

FCC CFR47 PART 15 SUBPART C

CERTIFICATION TEST REPORT

FOR

REMOTE CONTROL

MODEL NUMBER: FREET

FCC ID: U5Z-FREET

REPORT NUMBER: 1001408277

ISSUE DATE: 2011-09-29

Prepared for JCM TECHNOLOGIES S A BISBE MORGADES, 46 BAIXOS VIC 08500, SPAIN

Prepared by UNDERWRITERS LABORATORIES INC. 1285 WALT WHITMAN RD. MELVILLE, NY 11747, U.S.A. TEL: (631) 271-6200 FAX: (877) 854-3577

NVLAP LAB CODE 100255-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	2011- 09-29	Initial Issue	B. DeLisi
	2011- 10-11	Updated Duty Cycle data for full pulse train	B. DeLisi

Page 2 of 35

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CAL	_IBRATION AND UNCERTAINTY	5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	5
4	4.2.	SAMPLE CALCULATION	5
4	4.3.	MEASUREMENT UNCERTAINTY	5
5.	EQI	JIPMENT UNDER TEST	6
5	5.1.	DESCRIPTION OF EUT	6
5	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	5.3.	WORST-CASE CONFIGURATION AND MODE	6
5	5.4.	MODIFICATIONS	6
5	5.5.	DESCRIPTION OF TEST SETUP	7
6.	TES	ST AND MEASUREMENT EQUIPMENT	8
7.	AN	TENNA PORT TEST RESULTS1	0
7	7.1.	20 dB BW1	0
7	7.2.	DUTY CYCLE1	3
7	7.3.	TRANSMISSION TIME1	9
8.	RA	DIATED EMISSION TEST RESULTS2	0
8	8.1.	TX RADIATED SPURIOUS EMISSION2	0
8	3.2.	RX RADIATED SPURIOUS EMISSION2	7
9.	SET	TUP PHOTOS	0

Page 3 of 35

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	JCM TECHNOLOGIES S A BISBE MORGADES, 46 BAIXOS VIC 08500, SPAIN				
EUT DESCRIPTION:	Remote Control Transceiver				
MODEL:	FreeT				
SERIAL NUMBER:	Non-serialized production unit				
DATE TESTED:	2011-08-20 to 2011-09-13				
	APPLICABLE STANDARDS				
STA	NDARD	TEST RESULTS			
FCC PART	15 SUBPART C	Pass			

Underwriters Laboratories Inc. tested the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by Underwriters Laboratories Inc. based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation, as described by the referenced documents. This document may not be altered or revised in any way unless done so by Underwriters Laboratories Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Underwriters Laboratories Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL By:

Michal Anto

Michael Antola Sr. Project Engineer UL Tested By:

Bob DeLisi Sr. Staff Engineer UL

Page 4 of 35

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/1002550.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.3 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.00 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 35

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 125kHz RFID Tag and 868MHz Remote Control transmitter intended for security gate applications.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal integral antenna

5.3. WORST-CASE CONFIGURATION AND MODE

The EUT was tested in 3 orientations and it was determined the X orientation was the worst case configuration. Testing was conducted in the X orientation.

5.4. MODIFICATIONS

The following components were required to be changed in order to meet the emissions requirements.

R7 has changed to 1k5 resistor, and C6 has changed to a 1p2 capacitor.

Laboratories Inc.

5.5. DESCRIPTION OF TEST SETUP

TEST SETUP

The EUT is a stand alone portable device and tested as such.

SETUP DIAGRAM FOR TESTS

UNDERWRITERS LABORATORIES INC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 7 of 35

