

FCC 47 CFR PART 15 SUBPART C: 2009 AND ANSI C63.4: 2003

TEST REPORT

For

N+ Mobile Router

Model Number: BR182n

Brand Name: ETOP

Issued for

E-Top Network Technology Inc.

No. 82 ,Gongye 2nd Rd.,Tainan City 70955,Taiwan,R.O.C.

Issued by

Compliance Certification Services Inc. Tainan Lab. No. 8, Jiu Cheng Ling, Jiaokeng Village,Sinhua Township, Tainan Hsien 712, Taiwan R.O.C. TEL: 886-6-580-2201 FAX: 886-6-580-2202

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document

Total Page: 143

REVISION HISTORY

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	February 25,2011	Initial Issue	ALL	Leah Peng

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
2.1 DESCRIPTION OF EUT & POWER	5
3. DESCRIPTION OF TEST MODES	7
4. TEST METHODOLOGY	8
5. FACILITIES AND ACCREDITATIONS	8
5.1 FACILITIES	8
5.2 EQUIPMENT	8
5.3 LABORATORY ACCREDITATIONS LISTINGS	8
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	9
6. CALIBRATION AND UNCERTAINTY	10
6.1 MEASURING INSTRUMENT CALIBRATION	10
6.2 MEASUREMENT UNCERTAINTY	10
7. SETUP OF EQUIPMENT UNDER TEST	11
7.1 SETUP CONFIGURATION OF EUT	11
7.2 SUPPORT EQUIPMENT	12
7.3 EUT OPERATING CONDITION	13
8. APPLICABLE LIMITS AND TEST RESULTS	14
8.1 6DB BANDWIDTH	14
8.2 MAXIMUM PEAK OUTPUT POWER	29
8.3 MAXIMUM PERMISSIBLE EXPOSURE	45
8.4 POWER SPECTRAL DENSITY	47
8.5 CONDUCTED SPURIOUS EMISSION	66
8.6 RADIATED EMISSIONS	88
8.7 POWERLINE CONDUCTED EMISSIONS	135
9. ANTENNA REQUIREMENT	
9.1 STANDARD APPLICABLE	139
9.2 ANTENNA CONNECTED CONSTRUCTION	139
APPENDIX I SETUP PHOTOS	140
APPENDIX II PHOTOGRAPHS OF EUT	A1

1. TEST REPORT CERTIFICATION

Applicant: E-Top Network Technology Inc.	
Address	No. 82 ,Gongye 2nd Rd.,Tainan City 70955,Taiwan,R.O.C.
Manufacture	E-Top Network Technology Inc.
Address	No. 82 ,Gongye 2nd Rd.,Tainan City 70955,Taiwan,R.O.C.
Equipment Under Test	: N+ Mobile Router
Model Number	: BR182n
Brand Name	: ETOP
Date of Test	: November 18, 2010 ~ December 23, 2010, February 25, 2011

APPLICABLE STANDARD				
STANDARD	TEST RESULT			
FCC Part 15 Subpart C : 2009 AND ANSI C63.4 : 2003	No non-compliance noted			

Approved by:

er54

Jeter Wu Assistant Manager

Reviewed by:

Eric Huang Assistant Section Manager

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	N+ Mobile Router		
Model Number	BR182n		
Brand Name	ETOP		
Frequency Range	IEEE 802.11b/g, 802.11n HT20 (DTS Band):2412MHz \sim 2462MHz IEEE 802.11n HT40 (DTS Band):2422MHz \sim 2452MHz		
Transmit Power (ERP)	IEEE 802.11b Mode : 16.12dBm (DTS Band) (40.926 mW) IEEE 802.11g Mode : 23.26dBm (DTS Band) (211.84 mW) IEEE 802.11n HT20 Mode : 23.60dBm (DTS Band) (228.86 mW) IEEE 802.11n HT40 Mode : 22.27dBm (DTS Band) (168.62 mW)		
Channel Spacing	IEEE 802.11b/g, 802.11n HT20/HT40: 5MHz		
Channel Number	IEEE 802.11b/g, 802.11n HT20:11 Channels IEEE 802.11n HT40 :7 Channels		
	IEEE 802.11b : 11, 5.5, 2, 1 Mbps		
Tronomit Data Data	IEEE 802.11g : 54, 48 ,36, 24, 18, 12, 9, 6 Mbps		
Transmit Data Rate	IEEE 802.11n HT20 : 65, 58.5, 52, 39, 26, 19.5, 13, 6.5 Mbps		
	IEEE 802.11n HT40 : 135, 121.5, 108, 81, 54, 40.5, 27, 13.5 Mbps		
	IEEE 802.11b : DSSS (CCK, DQPSK, DBPSK)		
Type of Modulation	IEEE 802.11g : OFDM (64QAM, 16QAM, QPSK, BPSK)		
	IEEE 802.11n HT20/40 : OFDM (64QAM, 16QAM, QPSK, BPSK)		
Frequency Selection	By software / firmware		
Antenna Type	Two antennas 2Tx 2Rx 1)Built-in Antenna(×1)1TX1RX Manufacture: XinXie Technology (SHENZHEN)co. ltd. Model: L22-XY30507 Type: PCB Gain: 0 dBi 2)Built-in Antenna(×1)1TX1RX Manufacture: BRITO TECHNOLOGY Model:EM-15 Type: PIFA Gain: 2 dBi		

Power Source	SWITCHING ADAPTOR Manufacture: Keen Ocean Industrial Ltd. Model: S02-012-0120-01000 SWP-21426-00 Input: 100-240Vac, 50/60Hz, 0.40A max. Output: 12.0Vdc, 1A
Temperature Range	0 ~ 40°C

REMARK:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>U6A-BR182N</u> filing to comply with Section 15.207,15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the User's manual of the EUT.
- 4. To add a series model is for business necessary. The different of the each model is shown as below:

Multiple Listing:

Company Name/ Address	Brand Name	Model Name	Product Name
E-Top Network Technology Inc. No. 82 ,Gongye 2nd Rd.,Tainan City 70955,Taiwan,R.O.C.	ETOP	BR182n, BR183n	N+ Mobile Router
Amigo Technology Inc. 5F., No. 63, Ln. 77, Xing'ai Rd., Neihu Dist., Taipei City 114, Taiwan	Amigo	BR182n, BR183n	N+ Mobile Router
Amigo Technology Inc. 5F., No. 63, Ln. 77, Xing'ai Rd., Neihu Dist., Taipei City 114, Taiwan	Amigo	BR182n, BR183n	802.11n Mobile Router
CNet Technology Inc. 1F,No.30,Industry E.RD.IX,Science-Based Industrial Park,Hsin-Chu,Taiwan,R.O.C.	CNet	CMR-982, CMR-983	Mini Wireless-N Mobile Router with Battery in
Sapido Technology Inc. No. 383., Sec. 2, Minsheng Rd., West Central District, Tainan 700, Taiwan, R.O.C.	SAPIDO	MB-1132, MB-1112	N+ Mobile Router

3. DESCRIPTION OF TEST MODES

The EUT is a 11n router. It has two transmitter chains and two receive chains (2x2 configurations). The 2x2 configuration is implemented with two outside chains (Chain 0 and Chain 1).

The RF chipset is manufactured by Ralink Technology, Corp.

The antenna peak gain 2dBi (highest gain) were chosen for full testing.

IEEE 802.11 b ,802.11g ,802.11n HT20 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2412	
Middle	2437	
High	2462	

IEEE 802.11b mode: 11Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT20 mode: 13Mbps data rate (worst case) were chosen for full testing.

IEEE 802.11n HT40 mode (DTS Band)

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)	
Low	2422	
Middle	2437	
High	2452	

IEEE 802.11n HT40 mode: 27Mbps data rate (worst case) were chosen for full testing.

The worst-case data rates are determined according to the description above, based on the investigations by measuring the PSD, peak power and average power across all the data rates, bandwidths, modulations and spatial stream modes.

The worst-case channel is determined as the channel with the highest output power. The highest measured output power was at 2462 MHz.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 8, Jiu Cheng Ling, Jiaokeng Village, Sinhua Township, Tainan Hsien 712, Taiwan R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW-1037).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FCC TW-1037
Taiwan	TAF	CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, EN 60601-1-2, CISPR 22, CNS 13438, EN 55022, EN 55024, AS/NZS CISPR 22 CISPR 14, EN 55014-1, EN 55014-2, CNS 13783-1, CISPR 22, CNS 13439, EN 55013, FCC Method-47 CFR Part 15 Subpart B, IC ICES-003, VCCI V-3 & V-4 FCC Method-47 CFR Part 15 Subpart C and ANSI C63.4, LP 0002 EN / IEC 61000-4-2 / -3 / -4 / -5 / -6 / -8 / -11 EN 61000-3-2, EN 61000-3-3 EN 61000-6-3, EN 61000-6-1, AS/NZS 4251.1, EN 61000-6-4, EN 61000-6-2, AS/NZS 4251.2, EN 61204-3, EN 50130-4, EN 62040-2, EN 50371, EN 50385, AS/NZS 4268, ETSI EN 300 328, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 300 328, ETSI EN 301 489-1/-3/-9/-17 ETSI EN 300 440-2/-1 ETSI EN 301 357-2/-1 RSS-310, RSS-210 Issue 7, RSS-Gen Issue 2	Ting Laboratory 1109
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS13439	SL2-IN-E-0039 SL2-R1/R2-0039 SL2-A1-E-0039
Canada	Industry Canada	RSS210, Issue 7	Canada IC 2324H-1

* No part of this report may be used to claim or imply product endorsement by TAF or any agency of the US Government.

