass

Modulation Equivalent to DH5, 2DH5, 3DH5. Original grant FHSS 78 channels

* antennas listed in equipment general product information

Plot(s)

DPSK_2402MHz, Low Channel

DPSK_2441MHz, Middle Channel

DPSK_2480MHz, High Channel

GFSK_2402MHz, Low Channel

GFSK_2441MHz, Middle Channel

GFSK_2480MHz, High Channel

QPSK_2402MHz, Low Channel

QPSK_2441MHz, Middle Channel

QPSK_2480MHz, High Channel

Test Setup / Conditions / Data

15.247(d) Radiated Emissions \& Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 7149936112

Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

Panasonic Avionics Corp.
15.247(d) / 15.209 Radiated Spurious Emissions

103959 Date: $12 / 16 / 2020$
Radiated Scan
E. Wong

EMITest 5.03.19

Time: 18:26:49
Sequence\#: 2

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Configuration 1			
Support Equipment:		Model \#	S/N
Device	Manufacturer		
Configuration 1			

Test Conditions / Notes:
The EUT is installed on support development board and placed on Styrofoam block, connected to a support laptop for configuration purposes.

Evaluation of PCII with new antenna. Worst case emission evaluation based on original certification.
$2402 \mathrm{MHz}, 2441 \mathrm{MHz}, 2480 \mathrm{MHz}$

Bluetooth: GFSK, Pi /4 DQPSK, 8DPSK
Ant 1: R8U2FJ8436Z, ant gain: +3.0dBi, paired with Cable 43
Frequency range of measurement $=1-12 \mathrm{GHz}$.
$1000 \mathrm{MHz}-12000 \mathrm{MHz}$; RBW=1MHz,VBW=3 MHz
Test environment conditions:
Temperature: $22.3^{\circ} \mathrm{C}$
Relative Humidity: 21%
Atmospheric Pressure: 100 kPa
Site D
ANSI ANSI C63.10-2013

Panasonic Avionics Corp. WO\#: 103959 Sequence\#\#: 2 Date: 12/16/2020 15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

O Peak Readings

* Average Readings

Software Version: 5.03.19

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$8 / 3 / 2020$	$8 / 3 / 2021$
T2	AN01646	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T3	ANP07656	Cable	$32022-29094 K-$ $29094 K-24 T C ~$	$7 / 30 / 2020$	$7 / 30 / 2022$
		Preamp	83017A	$5 / 31 / 2019$	$5 / 31 / 2021$
T4	AN00787	Cable	ANDL1-	$3 / 4 / 2019$	$3 / 4 / 2021$
T5	ANP07138		PNMNM-60		
T6	ANP04382	Cable	LDF-50	$5 / 15 / 2020$	$5 / 15 / 2022$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

17	7322.950M	32.3	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.3	$\quad 54.0$ -5.7 Ant1_2441MHz_8 DPSK_Z	Horiz
18	7323.000M	32.3	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.3	$\quad 54.0$ Ant1_2441MHz_G FSK_X FS_	Horiz
19	7440.500M	31.8	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.3	$\quad 54.0$ -5.7 Ant1_2480MHz_Q PSK_Z	Vert
20	7323.000M	32.2	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.2	54.0 -5.8 Ant1_2441MHz_Q PSK_Y	Horiz
21	7439.830M	31.7	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.2	$\quad 54.0$ Ant1_2480MHz_G FSK_Z	Vert
22	4960.330M	39.1	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	48.2	54.0 -5.8 Ant1_2480MHz_Q PSK_Y	Vert
23	7322.950M	32.2	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.2	54.0 -5.8 Ant1_2441MHz_8 DPSK_Y	Horiz
24	7440.400M	31.6	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.1	54.0 -5.9 Ant1_2480MHz_8 DPSK_X	Horiz
25	7440.500M	31.5	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.0	$\quad 54.0$ Ant1_2480MHz_Q PSK_Y	Horiz
26	7439.450M	31.5	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.0	$\quad 54.0$ Ant1_2480MHz_G FSK_X	Vert
27	7322.800M	32.0	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	$+0.0$	48.0	$\quad 54.0$ Ant1_2441MHz_G FSK_Z	Vert
28	7323.000M	32.0	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.0	$\quad 54.0$ Ant1_2441 MHz_G FSK_X	Vert
29	7323.000M	31.9	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.9	$\quad 54.0$ -6.1 Ant1_2441MHz_Q PSK_Z	Horiz
30	7323.000M	31.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.7	54.0 -6.3 Ant1_2441 MHz_8 DPSK_X	Horiz
31	7322.950M	31.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.7	54.0 -6.3 Ant1_2441MHz_8 DPSK_Z	Vert
32	7205.730M	32.1	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.7	$\quad 54.0$ Ant1_2402MHz_Q PSK_Z	Vert
33	7205.000M	32.1	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	$+0.0$	47.7	$\quad 54.0$ Ant1_2402MHz_G FSK_X	Vert

34	7323.000M	31.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	$+0.0$	47.7	$\quad 54.0$ -6.3 Ant1_2441MHz_Q PSK_Y	Vert
35	7323.000M	31.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.7	$\quad 54.0$ -6.3 Ant1_2441MHz_Q PSK_X	Horiz
36	7322.800M	31.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.7	$\quad 54.0$ Ant1_2441 MHz_G FSK_Z	Horiz
37	7323.000M	31.6	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.6	$\quad 54.0$ Ant1_2441MHz_G FSK_Y	Vert
38	7205.630M	32.0	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.6	$\quad 54.0$ Ant1_2402MHz_G FSK_Z	Horiz
39	7205.600M	31.9	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.5	$\quad 54.0$ Ant1_2402MHz_G FSK_X	Horiz
40	7206.300M	31.9	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.5	$\quad 54.0$ Ant $1 _2402 \mathrm{MHz}_{-} 8$ DPSK_Z	Horiz
41	4959.670M	38.3	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	47.4	$\quad 54.0$ Ant1_2480MHz_G FSK_Y	Vert
42	7205.770M	31.8	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.4	$\quad 54.0$ -6.6 Ant1_2402MHz_Q PSK_X	Horiz
43	7206.300M	31.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.3	54.0 -6.7 Ant1_2402MHz_8 DPSK_Y	Vert
44	7205.730M	31.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.3	54.0 -6.7 Ant1_2402MHz_8 DPSK_X	Vert
45	7205.730M	31.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.3	$\quad 54.0$ Ant1_2402MHz_Q PSK_Z	Horiz
46	7205.730M	31.6	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.2	$\quad 54.0$ Ant1_2402MHz_G FSK_Y	Horiz
47	7440.500M	30.7	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	47.2	$\quad 54.0$ Ant1_2480MHz_Q PSK_Y	Vert
48	7205.730M	31.6	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.2	$\quad 54.0$ Ant1_2402MHz_G FSK_Y	Vert
49	7440.100M	30.6	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	47.1	54.0 -6.9 Ant1_2480MHz_8 DPSK_Z	Vert
50	7205.730M	31.5	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	$+0.0$	47.1	54.0 -6.9 Ant1_2402MHz_Q PSK_Y	Horiz

