

FCC 47 CFR PART 15 SUBPART C: 2009 AND ANSI C63.4: 2003

TEST REPORT

For

Wireless Broadband Router

Model Number: BR486n

Brand Name: ETOP

Issued for

E-TOP Network Technology Inc.

No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. Tainan Lab. No. 8, Jiu Ceng Ling, Jiaokeng Village,Sinhua Township, Tainan Hsien 712, Taiwan (R.O.C.) TEL: 886-6-580-2201 FAX: 886-6-580-2202

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document

Total Page: 139

REVISION HISTORY

Rev.	Issue Date		Revisions	Effect Page	Revised By
00	March 29, 2011	29, 2011 Initial Issue		ALL	Daphne Liang

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
2.1 DESCRIPTION OF EUT & POWER	5
3. DESCRIPTION OF TEST MODES	7
4. TEST METHODOLOGY	8
5. FACILITIES AND ACCREDITATIONS	8
5.1 FACILITIES	8
5.2 EQUIPMENT	8
5.3 LABORATORY ACCREDITATIONS LISTINGS	8
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	9
6. CALIBRATION AND UNCERTAINTY	10
6.1 MEASURING INSTRUMENT CALIBRATION	10
6.2 MEASUREMENT UNCERTAINTY	10
7. SETUP OF EQUIPMENT UNDER TEST	11
7.1 SETUP CONFIGURATION OF EUT	11
7.2 SUPPORT EQUIPMENT	12
7.2 SUPPORT EQUIPMENT	12
7.3 EUT OPERATING CONDITION	13
8. APPLICABLE LIMITS AND TEST RESULTS	14
8.1 6DB BANDWIDTH	14
8.2 MAXIMUM PEAK OUTPUT POWER	29
8.3 AVERAGE POWER	
8.4 MAXIMUM PERMISSIBLE EXPOSURE	35
8.5 POWER SPECTRAL DENSITY	37
8.6 CONDUCTED SPURIOUS EMISSION	56
8.7 RADIATED EMISSIONS	
8.8 POWERLINE CONDUCTED EMISSIONS	131
9. ANTENNA REQUIREMENT	135
9.1 STANDARD APPLICABLE	135
9.2 ANTENNA CONNECTED CONSTRUCTION	135
APPENDIX 1 SETUP PHOTOS	136
APPENDIX 2 PHOTOGRAPHS OF EUT	A1

1. TEST REPORT CERTIFICATION

Applicant	E-TOP Network Technology Inc.
Address	No. 82, Gongye 2nd Rd., Tainan City 70955, Taiwan, R.O.C.
Equipment Under Test	: Wireless Broadband Router
Model Number	: BR486n
Brand Name	: ETOP
Date of Test	: March 2, 2011 ~ March 23, 2011

APPLICABLE STANDARD			
STANDARD	TEST RESULT		
FCC Part 15 Subpart C : 2009 AND ANSI C63.4 : 2003	No non-compliance noted		

Approved by:

Reviewed by:

eroy

Jeter Wu Assistant Manager

Eric Huang Assistant Section Manager

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	Wireless Broadband Router
Model Number	BR486n
Brand Name	ETOP
Frequency Range	IEEE 802.11b/g,802.11n HT20 (DTS Band):2412MHz~2462MHz IEEE 802.11n HT40 (DTS Band):2422MHz~2452MHz
Transmit Power	IEEE 802.11b Mode : 16.36dBm (DTS Band) (43.24 mW) IEEE 802.11g Mode : 22.51dBm (DTS Band) (178.24 mW) IEEE 802.11n HT20 Mode : 22.23dBm (DTS Band) (166.92 mW) IEEE 802.11n HT40 Mode : 22.01dBm (DTS Band) (158.88 mW)
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40: 5MHz
Channel Number	IEEE 802.11b/g, 802.11n HT20:11 Channels IEEE 802.11n HT40 :7 Channels
	IEEE 802.11b : 11, 5.5, 2, 1 Mbps
Transmit Data Rate	IEEE 802.11g : 54, 48, 36, 24, 18, 12, 9, 6 Mbps
	IEEE 802.11n HT20 : 130, 117, 104, 78, 52, 39, 26, 13 Mbps
	IEEE 802.11n HT40 : 300, 270, 243, 216, 162, 108, 81, 54, 27 Mbps
	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)
Type of Modulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)
Frequency Selection	By software / firmware
Antenna Type	Two antennas (2T2R) Dipole Antenna Gain: 3 dBi
Power Source	Powered from adapter(with a core). Manufacturer: Keen Ocean Industrial Ltd. Model:S04-003-0050-00600 Input: 100-240Vac, 50/60Hz, 0.1A max Output: 5Vdc, 600mA The core spec. Brand :TDK Model :ZCAT4625-3430D(BK), 24mm X 34mm X12mm
Temperature Range	0 ~ +40°C

REMARK:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: **U6A-BR486N** filing to comply with Section 15.207,15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. This device does not support the CDD mode.

4. To add a series model is for business necessary. The different of the each model is shown as bellows:

Multiple listing:

Company & Address	Brand	Model	Product Name
E-Top Network Technology Inc. No. 82 ,Gongye 2nd Rd.,Tainan City 70955,Taiwan,R.O.C.	ETOP	BR486n	Wireless Broadband Router
Amigo Technology Inc. 5F., No.63, Lane 77, Xing-Ai Road, Neihu Dist., Taipei City 114, Taiwan (R.O.C.)	Amigo	BR486n	802.11n 300M Broadband Router
CNet Technology Inc. 1F,No.30,Industry E.RD.IX,Science-Based Industrial Park,Hsin-Chu,Taiwan,R.O.C.	CNet	CBR-986	Wireless-N Broadband Router
Sapido Technology Inc. No. 383., Sec. 2, Minsheng Rd., West Central District, Tainan 700, Taiwan, R.O.C.	SAPIDO	RB-1800	N+ Power Saving Broadband Router

3. DESCRIPTION OF TEST MODES

The EUT is a 11n router. It has two transmitter chains and two receive chains (2x2 configurations). The 2x2 configuration is implemented with two outside chains (Chain 0 and Chain 1).

The RF chipset is manufactured by Ralink Technology, Corp.

The antenna peak gain 3dBi (highest gain) were chosen for full testing.

IEEE 802.11 b ,802.11g ,802.11n HT20 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2412
Middle	2437
High	2462

IEEE 802.11b mode: 11Mbps data rate (worst case) were chosen for full testing. IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing. IEEE 802.11n HT20 mode: 13Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2422
Middle	2437
High	2452

IEEE 802.11n HT40 mode: 27Mbps data rate (worst case) were chosen for full testing.

The worst-case data rates are determined according to the description above, based on the investigations by measuring the PSD, peak power and average power across all the data rates, bandwidths, modulations and spatial stream modes.

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2462 MHz.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Jiu Ceng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan (R.O.C.)

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW-1037).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FCC TW-1037
Japan	VCCI	3/10 meter Open Area Test Sites and conducted test sites to perform radiated/conducted measurements	VCCI C-2882 R-2635
Taiwan	TAF	CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, EN 60601-1-2, CISPR 22, CNS 13438, EN 55022, EN 55024, AS/NZS CISPR 22 CISPR 14, EN 55014-1, EN 55014-2, CNS 13783-1, CISPR 22, CNS 13439, EN 55013, FCC Method-47 CFR Part 15 Subpart B, IC ICES-003, VCCI V-3 & V-4 FCC Method-47 CFR Part 15 Subpart C and ANSI C63.4, LP 0002 EN / IEC 61000-4-2 / -3 / -4 / -5 / -6 / -8 / -11 EN 61000-6-3, EN 61000-6-1, AS/NZS 4251.1, EN 61000-6-4, EN 61000-6-2, AS/NZS 4251.2, EN 61204-3, EN 50130-4, EN 62040-2, EN 50371, EN 50385, AS/NZS 4268, ETSI EN 300 328, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 300 328, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 301 893, ETSI EN 300 220-2/-1 ETSI EN 301 357-2/-1 RSS-310, RSS-210 Issue 7, RSS-Gen Issue 2	
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS13439	(1) SL2-IN-E-0039 SL2-R1/R2-0039 SL2-A1-E-0039
Canada	Industry Canada	RSS210, Issue 7	Canada IC 2324H-1

* No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

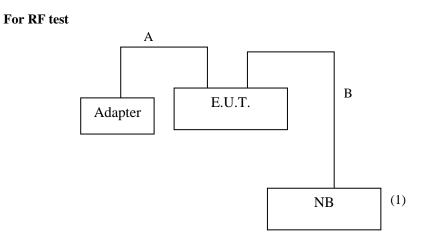
6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

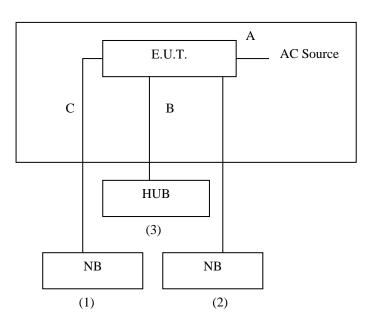
The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:


PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz Test Site : OATS-6	±3.38dB
Radiated Emission, 200 to 1000 MHz Test Site : OATS-6	±3.04dB
Radiated Emission, 1 to 26.5 GHz	± 3.20dB
Power Line Conducted Emission	± 2.01dB

Uncertainty figures are valid to a confidence level of 95%, K=2



7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

For EMI test

7.2 SUPPORT EQUIPMENT

For RF test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Note Book	IBM	T43	DoC	Power cable, unshd, 1.6m

No.	Signal cable description		
А	DC Power Cable Unshielded, 1.7m, 1pcs. with a core.		
В	LAN Cable	Unshielded, 10m, 1pcs.	

For EMI test

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Note Book	IBM	R51	R33026	Power cable, unshd, 1.6m
2	Note Book	IBM	T43	DoC	Power cable, unshd, 1.6m
3	HUB	BARRICAD	SMC7008BR	DOC	Power cable, unshd, 1.6m

No.	Signal cable description				
А	Power Cable Unshielded, 1.9m, 1pcs. with a core.				
В	LAN Cable	Unshielded, 1.8m, 5pcs.			
С	LAN Cable	Unshielded, 10m, 1pcs.			
D	LAN Cable	Unshielded, 10m, 1pcs.			

REMARK:

1. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7.3 EUT OPERATING CONDITION

RF Setup

- 1. Set up all computers like the setup diagram.
- 2. The "Realtek MP Test Program" software was used for testing

TX Mode:

- ⇒ Tx Mode:CCK 、 OFDM 、 HT MixMode (Bandwidth: 20 、 40)
- ⇒ **Tx Data Rate: 11Mbps long** (IEEE 802.11b mode , TX)

6Mbps (IEEE 802.11g mode , TX)

13Mbps (IEEE 802.11n HT20 mode ,chain 0, chain 1 TX)

27Mbps (IEEE 802.11n HT40 mode, chain 0, chain 1 TX)

Power control mode

Target Power: IEEE 802.11b Channel Low (2412MHz) = 31 IEEE 802.11b Channel Middle (2437MHz) = 31 IEEE 802.11b Channel High (2462MHz) = 31 Target Power: IEEE 802.11g Channel Low (2412MHz) = 37 IEEE 802.11g Channel Middle (2437MHz) = 37 IEEE 802.11g Channel High (2462MHz) = 37 Target Power: IEEE 802.11n HT20 Channel Low (2412MHz) = 35 (Chain 0) IEEE 802.11 n HT20 Channel Middle (2437MHz) = 35 (Chain 0) IEEE 802.11 n HT20 Channel High (2462MHz) = 35 (Chain 0) IEEE 802.11n HT20 Channel Low (2412MHz) = 35 (Chain 1) IEEE 802.11 n HT20 Channel Middle (2437MHz) = 35 (Chain 1) IEEE 802.11 n HT20 Channel High (2462MHz) = 35 (Chain 1) Target Power: IEEE 802.11n HT40 Channel Low (2422MHz) = 37 (Chain 0) IEEE 802.11 n HT40 Channel Middle (2437MHz) = 37 (Chain 0) IEEE 802.11 n HT40 Channel High (2452MHz) = 37 (Chain 0) IEEE 802.11n HT40 Channel Low (2422MHz) = 37 (Chain 1) IEEE 802.11 n HT40 Channel Middle (2437MHz) = 37 (Chain 1) IEEE 802.11 n HT40 Channel High (2452MHz) = 37 (Chain 1)

(2) **RX Mode**:

Start RX

- 3. All of the function are under run.
- 4. Start test.

Normal Link Setup

- 1. Set up all computers like the setup diagram.
- 2. All of the function are under run.
- 3. Notebook PC (2) ping 192.168.0.10 –t to Notebook PC (1).
- 4. Notebook PC (1) ping 192.168.0.20 –t to Notebook PC (2).
- 5. Notebook PC (1) ping 192.168.0.50 –t to Wireless Access Point (3). Start test.

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6DB BANDWIDTH

<u>LIMIT</u>

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	R&S	FSEK 30	835253/002	JUL. 14, 2011	

TEST SETUP

FUT	SPECTRUM
	ANALYZER

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 100 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

No non-compliance noted.

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Frequency (kHz)		Pass / Fail
Low	2412	10321	500	PASS
Middle	2437	10321	500	PASS
High	2462	10321	500	PASS

NOTE: 1. At finial test to get the worst-case emission at11Mbps.
 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16733	500	PASS
Middle	2437	16733	500	PASS
High	2462	16733	500	PASS

NOTE : 1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

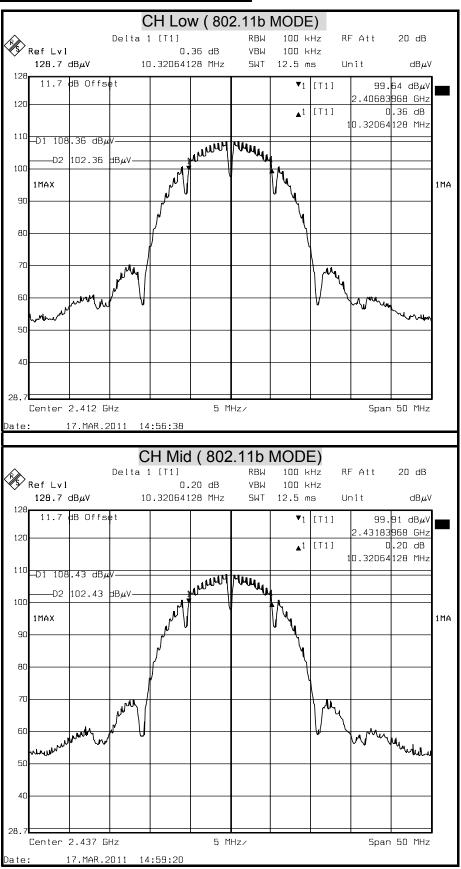
IEEE 802.11n HT20 mode (Two TX)

Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit (kHz)	Pass / Fail	
	(MHz)	Chain 0	Chain1	(K112)		
Low	2412	17936	17936	500	PASS	
Middle	2437	17936	17936	500	PASS	
High	2462	17936	17936	500	PASS	

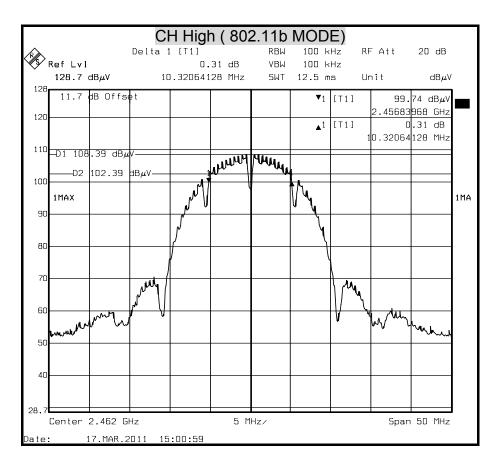
NOTE: 1. At finial test to get the worst-case emission at 13Mbps.
 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode (Two TX)

Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit	Pass / Fail	
	(MHz)	Chain 0	Chain1	(kHz)		
Low	2422	36874	36874	500	PASS	
Middle	2437	36874	36874	500	PASS	
High	2452	36874	36874	500	PASS	

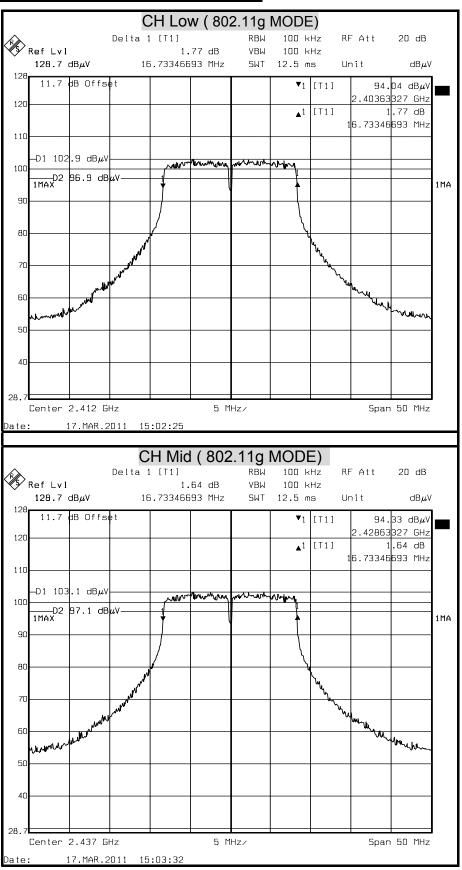

NOTE : 1. At finial test to get the worst-case emission at 27Mbps.

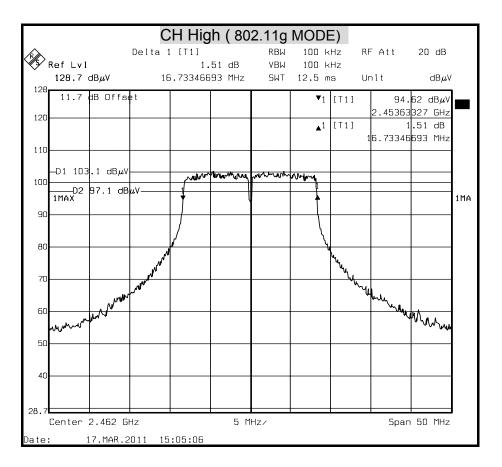
2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.



