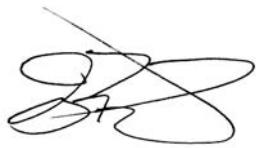


RF Exposure Lab

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A.
TEL (760) 737-3131 • FAX (760) 737-9131
<http://www.rfexposurelab.com>

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Datalogic Mobile
1505 Westec Drive
Eugene, OR 97402


Dates of Test: June 7-8, 2010
Test Report Number: SAR.20100601

FCC ID:	U4SFALX3
IC Certificate:	3862C-FALX3
Model(s):	Falcon X3
Summit WLAN:	Model: SDC-MSD30AG FCC ID: TWG-SDCM3D30AG
Test Sample:	Engineering Unit same as Production
Serial No.:	1
Equipment Type:	Wireless RFID Reader
Classification:	Portable Transmitter Next to Body
TX Frequency Range:	2412 – 2462 MHz, 5180 – 5320 MHz, 5500 – 5700 MHz, 5745 – 5805 MHz
Frequency Tolerance:	± 25 ppm
Maximum RF Output:	2450 MHz (b) – 17.76 dBm, 2450 MHz (g) – 17.56 dBm, 5200 MHz (a) – 10.91 dBm, 5300 MHz (a) – 10.46 dBm, 5600 MHz (a) – 10.65 dBm, 5800 MHz (a) – 20.68 dBm
Signal Modulation:	DSSS, OFDM
Antenna Type (Length):	Internal WLAN (Laird Tech., P/N Mini-Nanoblade Antenna) Internal BT (Laird Tech., P/N Black Chip Antenna)
Battery:	Std. (Emerging Power P/N FPDT) Battery Pack
Application Type:	Certification
FCC Rule Parts:	Part 15C, Sec. 15.247 & 15.407
Industry Canada:	RSS-102, Safety Code 6

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, OET Bulletin 65 Supp. C, RSS-102 and Safety Code 6 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton
Vice President

Certificate # 2387.01

Table of Contents

1. Introduction	3
SAR Definition [5].....	3
2. SAR Measurement Setup	4
Robotic System.....	4
System Hardware	4
System Description	4
E-Field Probe ALS-E-020	5
3. Robot Specifications	7
4. Probe and Dipole Calibration	8
5. Phantom & Simulating Tissue Specifications	9
SAM Phantom.....	9
Brain & Muscle Simulating Mixture Characterization	9
Device Holder	9
6. Definition of Reference Points.....	10
Ear Reference Point.....	10
Device Reference Points	10
7. Test Configuration Positions	11
Positioning for Cheek/Touch [5].....	11
Positioning for Ear / 15° Tilt [5].....	12
Body Worn Configurations	13
8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2].....	14
Uncontrolled Environment.....	14
Controlled Environment	14
9. Measurement Uncertainty	15
10. System Validation	16
Tissue Verification.....	16
Test System Verification	16
11. SAR Test Data Summary	17
Procedures Used To Establish Test Signal.....	17
Device Test Condition	17
SAR Data Summary – 2450 MHz Body	19
SAR Data Summary – 5200 MHz Body	20
SAR Data Summary – 5600 MHz & 5800 MHz Body	21
12. Test Equipment List	22
13. Conclusion	23
14. References.....	24
Appendix A – System Validation Plots and Data	25
Appendix B – SAR Test Data Plots.....	39
Appendix C – SAR Test Setup Photos	91
Appendix D – Probe Calibration Data Sheets.....	97
Appendix E – Dipole Calibration Data Sheets	138
Appendix F – Phantom Calibration Data Sheets	160

1. Introduction

This measurement report shows compliance of the Datalogic Mobile Model Falcon X3 Wireless RFID Reader FCC ID: U4SFALX3 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 3862C-FALX3 with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where:

σ = conductivity of the tissue (S/m)

ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4™ 2.66 GHz PC with Windows XP Pro™, and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a + 2z)^2} \right)$$

The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.

E-Field Probe ALS-E-020

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 5mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

The manufacturer specified precision of the robot is ± 0.05 mm and the precision of the APREL bottom detection device is ± 0.1 mm. These precisions are calibrated and tested in the manufacturing process of the bottom detection device. A constant distance is maintained because the surface of the phantom is dynamically detected for each point. The surface detection algorithm corrects the position of the robot so that the probe rests on the surface of the phantom. The probe is then moved to the measurement location 2.44 mm above the phantom surface resulting in the probe center location to be at 4.0 mm above the phantom surface. Therefore, the probe sensor will be at 4.0 mm above the phantom surface ± 0.1 mm for each SAR location for frequencies below 3 GHz. The probe is moved to the measurement location 1.44 mm above the phantom surface resulting in the probe center location to be at 2.0 mm above the phantom surface. Therefore, the probe sensor will be at 2.0 mm above the phantom surface ± 0.1 mm for each SAR location for frequencies above 3 GHz.