51	7323.000M	31.0	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.0	$\begin{aligned} & \quad 54.0 \\ & \text { Ant1_2441MHz_Q } \\ & \text { PSK_X } \end{aligned}$	Vert
52	7206.300M	31.4	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.0	$\begin{array}{cr} \hline 54.0 & -7.0 \\ \text { Ant1_2402MHz_8 } \\ \text { DPSK_Y } \\ \hline \end{array}$	Horiz
53	7205.770M	31.3	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	46.9	$\begin{array}{cr} \hline 54.0 & -7.1 \\ \text { Ant1_2402MHz_Q } \\ \text { PSK_X } & \\ \hline \end{array}$	Vert
54	7206.300M	31.3	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	46.9	$\begin{aligned} & \quad 54.0 \\ & \text { Ant1_2402MHz_8 } \\ & \text { DPSK_Z } \end{aligned}$	Vert
55	7205.730M	31.3	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	46.9	$\quad 54.0$ Ant1_2402MHz_Q PSK Y	Vert
56	7323.000M	30.9	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	46.9	$\begin{array}{cr} 54.0 & -7.1 \\ \text { Ant1_2 }_{2} 441 \mathrm{MHz} \\ \text { FSK_G } \end{array}$	Horiz
57	7205.730M	31.2	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	$+0.0$	46.8	$\begin{array}{lr} \hline 54.0 & -7.2 \\ \text { Ant1_2402MHz_8 } \\ \text { DPSK_X } \end{array}$	Horiz
58	2390.000M	48.2	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	46.8	54.0 Ant1_2402MHz_G FSK_Y_Bandedge_ L	Vert
59	2483.500M	47.8	$\begin{aligned} & +0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} +28.2 \\ +5.7 \end{array}$	$+0.5$	-39.9	$+0.0$	46.4	$54.0 \quad-7.6$ Ant1_2480MHz_8 DPSK_Y_Bandedg e H	Vert
60	4804.200M	37.9	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	46.4	$\begin{aligned} & 54.0 \\ & \text { Ant1_2402MHz_8 } \\ & \text { DPSK_Y } \\ & \hline \end{aligned}$	Vert
61	4960.070M	37.1	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	46.2	$\begin{array}{lr} \hline 54.0 & -7.8 \\ \text { Ant1_2480MHz_8 } \\ \text { DPSK_Z } \\ \hline \end{array}$	Horiz
62	7205.520M	30.6	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	46.2	$\quad 54.0$ Ant1_2402MHz_G FSK_Z	Vert
63	4882.000M	36.8	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	45.8	$\begin{aligned} & \quad 54.0 \\ & \text { Ant1_2 }^{2441 \mathrm{MHz}} \mathrm{C} \\ & \text { DPSK_Y } \end{aligned}$	Vert
64	4960.070M	36.4	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	45.5	$\begin{array}{lr} \hline 54.0 & -8.5 \\ \text { Ant1_2480MHz_8 } \\ \text { DPSK_Y } \\ \hline \end{array}$	Vert
65	2390.000M	46.8	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	45.4	$54.0 \quad-8.6$ Ant1_2402MHz_8 DPSK_Y_Bandedg e_L	Vert
66	4882.000M	36.2	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	45.2	$\begin{array}{lr} \hline 54.0 & -8.8 \\ \text { Ant1_2441MHz_G } \\ \text { FSK_Y } \end{array}$	Vert

67	4960.230M	36.1	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	45.2	$\quad 54.0$ -8.8 Ant1_2480MHz_Q PSK_Z	Horiz
68	4803.930M	36.4	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	44.9	$\quad 54.0$ -9.1 Ant1_2402MHz_Q PSK_Z	Horiz
69	4803.930M	36.4	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	44.9	54.0 -9.1 Ant1_2402MHz_8 DPSK_X	Horiz
70	4960.270M	35.7	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	44.8	54.0 -9.2 Ant1_2480MHz_Q PSK_X	Horiz
71	4882.000 M	35.6	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	44.6	$\quad 54.0$ -9.4 Ant1_2441MHz_Q PSK_Y	Vert
72	4803.930M	35.8	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	$+0.0$	44.3	$\quad 54.0$ -9.7 Ant1_2402MHz_Q PSK_Y	Vert
73	4959.670M	35.2	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	44.3	$\quad 54.0$ Ant1_2480MHz_G FSK_Z	Vert
74	4960.070M	35.0	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	44.1	54.0 -9.9 Ant1_2480MHz_8 DPSK_Y	Horiz
75	4881.800M	35.0	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	44.0	$\quad 54.0$ Ant1_2441MHz_G FSK_Z	Horiz
76	4803.670M	35.5	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} \hline+33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	44.0	$\quad 54.0$ Ant1_2402MHz_Q PSK_X	Vert
77	4959.633M	34.8	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	43.9	$\quad 54.0$ Ant1_2480MHz_G FSK_X	Vert
78	4804.200M	35.3	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.8	$\quad 54.0$ Ant $12402 \mathrm{MHz}_{-} 8$ DPSK_Z	Horiz
79	4960.330M	34.7	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	43.8	54.0 -10.2 Ant1_2480MHz_Q PSK_Y	Horiz
80	4803.870M	35.2	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.7	$\quad 54.0$ Ant1_2402MHz_G FSK_Y	Vert
81	4881.800M	34.6	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.6	$\quad 54.0$ Ant1_2441MHz_G FSK_Z	Vert
82	4960.230M	34.5	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	43.6	$\quad 54.0$ Ant1_2480MHz_8 DPSK_X	Vert
83	2390.000M	44.9	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} \hline+28.3 \\ +5.6 \end{array}$	+0.5	-39.8	$+0.0$	43.5	$\quad 54.0$ -10.5 Ant1_2402MHz_Q PSK_Y_Bandedge_ L	Vert