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

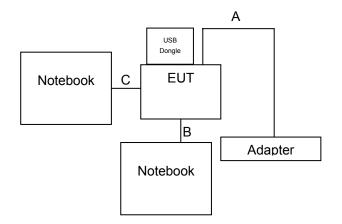
The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz Test Site : OATS-6	±3.38dB
Radiated Emission, 200 to 1000 MHz Test Site : OATS-6	±3.04dB
Radiated Emission, 1 to 26.5 GHz	± 3.20dB
Power Line Conducted Emission	± 2.01dB


Uncertainty figures are valid to a confidence level of 95%, K=2


7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

Above 1GHz Test Setup:

Below 1GHz Test Setup:

7.2 SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Certify No.	Signal cable
1	Notebook	IBM	R51	DoC	Power cable, unshd, 1.6m
2	Notebook	IBM	T43	DoC	Power cable, unshd, 1.6m
3	Flash Disk	Kingston	DTI/512	DoC	N/A

No.	Signal cable description				
А	A DC input Unshielded, 1.7m, 1pcs., with a core				
B LAN cable Unshielded, 10m, 1pcs.					
С	USB cable	Shielded, 1.2m, with a core			

REMARK:

1. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7.3 EUT OPERATING CONDITION

RF Setup

- 1. Set up all computers like the setup diagram.
- 2. The "Ralink QA Test Program for RTL8192" software was used for testing The EUT driver software installed in the host support equipment during testing was Ralink QA Test Program for RTL8192 Drive

TX Mode:

- ⇒ Tx Mode:CCK 、 OFDM、 HT MixMode (Bandwidth: 20 \ 40)
- ⇒ **Tx Data Rate: 11Mbps long** (IEEE 802.11b mode ,chain 0 TX)

6Mbps (IEEE 802.11g mode ,chain 0 TX)

13Mbps (IEEE 802.11n HT20 mode ,chain 0, chain 1 TX)

27Mbps (IEEE 802.11n HT40 mode, chain 0, chain 1 TX)

Power control mode

Target Power: IEEE 802.11b Channel Low (2412MHz) = 0F (Chain 0) IEEE 802.11b Channel Middle (2437MHz) = 11 (Chain 0) IEEE 802.11b Channel High (2462MHz) = 16 (Chain 0) Target Power: IEEE 802.11g Channel Low (2412MHz) = 12 (Chain 0) IEEE 802.11g Channel Middle (2437MHz) = 14 (Chain 0) IEEE 802.11g Channel High (2462MHz) = 15 (Chain 0) Target Power: IEEE 802.11n HT20 Channel Low (2412MHz) = 11 (Chain 0) IEEE 802.11 n HT20 Channel Middle (2437MHz) = 13 (Chain 0) IEEE 802.11 n HT20 Channel High (2462MHz) = 17 (Chain 0) IEEE 802.11n HT20 Channel Low (2412MHz) = 13 (Chain 1) IEEE 802.11 n HT20 Channel Middle (2437MHz) = 15 (Chain 1) IEEE 802.11 n HT20 Channel High (2462MHz) = 17 (Chain 1) Target Power: IEEE 802.11n HT40 Channel Low (2422MHz) = 13 (Chain 0) IEEE 802.11 n HT40 Channel Middle (2437MHz) = 14 (Chain 0) IEEE 802.11 n HT40 Channel High (2452MHz) = 15 (Chain 0) IEEE 802.11n HT40 Channel Low (2422MHz) = 15 (Chain 1) IEEE 802.11 n HT40 Channel Middle (2437MHz) = 16 (Chain 1) IEEE 802.11 n HT40 Channel High (2452MHz) = 16 (Chain 1)

(2) **RX Mode**:

Start RX

- 3. All of the function are under run.
- 4. Start test.

Normal Link Setup

- 1. Set up all computers like the setup diagram.
- 2. All of the function are under run.
- 3. Notebook PC (2) ping 192.168.0.10 –t to Notebook PC (1).
- 4. Notebook PC (1) ping 192.168.0.20 –t to Notebook PC (2).
- 5. Notebook PC (1) ping 192.168.0.50 –t to Wireless Access Point (3). Start test.

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 6DB BANDWIDTH

<u>LIMIT</u>

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JUL. 14, 2011

TEST SETUP

FUT	SPECTRUM
	ANALYZER

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 100 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

TEST RESULTS

No non-compliance noted.

IEEE 802.11b mode (Two TX)

Channel	Channel Frequency (MHz) 6dB Bandwidth (kHz)		Minimum Limit (kHz)	Pass / Fail
Low	2412	10321	500	PASS
Middle	2437	10321	500	PASS
High	2462	10321	500	PASS

NOTE: 1. At finial test to get the worst-case emission at11Mbps.
 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode (Two TX)

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2412	16834	500	PASS
Middle	2437	16834	500	PASS
High	2462	16733	500	PASS

NOTE : 1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode (Two TX)

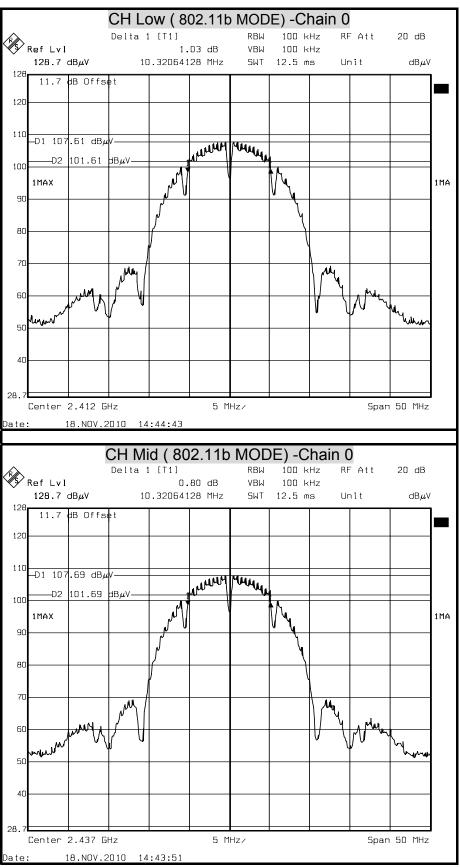
Channel	Channel Frequency	6dB Bandwidth (kHz)		Minimum Limit (kHz)	Pass / Fail
	(MHz)	Chain 0	Chain1	(KHZ)	
Low	2412	18036	18036	500	PASS
Middle	2437	18036	18036	500	PASS
High	2462	18136	17936	500	PASS

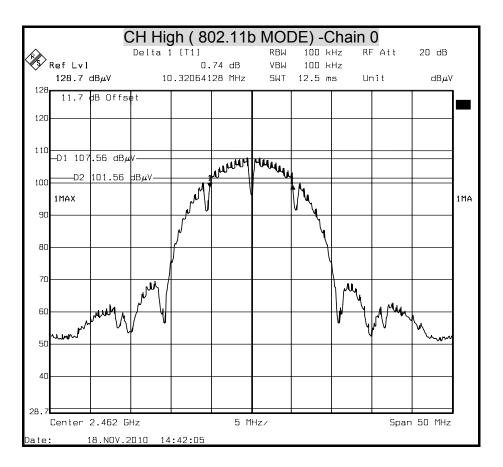
NOTE: 1. At finial test to get the worst-case emission at 13Mbps.
 2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode (Two TX)

Channel	Channel Frequency	6dB Ban (kH		Minimum Limit	Pass / Fail	
	(MHz)	Chain 0 Chain1		(kHz)		
Low	2422	37074	36873	500	PASS	
Middle	2437	37074	36673	500	PASS	
High	2452	37074	36673	500	PASS	

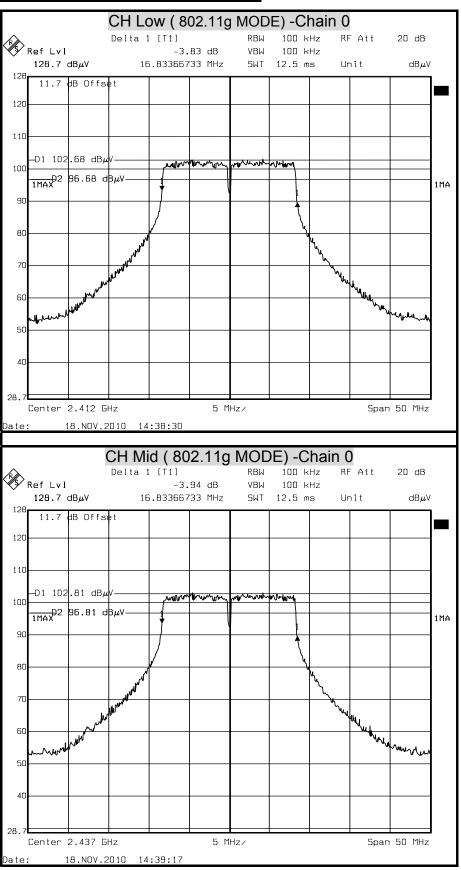
NOTE : 1. At finial test to get the worst-case emission at 27Mbps.

