

Engineering Solutions & Electromagnetic Compatibility Services

FCC Part 15.231 Test Data

EUT: 56-0039-01 Rev B01 319.5 MHz CO Detector

for

Resolution Engineering, Inc. 226 Locust Street, Suite 4 Hudson, WI 54016 Contact: Josh Gathje

Testing Conducted By Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400 Herndon, VA 20170

RTL Test Engineer: Jon Wilson

RTL Project/Report Number: 2013190

September 16, 2013

This report may not be reproduced, except in full, without the full written approval of Rhein Tech Laboratories, Inc. and Resolution Engineering. Test results relate only to the item tested.

These tests are accredited and meet the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board/ACLASS. Refer to certificate and scope of accreditation AT-1445.

Testing Represented in Report

The data and limits presented in this report are for radiated emissions per 15.231(b)(2) which references 15.35(b), and peak limiting for restricted bands per 15.209(e), which again references 15.35(b)(2), as procured by Resolution Engineering. No average data is presented in this report. Data is also presented for spurious, non-harmonic radiated emissions per 15.209. The Equipment Under Test (EUT) was the **56-0039-01 Rev B01 319.5 MHz CO Detector (RTL Bar Code 21093)**.

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/ Fail
319.505	Peak	Н	75.8	14.6	90.4	95.9	-5.5	Pass
399.680	Peak	Н	49.3	-4.9	44.4	75.9	-31.5	Pass
479.263	Peak	Н	59.1	-6.2	52.9	75.9	-23.0	Pass
639.011	Peak	Н	71.7	-5.9	65.8	75.9	-10.1	Pass
958.521	Peak	Н	47.0	-2.9	44.1	75.9	-31.8	Pass
1278.045*	Peak	Н	40.4	0.4	40.8	74.0	-33.2	Pass
1597.568	Peak	V	35.5	2.2	37.7	74.0	-36.3	Pass
1917.091	Peak	Н	37.6	4.7	42.3	75.9	-33.6	Pass
2236.661	Peak	Н	44.9	-10.6	34.3	74.0	-39.7	Pass
2556.184	Peak	V	49.7	-10.5	39.2	75.9	-36.7	Pass
2875.707	Peak	V	48.1	-9.5	38.6	74.0	-35.4	Pass
3195.230	Peak	Н	50.2	-8.3	41.9	75.9	-34.0	Pass

15.231 Radiated Emissions Test Data – FCC Limits/ 3m Distance

* IC restricted band

Test Procedure

Radiated fundamental and spurious emissions were tested at three meters. The EUT was tested in the three orthogonal planes with the receive antenna in both polarities. The emissions were maximized per ANSI C63.4:2003 8.3.1.2; that is, the measurement antenna height was varied between 1 and 4 m, and the EUT was rotated through 360° on a rotating turntable until the maximum emissions were found. Both horizontal and vertical measurement antenna polarizations were used. A resolution bandwidth of 100 kHz was used for frequencies less than 1000 MHz, and a resolution bandwidth of 1 MHz was used for frequencies greater than or equal to 1000 MHz. The video bandwidth was set to a value at least three times greater than the resolution bandwidth.

EUT Disposition

The EUT was adapted to continuously transmit for testing purposes.

Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Radiated Emissions Test Equipment

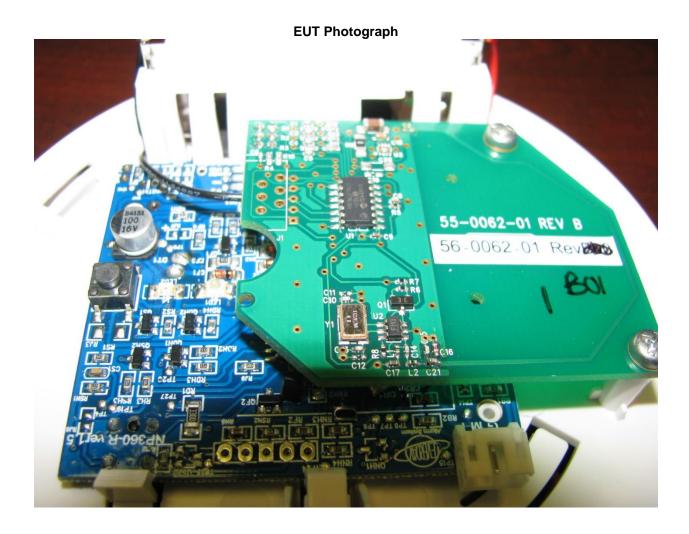
Part	Manufacturer	Model	Serial Number	RTL Bar Code	Calibration Due Date
Amplifier (20 MHz-2 GHz)	Rhein Tech Laboratories, Inc.	PR-1040	900905	900905	8/20/14
Bilog Periodic Antenna (25 MHz-2 GHz)	Schaffner Chase	CBL6112	2099	900791	2/2/14
Spectrum Analyzer	Hewlett Packard	8596EM	3826A00144	901215	3/15/14
Amplifier (1 GHz–26.5 GHz)	Hewlett Packard	8449B OPT H02	3008A00505	900932	8/10/2014
Horn Antenna (2.0-4.0 GHz)	EMCO	3161-02	9804-1044	900772	4/20/15
Emissions Testing Software	Rhein Tech Laboratories, Inc.	Automated Emission Tester	Rev. 14.0.2	N/A	N/A

Test Personnel:

Jon Wilson	for ne	August 19, 23, 2013
Test Engineer	Signature	Date of Test

FCC/IC Cross Reference

FCC 15.231(b)(2)	RSS-210 Issue 8 A1.1
FCC 15.35(b)	RSS-Gen Issue 3 7.2.3
FCC 15.205	RSS-Gen Issue 3 7.2.2
FCC 15.209	RSS-Gen Issue 3 7.2.5


Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400 Herndon, VA 20170 http://www.rheintech.com

Test Configuration Photograph

Radiated Emissions

Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400 Herndon, VA 20170 http://www.rheintech.com

