

Engineering Solutions & Electromagnetic Compatibility Services

FCC 15.231 Test Data

for

Model: 433.92 MHz Micro DWS 56-0010-03 REV A00

433.92 MHz Door Window Sensor (DWS)

(RTL barcode: 020338)

for

Resolution Engineering

Report #: 2012144

Test Engineer: Bryan Sarles

This report may not be reproduced, except in full, without the full written approval of Rhein Tech Laboratories, Inc. and Resolution Engineering. Test results relate only to the item tested.

These tests are accredited and meet the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board/ACLASS. Refer to certificate and scope of accreditation AT-1445.

Client: Resolution Engineering Model: 433.92 MHz Micro DWS 56-0010-03 REV A00

FCC ID: N/A Standards: FCC Part 2, 15

Report #: 2012144

Description of testing presented in this test report

The data and limits presented in this report are for peak emissions limiting per 15.231(b)(2) which references 15.35(b), and peak limiting for restricted bands per 15.209(e) which again references 15.35(b)(2), as procured by Resolution Engineering. No average data is presented in this report.

Radiated Emissions Test Data - FCC Limits / 3m Distance

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/ Fail
433.940	Peak	V	59.2	31.1	90.3	100.8	-10.5	Pass
867.870	Peak	Н	54.7	-2.7	52.0	80.8	-28.8	Pass
1301.802	Peak	Н	47.2	4.0	51.2	74.0	-22.8	Pass
1735.730	Peak	V	52.4	7.8	60.2	80.8	-20.6	Pass
2169.605	Peak	V	54.2	-7.9	46.3	80.8	-34.5	Pass
2603.525	Peak	V	53.8	-7.4	46.4	80.8	-34.4	Pass
3037.445	Peak	Н	50.9	-5.6	45.3	80.8	-35.5	Pass
3471.365	Peak	V	49.6	-4.3	45.3	80.8	-35.5	Pass
3905.285	Peak	V	50.9	-3.7	47.2	74.0	-26.8	Pass
4339.205	Peak	V	42.1	-2.7	39.4	74.0	-34.6	Pass

Test Procedure

Radiated emissions of the harmonics were tested at three meters. The EUT was tested in the three orthogonal planes with the receive antenna in both polarities. The emissions were maximized per ANSI C63.4:2003 8.3.1.2; that is, the measurement antenna height was varied between 1 and 4 m, and the EUT was rotated through 360° on a rotating turntable until the maximum emissions were found. Both horizontal and vertical measurement antenna polarizations were used. A resolution bandwidth of 100 kHz was used for frequencies less than 1000 MHz, and a resolution bandwidth of 1 MHz was used for frequencies greater than or equal to 1000 MHz. The video bandwidth was set to a value at least three times greater than the resolution bandwidth.

EUT Disposition

The EUT was adapted to continuously transmit for testing purposes.

Client: Resolution Engineering Model: 433.92 MHz Micro DWS 56-0010-03 REV A00

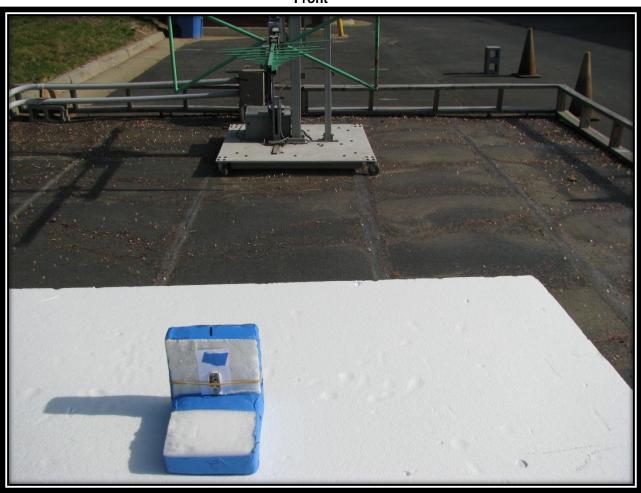
FCC ID: N/A Standards: FCC Part 2, 15

Report #: 2012144

Radiated Emissions Test Equipment

Part	Manufacturer	Model	Serial Number	RTL Bar Code	Calibration Due Date
Amplifier (20 MHz-2 GHz)	Rhein Tech Laboratories, Inc.	PR-1040	900905	900905	7/10/12
Spectrum Analyzer (100 Hz-22 GHz)	Hewlett Packard	HP-8566B	3138A07771	900930	9/13/12
Bilog Periodic Antenna (25 MHz-2 GHz)	Schaffner Chase	CBL6112	2099	900791	12/12/12
EMI Receiver RF Section (9 KHz-6.5 GHz)	Hewlett Packard	85462A	3325A00159	900913	6/8/12
RF Filter Section (100 KHz-6.5 GHz)	Hewlett Packard	85460A	3330A00107	900914	6/8/12
Amplifier (1 GHz–26.0 GHz)	Rhein Tech Laboratories, Inc.	PR-1042	N/A	901364	7/14/12
Horn Antenna (2.0-18.0 GHz)	ЕМСО	RGA-60	230	900814	10/27/12
Emissions Testing Software	Rhein Tech Laboratories, Inc.	Automated Emission Tester	Rev. 14.0.2	N/A	N/A

