FCC 47 CFR PART 15 SUBPART C: 2008 AND ANSI C63.4: 2003 TEST REPORT

For

11n Dual-Band USB Dongle

Model Number: WU319d

Brand Name: E-TOP

Issued for

E-Top Network Technology Inc.

No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc.

Tainan Lab.

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

TEL: 886-6-580-2201 FAX: 886-6-580-2202

Date of Issue: January 04, 2012

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document

REVISION HISTORY

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	January 04, 2012	Initial Issue	ALL	Sunny Chang

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
3. DESCRIPTION OF TEST MODES	7
4. TEST METHODOLOGY	8
5. FACILITIES AND ACCREDITATIONS	8
5.1 FACILITIES	8
5.2 EQUIPMENT	8
5.3 LABORATORY ACCREDITATIONS LISTINGS	8
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	9
6. CALIBRATION AND UNCERTAINTY	10
6.1 MEASURING INSTRUMENT CALIBRATION	10
6.2 MEASUREMENT UNCERTAINTY	10
7. SETUP OF EQUIPMENT UNDER TEST	11
7.1 SETUP CONFIGURATION OF EUT	11
7.2 SUPPORT EQUIPMENT	11
7.3 EUT OPERATING CONDITION	12
8. APPLICABLE LIMITS AND TEST RESULTS	13
8.1 6DB BANDWIDTH	13
8.2 MAXIMUM PEAK OUTPUT POWER	28
8.3 POWER SPECTRAL DENSITY	32
8.4 CONDUCTED SPURIOUS EMISSION	
8.5 RADIATED EMISSIONS	80
8.6 POWERLINE CONDUCTED EMISSIONS	114
9. ANTENNA REQUIREMENT	118
9.1 STANDARD APPLICABLE	118
9.2 ANTENNA CONNECTED CONSTRUCTION	118
APPENDIX SETUP PHOTOS	119
APPENDIX II PHOTOGRAPHS OF EUT	A1

1. TEST REPORT CERTIFICATION

Applicant : E-Top Network Technology Inc.

Address : No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Manufacture : E-Top Network Technology Inc

Address : No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Equipment Under Test: 11n Dual-Band USB Dongle

Model Number : WU319d

Brand Name : E-TOP

Date of Test : August 02, 2011 ~ August 23, 2011

APPLICABLE STANDARD			
STANDARD	TEST RESULT		
FCC Part 15 Subpart C : 2008 AND ANSI C63.4 : 2003	No non-compliance noted		

Approved by:

Jeter Wu

Assistant Manager

Reviewed by:

Eric Huang

Assistant Section Manager

Reference No: T110729402-RP1
C ID: U6A-WU319D
Report No.: T111226A01-RP1

2. EUT DESCRIPTION

Z. LUT DESCRIP	11011
Product Name	11n Dual-Band USB Dongle
Model Number	WU319d
Brand Name	E-TOP
Received Date	December 26, 2011
Frequency Range	IEEE 802.11b/g, 802.11n HT20 (DTS Band):2412MHz~2462MHz IEEE 802.11n HT40 (DTS Band):2422MHz~2452MHz
Transmit Power	IEEE 802.11b Mode: 17.05dBm (DTS Band) (50.69911mW) IEEE 802.11g Mode: 22.22dBm (DTS Band) (166.7247mW) IEEE 802.11n HT20 Mode: 23.65dBm (DTS Band) (231.7995mW) IEEE 802.11n HT40 Mode: 21.73dBm (DTS Band) (149.0660mW)
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40: 5MHz
Channel Number	IEEE 802.11b/g, 802.11n HT20:11 Channels IEEE 802.11n HT40 :7 Channels
Transmit Data Rate	IEEE 802.11b: 11, 5.5, 2, 1 Mbps IEEE 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps IEEE 802.11n HT20: 144.4, 130, 115.6, 86.7, 57.8, 43.3, 28.9, 14.4, 72.2, 65, 21.7, 13, 7.2 Mbps IEEE 802.11n HT40: 300, 270, 240, 180, 120, 90, 60, 30, 150, 135, 45, 27, 15 Mbps
Type of Modulation	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20/40: OFDM (64QAM, 16QAM, QPSK, BPSK)
Frequency Selection	By software / firmware
Antenna Type	Two Antenna (2TX2RX) Type: Omni Antenna Model: AN-152RRSU00 Antenna Gain: 3dBi Connector: Reverse SMA PLUG Manufacture: Yong-Shun Technology Co., Ltd XinXie Technology(SHENZHEN) co,Ltd.
Power Source	5Vdc
Temperature Range	0 ~ +55°C

Reference No: T110729402-RP1
C ID: U6A-WU319D Report No.: T111226A01-RP1

REMARK:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>U6A-WU319D</u> filing to comply with Section 15.207,15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the User's manual of the EUT.
- 4. To add a series model is for business necessary. The different of the each model is shown as below:

Company Name/Address	Brand name	Model	Product Name
E-Top Network Technology Inc. No. 82 ,Gongye 2nd Rd.,Tainan City 70955,Taiwan,R.O.C.	E-TOP	WU319d	11n Dual-Band USB Dongle
Amigo Technology Inc. 5F., No.63, Lane 77, Xing-Ai Road, Neihu Dist., Taipei City 114, Taiwan (R.O.C.)	Amigo	WU319d	11n Dual-Band USB Dongle
Sapido Technology Inc. No. 383., Sec. 2, Minsheng Rd., West Central District, Tainan 700, Taiwan, R.O.C.	SAPIDO	AU-5125	Wireless N Dual-band High Power USB Adapter

Reference No: T110729402-RP1
CID: U6A-WU319D
Report No.: T111226A01-RP1

3. DESCRIPTION OF TEST MODES

The EUT is a **Wireless USB Donegle**. It has two transmitter chains and two receive chains (2x2 configurations). The 2x2 configuration is implemented with two outside chains (Chain 0 and Chain 1).

The RF chipset is manufactured by Realtek Technology, Corp.

The antenna peak gain 3 dBi (highest gain) were chosen for full testing.

IEEE 802.11 b ,802.11g ,802.11n HT20 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b mode: 1Mbps long data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 13Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2422	
Middle	2437	
High	2452	

IEEE 802.11n HT40 mode: 27Mbps data rate (worst case) were chosen for full testing.

The worst-case data rates are determined according to the description above, based on the investigations by measuring the PSD, peak power and average power across all the data rates, bandwidths, modulations and spatial stream modes.

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2452 MHz.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW-1037).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada Industry Canada

Germany TUV NORD

Taiwan BSMI

USA FCC

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

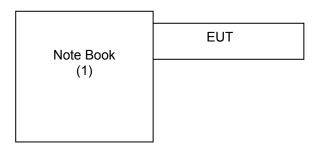
6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:


PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz Test Site : OATS-6	±3.59dB
Radiated Emission, 200 to 1000 MHz Test Site : OATS-6	±3.27dB
Radiated Emission, 1 to 26.5 GHz	± 3.20dB
Power Line Conducted Emission	± 2.90dB

Uncertainty figures are valid to a confidence level of 95%, K=2

7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

For RF test & EMI test

7.2 SUPPORT EQUIPMENT

RF & EMI test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1.	Note Book	IBM	T43	DoC	Power cable, unshd, 1.6m

No.	Signal cable description		
Α	N/A		

REMARK:

- 1. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Reference No: T110729402-RP1 FCC ID: U6A-WU319D Report No.: T111226A01-RP1

7.3 EUT OPERATING CONDITION

RF Setup

- 1. Set up all computers like the setup diagram.
- 2. The "Realtek 11n Dual MAC 92D USB WLAN MP Diagnostic Program" software was used for testing
- 3. MAC, select [DMSP] from the command list.
- 4. Setting, Testing item select [Continuous Tx] from the command list.
- 5. Setting, Modulation select [Continuous Tx] from the command list.