The probe boundary effect compensation cannot be disabled in the ALSAS-10U testing system. The probe tip will always be at least half a probe tip diameter from the phantom surface. For frequencies up to 3 GHz, the probe diameter is 5 mm. With the sensor offset set at 1.54 mm (default setting), the sensor to phantom gap will be 4.0 mm which is greater than half the probe tip diameter. For frequencies greater than 3 GHz, the probe diameter is 3 mm. With the sensor offset set at 0.56 mm (default setting), the sensor to phantom gap will be 3.0 mm which is greater than half the probe tip diameter.

The separation of the first 2 measurement points in the zoom scan is specified in the test setup software. For frequencies below 3 GHz, the user must specify a zoom scan resolution of less than 6 mm in the z-axis to have the first two measurements within 1 cm of the surface. The z-axis is set to 4 mm as shown on each of the data sheets in Appendix B. For frequencies above 3 GHz, the user must specify a zoom scan resolution of less than 3 mm in the z-axis to have the first two measurements within 5 mm of the surface. The z-axis is set to 2 mm as shown on each of the data sheets in Appendix B.

The zoom scan volume for devices ≤ 3 GHz with a cube scan of 5x5x8 yields a volume of $32 \times 32 \times 28$ mm³. For devices > 3 GHz and < 4.5 GHz, the cube scan of 9x9x9 yields a volume of $32 \times 32 \times 24$ mm³. For devices ≥ 4.5 GHz, the cube scan of 7x7x12 yields a volume of $24 \times 24 \times 22$ mm³.

3. Robot Specifications

Specifications

Positioner:	ThermoCRS, Robot Model: Robocomm 3
Repeatability:	0.05 mm
No. of axis:	6

Data Acquisition Card (DAC) System

Cell Controller

Processor:	Pentium 4™
Clock Speed:	2.66 GHz
Operating System:	Windows XP Pro™

Data Converter

Features:	Signal Amplifier, End Effector, DAC
Software:	ALSAS 10-U Software

E-Field Probe

Model:	ALS-E-020
Serial Number:	RFE-217
Construction:	Triangular Core Touch Detection System
Frequency:	10MHz to 6GHz

Phantom

Phantom:	Uniphantom, Right Phantom, Left Phantom
----------	---

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittal plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. See photos in Appendix C.

Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a glycol based chemical and saline solution. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following tables. Other head and body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 5.1 Typical Composition of Ingredients for Tissue

Ingredients	Simulating Tissue			
	2450 MHz Muscle	5200 MHz Muscle	5600 MHz Muscle	5800 MHz Muscle
Mixing Percentage				
Water	73.20	58.85	59.00	59.00
Sugar	0.00	41.00	40.60	40.60
Salt	0.04	0.00	0.00	0.00
HEC	0.00	0.10	0.30	0.30
Bactericide	0.00	0.05	0.10	0.10
DGBE	26.70	0.00	0.00	0.00
Dielectric Constant	Target	52.70	48.96	48.47
Conductivity (S/m)	Target	1.95	5.35	5.77
				5.96

Device Holder

In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

6. Definition of Reference Points

Ear Reference Point

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

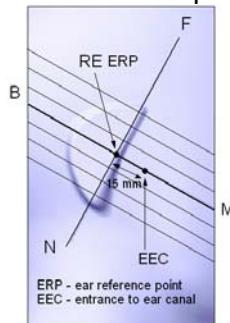


Figure 6.1 Close-up side view of ERP's

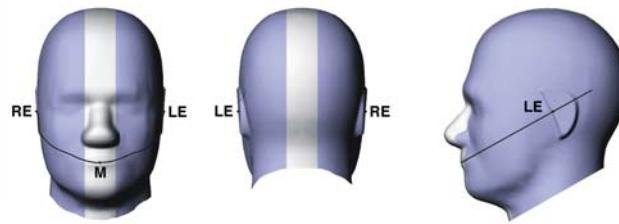


Figure 6.2 Front, back and side view of SAM

Device Reference Points

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is then located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at its top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].