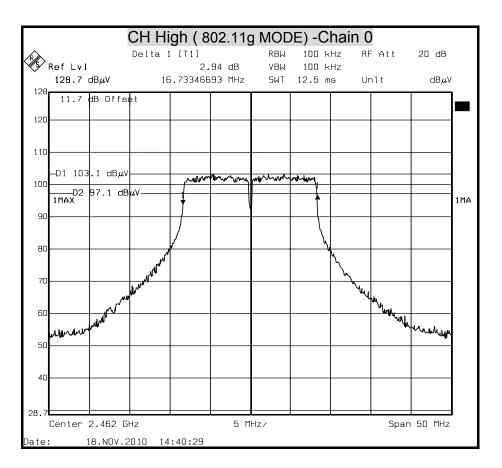

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power.


Date of Issue: February 25, 2011

Report No. : T100901402-RP1 FCC ID : U6A-BR182N

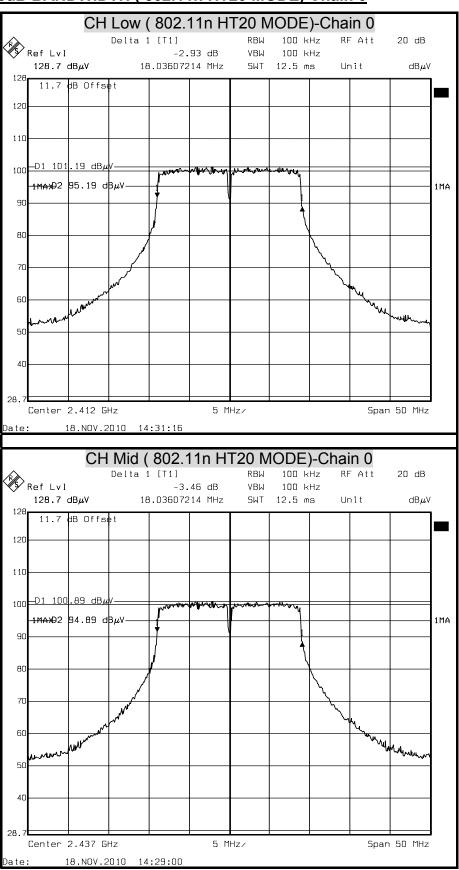
6dB BANDWIDTH (802.11b MODE)

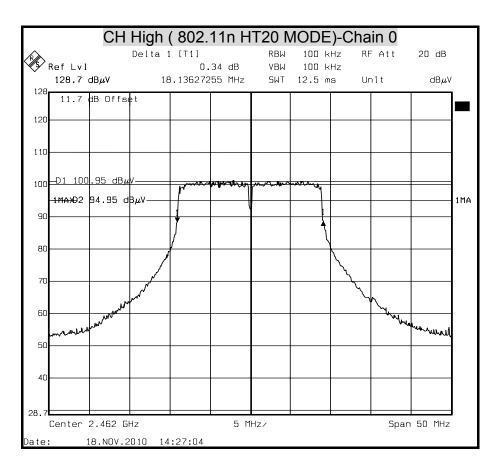


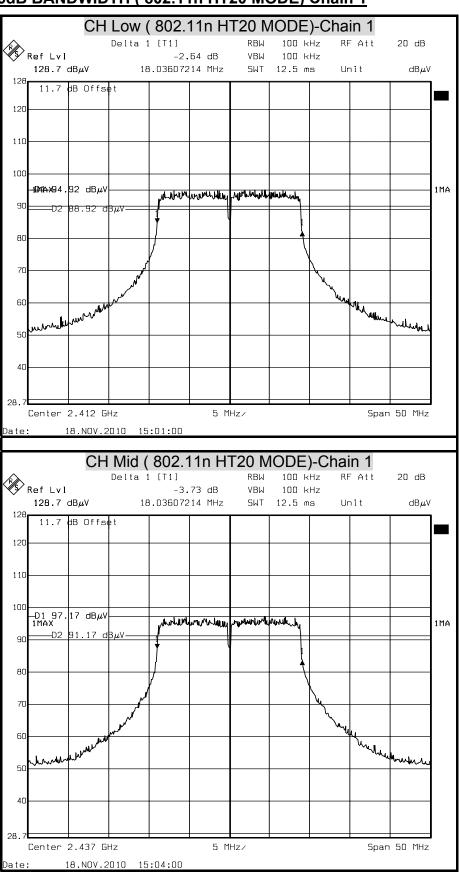


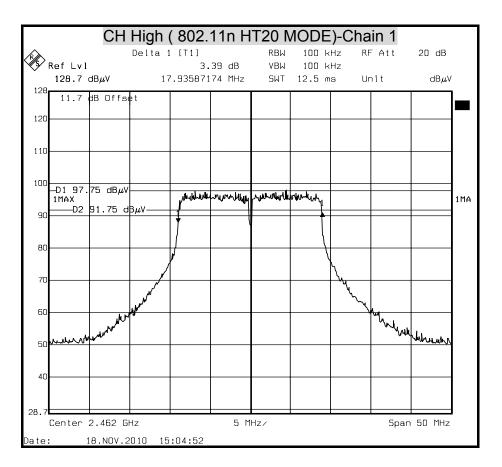
Report No. : T100901402-RP1 FCC ID : U6A-BR182N

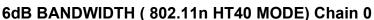
6dB BANDWIDTH (802.11g MODE)