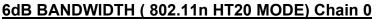
Report No. : T110218401-RP1 FCC ID : U6A-BR486N

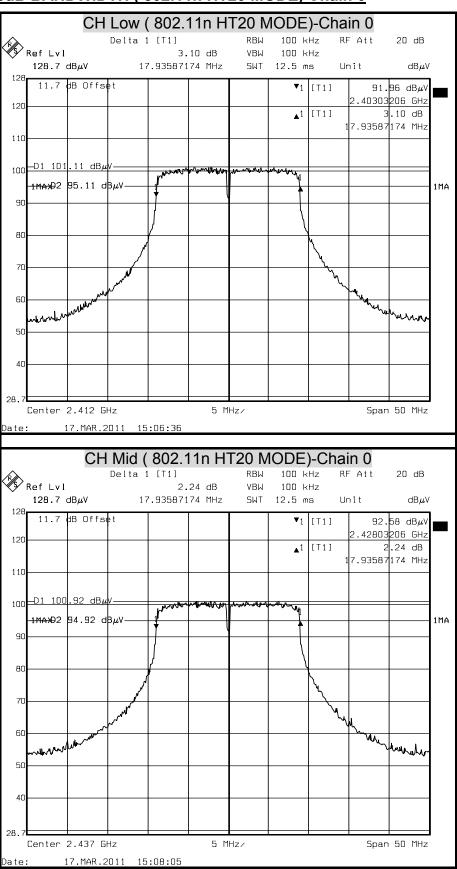
6dB BANDWIDTH (802.11b MODE)

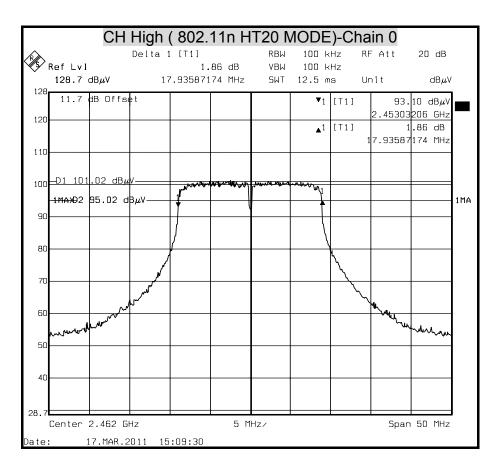


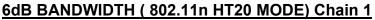


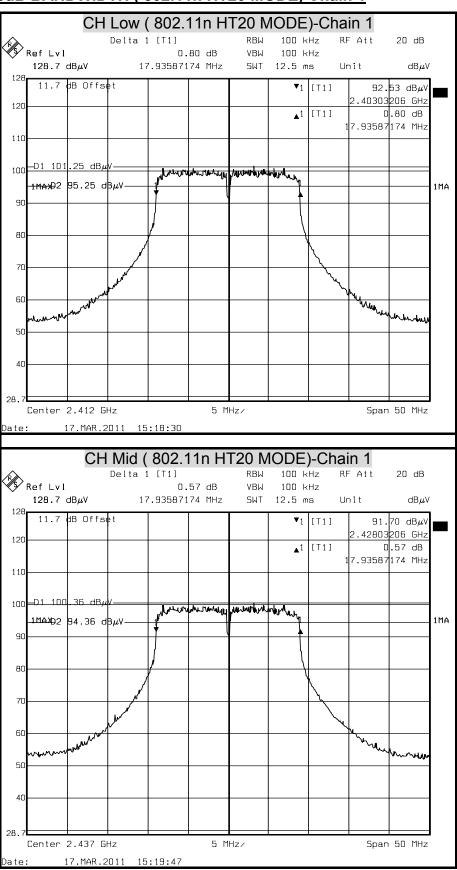
Report No. : T110218401-RP1 FCC ID : U6A-BR486N

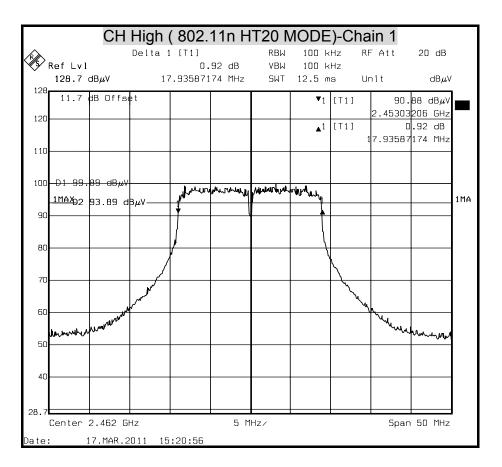

6dB BANDWIDTH (802.11g MODE)

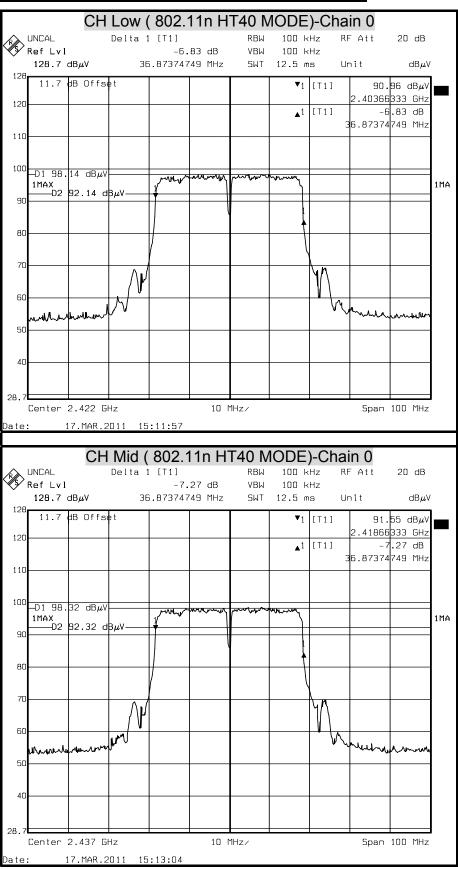


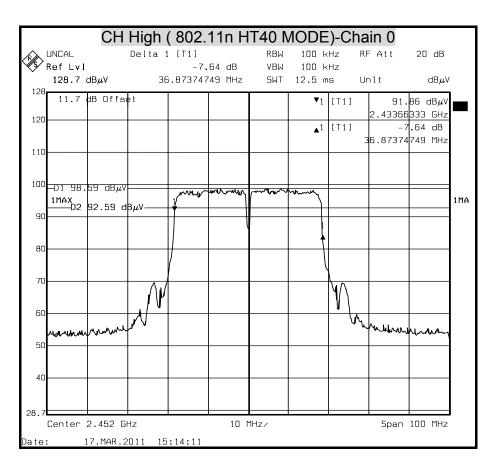


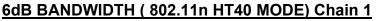


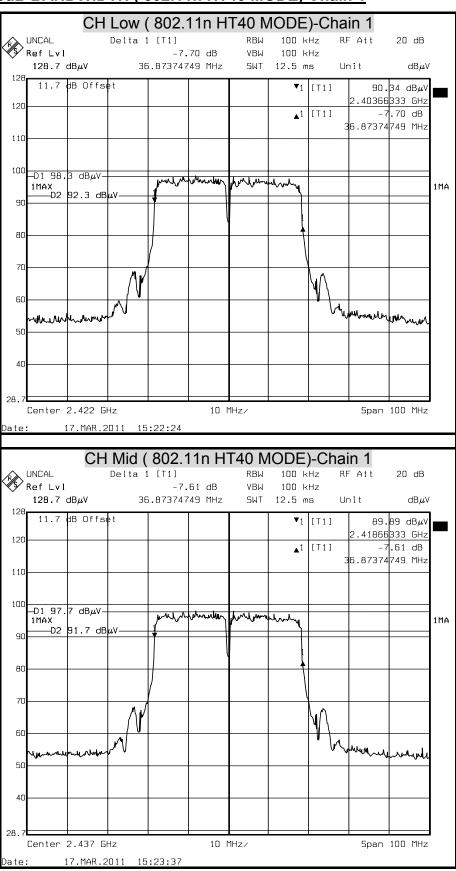









6dB BANDWIDTH (802.11n HT40 MODE) Chain 0



		CH	High	(802.	11n H	T40 N	/IODE)-Cha	ain 1		
$\langle \rangle$	UNCAL		Delta 1	[T1]		RBW	100 k	Hz F	F Att	20 dB	
ЖУ	Ref Lvl	dBµV	ЗF	-7. i.873747	43 dB 49 MHz		100 k 12.5 m		loīt	dBµV	,
128	a	dB Offse		1.015141	45 1112			1	1		
		DB UTTS	et				▼1	[T1]		58 dBµV 333 GHz	
120]						▲ ¹	[T1]	-	1.43 dB	
									36.87374	749 MHz	
110]										
100	1										
IUL	-D1 97. 1MAX	65 dBµV		1 min	minute	freezen	nhradkad.				1MA
90	n2	91.65 d	3μV	1							
							1				
80]						♦				
				/							
70											
								ΝΛ			
60			Λ								
50	Moundar	hnu	v" v						and war	havender	
UL	1										
40	1										
28.7	,										
2011		2.452 G	Ηz		10 1	1Hz⁄			Span	100 MHz	-
Date	:	17.MAR.2	011 15	:25:17							

8.2 MAXIMUM PEAK OUTPUT POWER

<u>LIMIT</u>

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section , if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section , as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2487A	6K00003888	MAY 11, 2011

TEST SETUP

TEST PROCEDURE

Connect the EUT to power Meter, set the center frequency of the power Meter to the channel center frequency. Set the RBW to 1MHz and VBW to 3MHz.

Set sweep time=auto

Use detector max peak mode

Measurement of Digital Transmission Systems Operating under Section 15.247

TEST RESULTS

No non-compliance noted

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	16.11	30.00	PASS
Middle	2437	16.36	30.00	PASS
High	2462	16.30	30.00	PASS

NOTE: 1. At finial test to get the worst-case emission at 11Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	22.13	30.00	PASS
Middle	2437	22.39	30.00	PASS
High	2462	22.51	30.00	PASS

NOTE : 1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11n HT20 mode(Two TX)

Channel	Channel Frequency (MHz)	(dE	Power 3m) Chain 1	Peak Power Total (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	20.22	17.84	22.20	30	PASS
Middle	2437	20.70	16.94	22.23	30	PASS
High	2462	19.59	16.08	21.19	30	PASS

NOTE: 1. At finial test to get the worst-case emission at 13Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11n HT40 mode (Two TX)

Channel	Channel Frequency	Peak F (dB		Peak Power Total	Peak Power Limit	Pass / Fail
Channer	(MHz)	Chain 0	Chain 1	(dBm)	(dBm)	
Low	2422	19.57	17.17	21.54	30	PASS
Middle	2437	20.07	17.55	22.00	30	PASS
High	2452	20.41	16.90	22.01	30	PASS

NOTE: 1. At finial test to get the worst-case emission at 27Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

8.3 AVERAGE POWER

<u>LIMITS</u>

None; for reporting purposes only.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2487A	6K00003888	MAY 11, 2011

TEST SETUP

TEST PROCEDURE

Connect the EUT to power Meter, set the center frequency of the power Meter to the channel center frequency. Set the RBW to 1MHz and VBW to 3MHz.

Set sweep time=auto

Use detector max peak mode

Measurement of Digital Transmission Systems Operating under Section 15.247

TEST RESULTS

No non-compliance noted

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	Average Power (dBm)		
Low	2412	13.78		
Middle	2437	13.99		
High	2462	13.98		

NOTE: 1. At finial test to get the worst-case emission at 11Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	11.99
Middle	2437	12.49
High	2462	12.74

NOTE: 1.At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11n HT20 mode(Two TX)

hannel	Channel Frequency (MHz)	Average Power (dBm)		
		Chain 0	Chain 1	
Low	2412	10.60	9.16	
Middle	2437	10.72	8.36	
High	2462	10.58	7.88	

NOTE: 1. At finial test to get the worst-case emission at 13Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

IEEE 802.11n HT40 mode (Two TX)

hannel	Channel Frequency (MHz)	Average Power (dBm)		
		Chain 0	Chain 1	
Low	2422	10.62	9.25	
Middle	2437	11.11	9.05	
High	2452	11.26	8.46	

NOTE: 1. At finial test to get the worst-case emission at 27Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

8.4 MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time		
300-1,500			F/300	6		
1,500-100,000			5	6		
(B	(B) Limits for General Population / Uncontrol Exposures					
300-1,500			F/1500	6		
1,500-100,000			1	30		

CALCULATIONS

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

$$P = Power in mW$$

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

<u>LIMIT</u>

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

No non-compliance noted. $S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$

G=3dBi=1.99526231mW

IEEE 802.11b=0.0796*43.25138*1.99523231/400=0.017173IEEE 802.11g=0.0796*178.2379*1.99523231/400=0.070771IEEE 802.11n HT20=0.0796*166.9208*1.99523231/400=0.066277IEEE 802.11n HT40=0.0796*158.8785*1.99523231/400=0.063084

Mode	Minimum separation distance (cm)	Output Power (dBm)	Output Power (mw)	Antenna Gain (dBi)	Power Density Limit (mW/cm ²)	Power Density at 20cm (mW/cm ²)
B MODE	20	16.36	43.25	3.00	1.00	0.017173
G MODE	20	22.51	178.24	3.00	1.00	0.070771
HT-20 Mode	20	22.23	166.92	3.00	1.00	0.066277
HT-40 Mode	20	22.01	158.88	3.00	1.00	0.063084

REMARK: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

8.5 POWER SPECTRAL DENSITY

<u>LIMIT</u>

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JUL. 14, 2011

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=3KHz and VBW \ge RBW, set sweep time=span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

Total peak power calculation formula: 10 log (10[^] (Chain 0 PPSD / 10)).

No non-compliance noted.

Report No. : T110218401-RP1 FCC ID : U6A-BR486N

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	PPSD Chain 0 (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2412	-17.74	8.00	PASS
Middle	2437	-17.46	8.00	PASS
High	2462	-17.51	8.00	PASS

NOTE: 1. At finial test to get the worst-case emission at 11Mbps.

 The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	PPSD Chain 0 (dBm)	Maximum Limit (dBm)	Pass / Fail
Low	2412	-18.63	8.00	PASS
Middle	2437	-18.16	8.00	PASS
High	2462	-18.01	8.00	PASS

NOTE: 1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode

Channel	Channel Frequency		PPSD(dBm)			Pass /
	(MHz)	Chain 0	Chain 1	Total	(dBm)	Fail
Low	2412	-18.88	-20.55	-16.62	8.00	PASS
Middle	2437	-18.33	-21.04	-16.47	8.00	PASS
High	2462	-18.24	-21.84	-16.67	8.00	PASS

NOTE: 1. At finial test to get the worst-case emission at 13Mbps.

 The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode

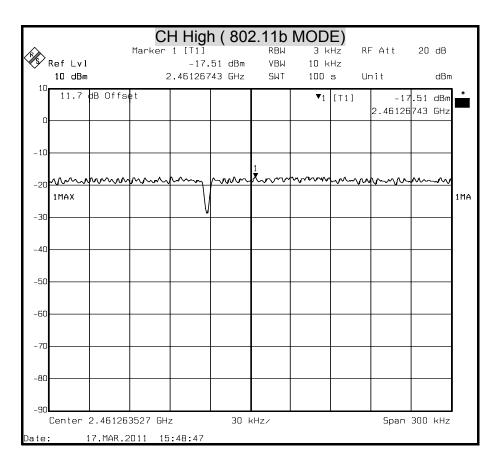
Channel	Channel Frequency		PPSD(dBm)		Maximum Limit	Pass / Fail
	(MHz)	Chain 0	Chain 1	Total	(dBm)	i an
Low	2422	-22.11	-23.61	-19.79	8.00	PASS
Middle	2437	-22.04	-23.94	-19.88	8.00	PASS
High	2452	-21.16	-24.22	-19.42	8.00	PASS

NOTE : 1. At finial test to get the worst-case emission at 27Mbps.

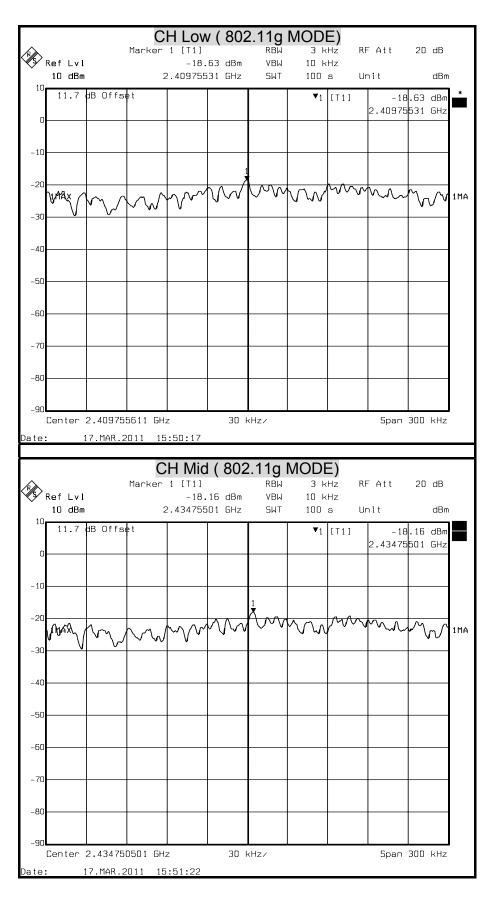
2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

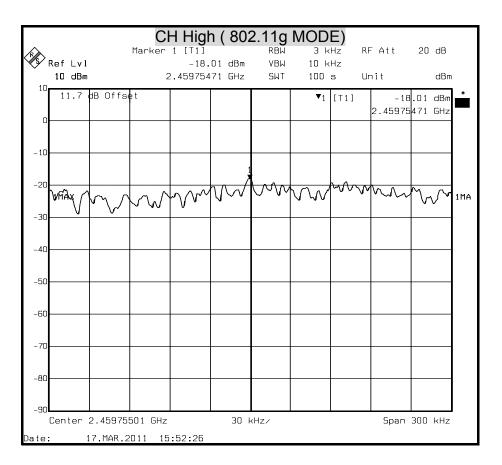
Date of Issue: March 29, 2011

Combined mode

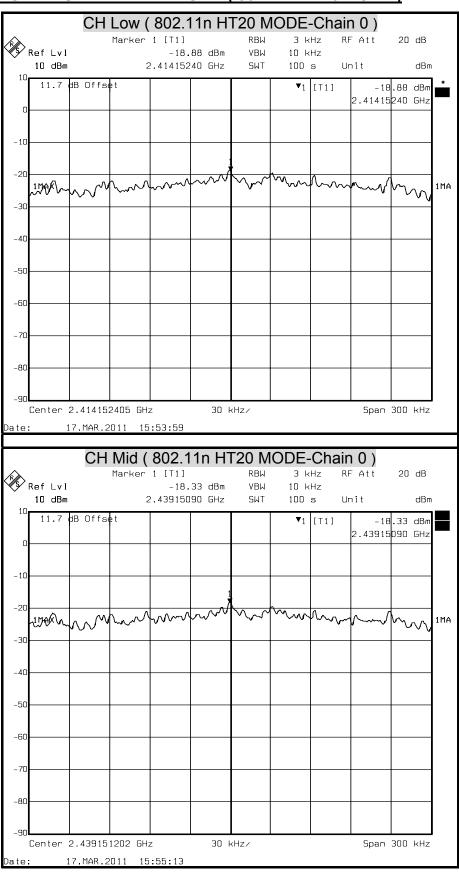

Channel		Channel Frequency (MHz)	PPSD(dBm)	Maximum Limit (dBm)	Pass / Fail
	CH Low	2412	-16.76		
802.11n HT20 Combined mode	CH Middle	2437	-16.02	8.00	PASS
	CH High	2462	-17.32		
	CH Low	2422	-18.18		
802.11n HT40 Combined mode	CH Middle	2437	-18.92	8.00	PASS
	CH High	2452	-20.07		

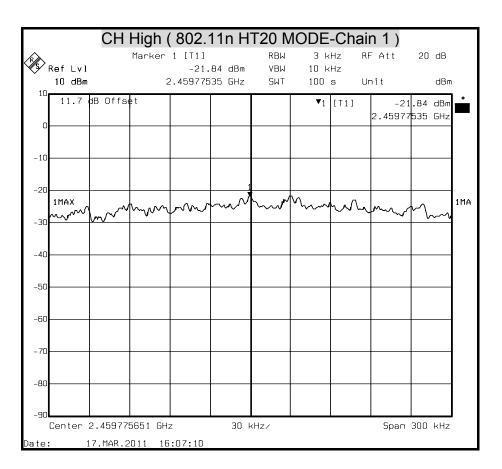
POWER SPECTRAL DENSITY (IEEE 802.11b MODE)