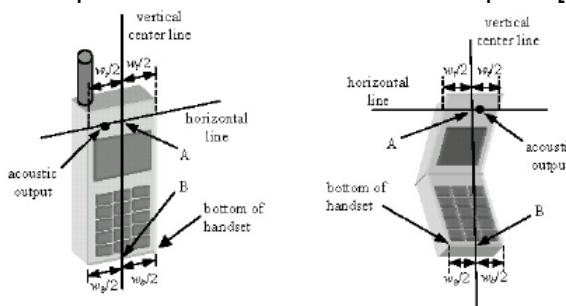
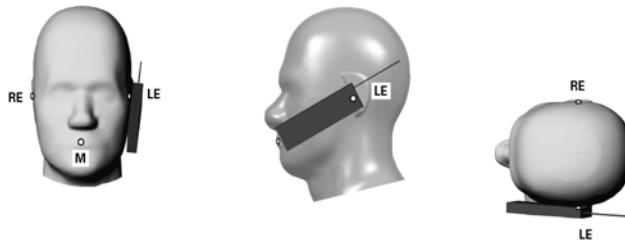
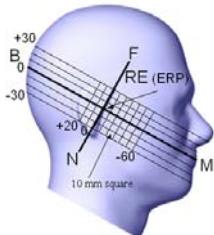



Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

7. Test Configuration Positions


Positioning for Cheek/Touch [5]

1. Position the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the device is approximately parallel to the sagittal plane of the phantom.

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear.
3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF.
5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure 7.2.

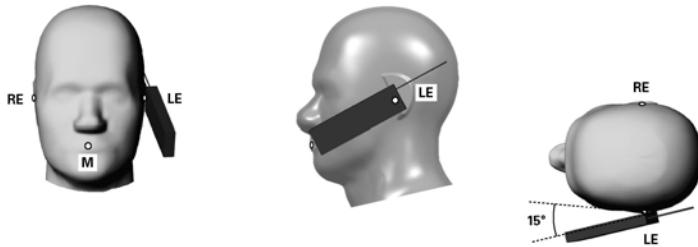


Figure 7.2 Side view w/ relevant markings

Positioning for Ear / 15° Tilt [5]

With the test device aligned in the Cheek/Touch Position":

1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees.
2. Rotate the device around the horizontal line by 15 degrees.
3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure 7.3).

Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position

Body Worn Configurations

Body-worn operating configurations are tested with the accessories attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then, when multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

9. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	$c_i^1 (1-g)$	$c_i^1 (10-g)$	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	$\sqrt{3}$	$(1 - \frac{1}{cp})^{1/2}$	$(1 - \frac{1}{cp})^{1/2}$	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	$\sqrt{3}$	\sqrt{cp}	\sqrt{cp}	4.4	4.4
Boundary Effect	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6
Linearity	4.7	rectangular	$\sqrt{3}$	1	1	2.7	2.7
Detection Limit	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	$\sqrt{3}$	1	1	0.5	0.5
Integration Time	1.7	rectangular	$\sqrt{3}$	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	$\sqrt{3}$	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	$\sqrt{3}$	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	$\sqrt{3}$	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	$\sqrt{3}$	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	4.2	rectangular	$\sqrt{3}$	1	1	2.4	2.4
Phantom and Setup							
Phantom Uncertainty (shape & thickness tolerance)	3.4	rectangular	$\sqrt{3}$	1	1	2.0	2.0
Liquid Conductivity (target)	5.0	rectangular	$\sqrt{3}$	0.7	0.5	2.0	1.4
Liquid Conductivity (meas.)	0.5	normal	1	0.7	0.5	0.4	0.3
Liquid Permittivity (target)	5.0	rectangular	$\sqrt{3}$	0.6	0.5	1.7	1.4
Liquid Permittivity (meas.)	1.0	normal	1	0.6	0.5	0.6	0.5
Combined Uncertainty		RSS				9.6	9.4
Combined Uncertainty (coverage factor=2)		Normal (k=2)				19.1	18.8

10. System Validation

Tissue Verification

Table 10.1 Measured Tissue Parameters

		2450 MHz Body		5250 MHz Body		5600 MHz Body	
Date(s)		Jun. 7, 2010		Jun. 7, 2010		Jun. 8, 2010	
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ϵ	52.70	51.89	48.95	47.39	48.47	48.36	
Conductivity: σ	1.95	1.97	5.36	5.36	5.77	5.77	
		5800 MHz Body					
Date(s)		Jun. 8, 2010					
Liquid Temperature (°C)	20.0	Target	Measured				
Dielectric Constant: ϵ	48.22	48.15					
Conductivity: σ	5.98	6.01					

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at 2450 MHz by using the system kit. Power is extrapolated to 1 watt. (Graphic Plots Attached)

Table 10.2 System Dipole Validation Target & Measured

Date	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Deviation (%)
07-Jun-2010	2450 MHz	53.10	54.01	+ 1.71
07-Jun-2010	5250 MHz	61.66	60.51	- 1.87
08-Jun-2010	5600 MHz	65.03	64.42	- 0.94
08-Jun-2010	5800 MHz	63.43	63.35	- 0.13

See Appendix A for data plots.