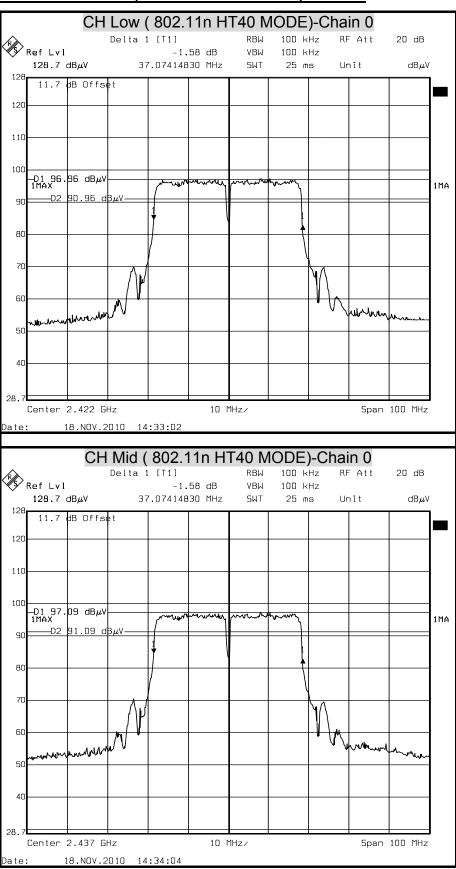


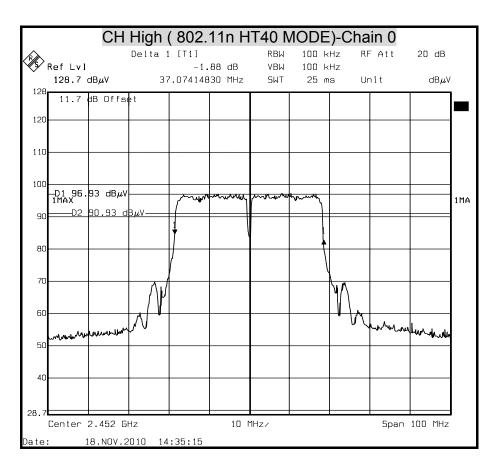


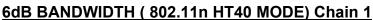


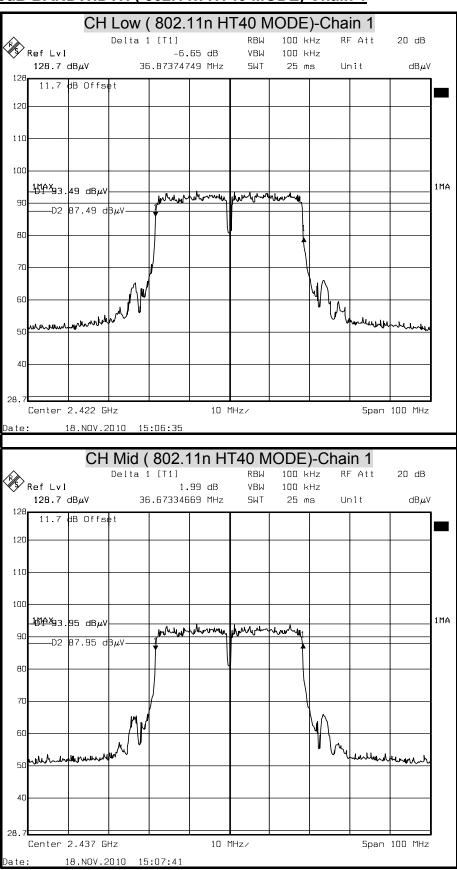


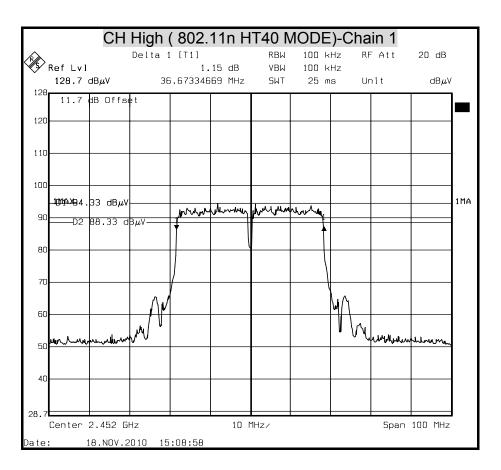












8.2 MAXIMUM PEAK OUTPUT POWER

<u>LIMIT</u>

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section , if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section , as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2487A	6K00003888	MAY. 11, 2011

TEST SETUP

TEST PROCEDURE

Connect the EUT to spectrum analyzer, set the center frequency of the spectrum analyzer to the channel center frequency. Set the RBW to 1MHz and VBW to 3MHz.

Set sweep time=auto

Use detector max peak mode

Measurement of Digital Transmission Systems Operating under Section 15.247

TEST RESULTS

No non-compliance noted

Array Gain=10*LOG((10^(ANTENNA A/10)+10^(ANTENNA B/10)))=5.01

IEEE 802.11b mode (Two TX)

Channel	Channel Frequency (MHz)	Peak Power (dBm) Chain 0	Peak Power Total (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2412	16.11	16.11	30	PASS
Middle	2437	16.12	16.12	30	PASS
High	2462	16.08	16.08	30	PASS

NOTE : 1. At finial test to get the worst-case emission at 11Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was

Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode (Two TX)

Channel	Channel Frequency	Peak Power (dBm)	Peak Power	Peak Power Limit	Pass / Fail
	(MHz)	Chain 0	Total (dBm)	(dBm)	
Low	2412	22.87	22.87	30	PASS
Middle	2437	23.16	23.16	30	PASS
High	2462	23.26	23.26	30	PASS

NOTE: 1.At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was

Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode(Two TX)

Channel	Channel Frequency		Power 3m)	Peak Power	Peak Power Limit	Pass /	
Channer	(MHz)	Chain 0	Chain 1	Total (dBm)	(dBm)	Fail	
Low	2412	20.57	19.63	23.14	30	PASS	
Middle	2437	21.54	19.36	23.60	30	PASS	
High	2462	21.16	19.59	23.46	30	PASS	

NOTE : 1.At finial test to get the worst-case emission at 13Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was

Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT40 mode (Two TX)

Channel	Channel Frequency	Peak P (dB		Peak Power	Peak Power Limit	Pass /
Channer	(MHz)	Chain 0	Chain 1	Total (dBm)	(dBm)	Fail
Low	2422	19.59	18.90	22.27	30	PASS
Middle	2437	18.79	18.38	21.60	30	PASS
High	2452	18.78	18.82	21.81	30	PASS

NOTE: 1. At finial test to get the worst-case emission at 27Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was

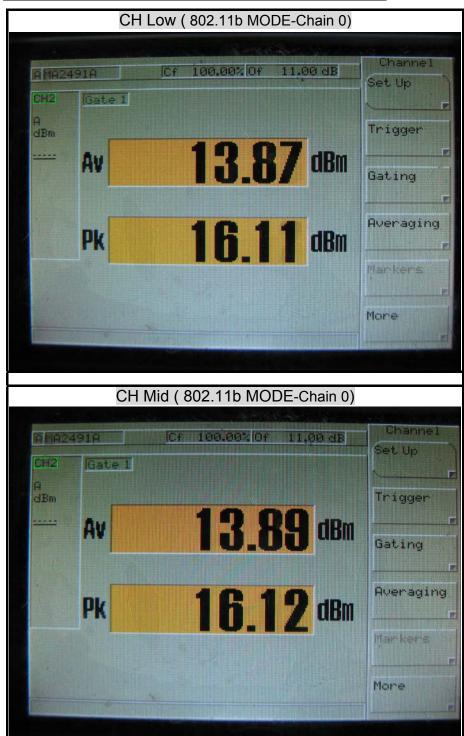
Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11b mode Average Power Data

Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	13.87
Middle	2437	13.89
High	2462	13.89

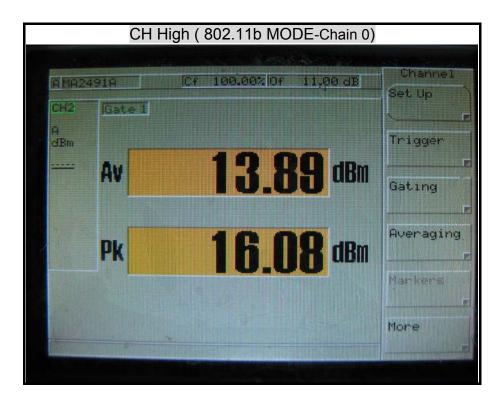
IEEE 802.11g mode Average Power Data

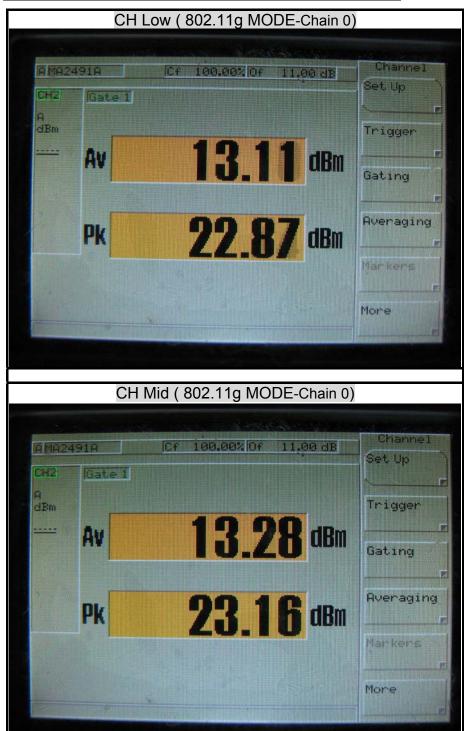
Channel	Channel Frequency (MHz)	Average Power (dBm)
Low	2412	13.11
Middle	2437	13.28
High	2462	13.43


IEEE 802.11n HT20 mode Average Power Data

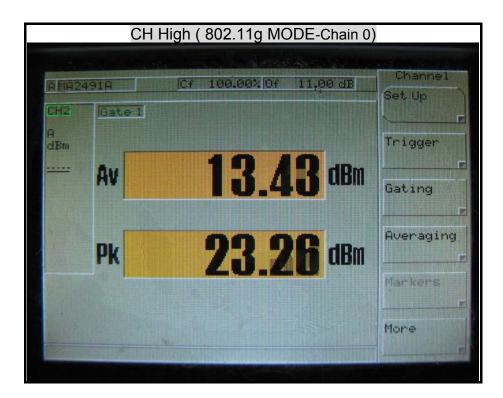
Channel	Channel Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	2412	11.67	11.05
Middle	2437	11.68	10.78
High	2462	11.88	10.35