			C		, / 001) 11h						
\wedge			Marker	1 [T1]	/ (002	RBW		⊏) Hz Ri	- Att	20	dB	
Ŵ	Ref Lvl		na no		74 dBm		10 k			20	00	
	10 dBm		2	2.411267	74 GHz	SWT	100	s Ur	nit		dBm	
10	11.7	dB Offse	e t				▼1	[T1]	-17	.74	∃Bm	
									2.41126			
0												
-10												
-20	www	mm	mm	hand t	m	www	hmm	m	μ	~~~~	\sim	
	1MAX			I V								1MA
-30				v								
-40												
-50												
-60												
-70												
-80												
-90												
	Center	2.41126	7435 GH:	z	30 H	≺Hz∕			Span	300	≺Нz	
Date	: 1	17.MAR.2	011 15	:44:57								
			0					- \				
			С	H Mid	(802		MODE	Ξ)				
ŝ			C Marker	1 [T1]		RBW	3 k	Hz RI	- Att	20	dB	
×)	Ref Lvl 10 dBm		Marker	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k	Hz RI Hz				
× 10	10 dBm		Marker 2	1 [T1]	46 dBm	RBW VBW	3 k 10 k 100	Hz RI Hz s Ur	nīt	1	dBm	
	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RI Hz s Ur	nit -17	.46	dBm dBm	
	10 dBm 11.7		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RI Hz s Ur	nīt	.46	dBm dBm	
10	10 dBm 11.7		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RI Hz s Ur	nit -17	.46	dBm dBm	
10	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RI Hz s Ur	nit -17	.46	dBm dBm	
10 0	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RI Hz s Ur	nit -17	.46	dBm dBm	
10 0	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	
10 0 -10	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 0 -10	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 0 -10 -20	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 0 -10 -20	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
- 10 - 10 - 20 - 30	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 - 10 - 20 - 30 - 40	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
- 10 - 10 - 20 - 30	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 0 -10 -20 -30 -40	10 dBm 11.7 м <u>л.л</u> 1МАХ		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 - 10 - 20 - 30 - 40	10 dBm 11.7 м <u>л.л</u> 1МАХ		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 0 -10 -20 -30 -40 -50 -60	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 0 -10 -20 -30 -40	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 0 -10 -20 -30 -40 -50 -60 -70	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 0 -10 -20 -30 -40 -50 -60	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
10 0 -10 -20 -30 -40 -50 -50 -60 -70 -80	10 dBm		Marker 2	1 [T1] -17.	46 dBm	RBW VBW	3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm dBm	1MA
-10 -10 -20 -30 -40 -50 -60 -70 -80 -80 -90	10 dBm	iB Offse	Marker 2 2 2 1	1 [T1] -17. 2.437696	46 dBm		3 k 10 k 100	Hz RF Hz s Ur [T1]	-17 2.43769	.46	dBm 33Hz 	1MA
-10 -10 -20 -30 -40 -50 -60 -70 -80 -80 -90	10 dBm 11.7 1MAX Center	iB Offse	Marker 2	1 [T1] -17. 2.437696	46 dBm 59 GHz		3 k 10 k 100	Hz RF Hz s Ur [T1]	nit -17	.46	dBm 33Hz 	1MA

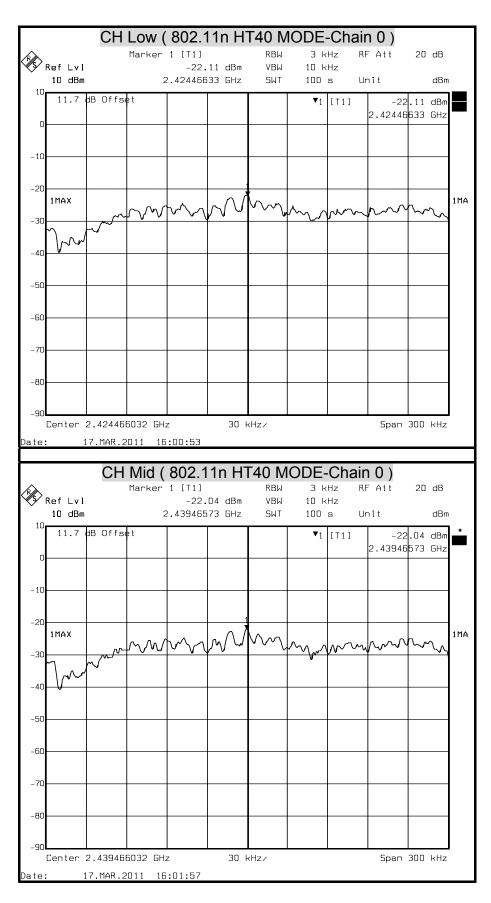


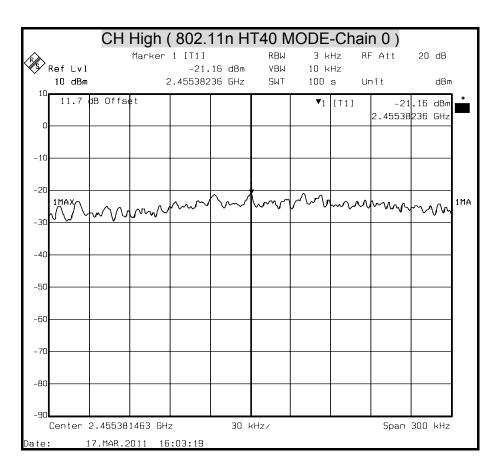
POWER SPECTRAL DENSITY (IEEE 802.11g MODE)



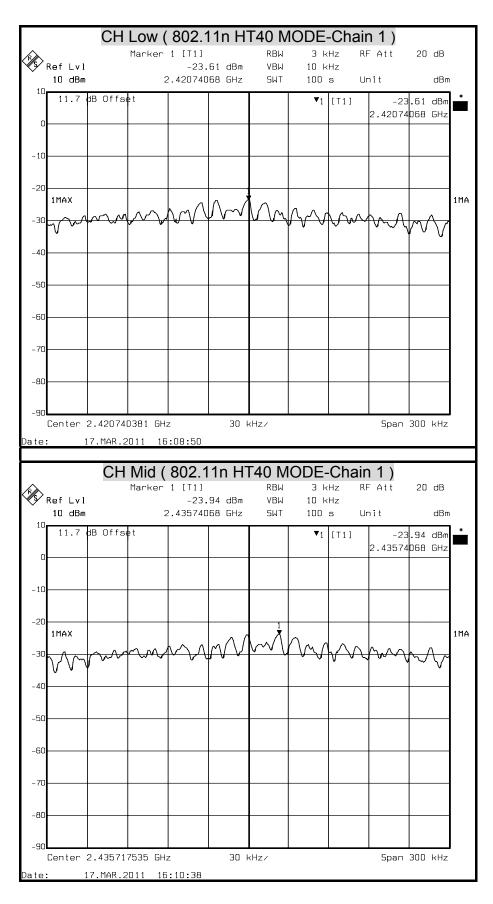

CH High (802.11n HT20 MODE-Chain 0)									
Ref Lvl	Marker 1 [T1] -18.24 dB	RBW 3 H	KHZ RFAtt	20 dB					
10 dBm	-18.24 dB 2.46415030 GH		s Unit	dBm					
10 11.7 dB Offse	e t	•	1 1	3.24 dBm					
-10									
-20		Munhum	Amada a						
-30									
-40									
-50									
-60									
-70									
-80									
Center 2.46415 Date: 17.MAR.2		0 kHz/	Span	300 kHz					

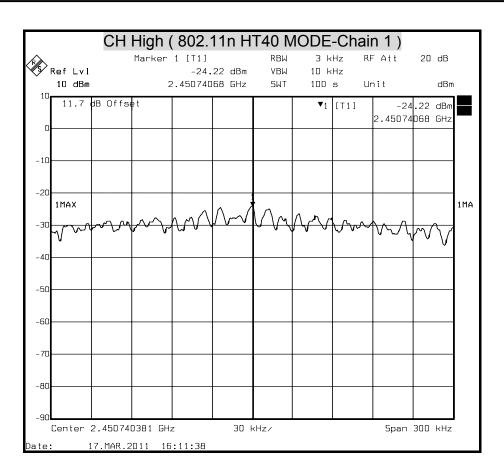
POWER SPECTRAL DENSITY (802.11n HT20 MODE)

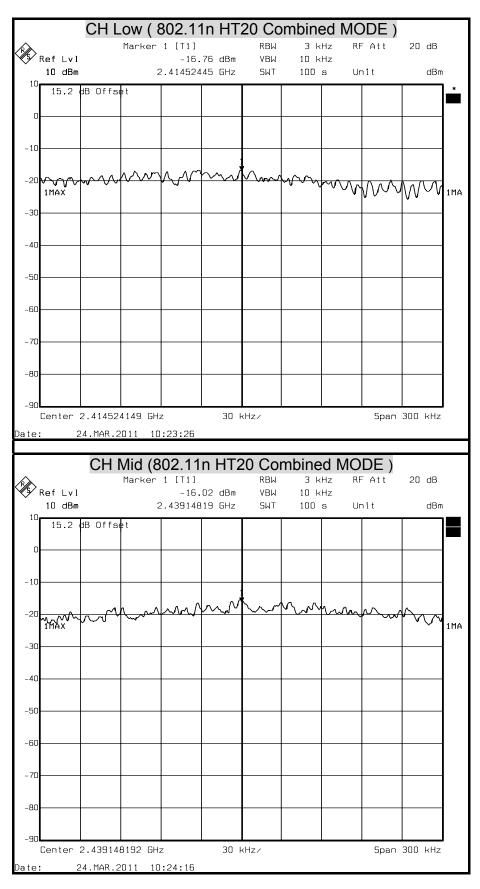

			Low (000	140 11			Chair	a 1)			
		CH			11n H							
×	Ref Lvl		Marker			RBW	3 k		- Att	20 c	βB	
×,¥	10 dBm		-		55 dBm 50 GHz		10 k	Hz s Ur	- - +		dBm	
10				.414131	JU GHZ	INC	r	1	11 L			
	11.7	B Offse	et				▼1	[T1]	-20			
0									2.41415	150 G	iHz	
U												
-10												
					1							
-20	1MAX o	. ^	0 0		MAN	~~	h				11	M A
	www	\sim	moul	m	•••	\sim \sim		run	$\mu \sim $	ϻʹʹ╮	Λ"	н
-30											_	
-40											_	
-50												
-60												
-70												
- 10												
-80												
-90	Center 2	2 41415	1007 CU-	7	1 30 H	/U/			I Span	200 1/		
					50 F	1127			эран	JUU K	112	
Date	: 1	7.MAR.2	011 16	:05:11								
			Mid (1n U1			Chair	1)			
Â				802.1	1n H	Г20 M	IODE-			20.	10	
) K	Refivi		Mid (Marker	802.1		RBW	3 k	Hz RF	1) FAtt	20 0	зB	
Ś	Ref Lvl 10 dBm		Marker	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k	Hz Rf Hz	Att		1B 1Bm	
RS 10	10 dBm		Marker 2	802.1 1 [T1] -21.		RBW VBW	3 k 10 k 100	Hz RF Hz s Ur	F Att	c	dBm	
Ť	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm IBm	
Ť	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att	.04 c	dBm IBm	
10	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm IBm	
10 0	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm IBm	
10	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm IBm	
10 0 -10	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm IBm	
10 0	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	
10 0 -10 -20	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm IBm	MA
10 0 -10	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20 -30	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20 -30	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20 -30 -40	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20 -30 -40	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 -10 -20 -30 -40 -50	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 -10 -20 -30 -40 -50	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20 -30 -40 -50 -60	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20 -30 -40 -50 -60 -70	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20 -30 -40 -50 -60	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20 -30 -40 -50 -60 -70 -80	10 dBm		Marker 2	802.1 1 [T1] -21.	04 dBm	RBW VBW	3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c	dBm iHz	MA
10 0 -10 -20 -30 -40 -50 -60 -70	10 dBm	B Offse	Marker 2 2 2 1	802.1 1 [T1] -21. 2.434775	04 dBm 65 GHz		3 k 10 k 100	Hz Rf Hz s Ur [T1]	- Att	.04 c 565 E	IBm Hz Ir	MA
10 0 -10 -20 -30 -40 -50 -60 -70 -80	10 dBm	3B Offse	Marker 2 2 2 1	802.1 1 [T1] -21. 2.434775	04 dBm		3 k 10 k 100	Hz Rf Hz s Ur [T1]	F Att nit -21	.04 c 565 E	IBm Hz Ir	MA



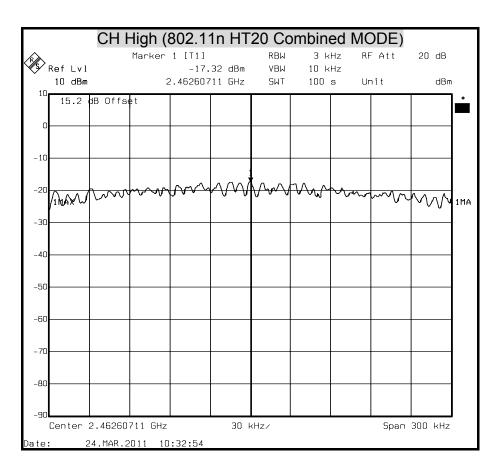
POWER SPECTRAL DENSITY (802.11n HT40 MODE)



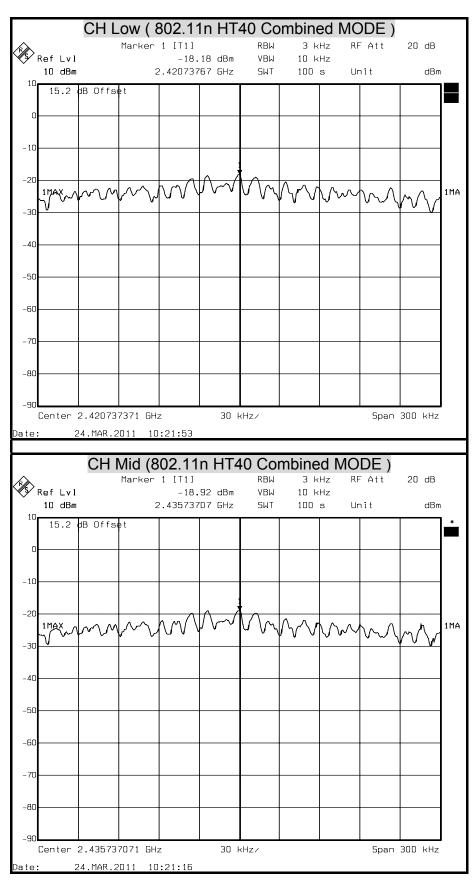

POWER SPECTRAL DENSITY (802.11n HT40 MODE)

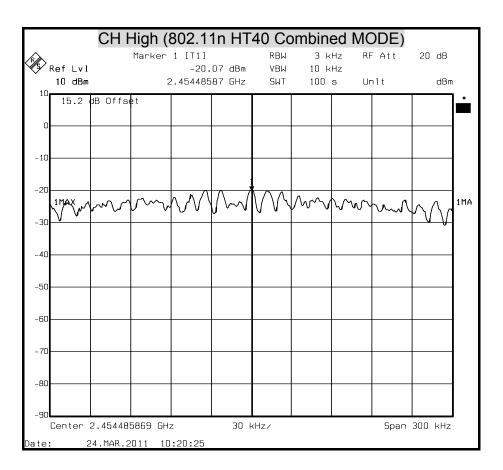


Compliance Certification Services Inc.


Report No. : T110218401-RP1 FCC ID : U6A-BR486N

POWER SPECTRAL DENSITY (802.11n HT20 Combined MODE)

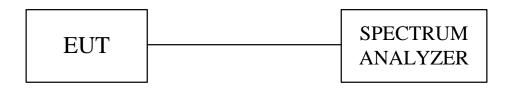




POWER SPECTRAL DENSITY (802.11n HT40 Combined MODE)

8.6 CONDUCTED SPURIOUS EMISSION

<u>LIMITS</u>


§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST SETUP

TEST RESULTS

No non-compliance noted.

802.11b Mode

CH Low					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	98.39	110.09	N/A	N/A
2400	11.7	57.43	69.13	90.09	-20.96
1346.51303	11.7	40.70	52.4	90.09	-37.69
6955.91182	11.7	44.98	56.68	90.09	-33.41

CH Mid Limit Reading Frequency Offset Level Margin (MHz) (dB) (dBuV) (dBuV) (dBuV) (dB) 2437 11.7 95.83 107.53 N/A N/A 2400 11.7 39.64 51.34 87.53 -36.19 2369.0982 11.7 41.47 53.17 87.53 -34.36 11.7 -30.72 6955.91182 45.11 56.81 87.53

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	99.66	111.36	N/A	N/A
2400	11.7	43.12	54.82	91.36	-36.54
1650.06012	11.7	41.46	53.16	91.36	-38.20
6673.34669	11.7	44.58	56.28	91.36	-35.08

802.11g Mode

CH Low					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	99.96	111.66	N/A	N/A
2400	11.7	60.36	72.06	91.66	-19.60
2476.23246	11.7	47.33	59.03	91.66	-32.63
4789.57916	11.7	48.15	59.85	91.66	-31.81

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	99.68	111.38	N/A	N/A
2400	11.7	43.56	55.26	91.38	-36.12
2505.99198	11.7	38.90	50.6	91.38	-40.78
4836.67335	11.7	50.07	61.77	91.38	-29.61

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	100.36	112.06	N/A	N/A
2400	11.7	43.47	55.17	92.06	-36.89
2523.8477	11.7	46.21	57.91	92.06	-34.15
4883.76754	11.7	50.54	62.24	92.06	-29.82

802.11n HT20 Mode Chain 0

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	89.94	101.64	N/A	N/A
2400	11.7	58.50	70.2	81.64	-11.44
2476.23246	11.7	43.23	54.93	81.64	-26.71
6955.91182	11.7	45.27	56.97	81.64	-24.67

CH Mid					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	90.20	101.9	N/A	N/A
2400	11.7	41.38	53.08	81.90	-28.82
2505.99198	11.7	44.02	55.72	81.90	-26.18
6626.25251	11.7	45.04	56.74	81.90	-25.16

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	90.58	102.28	N/A	N/A
2400	11.7	41.39	53.09	82.28	-29.19
1994.12826	11.7	41.21	52.91	82.28	-29.37
6955.91182	11.7	45.36	57.06	82.28	-25.22

802.11n HT20 Mode Chain 1

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	11.7	88.29	99.99	N/A	N/A
2400	11.7	57.36	69.06	79.99	-10.93
440.6813627	11.7	47.79	59.49	79.99	-20.50
6955.91182	11.7	45.38	57.08	79.99	-22.91

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	87.84	99.54	N/A	N/A
2400	11.7	40.73	52.43	79.54	-27.11
440.6813627	11.7	48.23	59.93	79.54	-19.61
6955.91182	11.7	44.09	55.79	79.54	-23.75