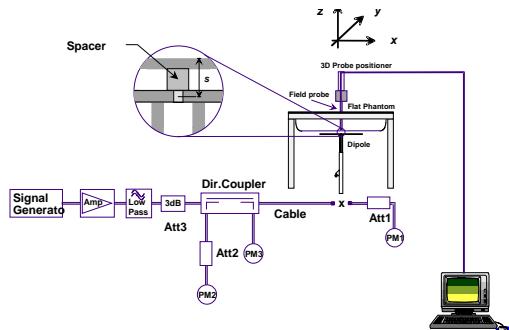


Figure 10.1 Dipole Validation Test Setup

11. SAR Test Data Summary

See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots.

See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was placed into simulated transmit mode using the manufacturer's test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a device, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

The device is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated.

The BT transmitter was not tested as the maximum power transmitted is 12 mW and the separation distance between the BT and WLAN is greater than 5 cm.

The unit was required to be disassembled to measure the conducted power. To insure that the integrity of the device was not compromised, the power measurements were conducted at the completion of all testing.

802.11b				
Freq	Channel	Data Rate	Antenna	Power
2412	1	1	Ant 1	17.76
2437	6	1	Ant 1	17.38
2462	11	1	Ant 1	16.61
2412	1	1	Ant 2	17.70
2437	6	1	Ant 2	17.32
2462	11	1	Ant 2	16.55
802.11g				
Freq	Channel	Data Rate	Antenna	Power
2412	1	6	Ant 1	16.49
2437	6	6	Ant 1	17.56
2462	11	6	Ant 1	16.14
2412	1	6	Ant 2	16.51
2437	6	6	Ant 2	17.53
2462	11	6	Ant 2	16.12

802.11a 5.2 GHz					802.11a 5.6 GHz				
Freq	Channel	Data Rate	Antenna	Power	Freq	Channel	Data Rate	Antenna	Power
5.18	36	6	Main	10.91	5.500	100	6	Main	10.65
5.20	40	6	Main	10.42	5.520	104	6	Main	10.59
5.22	44	6	Main	10.59	5.540	108	6	Main	10.42
5.24	48	6	Main	10.70	5.560	112	6	Main	10.21
5.18	36	6	Aux	10.85	5.580	116	6	Main	10.03
5.20	40	6	Aux	10.46	5.600	120	6	Main	10.19
5.22	44	6	Aux	10.64	5.620	124	6	Main	10.26
5.24	48	6	Aux	10.67	5.640	128	6	Main	10.38
					5.660	132	6	Main	10.47
802.11a 5.3 GHz					5.680	136	6	Main	10.55
Freq	Channel	Data Rate	Antenna	Power	5.700	140	6	Main	10.62
5.26	52	6	Main	10.46	5.500	100	6	Aux	10.64
5.28	56	6	Main	10.31	5.520	104	6	Aux	10.56
5.30	60	6	Main	10.13	5.540	108	6	Aux	10.34
5.32	64	6	Main	9.29	5.560	112	6	Aux	10.26
5.26	52	6	Aux	10.41	5.580	116	6	Aux	10.10
5.28	56	6	Aux	10.28	5.600	120	6	Aux	10.16
5.30	60	6	Aux	10.16	5.620	124	6	Aux	10.32
5.32	64	6	Aux	9.32	5.640	128	6	Aux	10.39
					5.660	132	6	Aux	10.42
802.11a 5.8 GHz					5.680	136	6	Aux	10.56
Freq	Channel	Data Rate	Antenna	Power	5.700	140	6	Aux	10.60
5.745	149	6	Main	20.68					
5.765	153	6	Main	20.36					
5.785	157	6	Main	19.72					
5.805	161	6	Main	19.67					
5.745	149	6	Aux	20.64					
5.765	153	6	Aux	20.34					
5.785	157	6	Aux	19.63					
5.805	161	6	Aux	19.60					

SAR Data Summary – 2450 MHz Body

MEASUREMENT RESULTS

EUT Position	Transmit Band	Antenna	Frequency		Modulation	End Power		SAR (W/kg)
			MHz	Ch.		(dBm)	Battery	
Front	802.11b	Main	2437	6	DSSS	17.38	Standard	0.556
		Aux	2437	6	DSSS	17.32	Standard	0.559
	802.11g	Main	2437	6	OFDM	17.56	Standard	0.452
		Aux	2437	6	OFDM	17.53	Standard	0.363
Back	802.11b	Main	2437	6	DSSS	17.38	Standard	0.239
		Aux	2437	6	DSSS	17.32	Standard	0.291
	802.11g	Main	2437	6	OFDM	17.56	Standard	0.439
		Aux	2437	6	OFDM	17.53	Standard	0.261
			Muscle 1.6 W/kg (mW/g) <small>averaged over 1 gram</small>					