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment Used – Radiated Emissions, Pulse Train, Occupied Bandwidth								
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date			
30-1000MHz								
	Rohde &							
EMI Receiver	Schwarz	ESIB40	34968	2011-03-01	2012-03-01			
Bicon Antenna	Schaffner	VBA6106A	54	2011-04-05	2012-04-05			
Log-P Antenna	Schaffner	UPA6109	44067	2011-04-29	2012-04-29			
Switch Driver	HP	11713A	ME7A-627	N/A	N/A			
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A			
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A			
RF Switch Box	UL	1	44398	N/A	N/A			
Measurement Software	UL	Version 9.5	44740	N/A	N/A			
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2010-12-07	2012-12-07			
Multimeter	Fluke	87V	64386	2011-02-02	2012-02-29			
Above 1GHz (Band Optimized Sy	stem)							
Spectrum Analyzer	Agilent	E4446A	72823	2011-07-26	2012-07-26			
Horn Antenna (1-2 GHz)	ETS	3161-01	51442	2008-03-28	See * below			
Horn Antenna (2-4 GHz)	ETS	3161-02	48107	2007-09-27	See * below			
Horn Antenna (4-8 GHz)	ETS	3160-07	48106	2007-09-27	See * below			
Horn Antenna (8-12 GHz)	ETS	3161-04	48108	2007-09-27	See * below			
Signal Path Controller	HP	11713A	50250	N/A	N/A			
Gain Controller	HP	11713A	50251	N/A	N/A			
RF Switch / Preamp Fixture	UL	BOMS1	50249	N/A	N/A			
System Controller	UL	BOMS2	50252	N/A	N/A			
Measurement Software	UL	Version 9.5	44740	N/A	N/A			
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2010-12-07	2012-12-07			

* - Note: As allowed by the calibration standard ANSI C63.4 Section 4.4.2, standard gain horns need only a one-time calibration. Only if physical damage occurs will the horn antenna require re-calibration.
* Gain standard horn antennas (sometimes called standard gain horn antennas) need not be calibrated beyond that which is provided by the manufacturer unless they are damaged or deterioration is suspected, or they are used at a distance closer than 2D²/λ. Gain standard horn antennas have gains that are fixed by their

dimensions and dimensional tolerances.

Page 8 of 35

Test Equipment Used – Transmission Time									
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date				
Spectrum Analzyer	Agilent	E4446A	72822	2011-07-02	2012-07-02				
Dipole Antenna	EMCO	3121C	3359	2010-12-08	2011-12-08				
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	4268	2010-12-07	2012-12-07				

Page 9 of 35

7. ANTENNA PORT TEST RESULTS

7.1. 20 dB BW

LIMITS

FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

TEST PROCEDURE

ANSI C63.4

The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 10 KHz. The VBW is set to 300 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Page 10 of 35

<u>RESULTS</u>

No non-compliance noted:

20dB Bandwidth

Frequency 20dB Bandwidth		Limit	Margin
(MHz)	(kHz)	(kHz)	(kHz)
868	55.11	2170	-2114.89

Page 11 of 35

20dB BANDWIDTH

Page 12 of 35

7.2. DUTY CYCLE

<u>LIMITS</u>

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

CALCULATION

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T

<u>RESULTS</u>

No non-compliance noted:

One	Long Pulse	# of	Short	# of	Duty	20*Log	
Period	riod Width		Width Short		Cycle	Duty Cycle	
(ms)	(ms)	Pulses	(ms)	Pulses		(dB)	

🔆 Agilent 21:55:13 Oct 11, 2011 R Т Sweep Mkr1 250 ms Sweep Time Ref 0 dBm Atten 10 dB -24.21 dBm 500.0 ms Norm Log 10 Sweep dB/ <u>Single</u> Cont Φ Auto Sweep Norm Gate On <u>Off</u> LgAv W1 S2 Gate Setup 🕨 S3 VS AΑ ¤(f): Points FTun 601 Center 868.316 7 MHz Span 0 Hz Res BW 1 MHz Sweep 500 ms (601 pts) VBW 1 MHz Copyright 2000-2010 Agilent Technologies

PULSE TRAIN

Page 14 of 35

DATE:2011-09-29

Page 15 of 35

LONG PULSE WIDTH

Page 16 of 35

SHORT PULSE WIDTH

Page 17 of 35

PULSE COUNT

Page 18 of 35

7.3. TRANSMISSION TIME

<u>LIMITS</u>

FCC §15.231 (a) (2)

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1 MHz and the VBW is set to 1 MHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

RESULTS

No non-compliance noted:

Page 19 of 35

8. RADIATED EMISSION TEST RESULTS

8.1. TX RADIATED SPURIOUS EMISSION

LIMITS

FCC §15.231 (b)