IEEE 802.11n HT40 mode Average Power Data

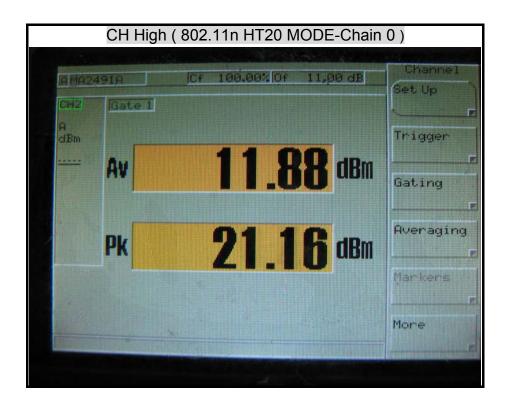

Channel	Channel Frequency (MHz)	Average Power Chain A (dBm)	Average Power Chain B (dBm)
Low	2422	10.18	10.07
Middle	2437	10.30	9.70
High	2452	10.34	9.53

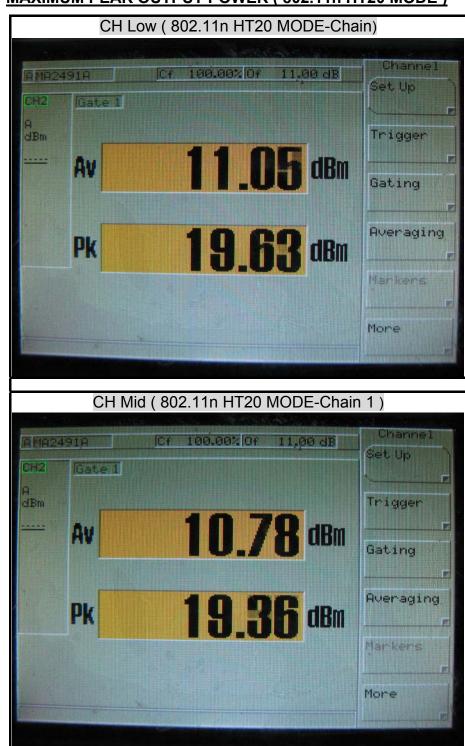


MAXIMUM PEAK OUTPUT POWER (802.11b MODE)

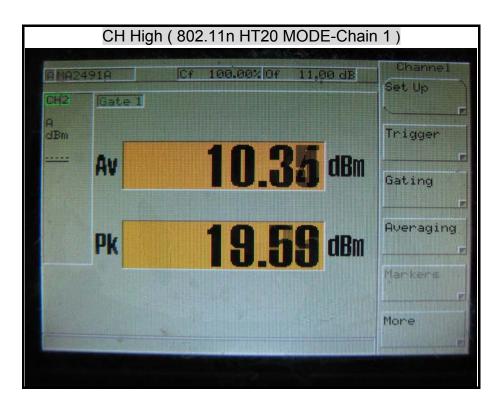


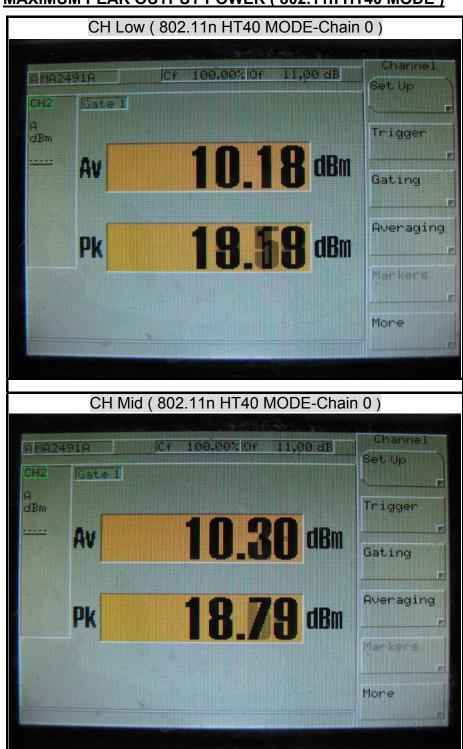
MAXIMUM PEAK OUTPUT POWER (802.11g MODE)



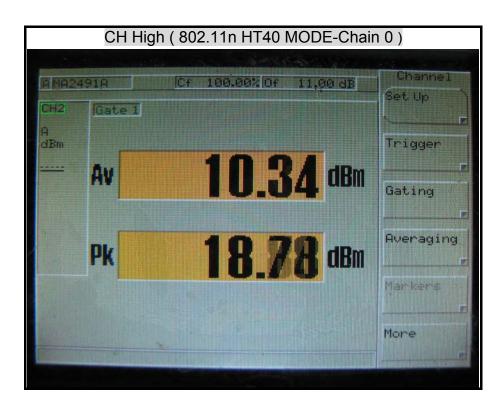


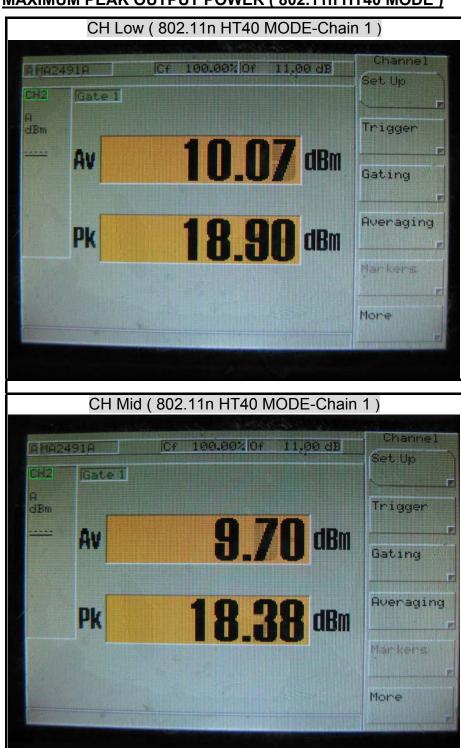
MAXIMUM PEAK OUTPUT POWER (802.11n HT20 MODE)



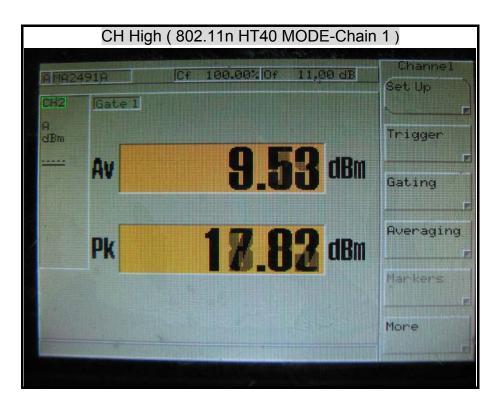


MAXIMUM PEAK OUTPUT POWER (802.11n HT20 MODE)





MAXIMUM PEAK OUTPUT POWER (802.11n HT40 MODE)



MAXIMUM PEAK OUTPUT POWER (802.11n HT40 MODE)

8.3 MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time					
(A) Limits for Occupational / Control Exposures									
300-1,500			F/300	6					
1,500-100,000			5	6					
(B) Limits for General	Population / Unco	ontrol Exposures						
300-1,500			F/1500	6					
1,500-100,000			1	30					

CALCULATIONS

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where d = Distance in cm

$$P = Power in mW$$

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

<u>LIMIT</u>

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

No non-compliance noted. $S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$

G=2.0dBi=1.5848932mW

IEEE 802.11b=0.0796*40.9261*1.58489319/400=0.012908IEEE 802.11g=0.0796*211.836*1.58489319/400=0.066812IEEE 802.11n HT20=0.0796*228.859*1.58489319/400=0.072181IEEE 802.11n HT40=0.0796*168.616*1.58489319/400=0.053180

Mode	Minimum separation distance (cm)	Output Power (dBm)	Output Power (mw)	Antenn a Gain (dBi)	Power Density Limit (mW/cm ²)	Power Density at 20cm (mW/cm ²)
IEEE 802.11b	20.0	16.12	40.93	2.00	1.00	0.012908
IEEE 802.11g	20.0	23.26	211.84	2.00	1.00	0.066812
IEEE 802.11n HT20	20.0	23.60	228.86	2.00	1.00	0.072181
IEEE 802.11n HT40	20.0	22.27	168.62	2.00	1.00	0.053180

REMARK: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

8.4 POWER SPECTRAL DENSITY

<u>LIMIT</u>

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEK 30	835253/002	JUL. 14, 2010

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=3KHz and VBW \ge RBW, set sweep time=span / 3KHz.

The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span / 3KHz for a full response of the mixer in the spectrum analyzer.

TEST RESULTS

Total peak power calculation formula: 10 log (10[^] (Chain 0 PPSD / 10)).

No non-compliance noted.