1. Battery is fully charged for all tests.

Power Measured Conducted ERP EIRP

2. SAR Measurement

Phantom Configuration Left Head Uniphantom Right Head
 SAR Configuration Head Body

3. Test Signal Call Mode

Test Code Base Station Simulator

4. Test Configuration

With Belt Clip Without Belt Clip N/A

Jay M. Moulton
Vice President

Note: When the mid channel is 3 dB or more below the SAR limit the remaining channels are not required to be tested.

SAR Data Summary – 5200 MHz Body

MEASUREMENT RESULTS

EUT Position	Transmit Band	Antenna	Frequency		Modulation	End Power		SAR (W/kg)
			MHz	Ch.		(dBm)	Battery	
Front	5.2a	Main	5180	36	OFDM	10.91	Standard	0.350
		Aux	5180	36	OFDM	10.85	Standard	0.432
	5.3a	Main	5260	52	OFDM	10.46	Standard	0.285
		Aux	5260	52	OFDM	10.41	Standard	0.241
Back	5.2a	Main	5180	36	OFDM	10.91	Standard	0.335
		Aux	5180	36	OFDM	10.85	Standard	0.391
	5.3a	Main	5260	52	OFDM	10.46	Standard	0.163
		Aux	5260	52	OFDM	10.41	Standard	0.137
			Muscle 1.6 W/kg (mW/g) <small>averaged over 1 gram</small>					

1. Battery is fully charged for all tests.
 Power Measured Conducted ERP EIRP
2. SAR Measurement
 Phantom Configuration Left Head Uniphantom Right Head
 SAR Configuration Head Body
3. Test Signal Call Mode Test Code Base Station Simulator
4. Test Configuration With Belt Clip Without Belt Clip N/A

Jay M. Moulton
Vice President

Note: When the mid channel is 3 dB or more below the SAR limit the remaining channels are not required to be tested.

SAR Data Summary – 5600 MHz & 5800 MHz Body

MEASUREMENT RESULTS

EUT Position	Transmit Band	Antenna	Frequency		Modulation	End Power		SAR (W/kg)
			MHz	Ch.		(dBm)	Battery	
Front	5.6a	Main	5500	100	OFDM	10.65	Standard	0.273
		Aux	5500	100	OFDM	10.64	Standard	0.248
	5.8a	Main	5745	149	OFDM	20.68	Standard	0.766
		Aux	5745	149	OFDM	20.64	Standard	0.697
Back	5.6a	Main	5500	100	OFDM	10.65	Standard	0.157
		Aux	5500	100	OFDM	10.64	Standard	0.166
	5.8a	Main	5745	149	OFDM	20.68	Standard	0.383
		Aux	5745	149	OFDM	20.64	Standard	0.389
			Muscle 1.6 W/kg (mW/g) averaged over 1 gram					

1. Battery is fully charged for all tests.
Power Measured Conducted ERP EIRP
2. SAR Measurement
Phantom Configuration Left Head Uniphantom Right Head
SAR Configuration Head Body
3. Test Signal Call Mode Test Code Base Station Simulator
4. Test Configuration With Belt Clip Without Belt Clip N/A

Jay M. Moulton
Vice President

Note: When the mid channel is 3 dB or more below the SAR limit the remaining channels are not required to be tested.