Test Personnel:

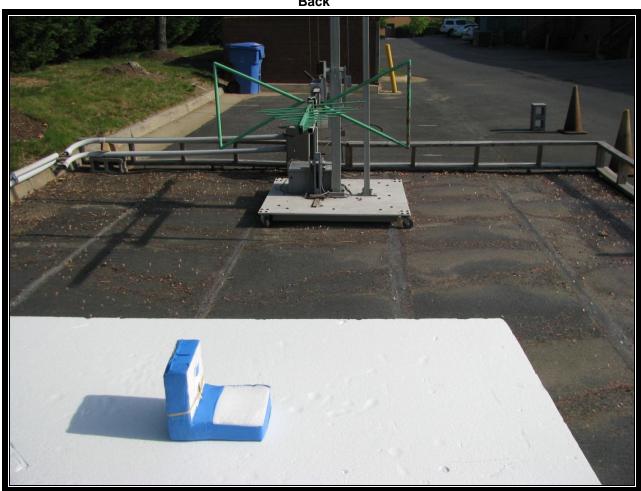

Bryan Sarles	By- De	April 16 th , 2012
Test Engineer	Signature	Date of Test

Client: Resolution Engineering Model: 433.92 MHz Micro DWS 56-0010-03 REV A00 FCC ID: N/A

Standards: FCC Part 2, 15 Report #: 2012144

Test Configuration Photographs

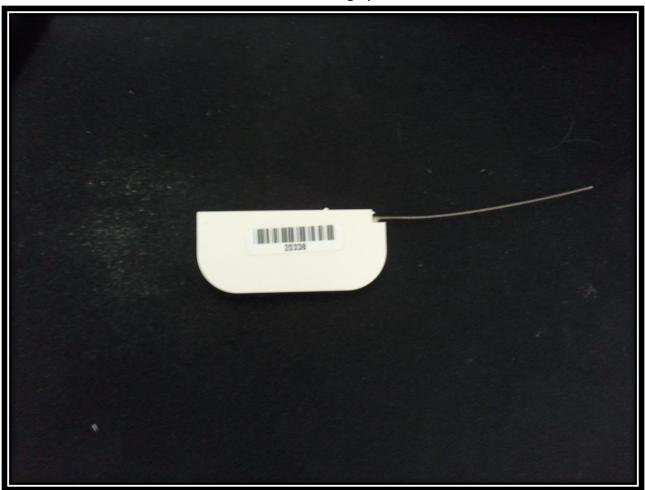
Front



Client: Resolution Engineering Model: 433.92 MHz Micro DWS 56-0010-03 REV A00 FCC ID: N/A

Standards: FCC Part 2, 15

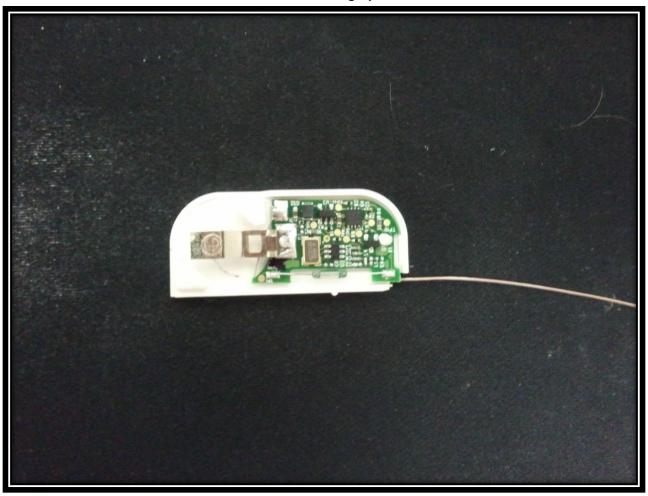
Report #: 2012144


Back

Client: Resolution Engineering Model: 433.92 MHz Micro DWS 56-0010-03 REV A00 FCC ID: N/A

Standards: FCC Part 2, 15 Report #: 2012144

EUT Photograph



Client: Resolution Engineering Model: 433.92 MHz Micro DWS 56-0010-03 REV A00

FCC ID: N/A Standards: FCC Part 2, 15

Report #: 2012144

EUT Photograph