84	4803.930M	34.8	$\begin{aligned} & \hline+0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.3	$\begin{array}{cr} \hline 54.0 & -10.7 \\ \text { Ant1_2402MHz_Q } \\ \text { PSK_Z } & \end{array}$	Vert
85	4960.270M	34.2	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.3	$\quad 54.0$ Ant1_2480MHz_Q PSK_ X	Vert
86	2483.500M	44.7	$\begin{aligned} & +0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} +28.2 \\ +5.7 \end{array}$	+0.5	-39.9	+0.0	43.3	$\begin{array}{rr}54.0 & -10.7 \\ \text { Ant1 } 2480 \mathrm{MHz} \mathrm{G}\end{array}$ FSK_Y_Bandedge_ H	Vert
87	4882.000M	34.2	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.2		Vert
88	4803.730M	34.7	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.2	$\quad 54.0 \quad-10.8$ Ant1_2402MHz_G FSK_X	Horiz
89	2483.500 M	44.5	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} +28.2 \\ +5.7 \end{array}$	+0.5	-39.9	+0.0	43.1		Horiz
90	4803.830M	34.6	$\begin{aligned} & \hline+0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.1	$\begin{array}{cr} 54.0 & -10.9 \\ \text { Ant1_2402MHz_G } \\ \text { FSK_Z } & \end{array}$	Horiz
91	4960.330M	33.8	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.9	$\begin{array}{cr} 54.0 & -11.1 \\ \text { Ant1_2480MHz_Q } \\ \text { PSK_Z } & \end{array}$	Vert
92	4882.000M	33.9	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.9	$\begin{array}{cc} 54.0 & -11.1 \\ \text { Ant1_2441MHz_Q } \\ \text { PSK_Z } & \end{array}$	Vert
93	4803.930M	34.4	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.9		Vert
94	4882.000M	33.8	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.8	$\begin{aligned} & \quad 54.0 \\ & \text { Ant1_2441MHz_8 } \\ & \text { DPSK_X } \end{aligned}$	Vert
95	4881.950M	33.7	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.7	$\begin{array}{cc} 54.0 & -11.3 \\ \text { Ant1_2441MHz_8 } \\ \text { DPSK_Z } \end{array}$	Vert
96	4803.930M	34.1	$\begin{aligned} & \hline+0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.6	54.0 -11.4 Ant1_2402MHz_Q PSK_Y	Horiz
97	4803.650M	34.0	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.5	$\begin{aligned} & 54.0 \quad-11.5 \\ & \text { Ant1_2402MHz_G } \\ & \text { FSK_Z } \\ & \hline \end{aligned}$	Vert
98	4803.970M	33.8	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.3	$\begin{array}{lr} \hline 54.0 & -11.7 \\ \text { Ant1_2402MHz_Q } \\ \text { PSK_X } & \\ \hline \end{array}$	Horiz
99	4803.333M	33.6	$\begin{aligned} & \hline+0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.1	$54.0 \quad-11.9$ Ant1_2402MHz_G FSK_X	Vert

100	4960.070M	32.9	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.0	$54.0 \quad-12.0$ Ant1_2480MHz_8 DPSK 7	Vert
101	4804.200M	33.5	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.0		Horiz
102	4882.000M	33.0	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.0	$54.0 \quad-12.0$ Ant1_2441MHz_G FSK_X	Vert
103	4803.870M	33.1	$\begin{aligned} & \hline+0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	41.6	$\begin{array}{ll} 54.0 & -12.4 \\ \text { Ant1_2402MHz_G } \\ \text { FSK_Y } \end{array}$	Horiz
104	4804.200M	32.9	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	41.4	$\begin{array}{ll} 54.0 & -12.6 \\ \text { Ant1_2402MHz_8 } \\ \text { DPSK_Z } \end{array}$	Vert
105	2399.970M	65.0	$\begin{aligned} & \hline+0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	63.6	Ant1_2402MHz_Q PSK_Y_Bandedge_ L-20dBc	Vert
	$\begin{aligned} & \text { 4882.000M } \\ & \text { Ave } \end{aligned}$	32.1	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	41.1	$\begin{array}{cr} 54.0 & -12.9 \\ \text { Ant1_2441MHz_8 } \\ \text { DPSK_X } \end{array}$	Horiz
	$\begin{aligned} & \text { 4881.950M } \\ & \text { Ave } \end{aligned}$	31.7	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	40.7	$\begin{array}{cr} \hline 54.0 & -13.3 \\ \text { Ant1_2441MHz_8 } \\ \text { DPSK_Z } & \\ \hline \end{array}$	Horiz
\wedge	4881.950M	40.8	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	49.8	$\begin{array}{lr} \hline 54.0 & -4.2 \\ \text { Ant1_2441MHz_8 } \\ \text { DPSK_Z } \\ \hline \end{array}$	Horiz
\wedge	4882.000M	40.2	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	49.2	$\begin{aligned} & \text { 54.0 }-4.8 \\ & \text { Ant1_2441MHz_8 } \\ & \text { DPSK_X } \end{aligned}$	Horiz
\wedge	4882.000M	39.3	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	48.3	54.0 -5.7 Ant1_2441MHz_Q PSK_X	Horiz
\wedge	4882.000M	39.1	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	48.1	$\begin{array}{cr} \hline 54.0 & -5.9 \\ \text { Ant1_2441MHz_Q } \\ \text { PSK Z } \end{array}$	Horiz
\wedge	4882.000M	34.0	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.0	$\quad 54.0 \quad-11.0$ Ant1_2441MHz_G FSK_X	Horiz
\wedge	4881.950M	33.9	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.9	$\begin{array}{lr} \hline 54.0 & -11.1 \\ \text { Ant1_2441MHz_8 } \\ \text { DPSK_Y } \end{array}$	Horiz
\wedge	4882.000M	33.8	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.8	$\quad 54.0 \quad-11.2$ Ant1_2441MHz_G FSK_Y	Horiz
\wedge	4882.000M	33.2	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.2	$\quad 54.0$ Ant1_2441MHz_Q PSK_Y	Horiz