IEEE 802.11b mode

Channel	Channel Frequency (MHz)	PPSD Chain 0 (dBm)	Maximum Limit (dBm)	Margin (dB)	Pass / Fail
Low	2412	-18.85	8	-26.85	PASS
Middle	2437	-18.57	8	-26.57	PASS
High	2462	-18.92	8	-26.92	PASS

NOTE : 1. At finial test to get the worst-case emission at 11Mbps.
2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11g mode

Channel	Channel Frequency (MHz)	PPSD Chain 0 (dBm)	Maximum Limit (dBm)	Margin (dB)	Pass / Fail
Low	2412	-20.23	8	-28.23	PASS
Middle	2437	-20.31	8	-28.31	PASS
High	2462	-20.15	8	-28.15	PASS

NOTE: 1. At finial test to get the worst-case emission at 6Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

IEEE 802.11n HT20 mode

Channel Channel Frequency		PF	PSD(dBm)		Maximum Limit	Margin	Pass /	
	(MHz)	Chain 0	Chain 1	Total	(dBm)	(dB)	Fail	
Low	2412	-18.69	-19.99	-16.28	8	-24.28	PASS	
Middle	2437	-19.64	-20.27	-16.93	8	-24.93	PASS	
High	2462	-19.61	-20.77	-17.14	8	-25.14	PASS	

NOTE: 1. At finial test to get the worst-case emission at 13Mbps.

2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

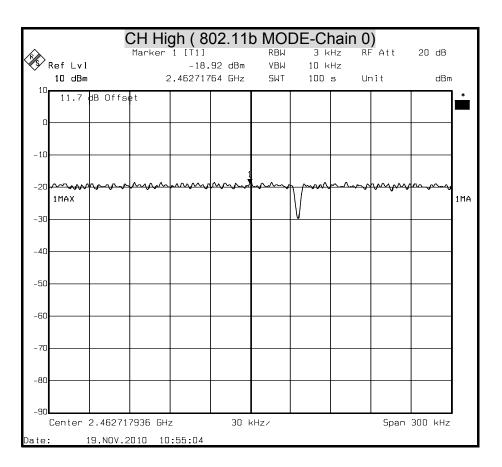
IEEE 802.11n HT40 mode

Channel	Channel Frequency	PF	PSD(dBm)			Margin (dB)	Pass /	
(MHz)		Chain 0	Chain 1	Total	(dBm)	(ub)	Fail	
Low	2422	-24.56	-25.83	-22.14	8	-30.14	PASS	
Middle	2437	-24.63	-26.15	-22.31	8	-30.31	PASS	
High	2452	-24.56	-26.19	-22.29	8	-30.29	PASS	

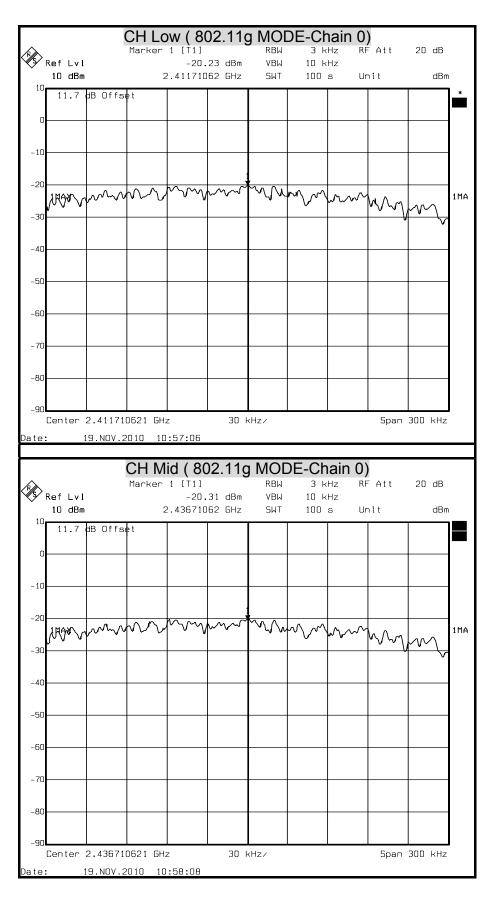
NOTE: 1. At finial test to get the worst-case emission at 27Mbps.

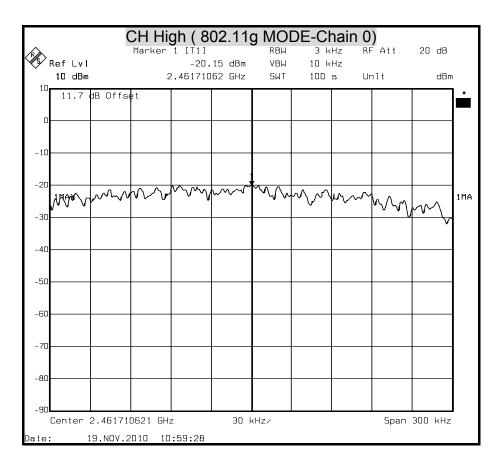
2. The cable assembly insertion loss of 11.7dB (including 10 dB pad and 1.7 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

Combined mode

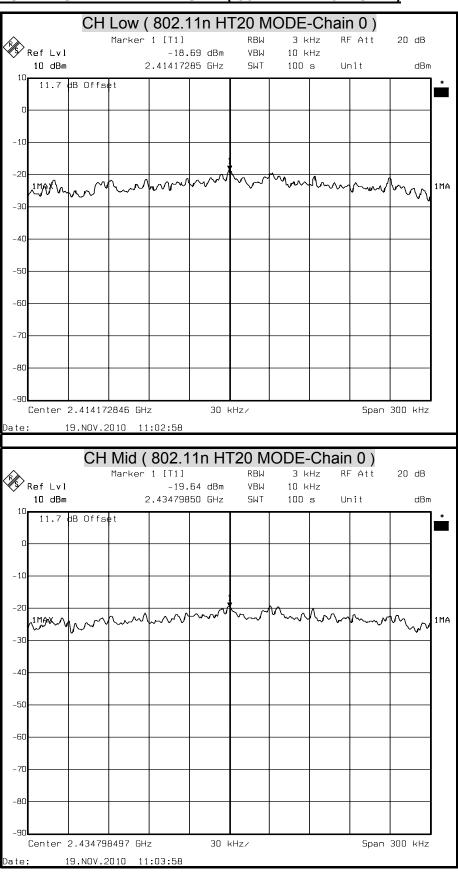

Channel		Channel Frequency (MHz)	PPSD (dBm)	Maximum Limit (dBm)	Margin (dB)	Pass / Fail
802.11n HT20 Combined mode	CH Low	2412	-15.11	8	-23.11	
	CH Middle	2437	-15.71	8	-23.71	PASS
	CH High	2462	-16.32	8	-24.32	
	CH Low	2422	-21.20	8	-29.20	
802.11n HT40 Combined mode	CH Middle	2437	-21.47	8	-29.47	PASS
	CH High	2452	-21.30	8	-29.30	

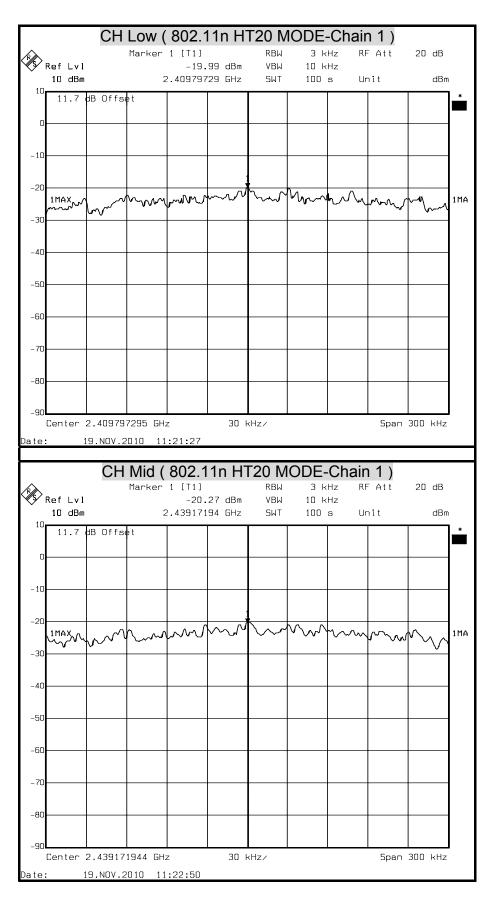
POWER SPECTRAL DENSITY (IEEE 802.11b MODE)