12. Test Equipment List

Table 12.1 Equipment Specifications

Type	Calibration Due Date	Serial Number
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Apres E-Field Probe ALS-E020	10/21/2010	RFE-217
Apres E-Field Probe ALS-E030	07/14/2010	E030-001
Apres Dummy Probe	N/A	023
Apres Left Phantom	N/A	RFE-267
Apres Right Phantom	N/A	RFE-268
Apres UniPhantom	N/A	RFE-273
Apres Validation Dipole ALS-D-450-S-2	01/12/2011	RFE-362
Apres Validation Dipole ALS-D-835-S-2	01/14/2011	180-00561
Apres Validation Dipole ALS-D-900-S-2	01/12/2011	RFE-275
Apres Validation Dipole ALS-D-1900-S-2	01/15/2011	210-00713
Apres Validation Dipole ALS-D-2450-S-2	01/12/2011	RFE-278
Apres Validation Dipole RFE-D-2600-S-2	01/18/2011	RFE-121
Apres Validation Dipole RFE-D-BB-S-2	01/12/2011	235-00801
Agilent (HP) 437B Power Meter	03/24/2010	3125U08837
Agilent (HP) 8481B Power Sensor	03/24/2010	3318A05384
Advantest R3261A Spectrum Analyzer	03/24/2010	31720068
Agilent (HP) 8350B Signal Generator	04/19/2010	2749A10226
Agilent (HP) 83525A RF Plug-In	04/19/2010	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/25/2010	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/25/2010	2904A00595
Agilent (HP) E55125C Base Station Sim.	03/25/2011	MY48360364
Apres Dielectric Probe Assembly	N/A	0011
Brain Equivalent Matter (450 MHz)	N/A	N/A
Brain Equivalent Matter (835 MHz)	N/A	N/A
Brain Equivalent Matter (1900 MHz)	N/A	N/A
Brain Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (450 MHz)	N/A	N/A
Muscle Equivalent Matter (835 MHz)	N/A	N/A
Muscle Equivalent Matter (1900 MHz)	N/A	N/A
Muscle Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (5200 MHz)	N/A	N/A
Muscle Equivalent Matter (5800 MHz)	N/A	N/A

13. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

14. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 – 1999, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 – 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, July 2001.
- [5] IEEE Standard 1528 – 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.
- [6] Industry Canada, RSS – 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), November 2005.
- [7] Industry Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 1999.

Appendix A – System Validation Plots and Data

Test Result for UIM Dielectric Parameter
Mon 07/Jun/2010 07:38:11
Freq Frequency (GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
2.4200	52.74	1.92	51.94	1.93
2.4300	52.73	1.93	51.92	1.95
2.4400	52.71	1.94	51.91	1.96
2.4500	52.70	1.95	51.89	1.97
2.4600	52.69	1.96	51.88	1.98
2.4700	52.67	1.98	51.86	1.99
2.4800	52.66	1.99	51.84	2.00

Test Result for UIM Dielectric Parameter
Mon 07/Jun/2010 11:58:42
Freq Frequency (GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
5.2200	48.99	5.32	47.52	5.32
5.2300	48.97	5.33	47.48	5.33
5.2400	48.96	5.35	47.47	5.34
5.2500	48.95	5.36	47.39	5.36
5.2600	48.93	5.37	47.38	5.37
5.2700	48.92	5.38	47.32	5.39
5.2800	48.91	5.39	47.23	5.40

Test Result for UIM Dielectric Parameter
Tue 08/Jun/2010 07:37:34
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
5.5700	48.51	5.73	48.43	5.78
5.5800	48.50	5.74	48.41	5.79
5.5900	48.48	5.75	48.39	5.81
5.6000	48.47	5.77	48.36	5.82
5.6100	48.46	5.78	48.34	5.84
5.6200	48.44	5.79	48.31	5.85
5.6300	48.43	5.80	48.29	5.87

Test Result for UIM Dielectric Parameter
Tue 08/Jun/2010 10:58:36
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_eB FCC Limits for Body Epsilon
FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
5.7550	48.26	5.95	48.24	5.98
5.7650	48.25	5.96	48.21	5.99
5.7750	48.23	5.97	48.19	6.00
5.7850	48.22	5.98	48.15	6.01
5.7950	48.21	5.99	48.12	6.02
5.8050	48.19	6.01	48.08	6.02
5.8150	48.18	6.02	48.03	6.03

SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 07:44:38 AM
End Time : 07-Jun-2010 07:57:36 AM
Scanning Time : 778 secs

Product Data

Device Name : Validation
Serial No. : 2450
Type : Dipole
Model : ALS-D-2450-S-2
Frequency : 2450.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 51.5 mm
Width : 3.6 mm
Depth : 30.4 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 5.955 W/kg
Power Drift-Finish: 6.085 W/kg
Power Drift (%) : 2.185

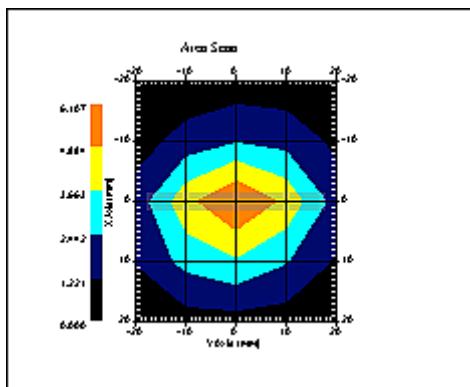
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