Page 26 of 51

116 2400.000M	65.2	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} \hline+28.3 \\ +5.6 \end{array}$	+0.5	-39.8	$+0.0$	63.8	77.9 $\quad-14.1$ Ant1_2402MHz_8 DPSK_Y_Bandedg e_L-20dBc	Vert
$\begin{gathered} 117 \text { 4959.633M } \\ \text { Ave } \end{gathered}$	30.4	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	39.5	$\quad 54.0$ Ant1_2480MHz_G FSK_X	Horiz
$\wedge ~ 4959.600 M ~$	37.0	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	46.1	$\quad 54.0$ Ant1_2480MHz_G FSK_Z	Horiz
$\wedge ~ 4959.670 \mathrm{M}$	34.6	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.7	$\quad 54.0$ Ant1_2480MHz_G FSK_Y	Horiz
$120 \quad 2400.000 \mathrm{M}$	52.1	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	$+0.5$	-39.8	+0.0	50.7	$\quad 76.3$ -25.6 Ant1_2402MHz_G FSK_Y_Bandedge_ L -20dBc	Vert
$121 \quad 2402.000 \mathrm{M}$	99.3	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	$+0.5$	-39.8	+0.0	97.9	$\quad 125.2 \quad-27.3$ Ant1_2402MHz_8 DPSK_Y_Bandedg e_Fundamental	Vert
122 2401.970M	95.6	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	94.2	$125.2 \quad-31.0$ Ant1_2402MHz_Q PSK_Y_Bandedge_ Fundameltal	Vert

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA • 7149936112

Customer:
Specification:
Work Order \#:
Test Type:
Tested By:
Software:

Panasonic Avionics Corp.
15.247(d) / 15.209 Radiated Spurious Emissions

103959 Date: 12/17/2020
Radiated Scan
E. Wong

EMITest 5.03.19

Time: 11:44:13
Sequence\#: 3

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

The EUT is installed on support development board and placed on Styrofoam block, connected to a support laptop for configuration purposes.

Evaluation of PCII with new antenna. Worst case emission evaluation based on original certification and pre-scan.
$2402 \mathrm{MHz}, 2441 \mathrm{MHz}, 2480 \mathrm{MHz}$
Bluetooth: GFSK, Pi /4 DQPSK, 8DPSK
Ant 2: R8U5FJ8946Z, ant gain: -1.2 dBi , paired with Cable 24
Frequency range of measurement $=1-12 \mathrm{GHz}$.
$1000 \mathrm{MHz}-12000 \mathrm{MHz}$; RBW=1MHz, VBW=3 MHz
Test environment conditions:
Temperature: $22.3^{\circ} \mathrm{C}$
Relative Humidity: 21%
Atmospheric Pressure:100kPa
Site D
ANSI ANSI C63.10-2013

Panasonic Avionics Corp. WO\#: 103959 Sequence\#: 3 Date: 12/17/2020 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03.19

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$8 / 3 / 2020$	$8 / 3 / 2021$
T2	AN01646	Horn Antenna	3115	$3 / 17 / 2020$	$3 / 17 / 2022$
T3	ANP07656	Cable	$32022-29094 K-$ 29094K-24TC	$7 / 30 / 2020$	$7 / 30 / 2022$
T4	AN00787	Preamp	83017 A	$5 / 31 / 2019$	$5 / 31 / 2021$
T5	ANP07138	Cable	ANDL1-	$3 / 4 / 2019$	$3 / 4 / 2021$
T6	ANP04382	Cable	PNMNM-60		

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \hline \text { T2 } \\ & \text { T6 } \\ & \text { dB } \end{aligned}$	$\begin{array}{r} \text { T3 } \\ \text { dB } \\ \hline \end{array}$	T4 dB	Dist. Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} / \mathrm{m} \\ \hline \end{gathered}$	Spec Margin $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ dB	Polar Ant
1	7323.000M	33.0	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	49.0	$\quad 54.0$ Ant2_2441MHz_Q PSK_Y	Vert
2	7323.000M	32.9	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.9	$\quad 54.0$ Ant2_2441MHz_G FSK Z	Horiz
3	7440.000M	32.3	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.8	54.0 Ant2_2480MHz_8 DPSK_Y	Horiz
4	7323.000M	32.8	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.8	54.0 -5.2 Ant2_2441 MHz_8 DPSK_X	Vert
5	7323.000M	32.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.7	54.0 $r-5.3$ Ant2_2441MHz_8 DPSK_Y	Horiz
6	7439.600M	32.1	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.6	54.0 -5.4 Ant2_2480MHz_Q PSK_Y	Vert
7	7439.600M	32.0	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.5	54.0 -5.5 Ant2_2480MHz_8 DPSK_X	Vert
8	7323.000M	32.4	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.4	$\quad 54.0$ Ant2_2441MHz_G FSK_Y	Horiz
9	7323.000M	32.4	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.4	$\quad 54.0$ Ant2_2441MHz_G FSK_X	Vert
10	7323.000M	32.4	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.4	$\quad 54.0$ Ant2_2441MHz_6 FSK_Y	Vert
11	7440.000M	31.8	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.3	$\quad 54.0$ -5.7 Ant2_2480MHz_8 DPSK_Z	Vert
12	7205.600M	32.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	48.3	$\quad 54.0$ Ant2_2402MHz_Q PSK_Z	Horiz
13	7440.000M	31.8	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.3	54.0 -5.7 Ant2_2480MHz_8 DPSK_Y	Vert
14	7206.230M	32.6	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	48.2	$\quad 54.0$ -5.8 Ant2_2402MHz_G FSK_Z	Vert
15	7439.700M	31.7	$\begin{aligned} & \hline+0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.2	54.0 Ant2_2480MHz_Q PSK_X	Horiz
16	7439.600M	31.7	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.2	$\quad 54.0$ Ant2_2480MHz_Q PSK_Z	Horiz