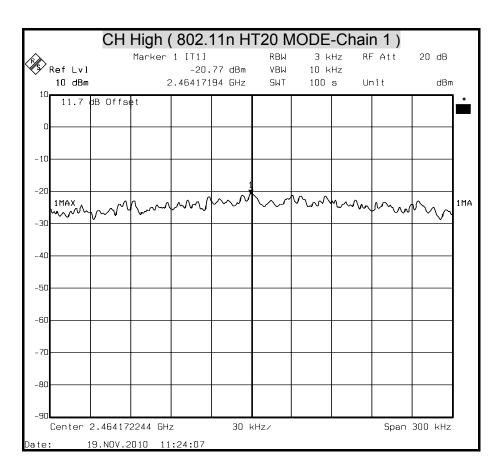

^			CH LC Marker	w (80)2.11k	D MOI	DE-Ch	nain 0)	00 10	
× S	Ref Lvl 10 dBm					VBW	10 k		- Att		1
10		dB Offse									*
0											
-10											
-20	~~~~~~	~~~~	mm	~~~~~	m	in.		~~~~	~~~~~		
-30	1MAX						V				1MA
-40											
-50											
-60											
-70											
-80											
-90											
		2.41271 19.NOV.2			30	≺Hz∕			Span	300 kHz	
			сн м	id (8(12 114			ain O'			
ŝ	Rof v]		CH M Marker	1 [T1])2.11	RBW	3 k	Hz RF) - Att	20 dB	
10	Ref Lvl 10 dBm		Marker 2	1 [T1]	57 dBm		3 k 10 k	Hz RF	- Att	20 dB dBm	
10	10 dBm 11.7		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
-	10 dBm 11.7		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
10	10 dBm		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
10	10 dBm		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		* 1MA
10 0 -10	10 dBm 11.7		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
10 0 -10 -20	10 dBm 11.7		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
10 0 -10 -20 -30	10 dBm 11.7		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
10 0 -10 -20 -30 -40 -50	10 dBm 11.7		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
10 0 -10 -20 -30 -40 -50 -60	10 dBm 11.7		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
10 0 -10 -20 -30 -40 -50	10 dBm 11.7		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
10 0 -10 -20 -30 -40 -50 -60	10 dBm		Marker 2	1 [T1] -18.	57 dBm	RBW VBW	3 k 10 k	:Hz RF :Hz	- Att		*
10 0 -10 -20 -30 -40 -50 -60 -70	10 dBm		Marker 2 2 1	1 [T1] -18. 2.436289	57 dBm 38 GHz	RBW VBW	3 k 10 k	:Hz RF :Hz	F Att		*



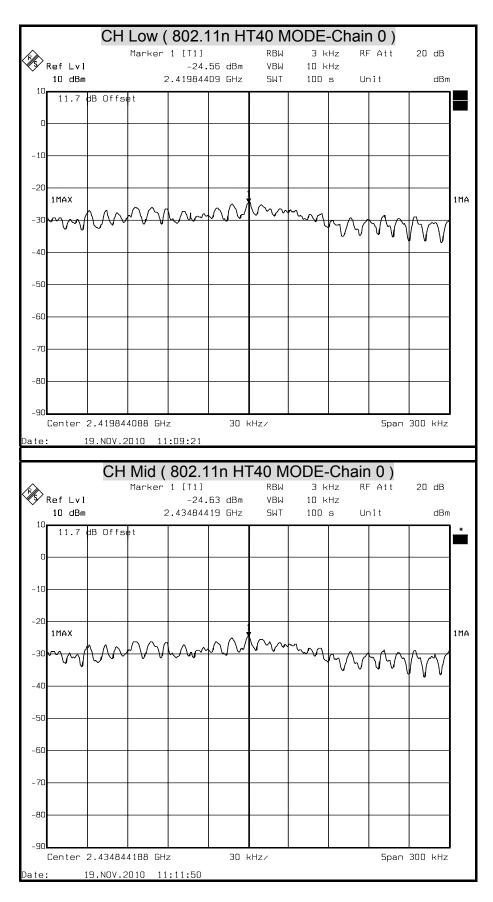
POWER SPECTRAL DENSITY (IEEE 802.11g MODE)

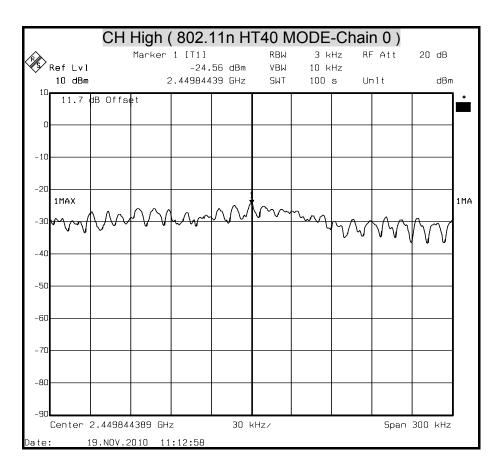




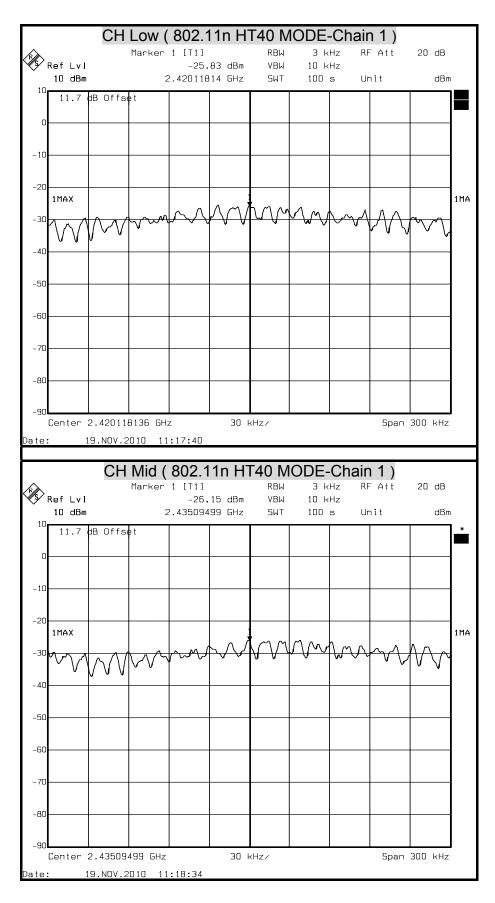

		CH	High (802.1	11n H	T20 N	10DE	-Chai	n 0)		
R.			Marker	1 [T1]		RBW	3 k	Hz RF	Att	20 dB	
XY	Ref Lvl 10 dBm		-		.61 dBm 350 GHz		10 k 100			dBm	~
10	1			.4Jarju		I MC	100		11 L		ı.
	11.7	dB Offse	et								
٥		'	'	'		 					
-10		<u> </u> /	├ ───┦						'	├ ────┦	
											1
-20	1M9X_1	-0	h . M	-000		m	Mur	hn	m. r		1MA
	v	m	[~~~]							p www	11105
-30											
-40											1
-40											
-50											1
-60			ļ!	'						ļ!	1
-70		!									1
											1
-80			<u> </u>						'	├ ───┦	1
											1
-90		2.45979	8497 GHz	ـــــــا z	1 30 H	KHz/			Span	300 kHz	1
Date			2010 11								

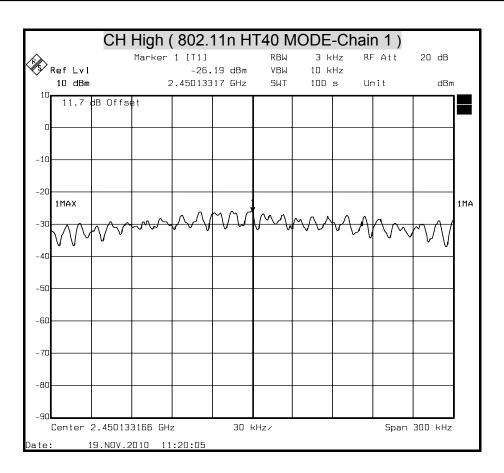
POWER SPECTRAL DENSITY (802.11n HT20 MODE)

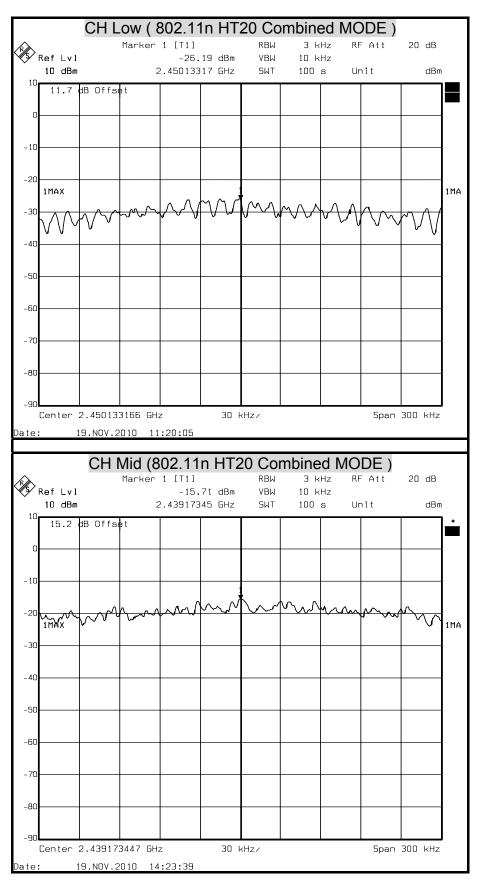




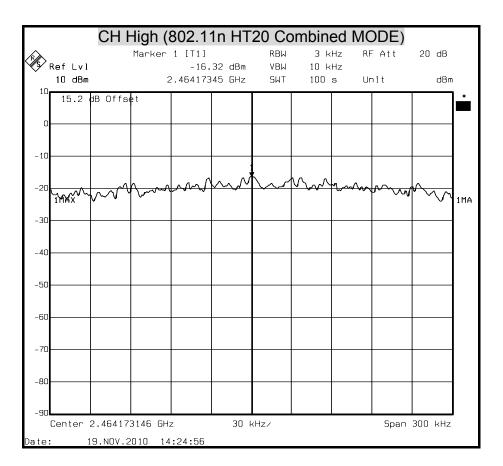
POWER SPECTRAL DENSITY (802.11n HT40 MODE)