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

Fundamental	Field Strength of	Field Strength of		
Frequency	Fundamental Frequency	Spurious Emissions		
(MHz)	(microvolts/meter)	(microvolts/meter)		
40.66 - 40.70	2,250	225		
70 - 130	1,250	125		
130 - 174	1,250 to 3,7501	125 to 3751		
174 - 260	3,750	375		
260 - 470	3,750 to 12,5001	375 to 1,2501		
Above 470	12,500	1,250		

1 Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 ¹ 0.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67	399.9 - 410 608 - 614 960 - 1240 1300 - 1427	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5
4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225	73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138	1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300	9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5
8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293	149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17	2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339	15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8
12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	167.72 - 173.2 240 - 285 322 - 335.4	3345.8 - 3358 3600 - 4400	36.43 - 36.5 (²)

Page 20 of 35

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 88	100 **	3
88 216	150 **	3
216 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 72 MHz, 76 88 MHz, 174 216 MHz or 470 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 21 of 35

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4:2003. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

No non-compliance noted:

UNDERWRITERS LABORATORIES INC. 1285 WALT WHITMAN RD, MELVILLE, NY 11747, USA TEL: (631) 271-6200 FAX: (877) 854-3577 This report shall not be reproduced except in full, without the written approval of Underwriters Laboratories Inc.

Page 22 of 35

FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 - 1000 MHz)

Page 23 of 35

JCM Techno	ologies											
Identification	n Tag											
Model: Free	T Internal	Batt Pwr										
Job: 100140	08277 Te	sted: RM										
868M Funda	amental - X	/Y/Z Axes										
Horizontal 2	00 - 1000M	Hz										
Test Frequency	Meter Reading	Detector	LogP 3M Horz 44067 02May12 [dB]	3MLoc 30- 1000MHz 02Feb12 [dB]	Duty Cycle Correction	Corrected Reading dB[uVolts/ meter]	FCC Part 15 Subpart C 15.231	Margin	Azimuth [Degs]	Height [cm]	Polarity	EUT Orientation / Axis
868.3044	53.62	PK	23.1	3.4	-8.92	71.2	81.9	-10.7	320	173	Horz	Х
868.3044	52.66	PK	23.1	3.4	-8.92	70.24	81.9	-11.66	185	101	Horz	Y
868.3044	51.72	PK	23.1	3.4	-8.92	69.3	81.9	-12.6	176	104	Horz	Z
Vertical 200	- 1000MHz	<u>.</u>										
868.3044	44.98	PK	23.2	3.4	-8.92	62.66	81.9	-19.24	38	189	Vert	Х
868.3044	50.22	PK	23.2	3.4	-8.92	67.9	81.9	-14	165	153	Vert	Y
868.3044	49.61	PK	23.2	3.4	-8.92	67.29	81.9	-14.61	288	162	Vert	Z
PK - Peak d	etector											
QP - Quasi-l	Peak detec	tor										
LnAv - Linea	r Average o	letector										
LgAv - Log A	verage det	ector										
Av - Average	e detector											
CAV - CISP	'R Average	detector										
RMS - RMS	detection											
CRMS - CIS	PK KMS d	etection										

JCM Techn	ologies													
Identificat	ion Tag													
Model: Fre	eT Intern	al Batt Pw	r											
Job: 10014	08277 Tes	sted: RM												
868MHz XN	SMIT mod	le X Axis												
Test	Meter		LogP 3M Horz 44067 02May12	3MLoc 30- 1000MHz 02Feb12	dB[uVolts/		Corrected Value dB[uVolts	FCC Part 15 Subpart C		FCC Part 15 Subpart C		Azimuth	Height	
Frequency	Reading	Detector	[dB]	[dB]	meterl	DCF [dB]	/meter]	15.209	Margin	15.231	Margin	[Degs]	[cm]	Polarity
Horizontal	200 - 1000	MHz	[+-]	[*-]		[]	,					[= -8-]	[]	,
868.3026	54.52	РК	23.1	3.4	81.02	-8.92	72.1	-	-	81.9	-9.8	321	102	Horz
835.92	8.94	QP	23.2	3.3	35.44	-	-	46	-10.56	-	-	27	395	Horz
891.95	9.2	QP	23.1	3.5	35.8	-	-	46	-10.2	-	-	2	131	Horz
Vertical 200	0 - 1000MH	z												
868.3026	45.11	РК	23.2	3.4	71.71	-8.92	62.79	-	-	81.9	-19.11	60	199	Vert
826.31	8.89	QP	23	3.3	35.19	-	-	46	-10.81	-	-	290	367	Vert
936.37	9.3	QP	23.6	3.6	36.5	-	-	46	-9.5	-	-	323	395	Vert
PK - Peak d	etector													
QP - Quasi-	Peak dete	ctor												
LnAv - Line	ar Average	detector												
LgAv - Log A	Average de	etector												
Av - Avera	ge detecto	r												
CAV - CISP	R Average	detector												
RMS - RMS	detection													
CRMS - CISI	PR RMS de	tection												