17	7205.900M	32.5	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	48.1	$\begin{array}{lr} \hline 54.0 & -5.9 \\ \text { Ant2_2402MHz_8 } \\ \text { DPSK_Z } \end{array}$	Horiz
18	7440.100M	31.6	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.1	$\begin{array}{lr} 54.0 & -5.9 \\ \text { Ant2_2480MHz_G } \\ \text { FSK_X } \end{array}$	Horiz
19	7439.700M	31.6	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.1	$\begin{array}{cr} 54.0 & -5.9 \\ \text { Ant2_2480MHz_Q } \\ \text { PSK_X } & \\ \hline \end{array}$	Vert
20	7323.000M	32.1	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{array}{r} +36.9 \\ +11.1 \end{array}$	+0.8	-40.3	+0.0	48.1	$\begin{array}{cr} \hline-1.0 & -5.9 \\ \text { Ant2_2441MHz_Q } \\ \text { PSK_X } & \\ \hline \end{array}$	Vert
21	7439.600M	31.6	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.1	$\begin{array}{cr} 54.0 & -5.9 \\ \text { Ant2_2480MHz_Q } \\ \text { PSK_Z } & \end{array}$	Vert
22	7440.000M	31.5	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	48.0	$\begin{array}{cr} \hline 54.0 & -6.0 \\ \text { Ant2_2480MHz_8 } \\ \text { DPSK_Z } & \\ \hline \end{array}$	Horiz
23	7323.000M	32.0	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	48.0	$\begin{aligned} & \text { 54.0 }-6.0 \\ & \text { Ant2_2441MHz_Q } \\ & \text { PSK_Z } \end{aligned}$	Horiz
24	7205.900M	32.4	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	48.0	$\begin{array}{cr} \hline 54.0 & -6.0 \\ \text { Ant2_2402MHz_8 } \\ \text { DPSK_Y } \\ \hline \end{array}$	Vert
25	7439.600M	31.4	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	47.9	$\begin{gathered} 54.0 \\ \text { Ant2_2480MHz_Q } \\ \text { PSK_Y } \end{gathered}$	Horiz
26	7439.600M	31.4	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	47.9	$\begin{array}{lr} \text { 54.0 } & -6.1 \\ \text { Ant2_2480MHz_8 } \\ \text { DPSK_X } \\ \hline \end{array}$	Horiz
27	7205.600 M	32.3	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.9	$\begin{array}{cr} 54.0 & -6.1 \\ \text { Ant2_2402MHz_8 } \\ \text { DPSK_X } \end{array}$	Horiz
28	7439.600M	31.3	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	47.8	$\begin{array}{cc} 544.0 & -6.2 \\ \text { Ant2_2480MHz_G } \\ \text { FSK_Y } \end{array}$	Vert
29	7323.000M	31.8	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.8	$\begin{aligned} & 54.0 \\ & \text { Ant2_2441MHz_Q } \\ & \text { PSK_X } \end{aligned}$	Horiz
30	7439.600M	31.3	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	$+0.8$	-40.4	+0.0	47.8	$\begin{aligned} & \text { 54.0 }-6.2 \\ & \text { Ant2_2480MHz_G } \\ & \text { FSK_Z } \end{aligned}$	Vert
31	7440.100M	31.2	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	47.7	$\begin{aligned} & 54.0 \\ & \text { Ant2_2480MHz_G } \\ & \text { FSK_X } \end{aligned}$	Vert
32	7323.000M	31.7	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{array}{r} \hline+36.9 \\ +11.1 \end{array}$	+0.8	-40.3	+0.0	47.7	$\begin{array}{cr} \hline 54.0 & -6.3 \\ \text { Ant2_2441MHz_Q } \\ \text { PSK_Y } \end{array}$	Horiz
33	7323.000M	31.6	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{array}{r} +36.9 \\ +11.1 \end{array}$	+0.8	-40.3	+0.0	47.6	$\begin{array}{cr} \hline-\quad 54.0 & -6.4 \\ \text { Ant2_2441MHz_Q } \\ \text { PSK_Z } & \\ \hline \end{array}$	Vert