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2462	11.7	87.75	99.45	N/A	N/A
2400	11.7	42.34	54.04	79.45	-25.41
440.6813627	11.7	46.63	58.33	79.45	-21.12
6955.91182	11.7	45.01	56.71	79.45	-22.74

802.11n HT40 Mode Chain 0

CH Low					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422	11.7	86.87	98.57	N/A	N/A
2400	11.7	56.32	68.02	78.57	-10.55
2494.08818	11.7	42.59	54.29	78.57	-24.28
6955.91182	11.7	44.24	55.94	78.57	-22.63

CH Mid					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	86.48	98.18	N/A	N/A
2400	11.7	42.02	53.72	78.18	-24.46
2125.07014	11.7	41.06	52.76	33.72	19.04
6955.91182	11.7	44.48	56.18	78.18	-22.00

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452	11.7	86.61	98.31	N/A	N/A
2400	11.7	41.41	53.11	78.31	-25.20
2505.99198	11.7	42.91	54.61	78.31	-23.70
6955.91182	11.7	45.07	56.77	78.31	-21.54

802.11n HT40 Mode Chain 1

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422	11.7	85.90	97.6	N/A	N/A
2400	11.7	56.10	67.8	77.60	-9.80
440.6813627	11.7	49.75	61.45	77.60	-16.15
6673.34669	11.7	44.32	56.02	77.60	-21.58

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	11.7	85.57	97.27	N/A	N/A
2400	11.7	41.12	52.82	77.27	-24.45
440.6813627	11.7	48.50	60.2	77.27	-17.07
6955.91182	11.7	44.40	56.1	77.27	-21.17

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452	11.7	86.24	97.94	N/A	N/A
2400	11.7	41.57	53.27	77.94	-24.67
440.6813627	11.7	49.05	60.75	77.94	-17.19
6908.81764	11.7	44.05	55.75	77.94	-22.19

802.11n HT20 Combined Mode

CH Low					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412	15.2	90.89	106.09	N/A	N/A
2400	15.2	61.33	76.53	86.09	-9.56
399.0180361	15.2	44.18	59.38	86.09	-26.71
6955.91182	15.2	44.65	59.85	86.09	-26.24

CH Mid

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437	15.2	90.02	105.22	N/A	N/A
2400	15.2	39.94	55.14	85.22	-30.08
418.8737475	15.2	51.59	66.79	85.22	-18.43
6955.91182	15.2	44.36	59.56	85.22	-25.66

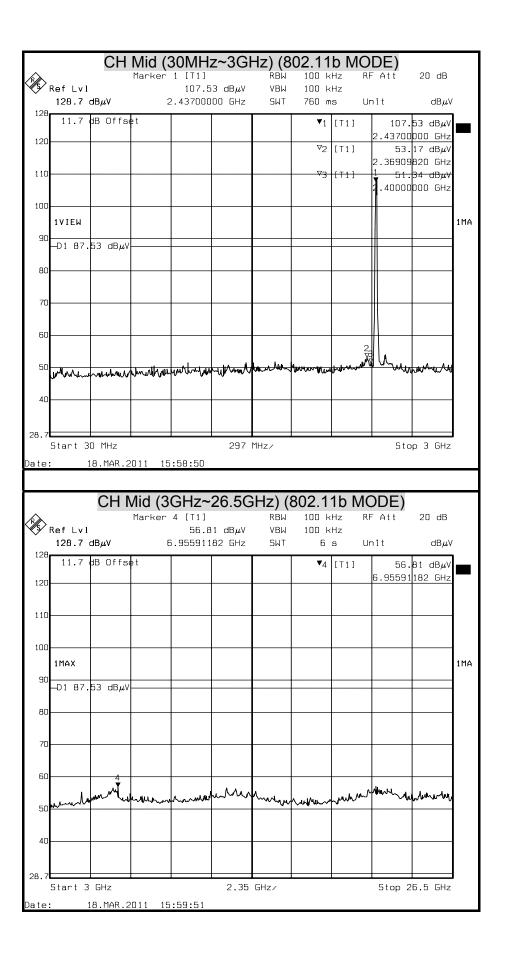
CH High Reading Frequency Offset Level Limit Margin (dBuV) (MHz) (dB) (dBuV) (dBuV) (dB) 2462 15.2 89.55 104.75 N/A N/A 2400 15.2 40.53 5<u>5.73</u> 84.75 -29.02 399.0180361 46.80 84.75 -22.75 15.2 62 44.53 84.75 6955.91182 15.2 59.73 -25.02

802.11n HT40 Combined Mode

CH Low

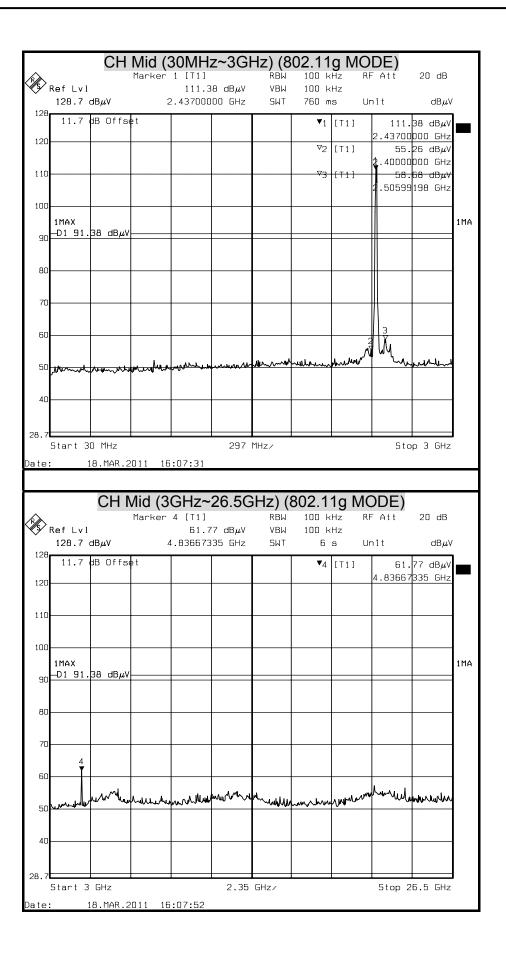
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422	15.2	88.07	103.27	N/A	N/A
2400	15.2	60.45	75.65	83.27	-7.62
399.0180361	15.2	43.10	58.3	83.27	-24.97
6955.91182	15.2	44.58	59.78	83.27	-23.49

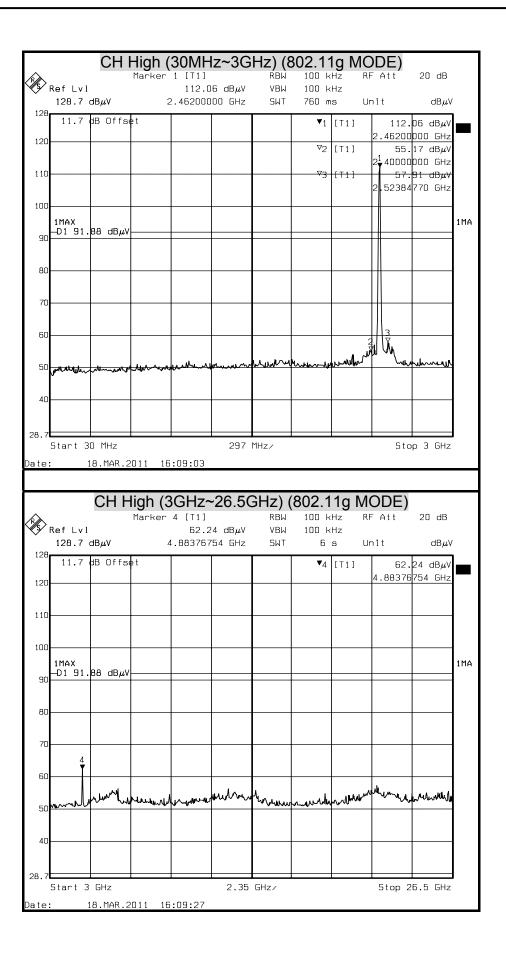
CH Mid Reading Limit Frequency Offset Level Margin (dBuV) (dB) (MHz) (dB) (dBuV) (dBuV) 2437 15.2 86.73 101.93 N/A N/A 2400 47.31 81.93 -19.42 15.2 62.51 399.0180361 15.2 43.82 59.02 81.93 -22.91 6955.91182 15.2 44.61 59.81 81.93 -22.12


CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452	15.2	87.48	102.68	N/A	N/A
2400	15.2	40.51	55.71	82.68	-26.97
399.0180361	15.2	45.50	60.7	82.68	-21.98
6626.25251	15.2	43.83	59.03	82.68	-23.65

		011	L		- 201	U_\ /0	00.44				
~		CH	Low (: Marker		z~3G	HZ) (8 RBW	100 k		DE) Fatt	20 dB	
	Ref Lvl		nai kei		9 dBµV	VBW	100 k		ни	20 00	
Ŷ		dBμV	2			SWT	760 m	s Ur	nit	dBµ∖	/
128	11.7	dB Offse	e t				▼1	[T1]	110	09 dBµV	۱
120									2.41200		
120							⊽2	[T1]		13 dBµV	
110							Va	[T1]	2.40000		
110							• 3	[1]		40 dBµ∀ 303 GHz	
100											
100	1VIEW										1MA
90	D1 90.	09 dBuV									
50	51 551										
80											
00											
70								2			
10											
60											
ou					2						
					3	Le ma	mound	unun	hum	Mornorm	
50	whenhand	Milder		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		· •					
40											
28.7											J
	Start 30) MHz			297	MHz/			Sto	р З GHz	
	1	8.MAR.2	011 15	:52:57							
	1	8.MAR.2	011 15	:52:57							
	1				26.50	GHz) (802.1	1b M(ODE)		
Date:				GHz~	26.50	<mark>ЭНz) (</mark> ^{RBW}	802.1	1b M(Hz RF	DDE)	20 dB	
Date:	Ref Lvl	CHL	. OW (3 Marker	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k	Hz RF Hz	Att	20 dB	
Date	Ref ∟vl 128.7 d	CH L ⊐Bµv	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW	100 k 100 k	Hz RF Hz	DDE) Att	20 dB	/
Date:	Ref ∟vl 128.7 d	CHL	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV]
Date	Ref ∟vl 128.7 d	CH L ⊐Bµv	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att	20 dB dBµV 68 dBµV]
Date:	Ref ∟vl 128.7 d	CH L ⊐Bµv	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV]
Date: 128	Ref ∟vl 128.7 d	CH L ⊐Bµv	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV]
Date:	Ref ∟vl 128.7 d	CH L ⊐Bµv	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV]
Date: 128 120 110	Ref ∟vl 128.7 d	CH L ⊐Bµv	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV]
Date: 128	Ref Lvl 128.7 c	CH L ⊐Bµv	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV	
Date: 128 120 110	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV]
Date: 128 120 110	Ref Lvl 128.7 c 11.7 c	CH L ⊐Bµv	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV	
Date: 128 120 110 90	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV	
Date: 128 120 110	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV	
Date: 128 120 110 90 80	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV	
Date: 128 120 110 90	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV	
Date: 128 120 110 90 80	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dBµV	RBW VBW	100 k 100 k 6	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV	
Date: 128 120 110 90 80	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dB,µV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz RF Hz s Ur [T1]	F Att nit 56.	20 dB dBµV 68 dBµV	
Date: 128, 120 110 90 80 70	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dB,µV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz RF Hz s Ur [T1]	F Att 56. 6.95591	20 dB dBµV 68 dBµV	
Date: 128, 120 110 90 80 70	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dB,µV 82 GHz	RBW VBW	100 k 100 k 6 V4	Hz RF Hz s Ur [T1]	F Att 56. 6.95591	20 dB dB, w 68 dB, w 182 GHz	
Date: 128, 120 110 90 80 70 60	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dB,µV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz RF Hz s Ur [T1]	F Att 56. 6.95591	20 dB dB, w 68 dB, w 182 GHz	
Date: 128, 120 110 90 80 70 60	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dB,µV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz RF Hz s Ur [T1]	F Att 56. 6.95591	20 dB dB, w 68 dB, w 182 GHz	
Date: 128 120 110 90 80 70 60 50	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dB,µV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz RF Hz s Ur [T1]	F Att 56. 6.95591	20 dB dB, w 68 dB, w 182 GHz	
Date: 128 120 110 100 90 80 70 60 50 40	Ref Lvl 128.7 c 11.7 c	CH L ∄µV ∄B Offse	. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dB,µV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz RF Hz s Ur [T1]	F Att 56. 6.95591	20 dB dB, w 68 dB, w 182 GHz	
Date: 128 120 110 100 90 80 70 60 50 40 28.7	Ref Lvl 128.7 c 11.7 c		. OW (3 Marker E	GHz~ 4 [T1] 56.6	8 dB,µV 82 GHz		100 k 100 k 6 V4	Hz RF Hz s Ur [T1]	Att 56.95591	20 dB dB, w 68 dB, w 182 GHz	1MA

(IEEE 802.11b MODE)


		CHI	Hiah (30MH	lz∼3G	H7) (8	202 11	lh M				
Ŕ			Marker	1 [T1]		RBM	100 k	Hz	RF	Att	20 dB	
¥۶⁄	Ref Lvl	dBµV	-	111.3 462000	6 dBµV	VBW SWT	100 k 760 m		Uni	t	dBµ\	1
128		dB Offse		. 402000		ЭМТ						-
400			FI				•1	[T1]	2		36 dBµV 1000 GHz	
120							72	[T1]		54.	82 dBµV	r
110								[71]	2,		000 GHz 16 dBµ ∀	
									1		012 GHz	
100												-
	1MAX											1MA
90	-D1 91.	36 dBµV										1
80												
70												
10												
60												
						3			Å.	h.		
50	mm	www.www	and the second s	w man or	handret	helm	handrens	mark	-	··· Laver	from	4
40												
28.7	Start 3	O MHz			297	MHz/				Sto	p 3 GHz	
Date	: :	18.MAR.2	011 16	:03:26							-	
		СНН	liah (3	BGHz~	26.50	GHz) (802.1	1b I	ИС	DE)		
K)			ligh (3 ^{Marker}	4 [⊤1]	-26.50	RBW	100 k	Hz			20 dB	
Ŕ	Ref Lvl		Marker	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF	Att	20 dB	1
128	128.7	dBµV	Marker E	4 [T1] 56.2	8 dBµV	RBW	100 k 100 k 6	Hz Hz s	RF	Att t	20 dB dBµ\	-
128	128.7 11.7		Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
•	128.7 11.7	dBµV	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\	
128 120	128.7	dBµV	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128	128.7	dBµV	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120	128.7	dBµV	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120 110	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120 110	128.7 11.7 1MAX	dBµV	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120 110	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120 110	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120 110 100 90 80	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120 110 100 90	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120 110 100 90 80	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120 110 100 90 80 70	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµV 28 dBµV 669 GHz	
128 120 110 100 90 80 70	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµ\ 28 dBµV	
128 120 110 100 90 80 70 60	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµV 28 dBµV 669 GHz	
128 120 110 100 90 80 70 60	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµV 28 dBµV 669 GHz	
128 120 110 100 90 80 70 60 50	128.7 11.7 1MAX	dBµV dB Offs¢	Marker E	4 [T1] 56.2	8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un i	Att t 56.	20 dB dBµV 28 dBµV 669 GHz	
128 120 110 100 90 80 70 60 50	128.7 11.7 1MAX -D1 91.	dBµV dB Offse 36 dBµV	Marker E	4 [T1] 56.2	8 dBµV		100 k 100 k 6	Hz Hz s		Att t 56. .67334	20 dB dBµV 28 dBµV 669 GHz	


~		CH	Low (30MH	z~3G	Hz) (8	102.11	g M	ODE)	00 -0	
×	Ref Lvl		Marker		6 dBuV	ŔВŴ VBW	100 k 100 k		RF Att	20 dB	
\sim	128.7 0	∃BμV	2	2.412000	00 GHz	SWT			Unit	dBµ∖	/
128	11.7	dB Offse	et				▼1	[T1]	111	66 dBµV	۱ <u> </u>
120									2.41200		
120							⊽2	[T1]		06 dBµV	
110							7⊃	[T1]	X	000 GHz 03 dBµ∀	
110								[]]]		246 GHz	
100											
100	1MAX										1MA
90		66 dBµV									
80											
									2		
70									1		
60									3		
								,	n M		
50	Monatri	ununuhu	mohen	moment	unterner	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	und all all all	mbull	" un	ummund	
	₩ • •··•	••••••									
40									_		
28.7											
	Start 30	D MHz			297	MHz/			Sto	p 3 GHz	_
Data	: 1	8.MAR.2	011 16	:06:14							
Date											
Date											
Date					26.50	GHz) (802.1	1a N	10DE)		
		CHL		GHz~	26.5C	GHz) (квы	802.1	1g N _{Hz}	10DE) RF Att	20 dB	
	Ref Lvl	CHL	. OW (3 Marker	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF Att		
×)	Ref Lvl 128.7 d	CH L ∃BµV	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW	100 k 100 k	Hz Hz	IODE) RF Att Unit		/
	Ref Lvl 128.7 d	CHL	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Att Unit 59.	dΒμV 85 dΒμV	1_
×)	Ref Lvl 128.7 (CH L ∃BµV	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dBµV	1_
E 128	Ref Lvl 128.7 (CH L ∃BµV	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	1_
E 128	Ref Lvl 128.7 (CH L ∃BµV	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	1_
128 120	Ref Lvl 128.7 (CH L ∃BµV	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	1_
128 120	Ref Lvl 128.7 (CH L ∃BµV	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	1_
128 120 110	Ref Lvl 128.7 (11.7 (11.7)	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	1_
128 120 110	Ref Lvl 128.7 (11.7 (11.7)	CH L ∃BµV	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	
128 120 110 100	Ref Lvl 128.7 (11.7 (11.7)	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	
128 120 110 100	Ref Lvl 128.7 (11.7 (11.7)	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	
128 120 110 100 90	Ref Lvl 128.7 (11.7 (11.7)	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	
128 120 110 100 90	Ref Lvl 128.7 (11.7 (11.7)	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7 ()	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	dΒμV 85 dΒμV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7 (11.7)	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 4.78957	dΒμV 85 dΒμV	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7 ()	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	квы	100 k 100 k 6 •	Hz Hz s [T1]	RF Att Unit 59.	dBμV 916 GHz	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7 ()	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s [T1]	RF Att Unit 4.78957	dΒμV 85 dΒμV	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7 ()	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	квы	100 k 100 k 6 •	Hz Hz s [T1]	RF Att Unit 4.78957	dBμV 916 GHz	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7 ()	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	квы	100 k 100 k 6 •	Hz Hz s [T1]	RF Att Unit 4.78957	dBμV 916 GHz	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7 (11.7 ()	CHL JBµV JB Offse	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV	квы	100 k 100 k 6 •	Hz Hz s [T1]	RF Att Unit 4.78957	dBμV 916 GHz	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7 (11.7 (1	CHL BBWV B Offse 56 dBWV	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dB,µV 16 GHz		100 k 100 k 6 •	Hz Hz s [T1]	RF Att Unit 4.78957	dBμV 916 GHz	1MA
128 120 110 100 90 80 70 60 50 40	Ref Lvl 128.7 (11.7 (1	CHL BBWV B Offse 56 dBWV	. OW (3 Marker 4	GHz~ 4 [T1] 59.8	5 dBµV		100 k 100 k 6 •	Hz Hz s [T1]	RF Att Unit 4.78957	dBμV 916 GHz	1MA