TX Mode:

- ⇒ Tx Mode:CCK · OFDM · HT MixMode (Bandwidth: 20 · 40)
- ⇒ Tx Data Rate: 1Mbps long (IEEE 802.11b mode, TX)

6Mbps (IEEE 802.11g mode, TX)

13Mbps (IEEE 802.11n HT20 mode ,chain 0, chain 1 TX)

27Mbps (IEEE 802.11n HT40 mode, chain 0, chain 1 TX)

Power control mode

Target Power: IEEE 802.11b Channel Low (2412MHz) = 44 (Chain 0)

IEEE 802.11b Channel Middle (2437MHz) = 44 (Chain 0)

IEEE 802.11b Channel High (2462MHz) = 44 (Chain 0)

Target Power: IEEE 802.11g Channel Low (2412MHz) = 48 (Chain 0)

IEEE 802.11g Channel Middle (2437MHz) = 48 (Chain 0)

IEEE 802.11g Channel High (2462MHz) = 48 (Chain 0)

Target Power: IEEE 802.11n HT20 Channel Low (2412MHz) = 46 (Chain 0)

IEEE 802.11 n HT20 Channel Middle (2437MHz) = 46 (Chain 0)

IEEE 802.11 n HT20 Channel High (2462MHz) = 46 (Chain 0)

IEEE 802.11n HT20 Channel Low (2412MHz) = 46 (Chain 1)

IEEE 802.11 n HT20 Channel Middle (2437MHz) = 46 (Chain 1)

IEEE 802.11 n HT20 Channel High (2462MHz) = 46 (Chain 1)

Target Power: IEEE 802.11n HT40 Channel Low (2422MHz) = 44 (Chain 0)

IEEE 802.11 n HT40 Channel Middle (2437MHz) = 44 (Chain 0)

IEEE 802.11 n HT40 Channel High (2452MHz) = **44 (Chain 0)**

IEEE 802.11n HT40 Channel Low (2422MHz) = 44 (Chain 1)

IEEE 802.11 n HT40 Channel Middle (2437MHz) = 44 (Chain 1)

IEEE 802.11 n HT40 Channel High (2452MHz) = 44 (Chain 1)

(2) **RX Mode**:

Start RX

- 3. All of the function are under run.
- 4. Start test.

Normal Link Setup

- 1. Set up all computers like the setup diagram.
- 2. All of the function are under run.
- 3. Notebook PC (2) ping 192.168.0.10 –t to Notebook PC (1).
- 4. Notebook PC (1) ping 192.168.0.20 -t to Notebook PC (2).
- 5. Notebook PC (1) ping 192.168.0.50 –t to Wireless Access Point (3).

Start test.

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6DB BANDWIDTH

LIMIT

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JUL. 14, 2012

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 100 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

No non-compliance noted.

IEEE 802.11b mode (Two TX)

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	10321	500	PASS
Middle	2437	10321	500	PASS
High	2462	10321	500	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 1 Mbps long.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode (Two TX)

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16733	500	PASS
Middle	2437	16733	500	PASS
High	2462	16733	500	PASS

NOTE:

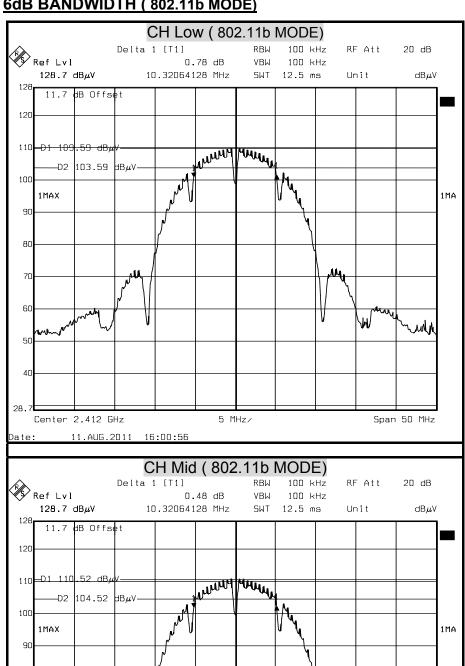
- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode (Two TX)

Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit (kHz)	Pass / Fail	
	(MHz)	Chain 0	Chain1	(KIIZ)		
Low	2412	17936	17836	500	PASS	
Middle	2437	17936	17836	500	PASS	
High	2462	17936	17836	500	PASS	

NOTE:

- 1. At finial test to get the worst-case emission at 13Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.


IEEE 802.11n HT40 mode (Two TX)

Channel	Channel Frequency	6dB Ban (kH		Minimum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain1	(kHz)		
Low	2422	36673	36673	500	PASS	
Middle	2437	36673	36673	500	PASS	
High	2452	36673	36673	500	PASS	

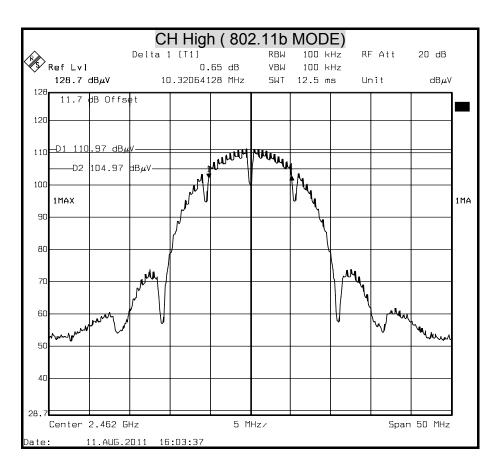
NOTE:

- 1. At finial test to get the worst-case emission at 27Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

6dB BANDWIDTH (802.11b MODE)

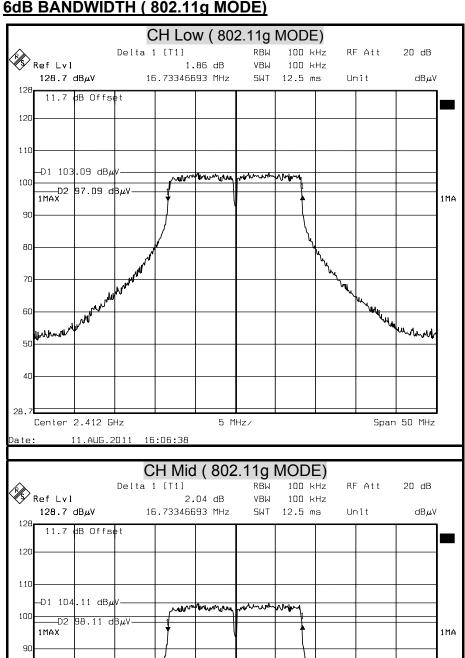
Reference No: T110729402-RP1

Report No.: T111226A01-RP1


5 MHz/

Span 50 MHz

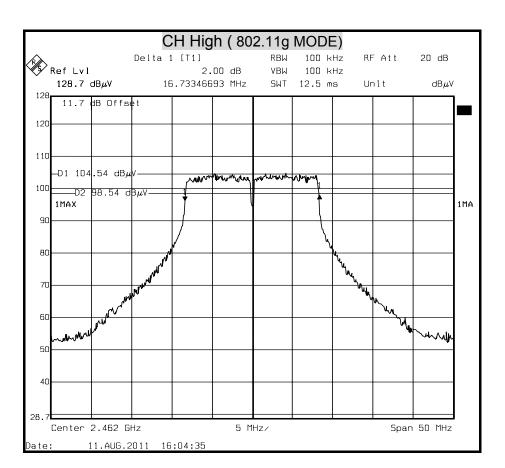
28.