34	7205.600M	32.0	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	$+0.0$	47.6	$\quad 54.0$ -6.4 Ant2_2402MHz_Q PSK_Y	Horiz
35	7206.200M	31.9	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.5	$\quad 54.0$ Ant2_2402MHz_G FSK_Y	Horiz
36	7206.400M	31.9	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.5	$\quad 54.0$ Ant2_2402MHz_G FSK_Y	Vert
37	7205.900M	31.9	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.5	54.0 Ant2_2402MHz_8 DPSK_Y	Horiz
38	7205.600M	31.9	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.5	54.0 -6.5 Ant2_2402MHz_Q PSK_Y	Vert
39	7323.000M	31.4	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.4	54.0 -6.6 Ant2_2441MHz_8 DPSK_Y	Vert
40	7323.000M	31.4	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.4	$\quad 54.0$ Ant2_2441MHz_8 DPSK_Z	Vert
41	7323.000M	31.4	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.4	$\quad 54.0$ Ant2_2441MHz_G FSK_Z	Vert
42	7205.600M	31.8	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.4	$\quad 54.0$ Ant2_2402MHz_Q PSK_Z	Vert
43	7439.600M	30.8	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & +37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	47.3	$\quad 54.0$ Ant2_2480MHz_G FSK_Y	Horiz
44	7323.000M	31.2	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.2	54.0 -6.8 Ant2_2441MHz_8 DPSK_X	Horiz
45	7206.400M	31.6	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.2	$\quad 54.0$ Ant2_2402MHz_Q PSK_X	Horiz
46	7206.600M	31.6	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.2	$\quad 54.0$ Ant2_2402MHz_G FSK_X	Vert
47	7323.000M	31.1	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	+0.0	47.1	$\quad 54.0$ Ant2_2441MHz_G FSK_X	Horiz
48	7205.600M	31.5	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.1	54.0 Ant2_2402MHz_8 DPSK_X	Vert
49	7439.600M	30.6	$\begin{aligned} & +0.0 \\ & +7.6 \end{aligned}$	$\begin{aligned} & \hline+37.3 \\ & +11.2 \end{aligned}$	+0.8	-40.4	+0.0	47.1	$\quad 54.0$ Ant2_2480MHz_G FSK_Z	Horiz
50	7323.000M	31.0	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & +36.9 \\ & +11.1 \end{aligned}$	+0.8	-40.3	$+0.0$	47.0	$\quad 54.0$ -7.0 Ant2_2441MHz_8 DPSK_Z	Horiz

51	7205.500M	31.4	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	47.0	$\begin{array}{cr} 54.0 & -7.0 \\ \text { Ant2_2402MHz_Q } \\ \text { PSK_X } \end{array}$	Vert
52	7205.900M	31.3	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	46.9	$\begin{array}{cr} \hline 54.0 & -7.1 \\ \text { Ant2_2402MHz_8 } \\ \text { DPSK_Z } \end{array}$	Vert
53	7206.230M	31.3	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	+0.0	46.9	$\begin{array}{cr} 544.0 & -7.1 \\ \text { Ant2_2402MHz_G } \\ \text { FSK_Z } \end{array}$	Horiz
54	7206.600M	30.8	$\begin{aligned} & +0.0 \\ & +7.5 \end{aligned}$	$\begin{aligned} & \hline+36.6 \\ & +11.0 \end{aligned}$	+0.8	-40.3	$+0.0$	46.4	$\begin{array}{cr} \hline 54.0 & -7.6 \\ \text { Ant2_2402MHz_G } \\ \text { FSK X } \end{array}$	Horiz
55	2400.000M	47.7	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	46.3	$54.0 \quad-7.7$ Ant2_2402MHz_G FSK_Y_Bandedge_ L-20dBc	Vert
56	2483.500M	46.8	$\begin{aligned} & +0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} +28.2 \\ +5.7 \end{array}$	+0.5	-39.9	$+0.0$	45.4	$54.0 \quad-8.6$ Ant2_2480MHz_8 DPSK_Y_Bandedg e_H	Vert
57	2483.500M	46.2	$\begin{aligned} & +0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} \hline+28.2 \\ +5.7 \end{array}$	+0.5	-39.9	+0.0	44.8	$54.0 \quad-9.2$ Ant2_2480MHz_Q PSK_Y_bandedge_ H	Vert
58	4959.730M	35.6	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	44.7	$\begin{aligned} & \quad 54.0 \\ & \text { Ant2_2480MHz_G } \\ & \text { FSK_Y } \end{aligned}$	Vert
59	4960.000M	35.4	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	44.5	$\begin{array}{lr} 54.0 & -9.5 \\ \text { Ant2_2480MHz_8 } \\ \text { DPSK_Y } \end{array}$	Vert
60	4960.070M	35.2	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	44.3	$\begin{aligned} & \text { 54.0 }-9.7 \\ & \text { Ant2_2480MHz_G } \\ & \text { FSK_X } \end{aligned}$	Horiz
61	4804.130M	35.6	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	44.1	$\begin{array}{cc} 54.0 & -9.9 \\ \text { Ant2_2402MHz_G } \\ \text { FSK_Y } & \end{array}$	Horiz
62	4959.730M	34.9	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	44.0	$\begin{array}{lr} \quad 54.0 & -10.0 \\ \text { Ant2_2480MHz_Q } \\ \text { PSK_Y } \end{array}$	Horiz
63	4803.730M	35.5	$\begin{aligned} & \hline+0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	$+0.0$	44.0	$\begin{array}{cr} 54.0 & -10.0 \\ \text { Ant2_2402MHz_Q } \\ \text { PSK_Y } & \end{array}$	Vert
64	4959.730M	34.8	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.9	$\begin{array}{cr} 54.0 & -10.1 \\ \text { Ant2_2480MHz_Q } \\ \text { PSK_Y } \end{array}$	Vert
65	4960.070M	34.7	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.8	$\begin{array}{cr} 54.0 & -10.2 \\ \text { Ant2_2480MHz_G } \\ \text { FSK_X } \end{array}$	Vert
66	4959.730M	34.7	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.8	$\begin{array}{lr} \quad 54.0 & -10.2 \\ \text { Ant2_2480MHz_G } \\ \text { FSK_Z } \end{array}$	Vert

