SAR & RF Exposure Exemption Technical Brief

Application Information

APPLICANT	Alula			
DATE	12/24/2018			
PROD DESC	Wireless Door/Window Sensor			
PMN	RE207 Door/Window Sensor, RE207T Door/Window Sensor			
HVIN	RE207, RE207T			
FVIN	75-0082-02, 75-0082-04, 75-0086-03, 75-0086-08			
IC	8310A-RE207			

SAR Evaluation Exemption (RSS-102, Section 2.5.1)

From RSS-102, Section 2.5.1 Exemption Limits for Routine Evaluation - SAR Evaluation

"SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1."

This device is meant to be mounted to the wall or ceiling of a residence. As such, it will always be at least 20cm from the user, and is thus exempt from SAR evaluation.

RF Exposure Exemption (RSS-102, Section 2.5.2)

Field strength measurements were taken at 3 meters. Because of the low duty cycle of this device, the 20dB duty cycle correction is allowed. Using the standard conversion from field strength, EIRP is calculated as follows:

EIRP (dBm) = $(E - 20) + 20\log(3) - 104.8$

From RSS-102, Section 2.5.2 Exemption Limits for Routine Evaluation - RF Exposure Evaluation

"*RF* exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

• At or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz."

Thus, the EIRP limit for exemption from RF exposure evaluation is calculated as follows:

EIRP Limit (dBm) = $10\log(1.31 \ge 10^{-2} f^{0.6834}) + 30$

Frequency (MHz)	Peak Level (dBuV/m)	EIRP (dBm)	EIRP Limit (dBm)	Margin (dB)	Test Result
345.0	94.5	-20.8	28.5	-49.3	PASS
690.0	63.7	-51.6	30.6	-82.1	PASS
1035.0	47.4	-67.9	31.8	-99.6	PASS
1380.0	49.7	-65.6	32.6	-98.2	PASS
1725.0	51.3	-64.0	33.3	-97.3	PASS
2070.0	48.5	-66.8	33.8	-100.6	PASS
2415.0	50.4	-64.9	34.3	-99.1	PASS
2760.0	54.1	-61.2	34.7	-95.8	PASS
3105.0	55.0	-60.3	35.0	-95.3	PASS
3450.0	53.4	-61.9	35.4	-97.2	PASS

The table that follows will show that the device is exempt from RF exposure evaluation.

RF Exposure Limits (FCC 1.1310)

From FCC §1.1310, the allowable field strength exposure limits for 300-1500 MHz is calculated as follows:

Power Density Limit:
$$\frac{f}{1500}$$
 (mW/cm²) where f = frequency in MHz

For frequencies above 1500 MHz, the limit is 1mW/cm².

Power Density Limit (dBmW/m²): $\frac{dBmW}{m^2} = 10 \log_{10}(\frac{f}{1500} * 10000)$

*where f remains 1500 above frequencies of 1500 MHz

Peak Level to Power Conversion: $\frac{dBmW}{m^2} = \frac{dBuV}{m} - 115.8$

Frequency (MHz)	Peak Level (dBuV/m)	Peak Level (dBmW/m^2)	Power Limit (dBmW/m^2)	Margin (dB)	Test Result
345.0	94.5	-21.3	33.6	-54.9	PASS
690.0	63.7	-52.1	36.6	-88.7	PASS
1035.0	47.4	-68.4	38.4	-106.8	PASS
1380.0	49.7	-66.1	39.6	-105.7	PASS
1725.0	51.3	-64.5	40.0	-104.5	PASS
2070.0	48.5	-67.3	40.0	-107.3	PASS
2415.0	50.4	-65.4	40.0	-105.4	PASS
2760.0	54.1	-61.7	40.0	-101.7	PASS
3105.0	55.0	-60.8	40.0	-100.8	PASS
3450.0	53.4	-62.4	40.0	-102.4	PASS

Sincerely,

lale De

Paul Saldin Vice President Alula