

Engineering Solutions & Electromagnetic Compatibility Services

FCC Part 15.231 Test Data

EUT: 345 MHz Micro Door Window Sensor

for

Resolution Engineering, Inc. 1402 Heggen Street Hudson, WI 54016 Contact: Jake Peterson

Testing Conducted By Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400 Herndon, VA 20170

RTL Test Engineer: Jon Wilson

RTL Project/Report Number: 2014073

April 21, 2014

This report may not be reproduced, except in full, without the full written approval of Rhein Tech Laboratories, Inc. and Resolution Engineering. Test results relate only to the item tested.

These tests are accredited and meet the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board/ACLASS. Refer to certificate and scope of accreditation AT-1445.

Client: Resolution Engineering EUT: 345 MHz Micro Door Window Sensor Standards: FCC Parts 2, 15 Report #: 2014073

Testing Represented in Report

The data and limits presented in this report are for radiated emissions per 15.231(b)(2) which references 15.35(b), and peak limiting for restricted bands per 15.209(e), which again references 15.35(b)(2), as procured by Resolution Engineering. No average data is presented in this report. Data is also presented for spurious, non-harmonic radiated emissions per 15.209. The Equipment Under Test (EUT) was the **345 MHz Micro Door Window Sensor (RTL Bar Code 21427)**.

15.231 Radiated Emissions Test Data - FCC Limits/ 3m Distance

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/ Fail
345.000	Peak	Н	76.0	16.9	92.9	97.3	-4.4	Pass
689.995	Peak	Н	64.4	-4.5	59.9	77.3	-17.4	Pass
1,034.993*	Peak	V	48.3	-0.4	47.9	74.0	-26.1	Pass
1,379.991	Peak	V	44.7	3.4	48.1	74.0	-25.9	Pass
1,724.991	Peak	Н	41.0	5.4	46.4	77.3	-30.9	Pass
2,070.027	Peak	Н	56.8	-11.3	45.5	77.3	-31.8	Pass
2,415.027	Peak	Н	47.7	-9.9	37.8	77.3	-39.5	Pass
2,760.027	Peak	Н	61.6	-9.2	52.4	74.0	-21.6	Pass
3,105.027	Peak	V	53.0	-7.6	45.4	77.3	-31.9	Pass
3,450.027	Peak	V	49.6	-7.0	42.6	77.3	-34.7	Pass

^{*} IC restricted band

All spurious emissions in the applicable frequency range were investigated, only harmonic emissions were present as noted above

Test Procedure

Radiated fundamental and spurious emissions were tested at three meters. The EUT was tested in the three orthogonal planes with the receive antenna in both polarities. The emissions were maximized per ANSI C63.4:2003 8.3.1.2; that is, the measurement antenna height was varied between 1 and 4 m, and the EUT was rotated through 360° on a rotating turntable until the maximum emissions were found. Both horizontal and vertical measurement antenna polarizations were used. A resolution bandwidth of 100 kHz was used for frequencies less than 1000 MHz, and a resolution bandwidth of 1 MHz was used for frequencies greater than or equal to 1000 MHz. The video bandwidth was set to a value at least three times greater than the resolution bandwidth.

EUT Disposition

The EUT was adapted to continuously transmit for testing purposes.

Client: Resolution Engineering EUT: 345 MHz Micro Door Window Sensor Standards: FCC Parts 2, 15 Report #: 2014073

Radiated Emissions Test Equipment

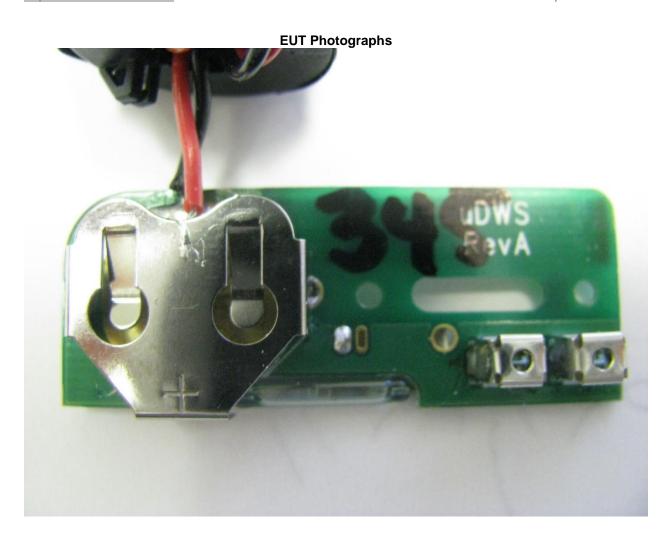
Part	Manufacturer	Model	Serial Number	RTL Bar Code	Calibration Due Date
Amplifier (20 MHz-2 GHz)	Rhein Tech Laboratories, Inc.	PR-1040	900905	900905	8/20/14
Spectrum Analyzer (10 Hz-26.5 GHz)	Agilent	EXA N9010	MY51250846	901583	4/16/15
Bilog Periodic Antenna (25 MHz-2000 MHz)	ARA	LPB-2520	1037	900724	4/19/15
Amplifier (1 GHz–26.5 GHz)	Hewlett Packard	8449B OPT H02	3008A00505	900932	8/10/2014
Horn Antenna (2.0-4.0 GHz)	EMCO	3161-02	9804-1044	900772	4/20/15
Emissions Testing Software	Rhein Tech Laboratories, Inc.	Automated Emission Tester	Rev. 14.0.2	N/A	N/A

Test Personnel:

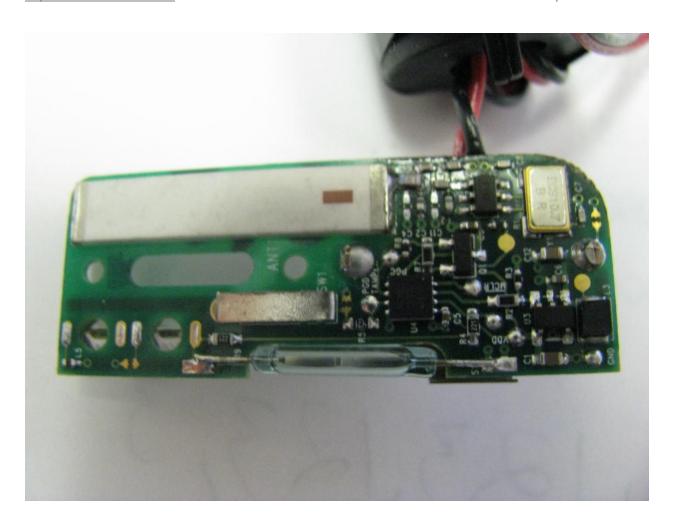
Jon Wilson	In ne	April 18, 2014	
Test Engineer	Signature	Date of Test	

FCC/IC Cross Reference

FCC 15.231(b)(2)	RSS-210 Issue 8 A1.1
FCC 15.35(b)	RSS-Gen Issue 3 7.2.3
FCC 15.205	RSS-Gen Issue 3 7.2.2
FCC 15.209	RSS-Gen Issue 3 7.2.5


Client: Resolution Engineering EUT: 345 MHz Micro Door Window Sensor Standards: FCC Parts 2, 15 Report #: 2014073

Test Configuration Photograph


Radiated Emissions

Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: Resolution Engineering EUT: 345 MHz Micro Door Window Sensor Standards: FCC Parts 2, 15 Report #: 2014073

Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: Resolution Engineering EUT: 345 MHz Micro Door Window Sensor Standards: FCC Parts 2, 15 Report #: 2014073