67	4803.730M	35.3	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.8	$\begin{aligned} & \text { 54.0 } \\ & \text { Ant2_2402MHz_8 } \\ & \text { DPSK_X } \end{aligned}$	Vert
68	4804.270M	35.3	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.8	$\begin{aligned} & \quad 54.0 \\ & \text { Ant2_2402MHz_G } \\ & \text { FSK_Y } \end{aligned}$	Vert
69	4960.000M	34.6	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.7	$\begin{array}{cr} \hline 54.0 & -10.3 \\ \text { Ant2_2480MHz_8 } \\ \text { DPSK_Z } \end{array}$	Horiz
70	4959.730M	34.6	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.7	$\begin{aligned} & \quad 54.0 \\ & \text { Ant2_2480MHz_8 } \\ & \text { DPSK_X } \end{aligned}$	Vert
71	4960.000M	34.6	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.7	$\begin{array}{lr} 54.0 & -10.3 \\ \text { Ant2_2480MHz_8 } \\ \text { DPSK_Y } \end{array}$	Horiz
72	4882.000M	34.6	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.6	$\begin{array}{cr} \hline 54.0 & -10.4 \\ \text { Ant2_2441MHz_Q } \\ \text { PSK_Z } & \\ \hline \end{array}$	Horiz
73	4803.670M	35.1	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.6	$\quad 54.0$ Ant2_2402MHz_Q PSK_X	Vert
74	4959.730M	34.5	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.6	$\begin{aligned} & \quad 54.0 \\ & \text { Ant2_2480MHz_Q } \\ & \text { PSK_Z } \end{aligned}$	Vert
75	4959.730M	34.4	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.5	$\begin{aligned} & \quad 54.0 \quad-10.5 \\ & \text { Ant2_2480MHz_Q } \\ & \text { PSK_Z } \end{aligned}$	Horiz
76	4803.930M	35.0	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.5	$\begin{array}{lr} \hline 54.0 & -10.5 \\ \text { Ant2_2402MHz_8 } \\ \text { DPSK_Y } \\ \hline \end{array}$	Horiz
77	4882.000M	34.5	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.5	$\begin{aligned} & \quad 54.0 \quad-10.5 \\ & \text { Ant2_2441MHz_G } \\ & \text { FSK_Y } \end{aligned}$	Vert
78	4804.170M	34.9	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.4	$\begin{aligned} & \quad 54.0 \\ & \text { Ant2_2402MHz_G } \\ & \text { FSK_Z } \end{aligned}$	Horiz
79	4959.730M	34.3	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.4	$\begin{array}{cr} \hline 54.0 & -10.6 \\ \text { Ant2_2480MHz_8 } \\ \text { DPSK_X } \\ \hline \end{array}$	Horiz
80	4803.730M	34.9	$\begin{aligned} & \hline+0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.4	$\begin{array}{cr} 54.0 & -10.6 \\ \text { Ant2_2402MHz_Q } \\ \text { PSK_Z } & \end{array}$	Horiz
81	4804.400M	34.9	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.4	$\quad 54.0$ Ant2_2402MHz_G FSK_X	Horiz
82	4803.730M	34.8	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} \hline+33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.3	$\begin{array}{cr} \hline 54.0 & -10.7 \\ \text { Ant2_2402MHz_Q } \\ \text { PSK Z } \end{array}$	Vert
83	4803.730M	34.8	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.3	$\begin{array}{cr} \hline 54.0 & -10.7 \\ \text { Ant2_2402MHz_8 } \\ \text { DPSK_X } \\ \hline \end{array}$	Horiz

84	4959.830M	34.2	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	43.3	54.0 -10.7 Ant2_2480MHz_Q PSK_X	Horiz
85	4882.000M	34.2	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.2	$\quad 54.0$ Ant2_2441MHz_8 DPSK_Z	Vert
86	4804.400M	34.7	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.2	$\quad 54.0$ Ant2_2402MHz_G FSK_X	Vert
87	4882.000M	34.2	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.2	$\quad 54.0$ -10.8 Ant2_2441MHz_Q PSK_Y	Vert
88	4882.000M	34.1	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.1	54.0 -10.9 Ant2_2441MHz_Q PSK_Y	Horiz
89	4803.930M	34.6	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.1	$\quad 54.0$ -10.9 Ant2_2402MHz_8 DPSK_Z	Vert
90	4959.830M	34.0	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.1	$\quad 54.0$ -10.9 Ant2_2480MHz_Q PSK_X	Vert
91	4959.730M	34.0	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.1	$\quad 54.0$ Ant2_2480MHz_G FSK_Z	Horiz
92	4882.000M	34.0	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.0	$\quad 54.0$ Ant2_2441MHz_Q PSK_X	Vert
93	4804.170M	34.5	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	43.0	$\begin{aligned} & \quad 54.0 \\ & \text { Ant2_2402MHz_G } \\ & \text { FSK_Z } \end{aligned}$	Vert
94	4960.000M	33.9	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.0	$\quad 54.0 \quad-11.0$ Ant2_2480MHz_8 DPSK_Z	Vert
95	4882.000M	34.0	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	43.0	$54.0 \quad-11.0$ Ant2_2441MHz_8 DPSK_Y	Vert
96	4959.730M	33.8	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.8 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.9	$\quad 54.0$ Ant2_2480MHz_G FSK_Y	Horiz
97	4882.000M	33.9	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	42.9	$\quad 54.0$ Ant2_2441MHz_Q PSK_X	Horiz
98	4803.930M	34.4	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.9	54.0 Ant2_2402MHz_8 DPSK_Y	Vert
99	4882.000M	33.9	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.9	$\quad 54.0$ Ant2_2441MHz_G FSK_Z	Vert
100	4882.000M	33.8	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	$+0.0$	42.8	$\quad 54.0$ Ant2_2441MHz_G FSK_Z	Horiz