(802.11g MODE)

	CH Lo	w (30	MHz~	·3GHz	z) (802	2.11n	HT20	MO	DE-Ch	ain 0)
$\langle \rangle$	Ref Lvl		Marker	1 [T1]	4 dBµV	RBW	100 k 100 k	Hz	RF Att	20 dB	
128	128.7 0	dBμV	2	412000	00 GHz	SML			Unit	dBµV	/
120	11.7	dB Offse	et				▼1	[T1]		64 dBµV	
120							72	[T1]		20 dBµV	-
110								[T1]		000 GHz 93 dBµV	
										3246 GHz	
100											
90	1MAX										1MA
50											
80	—D1 81.	47 dBμV									
70									4		
70											
60											
					1. 48	Mu			m Jun		
50	mound	munt	the way	ىل پىيەللىلام ىمىن	ahran and	hange					
40											
28.7	Start 30	n M⊔→			297	M⊔ <i>→ /</i>				p 3 GHz]
Date	: 1		011 16	:11:07	201	111127			510	בווט כ קי	
C	CH Lov	w (3G	Hz~26	6.5GH	lz) (80)2.11r	n HT2	0 M 0	DDE-C	hain 0)
/k/			Hz~26 Marker	4 [T1]		RBW	100 k	Hz	DDE-CI)
×)	Ref Lvl 128.7 d			4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k	Hz Hz		20 dB	
/k/	Ref Lvl 128.7 d		Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Att Unit 55.	20 dB dBμV 97 dBμV	,]
×)	Ref Lvl 128.7 d	∃BµV	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBµV	,]
128 120	Ref Lvl 128.7 d	∃BµV	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBμV 97 dBμV	,]
128	Ref Lvl 128.7 d	∃BµV	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBμV 97 dBμV	,]
128 120	Ref Lvl 128.7 d	∃BµV	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBμV 97 dBμV	,]
128 120 110	Ref Lvl 128.7 d	∃BµV	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBμV 97 dBμV	,]
128 120 110	Ref Lvl 128.7 d 11.7 d 11.7 d	∃BµV	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBμV 97 dBμV	
128 120 110	Ref Lvl 128.7 (11.7) 11.7) 1MAX	∃BµV	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBμV 97 dBμV	
128 120 110 100 90	Ref Lvl 128.7 (11.7) 11.7) 1MAX	∃BµV ∃B Offsø	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBμV 97 dBμV	
128 120 110 100 90	Ref Lvl 128.7 (11.7) 11.7) 1MAX	∃BµV ∃B Offsø	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBμV 97 dBμV	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7) 11.7) 1MAX	∃BµV ∃B Offsø	Marker E	4 [T1] 55.9	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBμV 97 dBμV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7) 11.7) 1MAX	∃BµV ∃B Offsø	Marker E	4 [T1] 55.9	7 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Att Unit 55. 6.95591	20 dB dBµV 97 dBµV 182 GHz	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dB Offse	Marker E	4 [T1] 55.9	7 dBµV 82 GHz	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 55.	20 dB dBµV 97 dBµV 182 GHz	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dB Offse	Marker E	4 [T1] 55.9	7 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Att Unit 55. 6.95591	20 dB dBµV 97 dBµV 182 GHz	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dB Offse	Marker E	4 [T1] 55.9	7 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Att Unit 55. 6.95591	20 dB dBµV 97 dBµV 182 GHz	
128 120 110 100 90 80 70 60 50 40	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dB Offse	Marker E	4 [T1] 55.9	7 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Att Unit 55. 6.95591	20 dB dBµV 97 dBµV 182 GHz	
128 128 120 110 100 90 80 70 60 50	Ref Lvl 128.7 (11.7) 11.7) 1MAX	HB Offse 47 dBμV	Marker E	4 [T1] 55.9	7 dBµV 82 GHz		100 k 100 k 6	Hz Hz s	RF Att Unit 55. 5.95591	20 dB dBµV 97 dBµV 182 GHz	1MA

(802.11n HT20 MODE)

		id (20		2011-) 110		N/O				
\land	CH M	10 (30	Marker	'3GHZ	2) (802	2.11N RBW	100 k	IVIO Hz	RF	E-CNa Att	20 dB	
Ś	Reflvl			101.5	ID dB <i>u</i> V	VBW	100 k	Hz				
128		dBµV	2	2.437000	IOO GHz	SWT	760 m	S	Un	it	dBµV	
120	11.7	dB Offse	e t				▼1	[T1]			90 dBµV	
120							<u></u>	[T1]	-		000 GHz	
							*2	[[]]			08 dBµV 000 GHz	
110								[T1]			72 dBµ ∀	
										2.50599	198 GHz	
100									-			
	1MAX											1MA
90												
	-D1 81.	9 dBµV-										
80												
70												
70												
60												
00									2	3		
50	minu		minho	unin	Mussen	mmm	han	men	~	Vun	mm	
	www.w											
40												
28.7												
	Start 3	O MHz			297	MHz/				Sto	p 3 GHz	
Date	: 1	8.MAR.2	2011 16	:12:34								
(CH Mi	d (3Gl	Hz~26	6.5GH	z) (80	2.11n	HT2) M(C)E-Ch	ain 0)
(F)	Ref Lvl		Marker			RBW	100 k		RF	Att	20 dB	
/			E	55.7 6.626252	'4 dBμV 51 GHz	VBW SWT	100 k 6	HZ S	Un	it	dBµV	
128		dB Offse										1
			τι				•4	[T1]			74 dBµV 251 GHz	
120												
440												
110												
100												
100	1MAX											1MA
90												
80	-D1 81.	9 dBµV-										
70									_			
60		4							_			
		min	h a		umu	м			M	media	workital	
50	mmu	v* ~~	muun	, mur ww	v~ v"	- More	kunthhum	~w~'		Ψ.U	v vV vr ⊶ v4	
40									-			
28.7		<u>Cu</u>			0.05					<u></u>		
28.7 Date	Start 3		2011 16	- 12, 12	2.35	GHz/				Stop 2	6.5 GHz	

	<u></u>	1 /0/		0011) (0.0)	~					
(gh (30)MHz ⁻	~3GH	z) (802	2.11n	H120) MO	DE-Ch	ain 0)
	Ref vl			102.2	8 dBuV	кби УВЫ	100 R 100 k		KF HII	20 06	
Ý	128.7	dBµV	2	.462000	00 GHz	SWT	760 m	S	Unit	dBµV	
128	11.7	dB Offse	e t				v ₁	[T1]	102.	28 dBµV	
120										000 GHz	
120							⊽2	[T1]		09 dBµV	
110								FT 4 1		000 GHz	
110								[T1]		91 dBµ∀ 826 GHz	
100									Ì		
100	1MAX										1MA
90											
80	—D1 82.	28 dBµV									
70											
60											
							3				
50	Arth Land	Mohr mar m	hunder	man	عدماريهماله	Memore	ulun	Mum	we when	multin	
40											
28.7											
	Start 3	0 MHz			297	MHz⁄			Sto	p 3 GHz	
Date	: 1	18.MAR.2	2011 16	:14:18							
C	:H Hia	ıh (3G	Hz~2	6 5GE	17) (8()2 11r	n HT2	0 M(ODF-C	hain ())
C	H Hig		Hz~2		łz) (80)2.11r _{RBW}			DDE-C)
/R	Ref Lvl		Marker	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF Att	20 dB)
Ś	Ref Lvl 128.7			4 [T1] 57.0	6 dBµV	RBW	100 k 100 k	Hz Hz		20 dB	
/R	Ref Lvl 128.7		Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Att Unit	20 dB	
Ś	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit	20 dB dBμV 06 dBμV	
128	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110	Ref Lv1 128.7	dBµV	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110 100 90	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110 100 90	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110 100 90 80	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110 100 90 80	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110 100 90 80 70	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dBμV 06 dBμV	
128 120 110 100 90 80 70	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dB, w 182 GHz	
128 120 110 100 90 80 70 60	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dB, w 182 GHz	
128 120 110 100 90 80 70 60	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dB, w 182 GHz	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dB, w 182 GHz	
128 120 110 100 90 80 70 60 50 40	Ref Lv1 128.7 11.7 11.7 1MAX -D1 82.	dBµV dB Offsa	Marker E	4 [T1] 57.0	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 57.	20 dB dB, w 182 GHz	
128 120 110 100 90 80 70 60 50	Ref Lv1 128.7 11.7 11.7 1MAX -D1 82.	dBµV dB Offse 28 dBµV	Marker E	4 [T1] 57.0	6 dBµV	КВЫ VBЫ SЫТ	100 k 100 k 6	Hz Hz s	RF Att Unit 57. 6.95591	20 dB dB, w 182 GHz	

	CH Lo	ow (30	MHz~	-3GHz	z) (802	2.11n	HT20	MO	DE-Ch	ain 1))
			Marker						RF Att	20 dB	
×,¥	Ref Lvl	dBµV	2	99.9 412000	19 dBµV	VBW SWT	100 k 760 m		Jnit	dBµV	,
128						Тис					,
	11.7	dB Offse	et				▼1	[T1]		99 dBµV	
120							V⊃	[T1]		000 GHz 06 dBµV	
							.2	[]]]		000 GHz	
110							3	[T1]		49 dBµ∀	
								Z	40.68136	273 MHz	
100									<u> </u>		
	1MAX										1MA
90											
80	_D1 79.	99 dB <i>u</i> V									
00	51 / 51	00 00,									
70									4		
ru									1		
		3									
60		Ĭ									
								M	Ulmany	ا	
50	mound	M. ₩₩₩ ₩₩	het work	mound	maun		and the second sec	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
40											
28.7											
	Start 3	0 MHz			297	MHz/			Sto	p 3 GHz	
Date	: 1	18.MAR.2	011 16	:24:06							
		M (3G	H7~26	3 5GH	17) (80	12 11r				nain 1)
C	CH Lov	w (3G			lz) (80				DE-Cl)
/s	CH LON		Hz~2(Marker	4 [⊤1]	Iz) (80 18 dBµV)2.11г ^{RBW} VBW	100 k 100 k	Hz I	DE-CI	1 20 dB)
Ś	Ref Lvl 128.7		Marker	4 [⊤1]	B dBµV	RBW	100 k 100 k	Hz I Hz		20 dB	
/s	Ref Lvl 128.7		Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Unit	20 dB dBµV	
128	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz I Hz	RF Att Jnit 57.	20 dB dBµV 08 dBµV	,]
Ś	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV	,]
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	,]
128	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	,]
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	,]
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	,]
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	,]
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	
128 120 110	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	
128 120 110 100 90	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	
128 120 110 100 90	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57.	20 dB dBµV 08 dBµV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57. 6.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57. 6.95591	20 dB dBµV 08 dBµV	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57. 6.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57. 6.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57. 6.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7 (11.7) 11.7) 1MAX	dBµV dB Offse	Marker E	4 [T1] 57.0	B dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 57. 6.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70 60 50	Ref Lv1 128.7 (11.7 (1	dBµV dB Offse 99-dBµV	Marker E	4 [T1] 57.0	B dB _µ V B2 GHz		100 k 100 k 6	Hz F Hz s l	RF Att Jnit 6.95591	20 dB dB, w 08 dB, w 182 GHz	1MA
128 120 110 100 90 80 70 60 50 40	Ref Lv1 128.7 (11.7) 11.7) 1MAX 	dBµV dB Offse 99-dBµV	Marker E	4 [T1] 57.0	B dBµV		100 k 100 k 6	Hz F Hz s l	RF Att Jnit 6.95591	20 dB dBµV 182 GHz	1MA

(802.11n HT20 MODE)

CH M	nu (30	MHz~	SGUZ	.) (002	<u>. i in</u>	HIZU	INIO		0116	ain T
		Marker						RF	Att	20 dB
Ref Lvl			99.5	i4 dBµV	VBW	100 k				
	dBµV	2	2.437000	00 GHz	SWT	760 m	S	Un	it	dBµ∖
11.7	dB Offse	e t				▼1	[T1]		99.	54 dBµV
		ſ				1	L I]			000 GHz
)						⊽2	[T1]	-		43 dBµV
				l l		۰ <u>د</u>	1111			43 06µV 000 GHz
						⊽⊃ _	[71]			иии вн∠ 93 dBµ V
							111			93 авµ V 273 MHz
				i I				440	.0013u	273 162
								-li		
1MAX				l l						
1										
, 										
				i I						
D1 79.	.54 dBµV									
				Í Í						
				l l						
)										
	3			l l						
	- Ŧ									
				Í Í				Ma		
	. M i. jiwa		I and war	LALAMAN	mm	Lumber	monte	ľΨ	Unn	monum
1 Americanal	tern meter	-www.ww								
				i I						
]								\rightarrow		
				i I						
				i I						
								Т		
Start 3	UTHZ			297	MHZ/				510	p 3 GHz
	18.MAR.2 d (3GI			z) (80	2.11n	HT2) M(DD	E-Cł	nain 1
CH Mi	d (3GI	Hz~26 Marker	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF	Att	20 dB
CH Mi Ref Lv1 128.7	d (3GI	Hz~26 Marker	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF		20 dB
CH Mi Ref Lv1 128.7	d (3GI	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF	Att it	20 dΒ dBμ\
CH Mi Ref Lv1 128.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dΒ dBμ\
CH Mi Ref Lv1 128.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi 128.7 11.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi 128.7 11.7 11.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi 128.7 11.7 11.7	d (3GI _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7 11.7	d (3GI _{dBµv}	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7 11.7	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7 11.7 11.7 11.7 11.7	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7 11.7	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7 11.7 11.7 11.7 11.7	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7 11.7 11.7 11.7 11.7	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7 11.7 11.7 1MAX DH 79	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 182 GHz
CH Mi Ref Lv1 128.7 11.7 11.7 1	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 79 dBµV
CH Mi Ref Lv1 128.7 11.7 11.7 1MAX DH 79	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV 82 GHz	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 182 GHz
CH Mi Ref Lv1 128.7 11.7 11.7 1	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 182 GHz
CH Mi Ref Lv1 128.7 11.7 11.7 1.	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 182 GHz
CH Mi Ref Lv1 128.7 11.7 11.7 1	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 182 GHz
CH Mi Ref Lv1 128.7 11.7 11.7 1.	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 182 GHz
CH Mi Ref Lv1 128.7 11.7 11.7 1.	d (3GI dBµV dB Offse	Hz~20 Marker E	6.5GH 4 [T1] 55.7	'9 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 55.	20 dB dBµV 182 GHz

_	<u>~ц ці</u>	ah (30		-3CH	7) (80)	2 11n				ain 1	1
\wedge		gn (St	Marker		2) (80.	2.1111 RBW			DE-Ch	20 dB)
×,	Ref Lvl		nariter		5 dBµV	VBW	100 K			20 00	
	128.7	dBµV	2	2.462000	IOO GHz	SWT	760 m		Unit	dBµV	
128	11.7	dB Offse	e t				▼1	[T1]	99.	45 dBµV	
120										, 000 GHz	
120							⊽2	[T1]		04 dBµV	
110							V 2	[71]		000 GHz 33 dBµ∀	
110							.3		440.68136		
100									1		
100	1MAX										1MA
90	TUHA										TUH
JU											
80	-D1 79 .	45 dBµ∀									
70											
		2									
60											
		Nuu				man			به بیمالیلیم		
50	mound	w II Williak	man	hermon	munu	~~~~~		W/010***			
40											
28.7											
	Start 3	0 MHz			297	MHz/			Sto	op 3 GHz	
Date	: 1	18.MAR.2	2011 16	:27:04							
Date	: 1	18.MAR.2	2011 16	:27:04							
					Iz) (80)2.11ı	า HT2	0 M	ODE-C	hain 1)
C	:H Hig	h (3G		6.5GH 4 [T1]		RBW	ו HT2 100 ג		ODE-C)
C	H Hig	h (3G	i Hz~2 Marker	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF Att	20 dB)
C S	Ref Lvl 128.7	l h (3G dBμγ	i Hz~2 ^{Marker}	6.5GH 4 [T1]	'1 dBµV	RBW	100 k 100 k	Hz Hz		20 dB)
C	Ref Lvl 128.7	h (3G	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Att Unit 56.	20 dB dBμV 71 dBμV)
C S	Ref Lvl 128.7	l h (3G dBμγ	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV)
C	Ref Lvl 128.7	l h (3G dBμγ	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV)
C	Ref Lvl 128.7	l h (3G dBμγ	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV)
C 128 120	Ref Lvl 128.7	l h (3G dBμγ	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV)
C 128 120	H Hig Ref Lv1 128.7	l h (3G dBμγ	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV)
C 128 120 110	H Hig Ref Lv1 128.7	l h (3G dBμγ	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV)
C 128 120 110	H Hig: Ref Lv1 128.7	l h (3G dBμγ	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV	
C 128 120 110	H Hig: Ref Lv1 128.7	l h (3G dBμγ	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV	
C 128 120 110 100	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV	
C 128 120 110 100	H Hig: Ref Lv1 128.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV	
128 120 110 100 90 80	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV	
C 128 120 110 100	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV	
128 120 110 100 90 80 70	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 71 dBμV	
128 120 110 100 90 80	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	1 dBμV 82 GHz	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 71 dBµV 182 GHz	
128 120 110 100 90 80 70 60	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	'1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBμV 71 dBμV	
128 120 110 100 90 80 70	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	1 dBμV 82 GHz	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 71 dBµV 182 GHz	
128 120 110 100 90 80 70 60 50	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	1 dBμV 82 GHz	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 71 dBµV 182 GHz	
128 120 110 100 90 80 70 60	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	1 dBμV 82 GHz	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 71 dBµV 182 GHz	
128 120 110 100 90 80 70 60 50	H Hig Ref Lv1 128.7 11.7	h (3G dBµV dB Offse	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7	1 dBμV 82 GHz	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 71 dBµV 182 GHz	
128 120 110 100 90 80 70 60 50	H Hig	h (3G dBμV dB Offsα 45 dBμV	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7			100 k 100 k 6	Hz Hz s	RF Att Unit 56. 95591	20 dB dB µV 71 dB µV 182 GHz	
C 128 120 110 100 90 80 70 60 50 40	EH Hig Ref Lv1 128.7 (11.7	dBμV dB Offsα 45 dBμV	i Hz~2 ^{Marker}	6.5GH 4 [T1] 56.7 5.955911	1 dBμV 82 GHz		100 k 100 k 6	Hz Hz s	RF Att Unit 56. 95591	20 dB dBµV 71 dBµV 182 GHz	