Center 2.437 GHz

11.AUG.2011 16:02:29

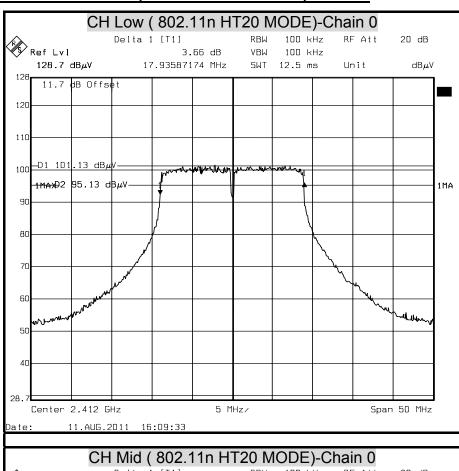
Report No.: T111226A01-RP1

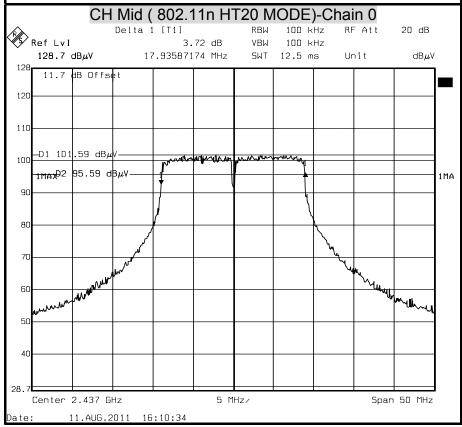
6dB BANDWIDTH (802.11g MODE)

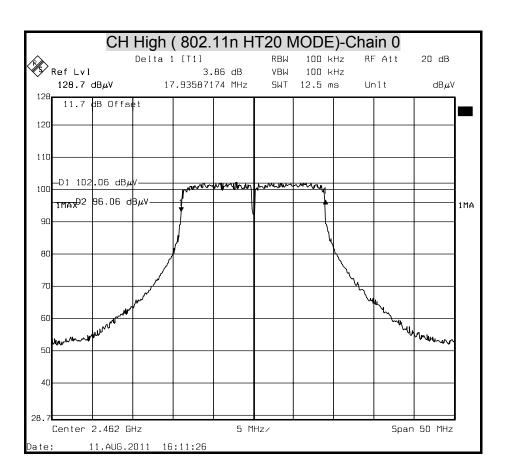

5 MHz/

Span 50 MHz

28.7

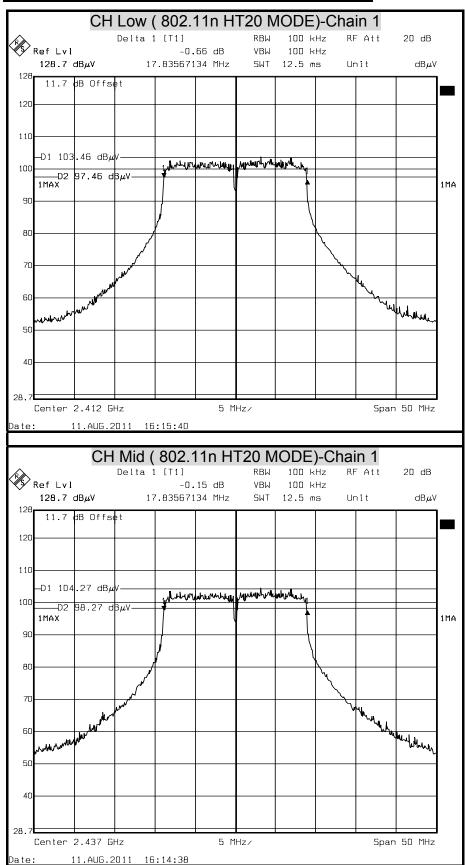

Center 2.437 GHz

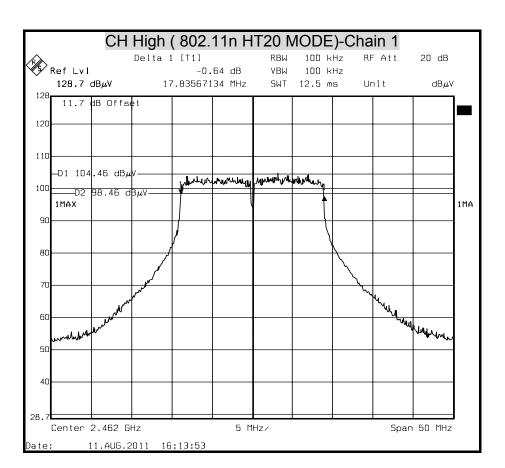

11.AUG.2011 16:05:32

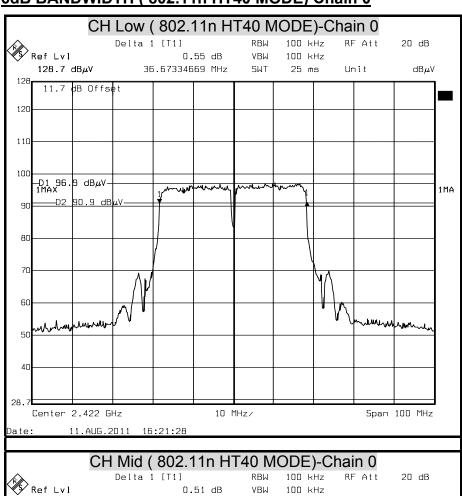


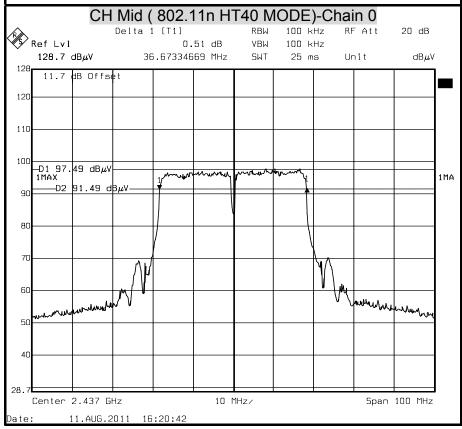
6dB BANDWIDTH (802.11n HT20 MODE) Chain 0

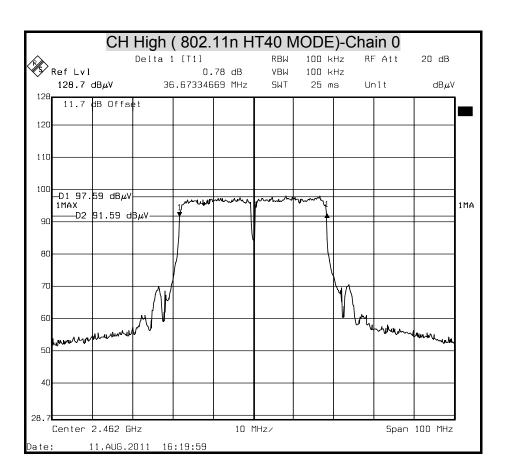
Reference No: T110729402-RP1



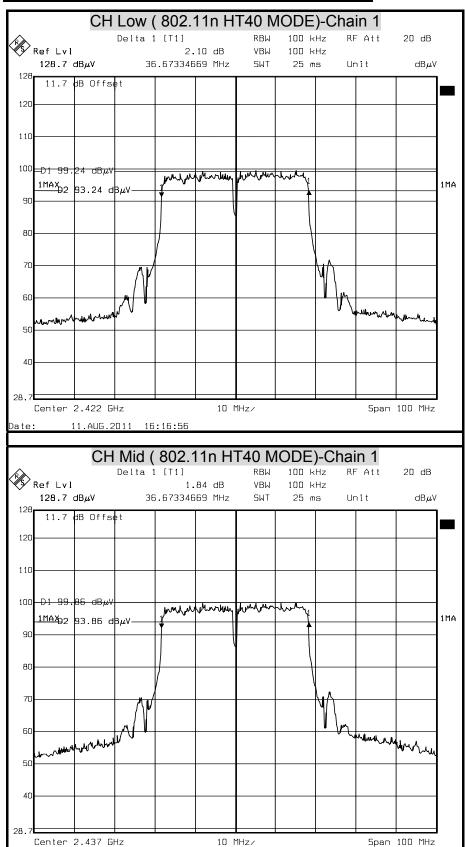


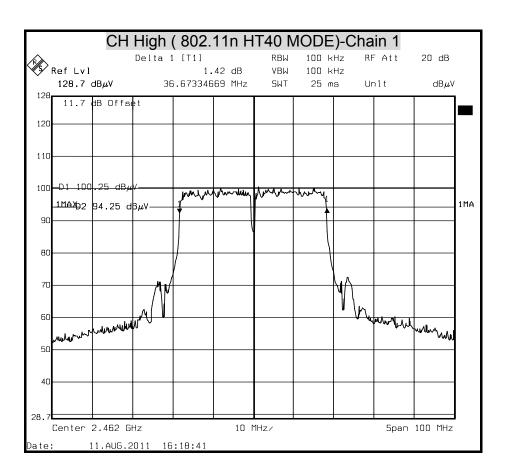

Reference No: T110729402-RP1
CID: U6A-WU319D
Report No.: T111226A01-RP1


6dB BANDWIDTH (802.11n HT20 MODE) Chain 1



6dB BANDWIDTH (802.11n HT40 MODE) Chain 0




6dB BANDWIDTH (802.11n HT40 MODE) Chain 1

Reference No: T110729402-RP1

Report No.: T111226A01-RP1

11.AUG.2011 16:17:41

Reference No: T110729402-RP1
D: U6A-WU319D Report No.: T111226A01-RP1

8.2 MAXIMUM PEAK OUTPUT POWER

LIMIT

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2487A	6K00003888	MAY. 11, 2012

TEST SETUP

TEST PROCEDURE

Connect the EUT to spectrum analyzer, set the center frequency of the spectrum analyzer to the channel center frequency. Set the RBW to 1MHz and VBW to 3MHz.