Page 24 of 35

HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz

REPORT NO: 1001408277 FCC ID: U5Z-FREET

JCM Techn	ologies															
Identificati	ion Tag															
Model: Fre	eT Interna	l Batt Pwr														
Job: 100140	08277 Test	ed: RM														
868MHz XM	NSMIT mod	e X Axis														
Test Frequency	Meter Reading	Detector	51442 1- 2GHz [dB]	BOMS Factor [dB]	dB[uVolts /meter]	DCF [dB]	Corrected Value dB[uVolts/ meter]	FCC Part 15 Subpart C 15.209	Margin	FCC Part 15 Subpart C 15.231	Margin	FCC Part 15 Subpart C Peak	Margin	Azimuth [Degs]	Height [cm]	Polarity
Horizontal	1000 - 2000	MHz														
1736.5975	87.49	РК	20.8	-44.17	64.12	-8.92	55.2	2 -	-	61.9	-6.7	74	-9.88	133	392	Horz
Horizontal 2	2000 - 40001	MHz														
2604.875	71.18	РК	21.3	-42.53	49.95	-8.92	41.03	54	-12.97	-	-	74	-24.05	277	246	Horz
3473.215	64.53	РК	22.2	-41.81	44.92	-8.92	36	54	-18	-	-	74	-29.08	258	230	Horz
Horizontal	4000 - 80001	MHz														
4341.51	73.48	РК	27.7	-51.66	49.52	-8.92	40.6	5 54	-13.4	-	-	74	-24.48	248	200	Horz
5209.75	68.67	РК	27.3	-52.67	43.3	-8.92	34.38	3 54	-19.62	-	-	74	-30.7	126	5 154	Horz
6078.075	71.01	РК	27.5	-51.26	47.25	-8.92	38.33	54	-15.67	-	-	74	-26.75	100	178	Horz
6946.48	3 70.46	РК	27.9	-51.89	46.47	-8.92	37.55	5 54	-16.45	-	-	74	-27.53	357	186	Horz
7814.734	66.98	РК	28.6	-50.47	45.11	-8.92	36.19	54	-17.81	-	-	74	-28.89	224	200	Horz
Horizontal 8	8000 - 10000	OMHz														
8683.125	65.3	РК	33.1	-51.12	47.28	-8.92	38.36	54	-15.64	-	-	74	-26.72	248	188	Horz
9551.352	62.46	РК	33.3	-49.03	46.73	-8.92	37.81	. 54	-16.19	-	-	74	-27.27	286	5 185	Horz
Vertical 100	0 - 2000MH	7														
1736.592	82.59	PK	20.8	-44.17	59.22	-8.92	50.3	54	-3.7	-	-	74	-14.78	49	395	Vert
Vertical 200	0 - 4000MH	17														
2604 936	65.48	PK	21 5	-42 53	44.45	-8 97	35 53	54	-18.47			74	-29 55	3/15	310	Vert
3473.255	62.42	PK	22.3	-41.81	42.91	-8.92	33.99	54	-20.01	-	-	74	-31.09	120	111	Vert
Vortical 400	0 800014	1-														
1241 E60			27.0	5166	45.10	8 07	26.27	7 EA	17 72			74	70 01	127	200	Vort
5200 700	65.03		27.0	5 -51.00	20.06	-0.52	21.04	54	-17.75		-	74	20.01	132	. 30.	Vort
6078 105	68 7	PK DK	27.3	-51.07	39.90	-8.92	31.04	5/	-18.08			74	-34.04	71	387	Vort
6946 461	71 32	PK	27.4	-51.20	44.04	-8.92	38 31	. 54	-15.69	-		74	-25.10	54	380	Vert
7814.855	64.47	РК	29.1	L -50.47	43.1	-8.92	34.18	s 54	-19.82	-	-	74	-30.9	356	222	Vert
Vertical 800	0 - 10000M	H7														
0602 002	62 00	DV	22.7	51 1 2	44.16	8 07	25.24	E /	10 76			74	20.94	125	253	Vort
9551.229	59.56	РК	33.4	-49.03	43.93	-8.92	35.01	. 54	-18.99	-	-	74	-30.07	110	136	Vert
55511225	55.50				10100	0.52	55101		10.55						- 150	
PK - Peak d	etector															
OP - Quasi-	Peak deter	tor														
InΔv - Lines	ar Average i	detector														
LgAy - Log A	Average det	ector														
Av - Averag	ge detector															
CAV - CISPI	R Average d	letector														
RMS - RMS	detection															
CRMS - CISF	PR RMS dete	ection														

