

Registration number: W6M20812-9466-C-1 FCC ID: U6A-WU206N

4 Measurement Techniques

Section 15.403(f) – Digital Modulation

Digital modulation is required for Digital Transmission Systems (DTS). Digital modulation: The process by which the characteristics of a carrier wave are varied among a set of predetermined discrete values in accordance with a digital modulating function as specified in document ANSI C63.17-1998.

Section 15.31(m) – Number of Operating Frequencies

This rule specifies the number of operating frequencies to be examined for tunable equipment.

Section 15.207 – Power line conducted emissions

If the unit is AC powered, an AC power line conducted test is also required per this rule.

Section 15.247(a)(2) – Bandwidth.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW. The 6 dB bandwidth must be greater than 500 kHz.

Section 15.247(b) – Power output.

This is an RF conducted test. Use a direct connection between the antenna port of the transmitter and the spectrum analyzer, through suitable attenuation. Power Output Option 1 is a peak measurement. Power Output Option 2 is the same procedure used for UNII output power measurements. The equipment under test is not for UNII. Therefore, Power Output Option 1 is used as below.

Power Output Option 1

Set the RBW greater than 6 dB bandwidth of the emission or use a peak power meter.

Section 15.247(c) – Spurious emissions.

Radiated emission test: Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. A pre-amp (and possibly a high-pass filter) is necessary for this measurement. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

Section 15.247(d) – Power spectral density (PSD).

The same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used. Use PSD Option 1 if Power output Option 1 was used. Use PSD Option 2 if power output Option 2 was used. Therefore, PSD Option 1 is used as below. Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M20812-9466-C-1 FCC ID: U6A-WU206N

PSD Option 1

Locate and zoom in on emission peak(s) within the passband. Set RBW = 3 kHz, VBW > RBW, sweep= (SPAN/3 kHz) e.g., for a span of 1.5 MHz, the sweep should be $1.5 \times 10^6 \div 3 \times 10^3 = 500$ seconds. The peak level measured must be no greater than + 8 dBm. If external attenuation is used, don't forget to add this value to the reading. Use the following guidelines for modifying the power spectral density measurement procedure when necessary.

- For devices with spectrum line spacing greater than 3 kHz no change is required.
- For devices with spectrum line spacing equal to or less than 3 kHz, the resolution bandwidth must be reduced below 3 kHz until the individual lines in the spectrum are resolved. The measurement data must then be normalized to 3 kHz by summing the power of all the individual spectral lines within a 3kHz band (in linear power units) to determine compliance.
- If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz.
- Should all the above fail or any controversy develop regarding accuracy of measurement, the FCC Laboratory will use the HP 89440A Vector Signal Analyzer for final measurement unless a clear showing can be made for a further alternate.

ALTERNATIVE TEST PROCEDURES

If antenna conducted tests cannot be performed on this device, radiated tests to show compliance with the various conducted requirements of Section 15.247 are acceptable. As stated previously, a pre-amp must be used in making the following measurements. 1. Calculate the transmitter's peak power using the following equation:

Where: E = the measured maximum field strength in V/m.

Set the RBW > 6dB bandwidth of the emission or use a peak power meter.

P = (E x d) squared / (30 x G)

- G = the numeric gain of the transmitting antenna over an isotropic radiator.
- d = the distance in meters from which the field strength was measured.
- P = the power in watts for which you are solving:
- 2. Measure the power spectral density as follows:
- A. Tune the analyzer to the highest point of the maximized fundamental emission. Reset the analyzer to a RBW = 3 kHz, VBW > RBW, span = 300 kHz, sweep = 100 sec.
- B. From the peak level obtained in (A), derive the field strength, E, by applying the appropriate antenna factor, cable loss, pre-amp gain, etc. Using the equation listed in (1), calculate a power level for comparison to the + 8 dBm limit.
- Note: The above settings are used for peak measurements. The optional procedures for output power and power spectral density measurements can be used when applicable.