Set sweep time=auto

Use detector max peak mode

Measurement of Digital Transmission Systems Operating under Section 15.247

TEST RESULTS

No non-compliance noted

IEEE 802.11b mode (One TX)

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	15.89	30.00	PASS
Middle	2437	16.67	30.00	PASS
High	2462	17.05	30.00	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 1Mbps long.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode (One TX)

1222 302111g mada (ena 177)					
Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail	
Low	2412	20.98	30.00	PASS	
Middle	2437	21.92	30.00	PASS	
High	2462	22.22	30.00	PASS	

NOTE: 1.At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

10*log((10^(3/10))+(10^(3/10)))=6.01 30-(6.01-6)=29.99

IEEE 802.11n HT20 mode(Two TX)

Channel	Channel Frequency		Power 3m)	Peak Power	Peak Power Limit	Pass /
Onamici	(MHz)	Chain 0	Chain 1	Total (dBm)	(dBm)	Fail
Low	2412	18.86	19.23	22.06	29.99	PASS
Middle	2437	20.04	20.43	23.25	29.99	PASS
High	2462	20.41	20.86	23.65	29.99	PASS

- **NOTE**: 1. At finial test to get the worst-case emission at 13Mbps.
 - 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

10*log((10^(3/10))+(10^(3/10)))=6.01 30-(6.01-6)=29.99

IEEE 802.11n HT40 mode (Two TX)

Channel	Channel Frequency		Power Bm)	Peak Power	Peak Power Limit	Pass /
Onamiei	(MHz)	Chain 0	Chain 1	Total (dBm)	(dBm)	Fail
Low	2422	17.62	18.33	21.00	29.99	PASS
Middle	2437	17.98	19.05	21.56	29.99	PASS
High	2452	18.15	19.23	21.73	29.99	PASS

- **NOTE**: 1. At finial test to get the worst-case emission at 27Mbps.
 - 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

Reference No: T110729402-RP1
CID: U6A-WU319D
Report No.: T111226A01-RP1

Average Power Data

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	13.63
Middle	2437	14.38
High	2462	14.81

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Average Power (dBm)		
Low	2412	10.85		
Middle	2437	11.69		
High	2462	12.12		

IEEE 802.11n HT20 mode

Channel	Channel Frequency (MHz)	Average Power (dBm) Chain 0	Average Power (dBm) Chain 1
Low	2412	8.89	10.01
Middle	2437	9.92	11.06
High	2462	10.27	11.57

IEEE 802.11n HT40 mode

Channel	Channel Frequency (MHz)	Average Power (dBm) Chain 0	Average Power (dBm) Chain 1
Low	2422	8.04	9.05
Middle	2437	8.42	9.53
High	2452	8.46	9.81

Reference No: T110729402-RP1
ID: U6A-WU319D Report No.: T111226A01-RP1

8.3 POWER SPECTRAL DENSITY

<u>LIMIT</u>

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENTS

Name of Equipment	Equipment Manufacturer		Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSEK 30	835253/002	JUL. 14, 2012	

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=3KHz and VBW≧RBW, set sweep time=span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

Total peak power calculation formula: 10 log (10^ (Chain 0 PPSD / 10)).

No non-compliance noted.

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	PPSD Chain 0 (dBm)	Chain 0 Limit	
Low	2412	-16.79	8	PASS
Middle	2437	-15.90	8	PASS
High	2462	-15.38	8	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 1Mbps long.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	PPSD Chain 0 (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2412	-18.73	8	PASS
Middle	2437	-17.89	8	PASS
High	2462	-17.23	8	PASS

NOTE:

- 1. At finial test to get the worst-case emission at 6Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

10*log((10^(3/10))+(10^(3/10)))=6.01	8-(6.01-6)=7.99

IEEE 802.11n HT20 mode

Channel	Channel Frequency		PPSD(dBı	n)	Maximum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	Total	(dBm)	ı alı
Low	2412	-19.61	-18.53	-16.03	7.99	PASS
Middle	2437	-18.12	-17.84	-14.97	7.99	PASS
High	2462	-18.68	-17.40	-14.98	7.99	PASS

NOTE:

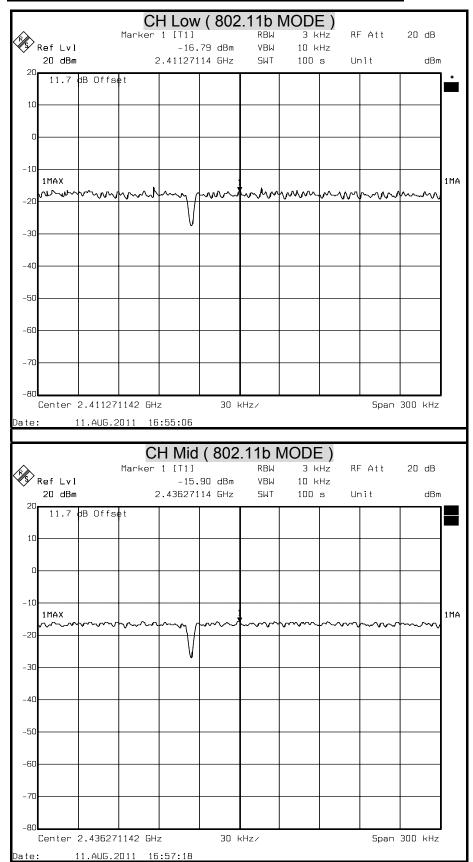
- 1. At finial test to get the worst-case emission at 13Mbps.
- 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

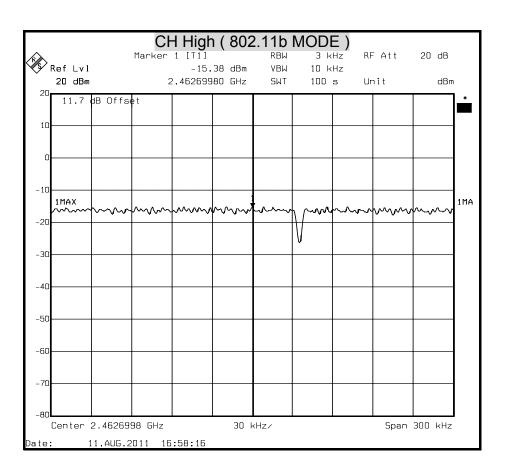
10*log((10^(3/10))+(10^(3/10)))=6.01	8-(6.01-6)=7.99
10 100((10°(3/10))T(10°(3/10)))=0.01	O-ID.U I-DI-/.33
	- \/

IEEE 802.11n HT40 mode

Channel	Channel Frequency	PPSD(dBm)			Maximum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	Total	(dBm)	I all
Low	2422	-24.59	-22.77	-20.58	7.99	PASS
Middle	2437	-24.09	-22.22	-20.04	7.99	PASS
High	2452	-23.77	-21.97	-19.77	7.99	PASS