	CH Lo	w (30	MHz~	-3GHz	z) (802	2.11n	HT40	MO	DE-Ch	ain 0))
(R)		•	Marker						FAtt	20 dB	
×.>	Ref Lvl	HB UV	2	98.5 חחמכיע מ	7 dBµV	VBW SWT	100 k 760 m		nit	dBµV	,
128						INC					
	11.7	dB Offs€	et				▼1	[T1]		57 dBµV	
120							⊽ว	[T1]	2.42200	000 GHz 02 dBµV	
							•2	[]]]		000 GHz	
110							3	[71]		29 dBµ∀	
									2.49408	818 GHz	
100									1		
	1MAX								n		1MA
90											
80											
00	—D1 78.	57 dBµV									
70											
70									1		
60									3		
						. Lawrence		لم	1 5		
50	mound	Nelson with	www.	www.	minhunder		m when			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
40											
28.7											
	Start 3	0 MHz			297	MHz/			Sto	p 3 GHz	
Date	: 1	8.MAR.2	011 16	:16:47							
C	<u>, Н Г О</u>	N (3C	H7~26	3 5 C H	17) (80	10 11r				nain ())
C	CH Lov	<i>w</i> (3G			lz) (80				DE-Cl)
<u>/</u>	CH LON	w (3G	Hz~26 Marker	4 [⊤1]	Iz) (80 ₄ dBµV	RBW	100 k 100 k 100 k	Hz R	DE-CI	1 ain 0 20 dB)
<u>/</u>	Ref Lvl			4 [T1] 55.9	4 dBµV	RBW	100 k 100 k	Hz R Hz		20 dB	
<u>/</u>	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init	20 dB dBµV	
128	Ref Lvl 128.7		Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz	F Att Init 55.	20 dB dBµV 94 dBµV	,
×)	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV	,
128	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	,
128	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	,
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	,
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	,
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	,
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	
128 120 110	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV dB Offs∉	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	
128 120 110 100 90	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV dB Offs∉	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	
128 120 110 100 90	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV dB Offs∉	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV dB Offs∉	Marker E	4 [T1] 55.9	4 dBµV	RBW VBW	100 k 100 k 6	Hz R Hz s L	F Att Init 55.	20 dB dBµV 94 dBµV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV dB Offs∉	Marker E	4 [T1] 55.9	4 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	HZ R HZ [T1]	F Att	20 dB dBµV 94 dBµV	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV dB Offse	Marker E	4 [T1] 55.9	4 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	HZ R HZ [T1]	F Att Init 55.	20 dB dBµV 94 dBµV	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV dB Offse	Marker E	4 [T1] 55.9	4 dBµV 82 GHz	RBW VBW	100 k 100 k 6 V4	HZ R HZ [T1]	F Att	20 dB dBµV 94 dBµV	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV dB Offse	Marker E	4 [T1] 55.9	4 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	HZ R HZ [T1]	F Att	20 dB dBµV 94 dBµV	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV dB Offse	Marker E	4 [T1] 55.9	4 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	HZ R HZ [T1]	F Att	20 dB dBµV 94 dBµV	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV dB Offse	Marker E	4 [T1] 55.9	4 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	HZ R HZ [T1]	F Att	20 dB dBµV 94 dBµV	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7 (11.7 (dBμV dB Offse 57 dBμV 57 dBμV	Marker E	4 [T1] 55.9	4 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	HZ R HZ [T1]	F Att	20 dB dBµV 94 dBµV	
128 120 110 100 90 80 70 60 50 40	Ref Lvl 128.7 (11.7 (11.7 (1MAX —D1 78.	dBμV dB Offse 57 dBμV 57 dBμV	Marker E	4 [T1] 55.9	4 dBµV 82 GHz		100 k 100 k 6 V4	HZ R HZ [T1]	F Att init 55. 6.95591	20 dB dBµV 94 dBµV	1MA

(802.11n HT40 MODE)

	сн м	id (30		3647) (802) 11n		MO		ain 0	
\sim			Marker	1 [T1]		RBW	100 F	Hz	DE-Cha	20 dB	
× V	Ref Lvl	dBµV	2	98.1 437000	8 dBµV NN GHz	VBW SWT	100 ⊬ 760 m		Unit	dBµV	
128		dB Offse		.401000		- ML				· · · ·	1
120			FL				1	[[]]]		18 dBµV 000 GHz	
120							⊽2	[T1]		72 dBµV	
110							3	[T1]		1000 GHz 76 dBµV	
										014 GHz	
100				r					1		
90	1MAX										1MA
80		18 dBµV									
		10 00,	[T			
70											
60											
UU								3			
50	All Walking	within	whenter	ىرىمىيىيى مەرىپىيە	Mauren	www.	Ironon	Muum	~ ~~~	monor	
	ĺ										
40											
28.7	Start 3	0 MHz			297	MHz/			Sto	p 3 GHz	
Date	: 1	18.MAR.2	2011 16	:18:32							
		<u> </u>									
(CH Mi				z) (80				DDE-Cł)
1 And			Hz~26 ^{Marker}	4 [T1]		RBW	100 k	κHz		1 ain 0 20 dB)
Ś	Ref Lvl 128.7 (4 [T1] 56.1	8 dBµV		100 k 100 k	(Hz (Hz		20 dB	
1 And	Ref Lvl 128.7		Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz	RF Att Unit 56.	20 dB dBµV 18 dBµV	
Ś	Ref Lvl 128.7	dBµV	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV	
128	Ref Lvl 128.7	dBµV	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128	Ref Lvl 128.7	dBµV	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110	Ref Lvl 128.7	dBµV	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120	Ref Lvl 128.7	dBµV	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110	Ref Lvl 128.7 (11.7 ()	dBµV	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7 (1	dBµV dB Offs∉	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110 100 90	Ref Lvl 128.7 (11.7 (1	dBµV dB Offs∉	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110 100 90 80	Ref Lv1 128.7 (11.7 (1	dBµV dB Offs∉	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110 100 90 80 70	Ref Lv1 128.7 (11.7 (1	dBµV dB Offs∉	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110 100 90 80 70	Ref Lv1 128.7 (11.7 (1	dBµV dB Offs∉	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 128 120 110 100 90 80 70 60 50	Ref Lv1 128.7 (11.7 (1	dBµV dB Offs∉	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110 100 90 80 70 60	Ref Lv1 128.7 (11.7 (1	dBµV dB Offs∉	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 120 110 100 90 80 70 60 50 40	Ref Lv1 128.7 (11.7) 11.7) 1MAX —D1 78.	dBµV dB Offs∉	Marker 6	4 [T1] 56.1	8 dBµV	RBW VBW	100 k 100 k 6	(Hz (Hz S	RF Att Unit 56.	20 dB dBµV 18 dBµV	
128 128 120 110 100 90 80 70 60 50	Ref Lv1 128.7 (11.7) 11.7) 1MAX —D1 78.	dBµV dB Offse	Marker 6	4 [T1] 56.1	8 dBµV		100 k 100 k 6	(Hz (Hz S	RF Att Unit 56. 6.95591	20 dB dBµV 18 dBµV	

	<u>~н н</u> ;	ah (3(-зСП.		2 11n	ЦТΛ			2 in 0	١
		yn (st	Marker	1 [11]	2) (002	∠. I III RBW	100 k	Hz Hz	DE-Ch	20 dB)
×	Ref Lvl				1 dBµV	VBW	100 k				
• 128	128.7	dBµV	2	2.452000	00 GHz	SWT	760 m	S	Unit	dBµV	
120	11.7	dB Offse	e t				▼1	[T1]		31 dBµV	
120							2	[T1]		000 GHz 11 dBµV	_
							2			000 GHz	
110								[T1]		<u>61 dBµ</u> ∀	
									2.50595	198 GHz	
100	1MAX								Ŕ		1MA
90											1116
00											
80	D1 78	31 dBµV									
70											
60									3		
				MMM		han	AM BAMAM	IAMIN	w thum	manul	
50	when	when her	wite		(*****)((*****************************						
40											
28.7											
	Start 3	0 MHz			297	MHz/			Sto	p 3 GHz	
Date	: 1	18.MAR.2	2011 16	:19:51							
С	:H Hig	h (3G	Hz~2	6.5GF	lz) (80)2.11r	ר HT4	0 M 0	ODE-C	hain 0)
/K/				4 [T1]		RBW	100 k	Hz	DDE-C)
/K/	Ref Lvl			4 [T1] 56.7	7 dBµV	RBW	100 k 100 k	Hz Hz	RF Att	20 dB	
/K/	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit	20 dB dBµV	
128	Ref Lvl 128.7		Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Att Unit 56.	20 dB	
× November 2015 November 2015	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 128 120 110	Ref Lv1 128.7	dBµV	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 120 110	Ref Lv1 128.7	dBµV	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 120 110 100 90 80	Ref Lvl 128.7	dBµV dB Offsα	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 120 110 100 90	Ref Lvl 128.7	dBµV dB Offsα	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 120 110 100 90 80 70	Ref Lvl 128.7	dBµV dB Offsα	Marker E	4 [T1] 56.7	7 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBμV 77 dBμV	
128 120 110 100 90 80	Ref Lvl 128.7	dBµV dB Offsα	Marker E	4 [T1] 56.7	7 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBμV 77 dBμV	
128 120 110 100 90 80 70 60	Ref Lvl 128.7	dBµV dB Offsα	Marker E	4 [T1] 56.7	7 dBµV 82 GHz	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70	Ref Lvl 128.7	dBµV dB Offsα	Marker E	4 [T1] 56.7	7 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70 60	Ref Lvl 128.7	dBµV dB Offsα	Marker E	4 [T1] 56.7	7 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7	dBµV dB Offsα	Marker E	4 [T1] 56.7	7 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7	dBµV dB Offsα	Marker E	4 [T1] 56.7	7 dBµV 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 182 GHz	
128 120 110 100 90 80 70 60 50 40	Ref Lvl 128.7	dBµV dB Offse 31 dBµV	Marker E	4 [T1] 56.7	7 dBµV 82 GHz		100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 5.95591	20 dB dBµV 182 GHz	

	CH Lo	w (30	MHz~	-3GHz	z) (802	2.11n	HT40	MO	DE-Ch	ain 1)
(R)		•	Marker						FAtt	20 dB	
×.>	Ref Lvl	HB UV	2		0 dBµV	VBW SWT	100 k 760 m		Init	dBµV	,
128						INC					
	11.7	dB Offs€	et				▼1	[T1]		60 dBµV	
120							72	[T1]	2.42200	UUU GHz 80 dBμV	
							.2	[]]]		000 GHz	
110								[T1]		45 dBµ∀	
								4	40.68136		
100									1		
	1MAX								n		1MA
90	1										1
50											
80	-D1 77.	6 dBµV−									
70									*		
		3									
60		- ľ									
		. I.							him		
50	mun	ullium	humber	سيلسمامس	mandal	unahun	Laborerus	mm	- Vinin	mont	
	VW -										
40											
00.7											
28.7	Start 3	0 MHz			297	MHz/			Sto	p 3 GHz	,
Date			011 16								
Duic		.0.111111.2		.20.20							
		(2.2									
C	CH Lov	w (3G			lz) (80				DE-Cł)
1		w (3G	Hz~2(Marker	4 [⊤1]		RBW	100 k	Hz F	DE-Cl	1 20 dB)
1	Ref Lvl		Marker	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k	Hz F Hz	F Att	20 dB	
1	Ref Lvl 128.7	dBµV	Marker E	4 [⊤1]	2 dBµV	RBW	100 k 100 k 6	Hz F Hz s L	F Att Init	20 dB dB#V	
Ś	Ref Lvl 128.7		Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz	FAtt Init 56.	20 dB dBµV 02 dBµV	,
Ś	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	F Att Init	20 dB dBµV 02 dBµV	,
128	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	,
128	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	,
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	,
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	,
128 120	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	,
128 120 110	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	
128 120 110 100 90	Ref Lvl 128.7	dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	
128 120 110	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	
128 120 110 100 90	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV dB Offs∉	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	
128 120 110 100 90	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV dB Offs∉	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV dB Offs∉	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	
128 120 110 100 90 80	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV B Offse	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBµV dB Offs∉	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 669 GHz	
128 120 110 100 90 80 70	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV B Offse	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 02 dBµV	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV B Offse	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 669 GHz	
128 120 110 100 90 80 70 60	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV B Offse	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 669 GHz	
128 120 110 100 90 80 70 60 50	Ref Lvl 128.7 (11.7 (11.7 (11.7 (dBμV B Offse	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 669 GHz	
128 120 110 100 90 80 70 60 50 40	Ref Lvl 128.7 (11.7 (اللهم) اللهم) اللهم)	dBμV B Offse	Marker E	4 [T1] 56.0	2 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s L	FAtt Init 56.	20 dB dBµV 669 GHz	
128 120 110 100 90 80 70 60 50 40 28.7	Ref Lvl 128.7 (11.7 (الالمعرب الالمعرب المعرب	dBμV dB Offse	Marker E	4 [T1] 56.0			100 k 100 k 6	Hz F Hz s L	F Att Init 56. 6.67334	20 dB dB, µV 669 GHz	
128 120 110 100 90 80 70 60 50 40 28.7	Ref Lvl 128.7 (11.7 (السلامی) -D1 77.	dBμV JB Offse 6 dBμV− 6 dBμV− GHz	Marker E	4 [T1] 56.0 5.673346	2 dBµV		100 k 100 k 6	Hz F Hz s L	F Att Init 56. 6.67334	20 dB dBµV 669 GHz	

(802.11n HT40 MODE)

	na (50	INHZ~	SGHZ	.) (80∠	<u>. i in</u>	H140	MO	DE-Cha	ain 1)
\$		Marker			RBW	100 k		RF Att	20 dB
Ref Lvl			97.2	7 dBµV	VBW	100 k			
128.7	dBµV	2	2.437000	OO GHz	SWT	760 m	S	Unit	dBµV
28	dB Offse	L +				-			
11.7	DD UTTS	el				•1	[T1]		27 dBµV
20								2.43700	
						⊽2	[T1]	52.	82 dBµV
								2.40000	000 GHz
10							[71]	60.	28 dBµV
						_		440.68136	
00								1	
1MAX								IN	
90									
80									
D1 77.	27 dBµV								
	· ·								
70									
	3								
60	<u> </u>								
								Nal.	
					he have a man	h. h. m. h. h.	un	ry mun	a. Misteria
50 mmm	hnttim	mon All	monter	Mr. Mr. Maria	UV • • •		- -		
40									
+0									
.7									
Start 3	20 МЦ-7			297	MU-7 /	•			p 3 GHz
Starts	0 1112			201	111127			5.0	p 5 612
e:	18 MAR 2	011 10							
	10.1111(12	:011 10	:29:45						
				z) (80	2.11n	HT4) MC	DDE-Cł	nain 1
	d (3Gl		6.5GH	z) (80	<mark>2.11п</mark> _{RBW}			DDE-Cl	
	d (3Gl	Hz~26	6.5GH	z) (80 0 dBµV	RBW	100 k 100 k	Hz Hz	RF Att	20 dB
CH Mi	d (3Gl	Hz~26 Marker	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF Att	20 dB
CH Mi	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit	20 dB dBµV
CH Mi	d (3Gl	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Att Unit	20 dB
CH Mi Ref Lv1 128.7 28	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit	20 dB dBµV 10 dBµV
CH Mi	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 11MAX	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 11MAX	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 10	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 11MAX	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 11MAX	d (3Gl _{dBµv}	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 10 10 10 10	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dB _µ V 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Att Unit 56.	20 dB dBµV 10 dBµV
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dB _µ V 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 6.95591	20 dB dBµV 10 dBµV 182 GHz
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dBµV	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 6.95591	20 dB dBµV 10 dBµV 182 GHz
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dB _µ V 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 6.95591	20 dB dBµV 10 dBµV 182 GHz
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dB _µ V 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 6.95591	20 dB dBµV 10 dBµV 182 GHz
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dB _µ V 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 6.95591	20 dB dBµV 10 dBµV 182 GHz
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dB _µ V 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 6.95591	20 dB dBµV 10 dBµV 182 GHz
CH Mi Ref Lv1 128.7 28 11.7 20 10 10 10 10 10 10 10 10 10 1	d (3GI dBµV dB Offse	Hz~26 ^{Marker}	6.5GH 4 [T1] 56.1	0 dB _µ V 82 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 56. 6.95591	20 dB dBµV 10 dBµV 182 GHz

(CH Hi	gh (30)MHz~	~3GH:	z) (80	2.11n	HT40) MC	DD	E-Ch	ain 1)
<u>ک</u>	Ref Lvl	5 (Marker		4 dBμV		100 k 100 k		RF	Att	20 dB	/
	128.7	dBµV	2	97.9 452000		VBW SWT	760 m		Uni	t	dBµ∖	/
128	11.7	dB Offse	e t				▼1	[T1]			94 dBµV 000 GHz	
120							72	[T1]		53.	27 dBµV	
110								[71]	2		000 GHz 75 dBµ V	
									440	.6813E	273 MHz	
100	1MAX								Ň			1MA
90												-
80												
00	-D1 77.	.94 dBµV										
70												-
60		3										
						ali 16_10414	Julieban M.M.		Ma	h.,	ما ايم	
50	numle	ha Millinhi	And the	and the second	ulum, lala m ^M	Mulerin	-	,,MU() V VV				1
40												
28.7	Start 3	BO MHz	1		297	MHz/	1			Sto	p 3 GHz	1
)a to	:	18.MAR.2	2011 16	:30:55								
Juic												
		ab (20	·LI 20		I	10 11		0.14			hain 1)
C			Hz~20		lz) (80)2.11ו RBW	n HT4		OD RF		hain 1 20 ав)
C	Ref Lvl		Marker	4 [T1] 55.7	5 dBµV	RBW	100 k 100 k	Hz Hz	RF	Att	20 dB	
C	Ref Lv1 128.7		Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz	RF	Att t		/
C	Ref Lv1 128.7	dBµV	Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBµ\	/
C 128 120	Ref Lv1 128.7	dBµV	Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBμ\ 75 dBμV	/
C	Ref Lv1 128.7	dBµV	Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBμ\ 75 dBμV	/
C 128 120	Ref LvI 128.7	dBµV	Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBμ\ 75 dBμV	
128 120 110	Ref Lv1 128.7 11.7 11.7	dBµV	Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBμ\ 75 dBμV	/
128 120 110	Ref Lv1 128.7 11.7 11.7	dBµV	Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBμ\ 75 dBμV	
128 120 110	Ref Lv1 128.7 11.7 1MAX	dBµV	Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBμ\ 75 dBμV	
128 120 110 100 90	Ref Lv1 128.7 11.7 1MAX -D1 77.	dBµV dB Offse	Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBμ\ 75 dBμV	
128 120 110 100 90 80 70	Ref Lv1 128.7 11.7 1MAX	dBµV dB Offse	Marker E	4 [T1] 55.7	5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBμ\ 75 dBμV	
128 128 110 100 90 80	Ref Lv1 128.7 11.7 1MAX -D1 77.	dBµV dB Offse	Marker E	4 [T1] 55.7	5 dBµV 64 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBµV 75 dBµV 764 GHz	
128 120 110 100 90 80 70	Ref Lv1 128.7 11.7 1MAX —D1 77.	dBµV dB Offso 94 dBµV	Marker E	4 [T1] 55.7	5 dBµV 64 GHz	RBW VBW	100 k 100 k 6	Hz Hz s	RF Uni	Att t 55.	20 dB dBμ\ 75 dBμV	
128 120 110 100 90 80 70 60 50	Ref LvI 128.7 11.7 11.7 1MAX	dBµV dB Offso 94 dBµV	Marker E	4 [T1] 55.7	5 dBµV 64 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Uni	Att t 55.	20 dB dBµV 75 dBµV 764 GHz	
128 120 110 100 90 80 70 60	Ref LvI 128.7 11.7 11.7 1MAX	dBµV dB Offso 94 dBµV	Marker E	4 [T1] 55.7	5 dBµV 64 GHz	RBW VBW SWT	100 k 100 k 6 V4	Hz Hz s	RF Uni	Att t 55.	20 dB dBµV 75 dBµV 764 GHz	
128 120 110 100 90 80 70 60 50	Ref Lv1 128.7 11.7 11.7 1MAX	dBµV dB Offso 94 dBµV	Marker E	4 [T1] 55.7	5 dBµV 64 GHz		100 k 100 k 6 V4	Hz Hz s		Att 55. .90881	20 dB dBµV 75 dBµV 764 GHz	11MA