Page 26 of 35

8.2. RX RADIATED SPURIOUS EMISSION

LIMITS

FCC §15.209

All spurious emissions shall comply with the limits shown below:

Limits for radiated disturbance of Class B ITE at measuring distance of 3 m								
Frequency range	Quasi-peak limits							
(MHz)	(dBµV/m)							
30 to 88	40							
88 to 216	43.5							
216 to 960	46							
Above 960 MHz	54							
Note: The lower limit shall apply at the transition	frequency.							

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to receive in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 5th harmonic is investigated with the transmitter set to the middle channel.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

<u>RESULTS</u>

No non-compliance noted:

Page 27 of 35

Page 28 of 35

REPORT NO: 1001408277 FCC ID: U5Z-FREET

JCM Techn	ologies									
Identificat	ion Tag									
Model: Fre	eT Intern	al Batt Pw	r							
Job: 10014	08277 Tes	sted: RM								
RCV mode	X Axis									
Test Frequency	Meter Reading	Detector	AF-44067 [dB]	GL-3M [dB]	dB[uVolts /meter]	FCC Part 15 Class B	Margin	Azimuth [Degs]	Height [cm]	Polarity
Horizontal	200 - 1000	VIHz	[]	[*-]	,			[8-]	[]	,
760.28	9.04	QP	21.7	3.1	33.84	46	-12.16	109	322	Horz
839.52	8.99	QP	23.3	3.3	35.59	46	-10.41	299	240	Horz
898.35	9.3	QP	23.2	3.5	36	46	-10	197	333	Horz
Vertical 20	0 - 1000MH	z								
818.71	8.94	QP	22.9	3.3	35.14	46	-10.86	61	299	Vert
853.93	9.09	QP	23.1	3.4	35.59	46	-10.41	329	106	Vert
940.37	9.34	QP	23.7	3.6	36.64	46	-9.36	68	328	Vert
PK - Peak d	etector									
QP - Quasi-	Peak dete	ctor								
LnAv - Line	ar Average	detector								
LgAv - Log /	Average de	etector								
Av - Avera	ge detecto	r								
CAV - CISP	R Average	detector								
RMS - RMS	detection									
CRMS - CIS	PR RMS de	tection								

Page 29 of 35

9. SETUP PHOTOS

ANTENNA PORT

<image/>	
<image/>	

Page 30 of 35

RADIATED EMISSION FOR PORTABLE CONFIGURATION – X ORIENTATION

Page 31 of 35

RADIATED EMISSION FOR PORTABLE CONFIGURATION – Y ORIENTATION

Page 32 of 35

RADIATED EMISSION FOR PORTABLE CONFIGURATION – Z ORIENTATION

RADIATED EMISSION FOR PORTABLE CONFIGURATION – Z

Page 33 of 35

RADIATED EMISSION ABOVE 30 MHz

Page 34 of 35

END OF REPORT

Page 35 of 35