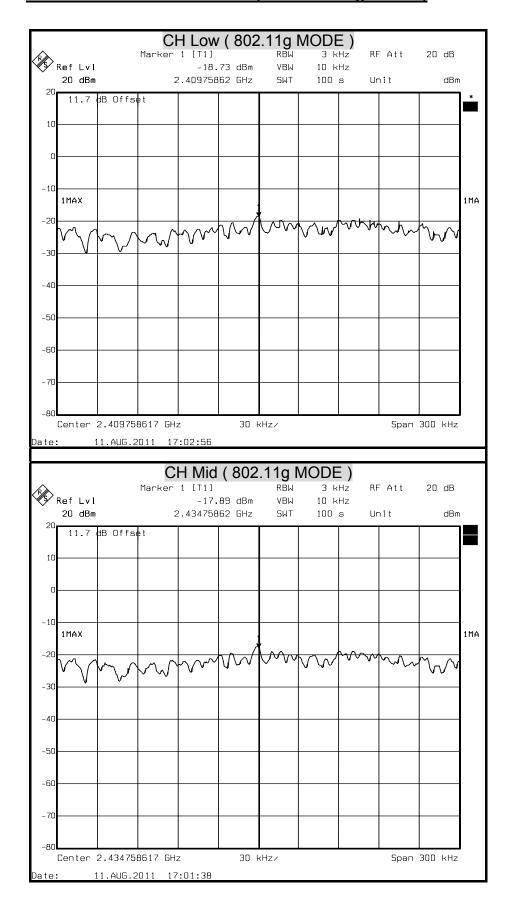
NOTE: 1. At finial test to get the worst-case emission at 27Mbps.

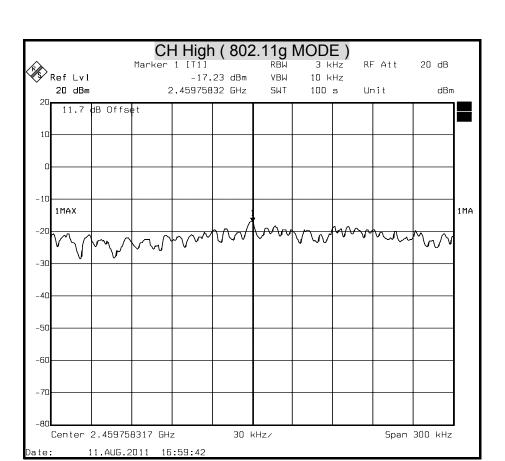

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.


10*log((10^(3/10))+(10^(3/10)))=6.01 Combined mode 8-(6.01-6)=7.99

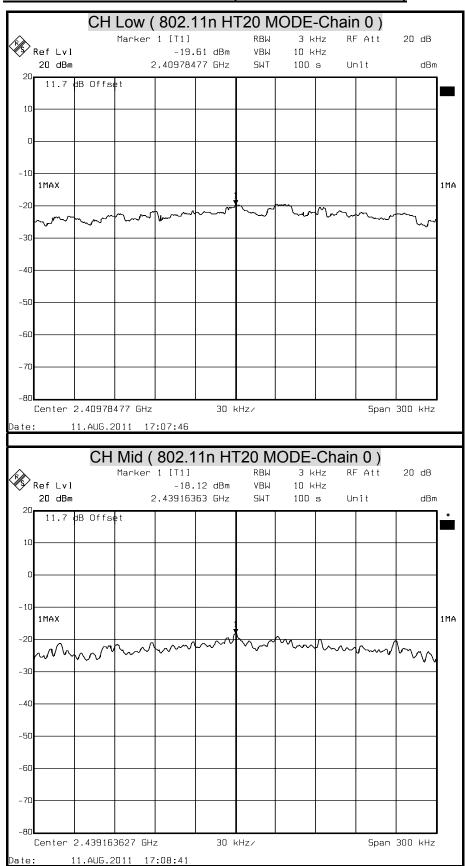
Channel		Channel Frequency (MHz)	PPSD(dBm)	Maximum Limit (dBm)	Pass / Fail
802.11n HT20 Combined mode	CH Low	2412	-14.85		
	CH Middle	2437	-14.12	7.99	PASS
	CH High	2462	-13.57		
	CH Low	2422	-19.41		
802.11n HT40 Combined mode	CH Middle	2437	-18.86	7.99	PASS
	CH High	2452	-18.46		

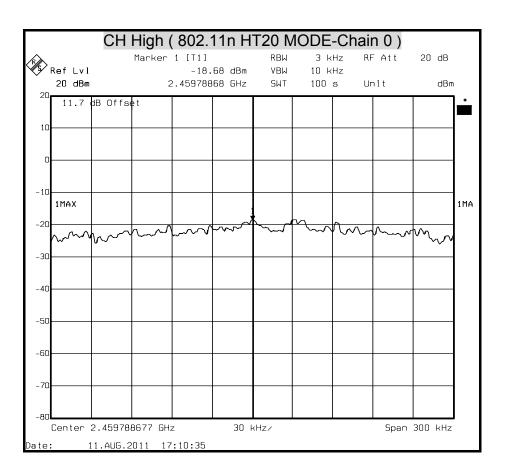
Report No.: T111226A01-RP1


POWER SPECTRAL DENSITY (IEEE 802.11b MODE)



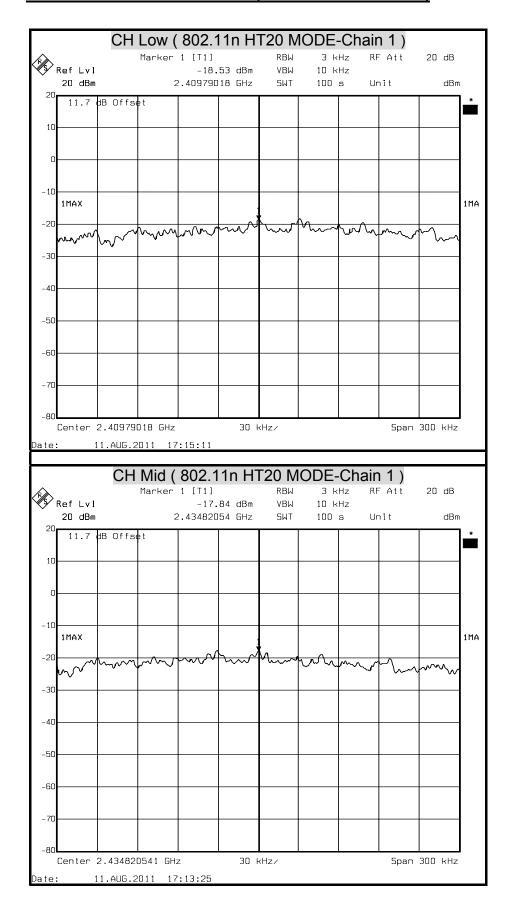
Reference No: T110729402-RP1
J6A-WU319D Report No.: T111226A01-RP1


POWER SPECTRAL DENSITY (IEEE 802.11g MODE)

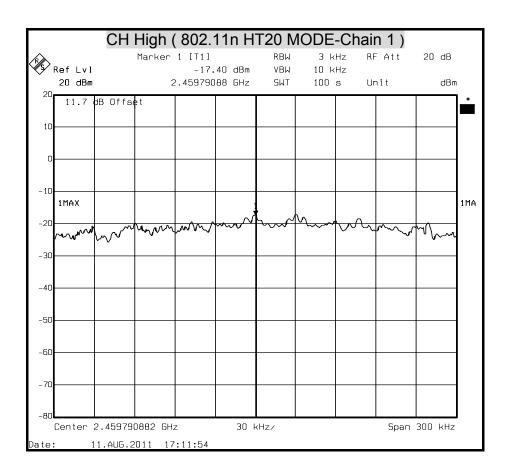


Report No.: T111226A01-RP1

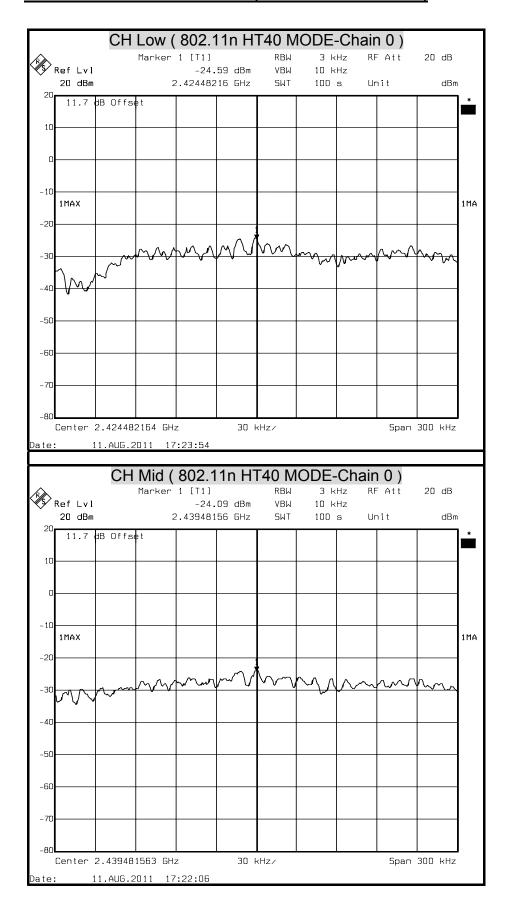
POWER SPECTRAL DENSITY (802.11n HT20 MODE)