					_					-		
	C	H Low	v (30N	/Hz~3	3GHz)	(802.	11n ⊦	IT20) N	10DE	Ξ)	
	Ref Lvl		Marker			RBW VBW	100 k 100 k	Hz	RF	Att	20 dB	
V	tiso dBµ	W	2	106.0 2.412000	19 dBµV				Un	it	dBµV	,
130				12000			r				,	
	15.2	dB Offse	et				▼1	[T1]			09 dBµV	
120							<u>v</u> a		2		000 GHz	
							*2	[T1]			53 dBµV 000 GHz	
110							⊽3	[T1]			38 dBµV	
110									39		, 607 MHz	
100	1MAX											1MA
	11111											1
90	D4 00	00 ID V										
	—D1 86.	U9 dB#V										
80									-4			
									Ĩ			
70									_			
60		3										
									N	hunger	werne	
50	mound	Jullinger	menn	marking	num	and the second	hunann	www.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
bu												
40												
30		- MU-			007	MU-				C + -	- 2 611-	J
	Start 30				297	ninz/				510	р З GHz	
Date:	: 2	4.MAR.2	011 09	:25:55								
	C⊦	l l ow	(3GH	7~26	5GHz	·) (802	9 11n	HT2	0	MOD	E)	
	C⊦			z~26 . ₄ [ĭ1]	5GHz							
× ×	CH Ref Lv1		(3GH Marker	4 [⊤1]	5GHz	RBW		Hz		MOD Att		
×			Marker	4 [⊤1]	∃5 dBµV	RBW	100 k 100 k	Hz Hz	RF	Att		,
130	Ref Lvl 130 dB;	uV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att It	20 dB dB#V	, 1
·	Ref Lvl 130 dB;		Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
·	Ref Lvl 130 dB;	uV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dB#V	
130	Ref Lvl 130 dB;	uV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130	Ref Lvl 130 dB;	uV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120	Ref Lvl 130 dB;	uV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120 110	Ref Lvl 130 dB;	uV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120	Ref Lvl 130 dB;	uV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120 110	Ref Lvl 130 dB, 15.2	uV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120 110	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120 110	Ref Lvl 130 dB, 15.2 d	uV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120 110	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130- 120 110 100 90	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130- 120 110 100 90	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120 110 100 90 80	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120 110 100 90 80	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130 120 110 100 90 80 70	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 59.	20 dB dBµV 85 dBµV	
130, 120 110 100 90 80 70 60	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Un	Att it 5.95591	20 dB dBµV 85 dBµV	
130 120 110 100 90 80 70	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 5.95591	20 dB dBµV 85 dBµV	
130, 120 110 100 90 80 70 60	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 5.95591	20 dB dBµV 85 dBµV	
130, 120 110 100 90 80 70 60	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 5.95591	20 dB dBµV 85 dBµV	
130 120 110 100 90 80 70 60 50	Ref Lvl 130 dB, 15.2 d	∠V ∃B Offse	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 5.95591	20 dB dBµV 85 dBµV	
130, 120 110 100 90 80 70 60 50 50 40	Ref Lvl 130 dB, 15.2 d 1MAX -D1 86.	LV B Offse 09 dBμV	Marker E	4 [T1] 59.8	∃5 dBµV	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 59. 5.95591	20 dB dBµV 85 dBµV 182 GHz	
130, 120 110 100 90 80 70 60 50 50 40	Ref Lvl 130 dB, 15.2 d	LV B Offse 09 dBμV	Marker E	4 [T1] 59.8	15 dBμV 82 GHz	RBW VBW SWT	100 k 100 k 6	Hz Hz s	RF Un	Att it 59. 5.95591	20 dB dBµV 85 dBµV	

(802.11n HT20 Combined Mode)

	-				<u> </u>	(0.0.0		— ~ ~ ~			
~	C	H Mic	I (30N	1Hz~3	GHz)	(802.	11n H	T20	MODE RF Att	.)	
	Ref Lvl		Marker		2 dBµV	КВМ КВМ	1UU к 100 к		RF Att	20 dB	
\sim	130 dB,	uV	2	2.437000	2 05µv 00 GHz	SML			Unit	dBµV	,
130		dB Offse					1			,	
	15.2	DB UTTS	eτ				•1	[T1]		22 dBµV	
120								[T1]	2.43700	14 dBµV	
							2	[]]]	2.40000		
110							⊽3	[T1]		79 dBµV	
									416.87374	749 MHz	
100											
100	1MAX										1MA
90											
	HD1 85.	22 dBµV									
80											
70		3									
		Í									
60											
		h				MILL MAN	Hunn.	Junt	no hum		
50	mon	Muther	Marina	www.uu	-uni	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	w.•			
40											
40											
30											
	Start 3	0 MHz			297	MHz/			Sto	p 3 GHz	
Date	. 🤈	4.MAR.2	N11 N9	•30•35							
build			011 00	.50.50							
	~					(170		_ `	
	CH				5GHz) MODI		
) In the second			(3GH: ^{Marker}	4 [T1]		RBW	100 k	Hz	D MODI		
(Å) E	Ref Lvl		Marker	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF Att	20 dB	
130	Ref Lvl 130 dB,	uV	Marker E	4 [T1]	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit	20 dB	
Ţ	Ref Lvl 130 dB,		Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130	Ref Lvl 130 dB, 15.2	uV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV	
Ţ	Ref Lvl 130 dB, 15.2	uV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120	Ref Lvl 130 dB, 15.2	uV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130	Ref Lvl 130 dB, 15.2	uV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120 110	Ref Lv1 130 dB,	uV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120	Ref Lv1 130 dB,	uV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120 110	Ref Lv1 130 dB, 15.2	uV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	1MA
130 120 110	Ref Lv1 130 dB, 15.2	uV JB Offse	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120 110	Ref Lv1 130 dB, 15.2	uV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120 110	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	uV JB Offse	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120 110 100 90	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	uV JB Offse	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120 110 100 90	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	uV JB Offse	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120 110 100 90 80	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	μV dB Offse 22 dBμV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120 110 100 90 80	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	uV JB Offse	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59. 6.95591	20 dB dBµV 56 dBµV	
130 120 110 100 90 80 70	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	μV dB Offse 22 dBμV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV 56 dBµV	
130 120 110 100 90 80 70 60	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	μV dB Offse 22 dBμV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59. 6.95591	20 dB dBµV 56 dBµV	
130 120 110 100 90 80 70	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	μV dB Offse 22 dBμV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59. 6.95591	20 dB dBµV 56 dBµV	
130 120 110 100 90 80 80 70 60 50	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	μV dB Offse 22 dBμV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59. 6.95591	20 dB dBµV 56 dBµV	
130 120 110 100 90 80 70 60	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	μV dB Offse 22 dBμV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59. 6.95591	20 dB dBµV 56 dBµV	
130 120 110 100 90 80 80 70 60 50 40	Ref Lvl 130 dB, 15.2 d 1MAX -D1 85.	μV dB Offse 22 dBμV	Marker E	4 [T1] 59.5	6 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59. 6.95591	20 dB dBµV 56 dBµV	
130 120 110 100 90 80 80 70 60 50	Ref Lv1 130 dB, 15.2 d 1MAX -D1 85.	uV B Offse 22 dBμV	Marker E	4 [T1] 59.5	6 dB,µV 82 GHz	RВW VBW SWT	100 k 100 k 6	Hz Hz s	RF Att Unit 59. 6.95591	20 dB dBµV 56 dBµV 182 GHz	
130 120 110 100 90 80 80 70 60 50 40	Ref Lvl 130 dB, 15.2 d 1MAX —D1 85.	uV B Offse 22 dBμV	Marker E	4 [T1] 59.5	6 dBµV	RВW VBW SWT	100 k 100 k 6	Hz Hz s	RF Att Unit 59. 6.95591	20 dB dBµV 56 dBµV	

	C	H Higl	h (30N	/Hz~3	3GHz)	(802.	.11n H	IT20	MODE	Ξ)	
M			Marker	1 [T1]		RBW	100 k	Hz F	RF Att	20 dB	
**	Ref Lvl 130 dB		2	104.7 462000.	5 dBµV OO GHz	VBW SWT	100 k 760 m	HZ S L	Jn i t	dBµV	
130	15.2	dB Offse	e t				▼1	[T1]	104.	75 dBµV	
120							2	[11]		000 GHz 73 авµV	
									2.40000	000 GHz	
110							⊽3	[T1] 3	<u>62</u> 99 <u>1</u> 01803	10 dBµV 607 MHz	
100								5		001 1112	
100	1MAX										1MA
90											
	—D1 84.	75 dBµV									
80											
70											
		3									
60									3		
	wound	w llabore	menu	w.m.	menteral	when me have	hardonne	untin	ner burn	um -	
50											
40											
30	Start 3	0 MHz			297	MHz/			Sto	p 3 GHz	
Date		24.MAR.2	011 09	:33:13							
	C⊦	l High	(3GH	lz~26.	5GHz	:) (802	2.11n	HT20) MOD	E)	
×			(3GH Marker	4 [T1]		RBW	100 k	Hz F) MOD	E) 20 dB	
	Ref Lvl 130 dB		Marker	4 [T1]	3 dBµV	RBW	100 k 100 k	Hz F	RF Att		
130	Ref Lvl 130 dB		Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz	RF Att Jnit	20 dB	
	Ref Lvl 130 dB 15.2	<i>μ</i> √	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBµV	
130	Ref Lvl 130 dB 15.2	<i>μ</i> √	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	
130	Ref Lvl 130 dB	<i>μ</i> √	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	
130 120 110	Ref Lv1 130 dB	<i>μ</i> √	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	
130 120	Ref Lv1 130 dB	<i>μ</i> √	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	1MA
130 120 110	Ref Lvl 130 dB 15.2	<i>μ</i> √	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	
130 120 110	Ref Lv1 130 dB 15.2 1MAX	<i>μ</i> √	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	
130 120 110	Ref Lvl 130 dB, 15.2 1MAX -D1 84.	μV dB Offse	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	
130 120 110 100 90 80	Ref Lvl 130 dB, 15.2 1MAX -D1 84.	μV dB Offse	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	
130 120 110 100 90	Ref Lvl 130 dB, 15.2 1MAX -D1 84.	μV dB Offse	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	
130 120 110 100 90 80	Ref Lvl 130 dB, 15.2 1MAX -D1 84.	μV dB Offse	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz L [T1]	RF Att Jnit 6.95591	20 dB dBµV 73 dBµV 182 GHz	
130 120 110 100 90 80 70	Ref Lvl 130 dB, 15.2 1MAX -D1 84.	μV dB Offse	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz s l	RF Att Jnit 59.	20 dB dBμV 73 dBμV	
130 120 110 100 90 80 70	Ref Lvl 130 dB, 15.2 1MAX -D1 84.	μV dB Offse	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz L [T1]	RF Att Jnit 6.95591	20 dB dBµV 73 dBµV 182 GHz	
130 120 110 100 90 80 70 60	Ref Lvl 130 dB, 15.2 1MAX -D1 84.	μV dB Offse	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz L [T1]	RF Att Jnit 6.95591	20 dB dBµV 73 dBµV 182 GHz	
130 120 110 100 90 80 70 60 50	Ref Lvl 130 dB, 15.2 1MAX -D1 84.	μV dB Offse	Marker E	4 [T1] 59.7	3 dBµV	RBW VBW	100 k 100 k 6	Hz F Hz L [T1]	RF Att Jnit 6.95591	20 dB dBµV 73 dBµV 182 GHz	
130 120 110 100 90 80 70 60 50 50 40	Ref Lvl 130 dB, 15.2 1MAX -D1 84.	μV dB Offse 75 dBμV	Marker E	4 [T1] 59.7	3 dBµV		100 k 100 k 6	Hz F Hz L [T1]	RF Att Jnit 6.95591	20 dB dBµV 73 dBµV 182 GHz	

	0		(0.01			(000	44 1	IT 40		- \	
~	C	H Lov	V (30N Marker	/IHz~3	BGHz)	(802. _{RBW}	11n F	1140	MODE	:)	
(¥)	Ref Lvl				?7 dBµV	квы УВЫ	100 k 100 k		RF Att	20 dB	
\sim	130 dB	μV	2	2.422000		SWT			Unit	dBµ∖	/
130	15.2	dB Offse						1741	400		1
	13.2						•1	[T1]		27 dBµV 000 GHz	
120							2	LT1]		65 dBµV	
									2.40000	000 GHz	
110							3	[T1]		30 dBµV	
								3	399.01803 x	6U7 MHz	
100											
	1MAX										1MA
90											
		27 dBμV									
80											-
									4		
70											
									/\\		
60		3							#}		
	Ι.	Luklinden				us almon	Line and	mun	1 hours	Le Ann Back	
50	mound	uuuw	Mulm	hann	uuun	• Q		- -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
40											
30											
	Start 3	0 MHz			297	MHz/			Sto	p 3 GHz	
Date	: 2	24.MAR.2	011 09	:37:59							
			(3CH	7~26	5647) (802) 11n	μтл			
~	CF	Low			5GHz) MOD		
- B B B B B B B B B B B B B B B B B B B	CH Ref Lvl	I Low	(3GH Marker	4 [T1]	5GHz '8 dBµV	RBW		Hz	D MOD		
Ś			Marker	4 [T1]	'8 dBµV	RBW	100 k 100 k	Hz I Hz		20 dB	/
130	Ref Lvl 130 dB	μV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit	20 dB dBµV	, ,]
·	Ref Lvl 130 dB		Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz I Hz	RF Att Unit 59.	20 dB dBμV 78 dBμV]
·	Ref Lvl 130 dB 15.2	μV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBµV]
130	Ref Lvl 130 dB 15.2	μV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV]
130	Ref Lvl 130 dB	μV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV]
130 120	Ref Lvl 130 dB	μV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV]
130 120	Ref Lvl 130 dB	μV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV]
130 120 110	Ref Lvl 130 dB	μV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV]
130 120 110	Ref Lvl 130 dB 15.2 1MAX	μV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV	
130 120 110	Ref Lvl 130 dB, 15.2 1MAX	μV dB Offsα	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV	
130 120 110	Ref Lvl 130 dB 15.2 1MAX -D1 83.	μV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV	
130 120 110 100 90	Ref Lvl 130 dB 15.2 1MAX -D1 83.	μV dB Offsα	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV	
130 120 110 100 90 80	Ref Lvl 130 dB, 15.2 1MAX -D1 83.	μV dB Offsα	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV	
130 120 110 100 90	Ref Lvl 130 dB, 15.2 1MAX -D1 83.	μV dB Offsα	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV	
130 120 110 100 90 80 70	Ref Lvl 130 dB 15.2 1MAX -D1 83.	μV dB Offsα	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Jnit 6.95591	20 dB dBμV 78 dBμV	
130 120 110 100 90 80	Ref Lvl 130 dB 15.2 1MAX -D1 83.	μV dB Offsα 27 dBμV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6 V4	Hz Hz s	RF Att Unit 59.	20 dB dBμV 78 dBμV	
130 120 110 100 90 80 70 60	Ref Lvl 130 dB 15.2 1MAX -D1 83.	μV dB Offsα 27 dBμV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF Att Jnit 6.95591	20 dB dBµV 78 dBµV 182 GHz	
130 120 110 100 90 80 70	Ref Lvl 130 dB 15.2 1MAX -D1 83.	μV dB Offsα 27 dBμV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6 V4	Hz Hz s	RF Att Jnit 6.95591	20 dB dBµV 78 dBµV 182 GHz	
130 120 110 100 90 80 70 60 50	Ref Lv1 130 dB, 15.2 1MAX -D1 83.	μV dB Offsα 27 dBμV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6 V4	Hz Hz s	RF Att Jnit 6.95591	20 dB dBµV 78 dBµV 182 GHz	
130 120 110 100 90 80 70 60	Ref Lv1 130 dB, 15.2 1MAX -D1 83.	μV dB Offsα 27 dBμV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6 V4	Hz Hz s	RF Att Jnit 6.95591	20 dB dBµV 78 dBµV 182 GHz	
130 120 110 100 90 80 70 60 50 40	Ref Lvl 130 dB, 15.2 1MAX -D1 83.	μV dB Offsα 27 dBμV	Marker	4 [T1] 59.7	'8 dBµV	RBW VBW	100 k 100 k 6 V4	Hz Hz s	RF Att Jnit 6.95591	20 dB dBµV 78 dBµV 182 GHz	
130 120 110 100 90 80 70 60 50	Ref Lvl 130 dB, 15.2 1MAX -D1 83.	μV dB Offse 27 dBμV 4 μνμγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ	Marker	4 [T1] 59.7	/8 dBμV 82 GHz		100 k 100 k 6 V4	Hz Hz s	RF Att Jnit 59. 6.95591	20 dB dBµV 78 dBµV 182 GHz 	1MA
130 120 110 100 90 80 70 60 50 40	Ref Lvl 130 dB, 15.2 1MAX -D1 83.	μV dB Offse 27 dBμV 4 μνμγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ	Marker E	4 [T1] 59.7 5.955911	/8 dBμV 82 GHz	RBW VBW	100 k 100 k 6 V4	Hz Hz s	RF Att Jnit 59. 6.95591	20 dB dBµV 78 dBµV 182 GHz	1MA

(802.11n HT40 Combined Mode)

	-					(0.0.0		T 4 0		- \	
•	C	H Mic	I (30M	1Hz~3	GHz)	(802.	11n H	140	MODE	=)	
	Ref Lvl		Marker		3 dBµV	RBW VBW	100 k 100 k		RF Att	20 dB	
\sim	130 dB,	μV	2	2.437000	00 GHz	SWT			Unit	dBµ∖	,
130		dB Offse								-	1
	13.2		5 L				•1	[T1]		.93 dBµV 0000 GHz	
120							2	[T1]		.51 dBµV	
										0000 GHz	
110							73	[T1]		.02 dBµV	
									399.0180 1	3607 MHz	
100									Ň		
	1MAX										1MA
90											
50											
80	-D1 81.	93 dBµV									
ou											
70											
		3							₹\		
60		Ĩ									
	استریب	Muhah	الاستمر الدار	munu	materia	the week	manda	munder	" Www	man	
50	~~~~~										
40											
30											.
	Start 3	U MHz			297	MHz/			St	op 3 GHz	
Date	: 2	24.MAR.2	011 09	:39:58							
	CH	H Mid	(3GH)	z~26.	5GHz) (802	.11n ł	HT40) MOD	E)	
R		H Mid	(3GH: Marker	z~26. ₄ [т1]	5GHz		. 11n 100 k) MOD		
Ś	Ref Lvl		Marker	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF Att	20 dB	
Ţ	Ref Lvl 130 dB,	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k	Hz Hz		20 dB	,
130	Ref Lvl 130 dB,		Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF Att Unit	20 dB	,]
130	Ref Lvl 130 dB, 15.2	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBµV	
Ţ	Ref Lvl 130 dB, 15.2	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120	Ref Lvl 130 dB,	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130	Ref Lvl 130 dB,	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110	Ref Lvl 130 dB,	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120	Ref Lvl 130 dB,	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110	Ref Lvl 130 dB,	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110	Ref Lvl 130 dB, 15.2	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110	Ref Lvl 130 dB, 15.2 d	μV 3B Offse	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110	Ref Lvl 130 dB, 15.2 d	μV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90	Ref Lvl 130 dB, 15.2 d	μV 3B Offse	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90	Ref Lvl 130 dB, 15.2 d	μV 3B Offse	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90 80	Ref Lvl 130 dB, 15.2 d	μV dB Offse 93 dBμV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90 80	Ref Lvl 130 dB, 15.2 d	μV 3B Offse	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90 80 70	Ref Lvl 130 dB, 15.2 d	μV dB Offse 93 dBμV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90 80 70	Ref Lvl 130 dB, 15.2 d	μV dB Offse 93 dBμV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90 80 70 60	Ref Lvl 130 dB, 15.2 d	μV dB Offse 93 dBμV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90 80 80 70 60 50	Ref Lvl 130 dB, 15.2 d	μV dB Offse 93 dBμV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90 80 70 60	Ref Lvl 130 dB, 15.2 d	μV dB Offse 93 dBμV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90 80 80 70 60 50 40	Ref Lv1 130 dB, 15.2 d 1MAX -D1 81.	μV dB Offse 93 dBμV	Marker 6	4 [T1] 59.8	1 dBµV	RBW VBW	100 k 100 k 6	Hz Hz S	RF Att Unit 59	20 dB dBμV .81 dBμV	
130 120 110 100 90 80 80 70 60 50	Ref Lv1 130 dB, 15.2 d 1MAX -D1 81.	μV dB Offse 93 dBμV 4 	Marker 6	4 [T1] 59.8	1 dBµV		100 k 100 k 6	Hz Hz S	RF Att Unit 59 6.9559	20 dB dBμV .81 dBμV	1MA