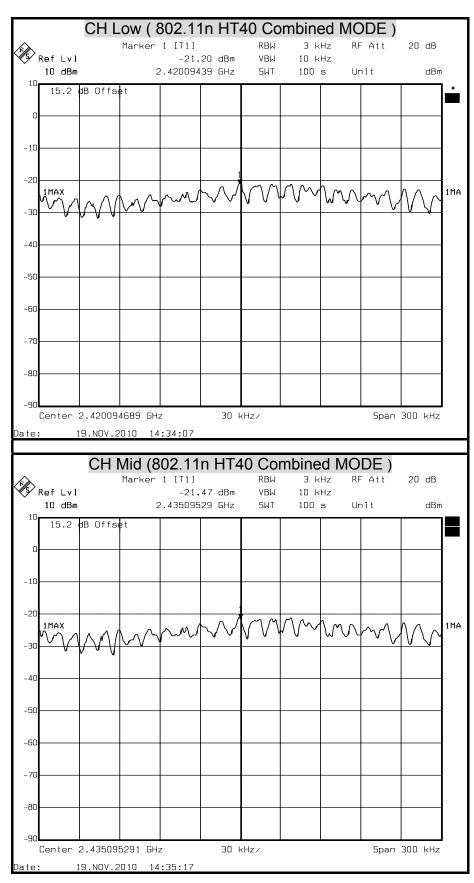

POWER SPECTRAL DENSITY (802.11n HT40 MODE)


Compliance Certification Services Inc.

Report No. : T100901402-RP1 FCC ID : U6A-BR182N



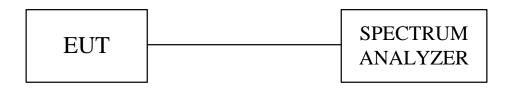
POWER SPECTRAL DENSITY (802.11n HT20 Combined MODE)



POWER SPECTRAL DENSITY (802.11n HT40 Combined MODE)

8.5 CONDUCTED SPURIOUS EMISSION

<u>LIMITS</u>


§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST SETUP

TEST RESULTS

No non-compliance noted.

802.11b Mode

CH Low					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2411.97895	11.7	94.90	106.6	N/A	N/A
6766.85371	11.7	44.60	56.3	86.60	-30.30
12389.73948	11.7	44.00	55.7	86.60	-30.90

CH Mid					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437.05842	11.7	95.52	107.22	N/A	N/A
6554.66934	11.7	44.46	56.16	87.22	-31.06
10267.89579	11.7	41.33	53.03	87.22	-34.19

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2451.98121	11.7	95.49	107.19	N/A	N/A
6766.85371	11.7	44.76	56.46	87.19	-30.73
8994.78958	11.7	42.21	53.91	87.19	-33.28

802.11g Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412.00376	11.7	90.81	102.51	N/A	N/A
6979.03808	11.7	44.50	56.2	82.51	-26.31
10904.4489	11.7	41.82	53.52	82.51	-28.99

CH Mid					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437.01582	11.7	91.37	103.07	N/A	N/A
6713.80762	11.7	45.33	57.03	83.07	-26.04
13397.61523	11.7	43.91	55.61	83.07	-27.46

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2461.98121	11.7	90.72	102.42	N/A	N/A
6979.03808	11.7	45.17	56.87	82.42	-25.55
7774.72949	11.7	43.40	55.1	82.42	-27.32
11169.67936	11.7	42.61	54.31	82.42	-28.11

Report No. : T100901402-RP1 FCC ID : U6A-BR182N

802.11n HT20 Mode Chain 0

CH Low					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412.00376	11.7	88.57	100.27	N/A	N/A
6660.76152	11.7	45.47	57.17	80.27	-23.10
12548.87776	11.7	43.19	54.89	80.27	-25.38

CH Mid					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437.03478	11.7	89.35	101.05	N/A	N/A
5758.97796	11.7	43.40	55.1	81.05	-25.95
6979.03808	11.7	45.32	57.02	81.05	-24.03
8305.19038	11.7	43.58	55.28	81.05	-25.77

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2461.96583	11.7	89.50	101.2	N/A	N/A
6660.76152	11.7	45.09	56.79	81.20	-24.41
11169.67936	11.7	43.56	55.26	81.20	-25.94

802.11n HT20 Mode Chain 1

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412.07536	11.7	87.85	99.55	N/A	N/A
348.2765531	11.7	44.45	56.15	79.55	-23.40
6554.66934	11.7	44.74	56.44	79.55	-23.11

CH Mid					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437.01457	11.7	87.61	99.31	N/A	N/A
348.2765531	11.7	41.69	53.39	79.31	-25.92
6979.03808	11.7	44.91	56.61	79.31	-22.70

CH High Offset Reading Limit Frequency Level Margin (dB) (MHz) (dBuV) (dBuV) (dBuV) (dB) 2461.98322 11.7 87.69 99.39 N/A N/A 348.2765531 11.7 44.22 55.92 79.39 -23.47 6979.03808 11.7 44.22 55.92 79.39 -23.47

802.11n HT40 Mode Chain 0

CH Low					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422.01466	11.7	85.09	96.79	N/A	N/A
6660.76152	11.7	45.36	57.06	76.79	-19.73
11222.72545	11.7	41.81	53.51	76.79	-23.28

CH Mid					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2437.00157	11.7	85.15	96.85	N/A	N/A
6925.99198	11.7	44.94	56.64	76.85	-20.21
11222.72545	11.7	42.07	53.77	76.85	-23.08

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2452.13351	11.7	85.17	96.87	N/A	N/A
6979.03808	11.7	45.16	56.86	76.87	-20.01
13397.61523	11.7	44.75	56.45	76.87	-20.42

802.11n HT40 Mode Chain 1

CH Low					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2422.01466	11.7	84.63	96.33	N/A	N/A
348.2765531	11.7	43.33	55.03	76.33	-21.30
6660.76152	11.7	44.70	56.4	76.33	-19.93

CH Mid					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2436.99795	11.7	85.08	96.78	N/A	N/A
348.2765531	11.7	42.02	53.72	76.78	-23.06
6660.76152	11.7	46.10	57.8	76.78	-18.98

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2451.98322	11.7	84.02	95.72	N/A	N/A
348.2765531	11.7	43.63	55.33	75.72	-20.39
6925.99198	11.7	44.81	56.51	75.72	-19.21

802.11n HT20 Combined Mode

CH Low					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2412.07536	15.2	90.66	105.86	N/A	N/A
348.2765531	15.2	45.48	60.68	85.86	-25.18
6713.80762	15.2	45.58	60.78	85.86	-25.08

CH Mid Frequency Offset Reading Level Limit Margin (MHz) (dB) (dBuV) (dBuV) (dBuV) (dB) 2437.03547 15.2 89.45 104.65 N/A N/A 295.2304609 15.2 42.43 57.63 84.65 -27.02 6925.99198 15.2 45.72 60.92 84.65 -23.73

CH High					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2461.99893	15.2	90.50	105.7	N/A	N/A
295.2304609	15.2	44.55	59.75	85.70	-25.95
6607.71543	15.2	44.42	59.62	85.70	-26.08

802.11n HT40 Combined Mode

CH Low

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2421.98233	15.2	87.00	102.2	N/A	N/A
295.2304609	15.2	44.34	59.54	82.20	-22.66
6660.76152	15.2	44.40	59.6	82.20	-22.60

CH Mid					
Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2436.99365	15.2	86.92	102.12	N/A	N/A
295.2304692	15.2	42.01	57.21	82.12	-24.91
6979.03808	15.2	45.23	60.43	82.12	-21.69

CH High

Frequency	Offset	Reading	Level	Limit	Margin
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)
2451.98618	15.2	86.73	101.93	N/A	N/A
295.2304609	15.2	44.10	59.3	81.93	-22.63
6979.03808	15.2	45.77	60.97	81.93	-20.96