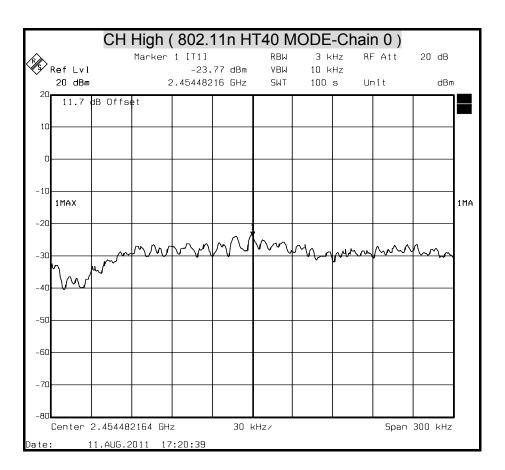


Reference No: T110729402-RP1
ID: U6A-WU319D Report No.: T111226A01-RP1

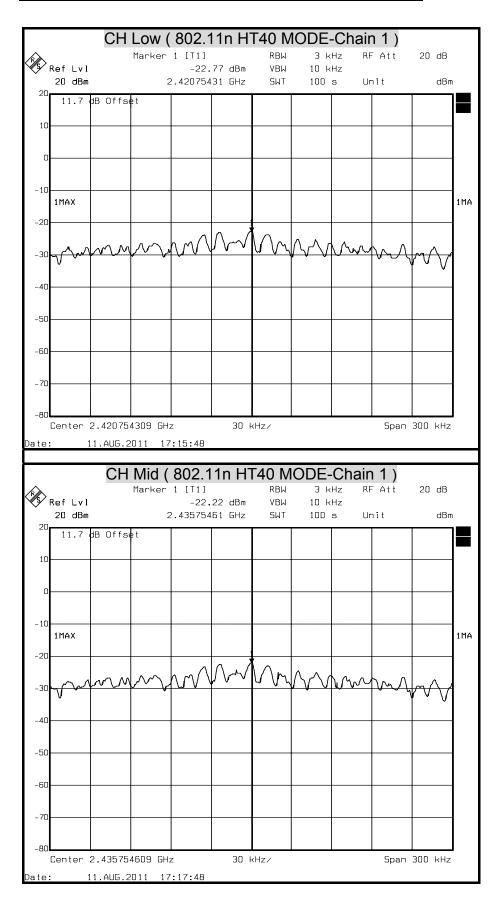


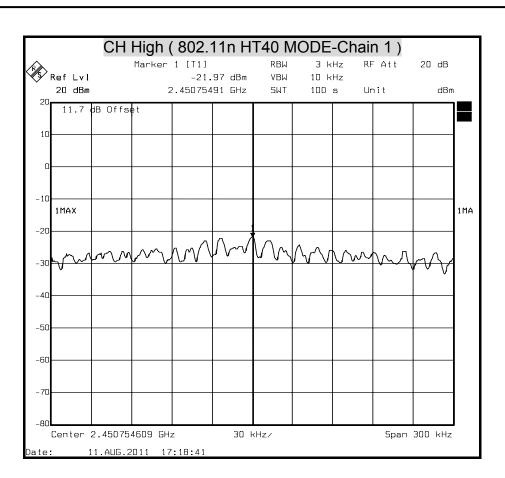
Reference No: T110729402-RP1 Report No. : T111226A01-RP1


POWER SPECTRAL DENSITY (802.11n HT20 MODE)

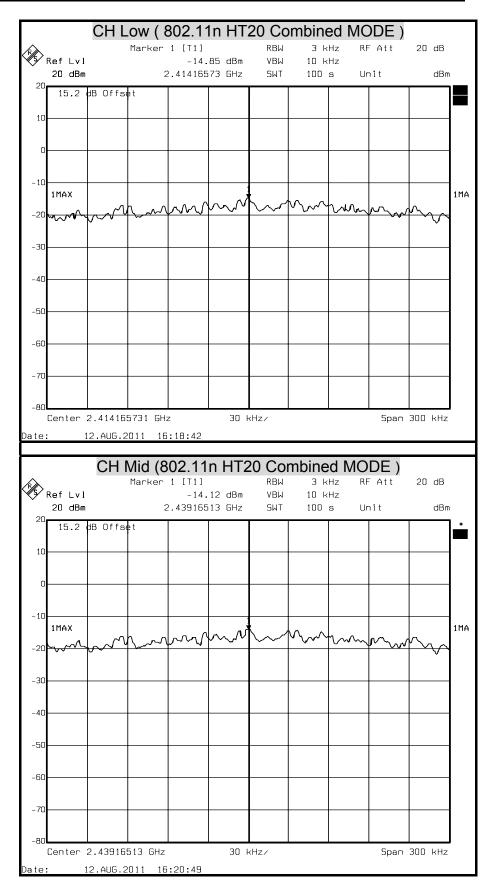


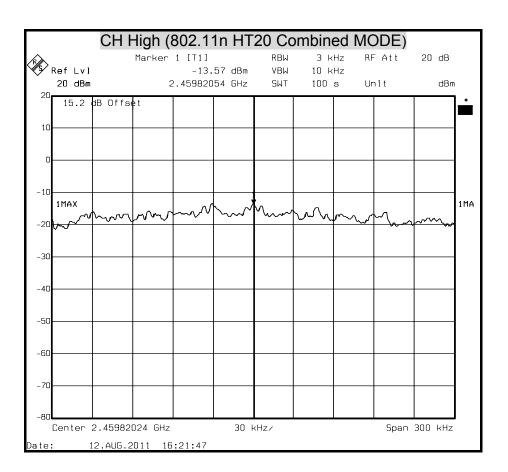
Reference No: T110729402-RP1
6A-WU319D Report No. : T111226A01-RP1


POWER SPECTRAL DENSITY (802.11n HT40 MODE)



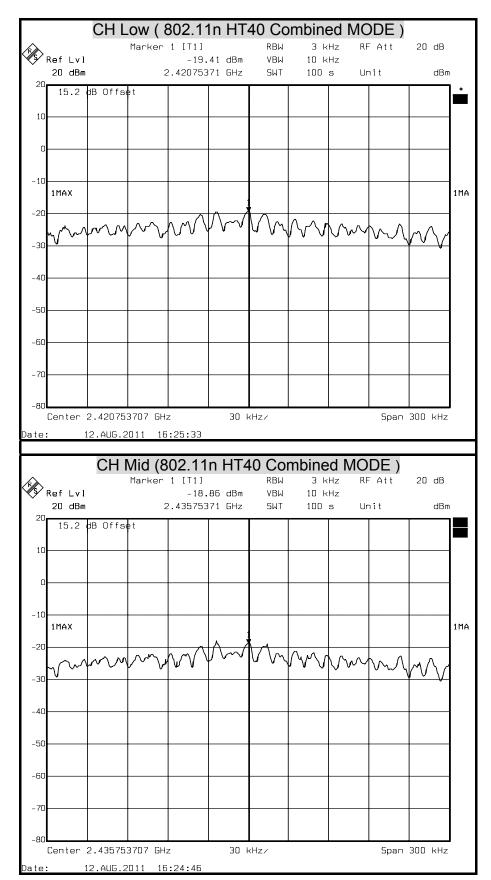
Reference No: T110729402-RP1
Report No.: T111226A01-RP1