	С	H Higl	h (30N	/Hz~3	3GHz)	(802.	.11n F	IT40) MC	DE	:)	
×	Ref Lvl		Marker		8 dBµV	RBW VBW	100 k 100 k		RF At	t	20 dB	
130	130 dB		2	2.452000		SWT		s	Unit		dBµ∖	/
150	15.2	dB Offse	et				▼1	[T1]			58 dBµV 300 GHz	
120							2	[T1]		55.	71 dBµV	
110							⊽3	[T1]			00 GHz 7 <u>0 dB</u> µV	
									399 <u>1</u> .0	1803	607 MHz	
100	1MAX								+			1MA
90												-
	-D1 82.	68 dBµV										
80												
70												-
		3										
60							wallham			AL M.A	- Laller A	
50	لمسلمسهم	1. Mr. Weller	ant red with		mum		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			•		
40												
4U												
30	Start 3	<u>п мн</u> -			297	MH 7 7				Sto	o 3 GHz	J
Date		24.MAR.2	011 09	:41:47	201	11127				5.0	5 5 612	
^	CF	l High			5GHz							
Ŕ	Ref Lvl		Marker	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k	Hz Hz	RF At	t	20 dB	
130	Ref Lvl 130 dB	μ٧	Marker E	4 [T1] 59.0	3 dBµV	RBW	100 k 100 k 6	Hz Hz s		t	20 dB dB#\	, 1
130	Ref Lvl 130 dB 15.2		Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz	RF At Unit	t 59.0	20 dB	
•	Ref Lvl 130 dB 15.2	μ٧	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130	Ref Lvl 130 dB 15.2	μ٧	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130 120 110	Ref Lv1 130 dB 15.2	μ٧	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130 120	Ref Lv1 130 dB 15.2	μ٧	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130 120 110	Ref Lv1 130 dB 15.2	μ٧	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130 120 110 100 90	Ref Lv1 130 dB 15.2 1MAX	μ٧	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130 120 110	Ref Lv1 130 dB 15.2 1MAX	μV dB Offse	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130 120 110 100 90	Ref Lv1 130 dB 15.2 1MAX	μV dB Offse	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130 120 110 100 90 80 70	Ref Lv1 130 dB 15.2 1MAX	μV dB Offse	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130 120 110 100 90 80	Ref Lv1 130 dB 15.2 1MAX	μV dB Offse	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBµ\]3 dBµV	
130 120 110 100 90 80 70	Ref Lv1 130 dB 15.2 1MAX	μV dB Offse	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBμV 23 dBμV 251 GHz	
130 120 110 100 90 80 70 60	Ref Lv1 130 dB 15.2 1MAX	μV dB Offse	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBμV 23 dBμV 251 GHz	
130 120 110 100 90 80 70 60 50	Ref Lv1 130 dB 15.2 1MAX	μV dB Offse	Marker E	4 [T1] 59.0	3 dBµV	RBW VBW	100 k 100 k 6	Hz Hz s	RF At Unit	t 59.0	20 dB dBμV 23 dBμV 251 GHz	
130 120 110 100 90 80 70 60 50	Ref Lv1 130 dB 15.2 1MAX	μV dB Offse 68 dBμV	Marker E	4 [T1] 59.0	3 dBµV		100 k 100 k 6	Hz Hz s	RF At Unit 6.6:	59. 26255	20 dB dBμV 23 dBμV 251 GHz	1MA

8.7 RADIATED EMISSIONS

8.7.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

<u>LIMITS</u>

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

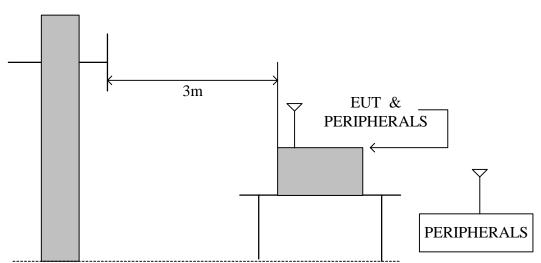
§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

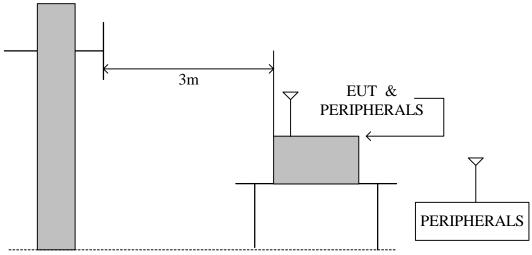
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENTS


The following test equipments are utilized in making the measurements contained in this report.

	C	pen Area Test Site #	ŧ 6		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
TYPE N COAXIAL CABLE	SUHNER	CHA9513	6	NOV. 17, 2011	
BI-LOG Antenna	Sunol	JB1	A070506-2	OCT. 4, 2011	
LOOP ANTENNA	EMCO	6502	8905-2356	JUN. 10, 2011	
Pre-Amplifier	HP	8447F	2944A03817	NOV. 23, 2011	
EMI Receiver	R&S	ESVS10	833206/012	MAY 10, 2012	
RF Cable	SUHNER	SUCOFLEX104PEA	20520/4PEA	NOV. 10, 2011	
Horn Antenna	Com-Power	AH-118	071032	DEC. 27, 2011	
Spectrum Analyzer	R&S	FSEK 30	835253/002	JUL. 14, 2011	
Pre-Amplifier	MITEQ	AFS44-00108650-42-10P- 44	1205908	NOV. 23, 2011	
Turn Table	Yo Chen	001		N.C.R.	
Antenna Tower	AR	TP1000A	309874	N.C.R.	
Controller	СТ	SC101		N.C.R.	
RF Swicth	E-INSTRUME NT TELH LTD	ERS-180A	EC1204141	N.C.R	
Test S/W		e-3 (5.0430)3e)		


TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 to 1GHz.

Antenna Elevation Variable

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

Antenna Elevation Variable

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- 4. No emission is found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)

TEST RESULTS

No non-compliance noted.

8.7.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Product Name	Wireless Broadband Router	Test Date	2011/3/9
Model	BR486n	Test By	Taiyu Cyu
Test Mode	Normal operating (worst case)	TEMP& Humidity	31℃, 60%

Horizontal

Frequency	Meter Reading	Antenna Factor	Cable Loss	Emission Level	Limits	Margin	Detector Mode
(MHz)	(dBµV)	(dB/M)	(dB)	(dBµV/M)	(dBµV/M)	(dB)	PK/QP
125.00	21.03	14.05	3.50	38.58	43.50	-4.92	QP
156.25	19.26	12.44	4.04	35.74	43.50	-7.76	QP
250.00	18.50	12.68	5.20	36.38	46.00	-9.62	QP
374.99	12.07	16.15	6.76	34.98	46.00	-11.02	QP
499.99	7.10	18.27	8.20	33.57	46.00	-12.43	QP
625.00	1.60	20.00	9.32	30.92	46.00	-15.08	QP
750.00	2.03	21.55	10.50	34.08	46.00	-11.92	QP

Vertical

Frequency	Meter Reading	Antenna Factor	Cable Loss	Emission Level	Limits	Margin	Detector Mode
(MHz)	(dBµV)	(dB/M)	(dB)	(dBµV/M)	(dBµV/M)	(dB)	PK/QP
70.42	18.92	8.49	2.61	30.02	40.00	-9.98	QP
125.00	20.01	14.05	3.50	37.56	43.50	-5.95	QP
138.35	16.54	13.58	3.78	33.90	43.50	-9.60	QP
156.25	25.35	12.44	4.04	41.83	43.50	-1.67	QP
250.00	17.10	12.68	5.20	34.98	46.00	-11.02	QP
374.99	12.20	16.15	6.76	35.11	46.00	-10.89	QP
499.99	13.70	18.27	8.20	40.17	46.00	-5.83	QP

REMARK: Emission level (dB μ V/m) =Antenna Factor (dB/m) + Cable loss (dB) + Meter Reading (dB μ V).

8.7.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	Wireless Broadband Router	Test Date	2011/3/23
Model	BR486n	Test By	John Chen
Test Mode	IEEE 802.11b TX (CH Low)	TEMP& Humidity	24.8℃, 55%

Horizontal

	TX / IE	EE 802.11	lb mode	/ CH Low	Measu	Measurement Distance at 3m Horizontal polarity				
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1406.18	62.17	26.21	2.14	41.73	0.77	49.56	74.00	-24.44	Р
*	1406.18	59.74	26.21	2.14	41.73	0.77	47.13	54.00	-6.87	А
*	4823.93	57.74	33.17	3.73	42.38	0.69	52.95	74.00	-21.05	Р
*	4823.93	51.62	33.17	3.73	42.38	0.69	46.83	54.00	-7.17	А
	N/A									Р
	N/A									А

REMARK:

- 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 3. The result basic equation calculation is as follow: Level = Reading + AF + Cable – Preamp + Filter – Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.

Product Name	Wireless Broadband Router	Test Date	2011/3/23
Model	BR486n	Test By	John Chen
Test Mode	IEEE 802.11b TX (CH Low)	TEMP& Humidity	24.8℃, 55%

Vertical

	TX / IE	EE 802.11	lb mode	/ CH Low	Measu	Measurement Distance at 3m				Vertical polarity	
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	1406.19	60.15	26.21	2.14	41.73	0.77	47.54	74.00	-26.46	Р	
*	1406.19	58.05	26.21	2.14	41.73	0.77	45.44	54.00	-8.56	А	
*	4823.97	68.35	33.17	3.73	42.38	0.69	63.56	74.00	-10.44	Р	
*	4823.97	56.76	33.17	3.73	42.38	0.69	51.97	54.00	-2.03	А	
	N/A									Р	
	N/A									А	

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter – Dist, Margin = Level-Limit

4. The other emission levels were 20dB below the limit

Product Name	Wireless Broadband Router	Test Date	2011/3/23
Model	BR486n	Test By	John Chen
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP& Humidity	24.8℃, 55%

Horizontal

	TX / IEE	E 802.11b	o mode /	CH Middle	Measurement Distance at 3m Horizontal polarity					olarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1406.20	61.39	26.21	2.14	41.73	0.77	48.78	74.00	-25.22	Р
*	1406.20	58.41	26.21	2.14	41.73	0.77	45.80	54.00	-8.20	А
*	4873.95	58.19	33.32	3.74	42.43	0.71	53.53	74.00	-20.47	Р
*	4873.95	52.54	33.32	3.74	42.43	0.71	47.88	54.00	-6.12	А
	N/A									Р
	N/A									А

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

- Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit

Product Name	Wireless Broadband Router	Test Date	2011/3/23
Model	BR486n	Test By	John Chen
Test Mode	IEEE 802.11b TX (CH Middle)	TEMP& Humidity	24.8℃, 55%

Vertical

	TX / IEE	TX / IEEE 802.11b mode / CH Middle				Measurement Distance at 3m Vertical polarity					
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark	
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)	
*	1406.22	60.23	26.21	2.14	41.73	0.77	47.62	74.00	-26.38	Р	
*	1406.22	58.47	26.21	2.14	41.73	0.77	45.86	54.00	-8.14	А	
*	4873.94	69.63	33.32	3.74	42.43	0.71	64.97	74.00	-9.03	Р	
*	4873.94	56.85	33.32	3.74	42.43	0.71	52.19	54.00	-1.81	А	
	N/A									Р	
	N/A									А	

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter – Dist, Margin = Level-Limit

4. The other emission levels were 20dB below the limit

Product Name	Wireless Broadband Router	Test Date	2011/3/23
Model	BR486n	Test By	John Chen
Test Mode	IEEE 802.11b TX (CH High)	TEMP& Humidity	24.8℃, 55%

Horizontal

	TX / IEE	TX / IEEE 802.11b mode / CH High				Measurement Distance at 3m Horizontal polarity				
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1406.19	62.74	26.21	2.14	41.73	0.77	50.13	74.00	-23.87	Р
*	1406.19	59.93	26.21	2.14	41.73	0.77	47.32	54.00	-6.68	А
*	4923.95	57.93	33.47	3.76	42.48	0.73	53.41	74.00	-20.59	Р
*	4923.95	52.14	33.47	3.76	42.48	0.73	47.62	54.00	-6.38	А
	N/A									Р
	N/A									A

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

- Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit

Product Name	Wireless Broadband Router	Test Date	2011/3/23
Model	BR486n	Test By	John Chen
Test Mode	IEEE 802.11b TX (CH High)	TEMP& Humidity	24.8℃, 55%

Vertical

	TX / IEE	TX / IEEE 802.11b mode / CH High				Measurement Distance at 3m Vertical				
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1406.21	61.23	26.21	2.14	41.73	0.77	48.62	74.00	-25.38	Р
*	1406.21	59.10	26.21	2.14	41.73	0.77	46.49	54.00	-7.51	А
*	4923.94	57.51	33.47	3.76	42.48	0.73	52.99	74.00	-21.01	Р
*	4923.94	55.93	33.47	3.76	42.48	0.73	51.41	54.00	-2.59	А
	N/A									Р
	N/A									А

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter – Dist, Margin = Level-Limit

4. The other emission levels were 20dB below the limit

Product Name	Wireless Broadband Router	Test Date	2011/3/23
Model	BR486n	Test By	John Chen
Test Mode	IEEE 802.11g TX (CH Low)	TEMP& Humidity	24.8℃, 55%

Horizontal

	TX / IE	EE 802.11	lg mod	e / CH Low	Measur	Measurement Distance at 3m Horizontal pola				
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1406.20	62.95	26.21	2.14	41.73	0.77	50.34	74.00	-23.66	Р
*	1406.20	58.90	26.21	2.14	41.73	0.77	46.29	54.00	-7.71	А
*	4823.95	57.63	33.17	3.73	42.38	0.69	52.84	74.00	-21.16	Р
*	4823.95	51.23	33.17	3.73	42.38	0.69	46.44	54.00	-7.56	А
	N/A									Р
	N/A									А

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

- Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit

Product Name	Wireless Broadband Router	Test Date	2011/3/23
Model	BR486n	Test By	John Chen
Test Mode	IEEE 802.11g TX (CH Low)	TEMP& Humidity	24.8℃, 55%

Vertical

	TX / IE	TX / IEEE 802.11g mode / CH Low				Measurement Distance at 3m				Vertical polarity		
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark		
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)		
*	1406.22	60.19	26.21	2.14	41.73	0.77	47.58	74.00	-26.42	Р		
*	1406.22	57.13	26.21	2.14	41.73	0.77	44.52	54.00	-9.48	А		
*	4823.98	68.74	33.17	3.73	42.38	0.69	63.95	74.00	-10.05	Р		
*	4823.98	56.19	33.17	3.73	42.38	0.69	51.40	54.00	-2.60	А		
	N/A									Р		
	N/A									А		

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter – Dist, Margin = Level-Limit

4. The other emission levels were 20dB below the limit

Product Name	Wireless Broadband Router	Test Date	2011/3/23
Model	BR486n	Test By	John Chen
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP& Humidity	24.8℃, 55%

Horizontal

	TX / IEEE	TX / IEEE 802.11g		CH Middle	Measur	rement	Distance a	at 3m	Horizontal polarity	
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1406.18	63.21	26.21	2.14	41.73	0.77	50.60	74.00	-23.40	Р
*	1406.18	60.23	26.21	2.14	41.73	0.77	47.62	54.00	-6.38	А
*	4873.99	58.13	33.32	3.74	42.43	0.71	53.47	74.00	-20.53	Р
*	4873.99	52.70	33.32	3.74	42.43	0.71	48.04	54.00	-5.96	Α
	N/A									Р
	N/A									A

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

- Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit

Product Name	Wireless Broadband Router	s Broadband Router Test Date		
Model	BR486n	Test By	John Chen	
Test Mode	IEEE 802.11g TX (CH Middle)	TEMP& Humidity	24.8℃, 55%	

Vertical

	TX / IEEE 802.11g mode / CH Middle				Measurement Distance at 3m Vertical polarit				larity	
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1406.17	60.74	26.21	2.14	41.73	0.77	48.13	74.00	-25.87	Р
*	1406.17	57.83	26.21	2.14	41.73	0.77	45.22	54.00	-8.78	Α
*	4874.00	68.00	33.32	3.74	42.43	0.71	63.34	74.00	-10.66	Р
*	4874.00	56.48	33.32	3.74	42.43	0.71	51.82	54.00	-2.18	Α
	N/A									Р
	N/A									A

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
 The result basic equation calculation is as follow:

Level = Reading + AF + Cable – Preamp + Filter – Dist, Margin = Level-Limit

4. The other emission levels were 20dB below the limit

Product Name	Wireless Broadband Router	Test Date	2011/3/23	
Model	BR486n	BR486n Test By		
Test Mode	IEEE 802.11g TX (CH High)	TEMP& Humidity	24.8℃, 55%	

Horizontal

	TX / IEEE 802.11g mode / CH High				Measurement Distance at 3m Horizontal polarity					olarity
	Freq.	Reading	AF	Cable Loss	Pre-amp	Filter	Level	Limit	Margin	Mark
	(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
*	1406.19	63.12	26.21	2.14	41.73	0.77	50.51	74.00	-23.49	Р
*	1406.19	60.89	26.21	2.14	41.73	0.77	48.28	54.00	-5.72	Α
*	4923.94	58.36	33.47	3.76	42.48	0.73	53.84	74.00	-20.16	Р
*	4923.94	52.11	33.47	3.76	42.48	0.73	47.59	54.00	-6.41	А
	N/A									Р
	N/A									А

REMARK:

1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)

2. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz

- 3. The result basic equation calculation is as follow:
- Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 4. The other emission levels were 20dB below the limit
- 5. The test limit distance is 3M limit.