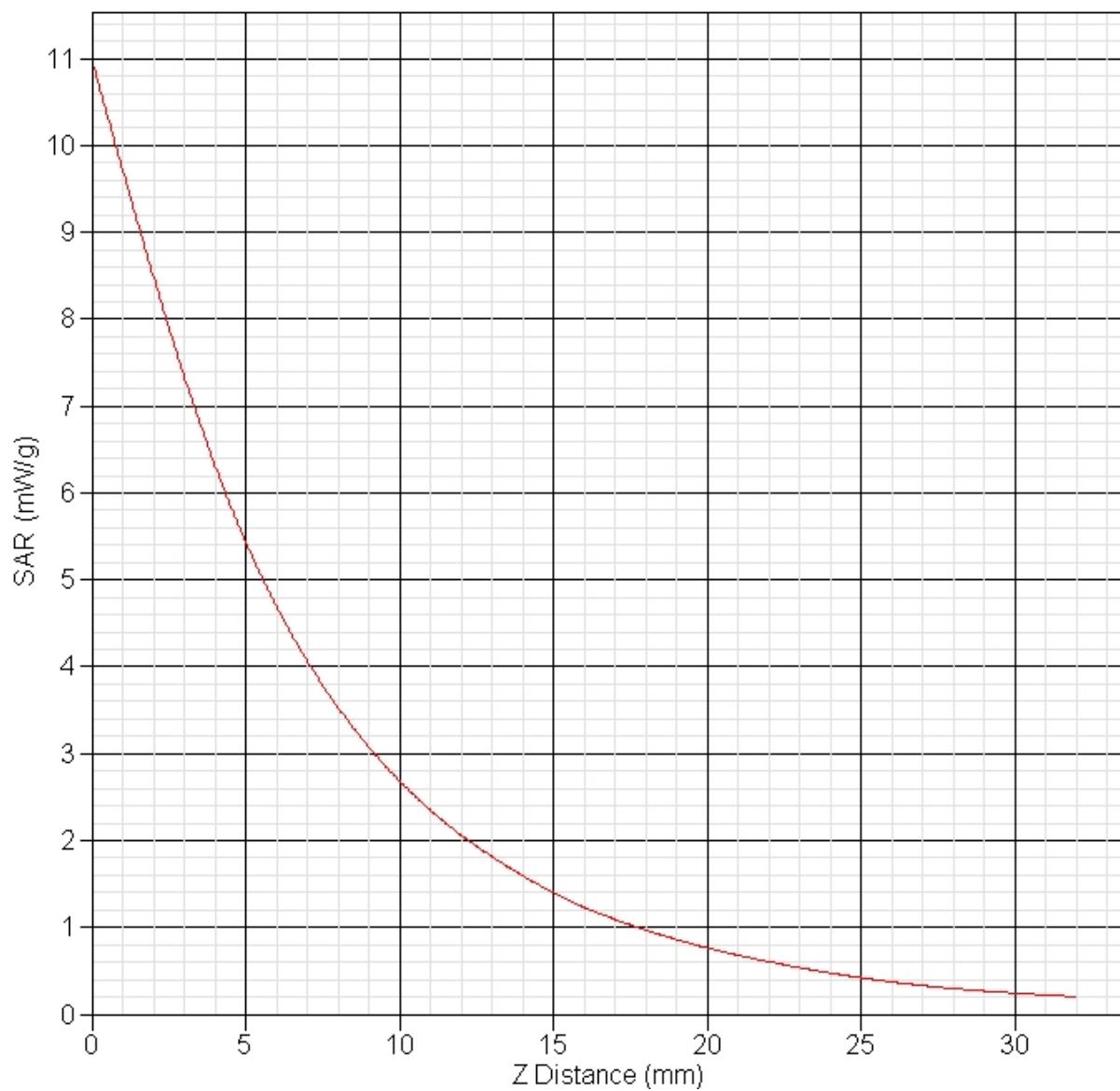
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 45.00 RH%
Epsilon : 51.89 F/m
Sigma : 1.97 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 217
Last Calib. Date : 21-Oct-2009
Frequency : 2450.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 3.61
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 7:40:13 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
Separation : 10 mm
Channel : Mid

1 gram SAR value : 5.401 W/kg
10 gram SAR value : 2.484 W/kg
Area Scan Peak SAR : 6.107 W/kg
Zoom Scan Peak SAR : 10.990 W/kg

SAR-Z Axis
at Hotspot x:0.30 y:-0.18

SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 12:04:38 PM
End Time : 07-Jun-2010 12:27:51 PM
Scanning Time : 1393 secs

Product Data

Device Name : Validation
Serial No. : 5200
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5200.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 8.608 W/kg
Power Drift-Finish: 8.639 W/kg
Power Drift (%) : 0.358