POWER SPECTRAL DENSITY (802.11n HT40 MODE)

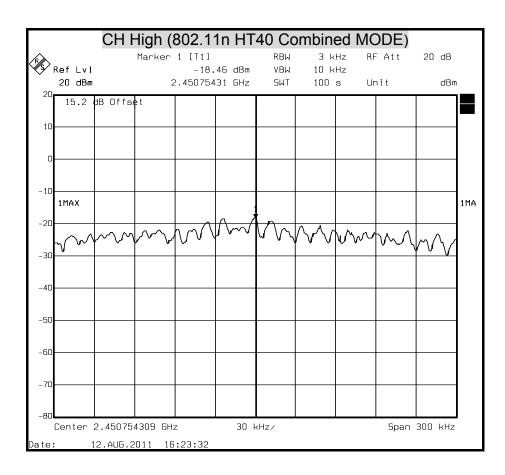


Report No.: T111226A01-RP1

POWER SPECTRAL DENSITY (802.11n HT20 Combined MODE)



Reference No: T110729402-RP1
ID: U6A-WU319D Report No.: T111226A01-RP1



POWER SPECTRAL DENSITY (802.11n HT40 Combined MODE)

Reference No: T110729402-RP1

Reference No: T110729402-RP1U6A-WU319D
Report No.: T111226A01-RP1

Reference No: T110729402-RP1 319D Report No. : T111226A01-RP1

8.4 CONDUCTED SPURIOUS EMISSION

LIMITS

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST SETUP

TEST RESULTS

No non-compliance noted.

Reference No: T110729402-RP1
D: U6A-WU319D Report No.: T111226A01-RP1

802.11b Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	97.21	108.91	N/A	N/A
2400	11.7	59.02	70.72	88.91	-18.19
2613.12625	11.7	42.12	53.82	88.91	-35.09
6908.81764	11.7	44.98	56.68	88.91	-32.23

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	98.22	109.92	N/A	N/A
2400	11.7	41.67	53.37	89.92	-36.55
2190.54108	11.7	40.82	52.52	89.92	-37.40
6955.91182	11.7	43.96	55.66	89.92	-34.26

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	98.85	110.55	N/A	N/A
2400	11.7	41.05	52.75	90.55	-37.80
1672.72545	11.7	41.31	53.01	90.55	-37.54
6908.81764	11.7	44.87	56.57	90.55	-33.98

802.11g Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	90.92	102.62	N/A	N/A
2400	11.7	60.55	72.25	82.62	-10.37
1976.27255	11.7	40.91	52.61	82.62	-30.01
6955.91182	11.7	45.16	56.86	82.62	-25.76

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	91.56	103.26	N/A	N/A
2400	11.7	39.80	51.5	83.26	-31.76
1583.44689	11.7	41.00	52.7	83.26	-30.56
6955.91182	11.7	45.09	56.79	83.26	-26.47

<u> </u>					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	92.44	104.14	N/A	N/A
2400	11.7	40.50	52.2	84.14	-31.94
2833.34669	11.7	41.80	53.5	84.14	-30.64
6908.81764	11.7	44.90	56.6	84.14	-27.54

Reference No: T110729402-RP1
ID: U6A-WU319D Report No.: T111226A01-RP1

802.11n HT20 Mode Chain 0

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	89.08	100.78	N/A	N/A
2400	11.7	58.53	70.23	80.78	-10.55
1892.94589	11.7	41.04	52.74	80.78	-28.04
6720.44088	11.7	44.97	56.67	80.78	-24.11

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	89.14	100.84	N/A	N/A
2400	11.7	39.98	51.68	80.84	-29.16
637.0941884	11.7	39.98	51.68	80.84	-29.16
6861.72345	11.7	45.70	57.4	80.84	-23.44

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	89.65	101.35	N/A	N/A
2400	11.7	41.38	53.08	81.35	-28.27
2910.72144	11.7	40.84	52.54	81.35	-28.81
6673.34669	11.7	45.60	57.3	81.35	-24.05

802.11n HT20 Mode Chain 1

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	90.08	101.78	N/A	N/A
2400	11.7	60.55	72.25	81.78	-9.53
1547.73547	11.7	41.02	52.72	81.78	-29.06
6673.34669	11.7	44.29	55.99	81.78	-25.79

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	90.92	102.62	N/A	N/A
2400	11.7	40.63	52.33	82.62	-30.29
1256.09218	11.7	40.62	52.32	82.62	-30.30
6673.34669	11.7	44.12	55.82	82.62	-26.80

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	91.10	102.8	N/A	N/A
2400	11.7	40.52	52.22	82.80	-30.58
2232.20441	11.7	41.55	53.25	82.80	-29.55
6955.91182	11.7	44.91	56.61	82.80	-26.19

Reference No: T110729402-RP1 Report No.: T111226A01-RP1

802.11n HT40 Mode Chain 0

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422	11.7	84.25	95.95	N/A	N/A
2400	11.7	57.08	68.78	75.95	-7.17
1571.54309	11.7	40.97	52.67	75.95	-23.28
6673.34669	11.7	44.55	56.25	75.95	-19.70

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	84.29	95.99	N/A	N/A
2400	11.7	42.46	54.16	75.99	-21.83
2625.03006	11.7	41.54	53.24	75.99	-22.75
6626.25251	11.7	44.42	56.12	75.99	-19.87

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452	11.7	84.52	96.22	N/A	N/A
2400	11.7	39.28	50.98	76.22	-25.24
1946.51303	11.7	41.28	52.98	76.22	-23.24
6673.34669	11.7	44.30	56	76.22	-20.22

802.11n HT40 Mode Chain 1

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422	11.7	87.33	99.03	N/A	N/A
2400	11.7	57.47	69.17	79.03	-9.86
1714.38878	11.7	40.78	52.48	79.03	-26.55
6955.91182	11.7	45.92	57.62	79.03	-21.41

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	87.14	98.84	N/A	N/A
2400	11.7	42.05	53.75	78.84	-25.09
1875.09018	11.7	41.11	52.81	78.84	-26.03
6955.91182	11.7	44.57	56.27	78.84	-22.57

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452	11.7	87.93	99.63	N/A	N/A
2400	11.7	40.52	52.22	79.63	-27.41
1339.41884	11.7	41.39	53.09	79.63	-26.54
6955.91182	11.7	44.62	56.32	79.63	-23.31

Reference No: T110729402-RP1
ID: U6A-WU319D Report No.: T111226A01-RP1

802.11n HT20 Combined Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	15.2	91.87	107.07	N/A	N/A
2400	15.2	61.71	76.91	87.07	-10.16
125.2304609	15.2	40.08	55.28	87.07	-31.79
6579.15832	15.2	44.79	59.99	87.07	-27.08

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	15.2	91.19	106.39	N/A	N/A
2400	15.2	40.29	55.49	86.39	-30.90
1351.32265	15.2	40.10	55.3	86.39	-31.09
6955.91182	15.2	44.42	59.62	86.39	-26.77