101	4882.000M	33.6	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.6	$\begin{array}{lr} \hline 54.0 & -11.4 \\ \text { Ant2_2441MHz_8 } \\ \text { DPSK_Y } \end{array}$	Horiz
102	4882.000M	33.6	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.6	$54.0 \quad-11.4$ Ant2_2441MHz_G FSK_X	Vert
103	4803.730M	34.0	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.5	$\quad 54.0 \quad-11.5$ Ant2_2402MHz_Q PSK_Y	Horiz
104	4882.000M	33.4	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.4	$\begin{array}{ll} & 54.0 \\ \text { Ant2_2441MHz_8 } \\ \text { DPSK_X } \end{array}$	Horiz
105	4882.000M	33.4	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.4	$\begin{aligned} & 54.0 \quad-11.6 \\ & \text { Ant2_2441MHz_G } \\ & \text { FSK_Y } \\ & \hline \end{aligned}$	Horiz
106	4882.000M	33.3	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.3	$\quad 54.0 \quad-11.7$ Ant2_2441MHz_G FSK X	Horiz
107	4882.000M	33.2	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} \hline+33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.2	$\quad 54.0 \quad-11.8$ Ant2_2441MHz_Q PSK Z	Vert
108	4803.930M	33.6	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.1	$\begin{array}{ll} & 54.0 \\ \text { Ant2_2402MHz_8 } \\ \text { DPSK_Z } \end{array}$	Horiz
109	4804.270M	33.5	$\begin{aligned} & +0.0 \\ & +5.8 \end{aligned}$	$\begin{array}{r} +33.5 \\ +8.5 \end{array}$	+0.7	-40.0	+0.0	42.0	$\quad 54.0 \quad-12.0$ Ant2_2402MHz_Q PSK_X	Horiz
110	4882.000M	33.0	$\begin{aligned} & \hline+0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	42.0	$\begin{aligned} & \quad 54.0 \quad-12.0 \\ & \text { Ant2_2441MHz_8 } \\ & \text { DPSK_X } \end{aligned}$	Vert
111	4882.000M	32.9	$\begin{aligned} & +0.0 \\ & +5.9 \end{aligned}$	$\begin{array}{r} +33.7 \\ +8.6 \end{array}$	+0.7	-39.9	+0.0	41.9	$\begin{aligned} & \quad 54.0 \\ & \text { Ant2_2441MHz_8 } \\ & \text { DPSK_Z } \end{aligned}$	Horiz
112	2483.500M	41.4	$\begin{aligned} & \hline+0.0 \\ & +4.1 \end{aligned}$	$\begin{array}{r} +28.2 \\ +5.7 \end{array}$	+0.5	-39.9	+0.0	40.0	$\quad 54.0 \quad-14.0$ Ant2_2480MHz_G FSK_Y_bandedge_ H	Vert
113	2400.000M	56.7	$\begin{aligned} & \hline+0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	55.3	$\quad 70.4 \quad-15.1$ Ant2_2402MHz_Q PSK_Y_Bandedge_ L_- $_{2}$-2dBc	Vert
114	2400.000M	57.1	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	55.7	$70.8 \quad-15.1$ Ant2_2402MHz_8 DPSK_Y_Bandedg e_L-20dBc	Vert

$\begin{gathered} 1152390.000 \mathrm{M} \\ \text { Ave } \end{gathered}$	28.0	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} \hline+28.3 \\ +5.6 \end{array}$	+0.5	-39.8	$+0.0$	26.6	$\quad 54.0$ Ant2_2402MHz_8 DPSK_Y_Bandedg e_L	Vert
$\wedge 2390.000 \mathrm{M}$	52.9	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	51.5	$\quad 54.0$ -2.5 Ant2_2402MHz_8 DPSK_Y_Bandedg e_L	Vert
$\wedge 2390.000 \mathrm{M}$	51.1	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	49.7	54.0 Ant2_2402MHz_Q PSK_Y_Bandedge_ L	Vert
$\wedge 2390.000 \mathrm{M}$	47.0	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	45.6	$\quad 54.0$ -8.4 Ant2_2402MHz_G FSK_Y_Bandedge_ L	Vert
119 2402.000M	92.2	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} \hline+28.3 \\ +5.6 \end{array}$	$+0.5$	-39.8	$+0.0$	90.8	$\quad 125.2$ -34.4 Ant2_2402MHz_8 DPSK_Y_fundame ntal	Vert
$120 \quad 2401.930 \mathrm{M}$	91.8	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	90.4	$\quad 125.2$ -34.8 Ant2_2402MHz_Q PSK_Y_Fundament al	Vert
121 2402.200M	90.8	$\begin{aligned} & +0.0 \\ & +4.0 \end{aligned}$	$\begin{array}{r} \hline+28.3 \\ +5.6 \end{array}$	+0.5	-39.8	+0.0	89.4	$\quad 125.2 r-35.8$ Ant2_2402MHz_G FSK_Y _fundamental	Vert

L.ABORATORIES, INC.

Band Edge Summary

Antenna 1 Operating Mode: Single Channel (Low and High)

Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m@3m)	Results
2390.0	GFSK	PCB Trace *	46.8	<54	Pass
2400.0	GFSK	PCB Trace *	50.7	<76.3	Pass
2483.5	GFSK	PCB Trace *	43.3	<54	Pass
2390.0	п/4 QPSK	PCB Trace *	43.5	<54	Pass
2400.0	п4 QPSK	PCB Trace *	63.6	<74.2	Pass
2483.5	п/4 QPSK	PCB Trace *	43.1	<54	Pass
2390.0	8DPSK	PCB Trace *	45.4	<54	Pass
2400.0	8DPSK	PCB Trace *	63.8	<77.9	Pass
2483.5	8DPSK	PCB Trace *	46.4	<54	Pass

* antennas listed in equipment general product information.

Antenna 2

Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
2390.0	GFSK	PCB Trace *	45.6	<54	Pass
2400.0	GFSK	PCB Trace *	46.3	< 69.4	Pass
2483.5	GFSK	PCB Trace *	40.0	<54	Pass
2390.0	п4 QPSK	PCB Trace *	49.7	<54	Pass
2400.0	\#4 QPSK	PCB Trace *	55.3	<70.4	Pass
2483.5	T4 QPSK	PCB Trace *	44.8	<54	Pass
2390.0	8DPSK	PCB Trace *	51.5	<54	Pass
2400.0	8DPSK	PCB Trace *	55.7	<70.8	Pass
2483.5	8DPSK	PCB Trace *	54.5	<54	Pass

* antennas listed in equipment general product information.

Band Edge Summary

Operating Mode: Hopping						
Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m}$ @3m)	Limit $(\mathbf{d B u V} / \mathbf{m}$ @3m)	Results	
2390.0	NA	NA	NA	<54	NA* *	
2400.0	NA	NA	NA	$<$	NA* *	
2483.5	NA	NA	NA	<54	NA* *	

*Not Applicable, original grant tested at higher power level, passed with good margin in Hopping mode.

Band Edge Plots

Test Setup Photo(s)

General Test Setup

Below 1GHz

Below 1GHz

Above 1GHz

Above 1GHz

X Axis

Y Axis

Z Axis

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

LABORATORIES, INC.

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