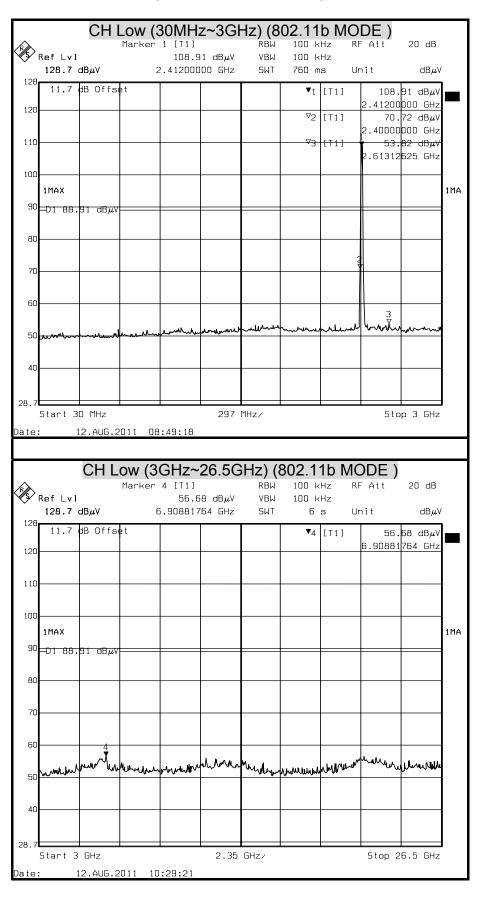
CH High

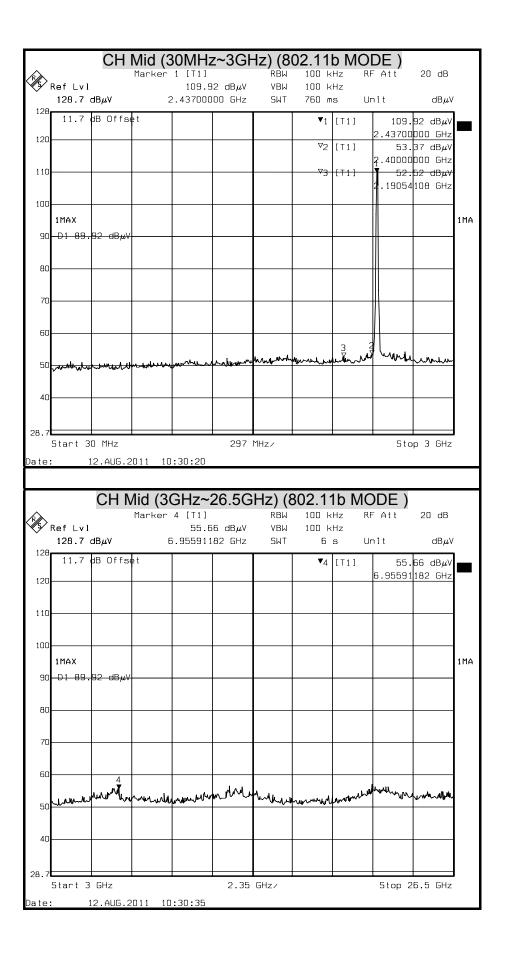
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	15.2	92.65	107.85	N/A	N/A
2400	15.2	41.07	56.27	87.85	-31.58
89.51903808	15.2	40.66	55.86	87.85	-31.99
6955.91182	15.2	46.51	61.71	87.85	-26.14

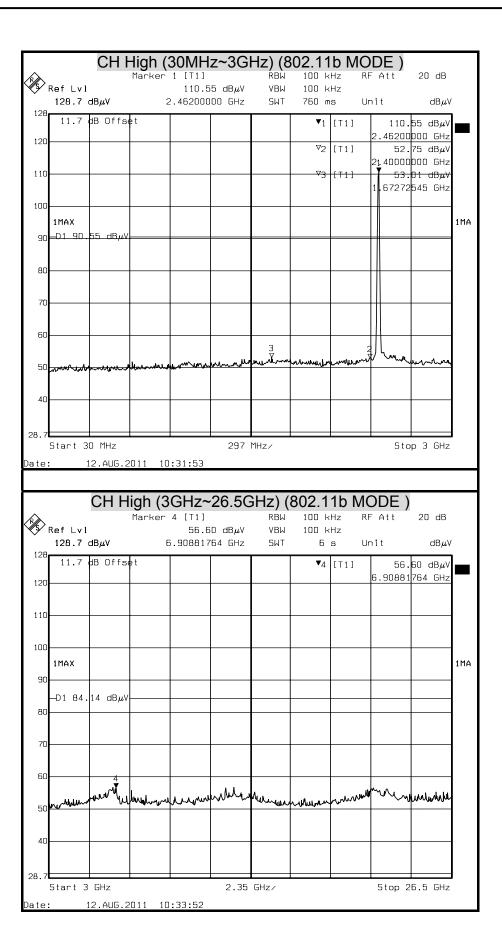
802.11n HT40 Combined Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422	15.2	87.69	102.89	N/A	N/A
2400	15.2	57.67	72.87	82.89	-10.02
89.51903808	15.2	41.22	56.42	82.89	-26.47
6720.44088	15.2	45.46	60.66	82.89	-22.23

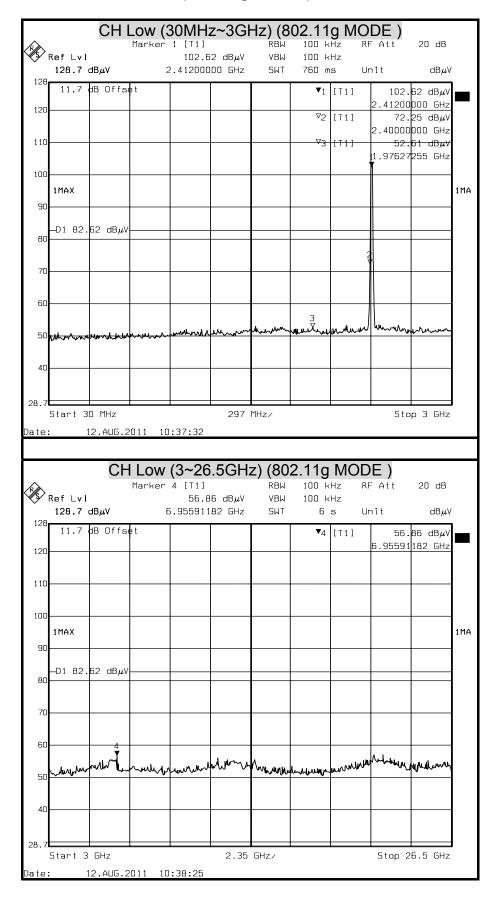

CH Mid

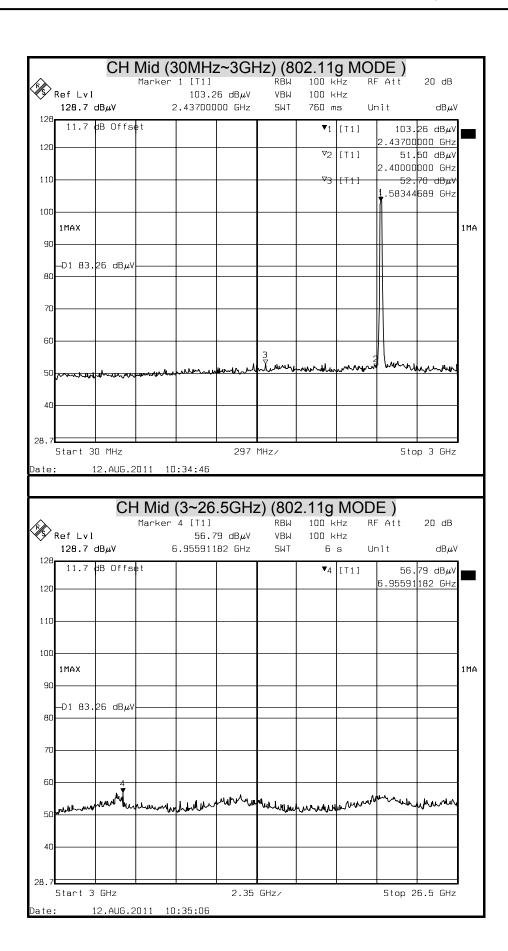

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	15.2	87.82	103.02	N/A	N/A
2400	15.2	43.98	59.18	83.02	-23.84
89.51903808	15.2	41.63	56.83	83.02	-26.19
6626.25251	15.2	43.92	59.12	83.02	-23.90


Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452	15.2	88.23	103.43	N/A	N/A
2400	15.2	39.22	54.42	83.43	-29.01
1256.09218	15.2	40.55	55.75	83.43	-27.68
6579.15832	15.2	44.18	59.38	83.43	-24.05

Reference No: T110729402-RP1
CID: U6A-WU319D
Report No.: T111226A01-RP1

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (IEEE 802.11b MODE)




OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

(802.11g MODE)

Reference No: T110729402-RP1

Reference No: T110729402-RP1
C ID: U6A-WU319D
Report No.: T111226A01-RP1