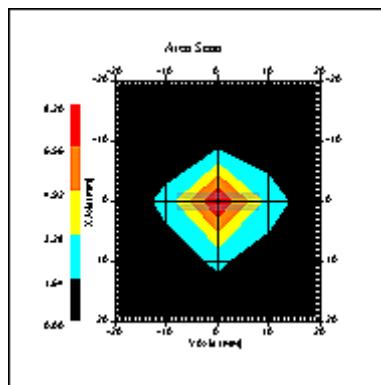
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

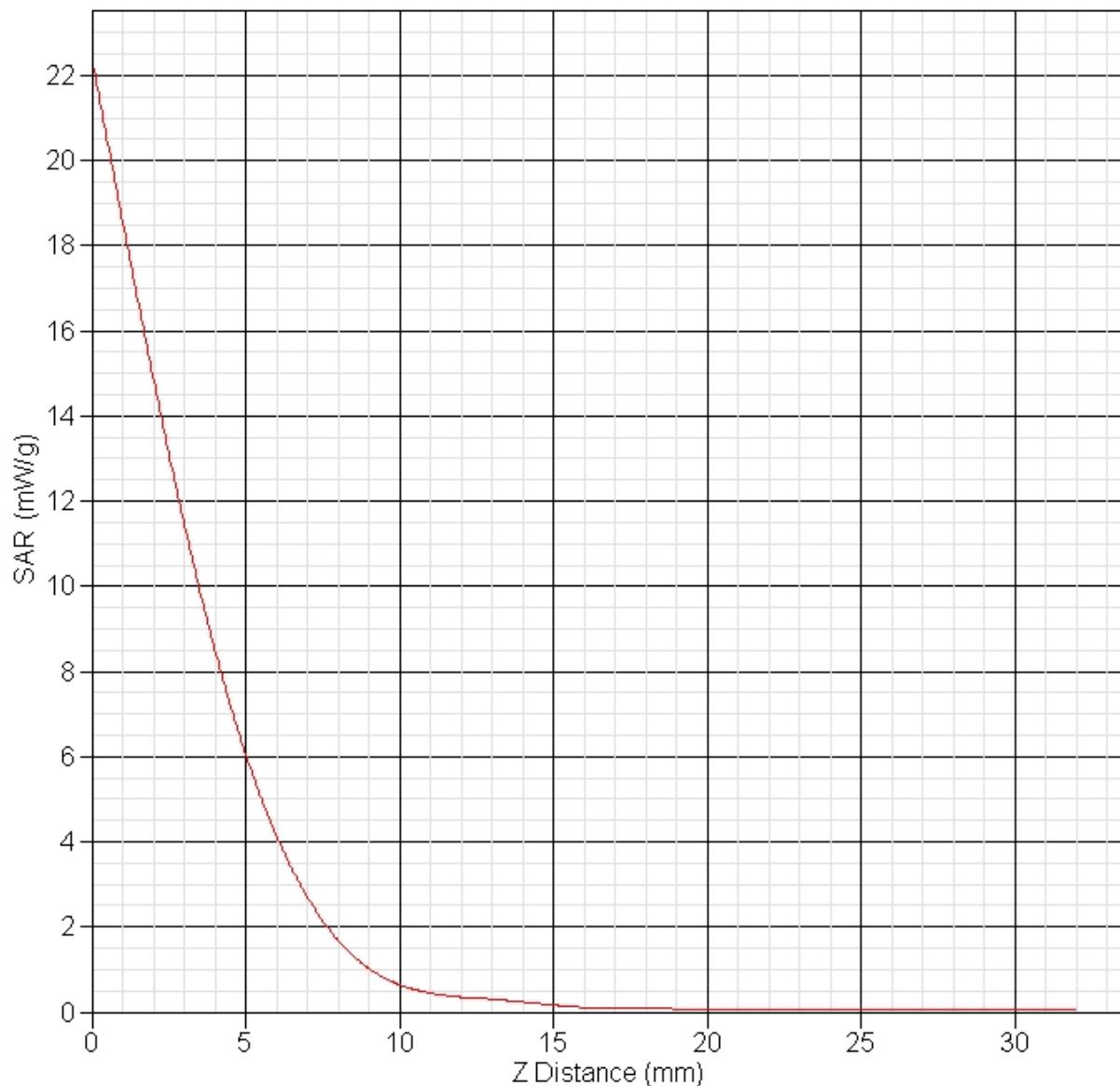
Tissue Data

Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 47.39 F/m
Sigma : 5.36 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5200.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data


Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 9:00:47 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 10 mm
Channel : Mid

1 gram SAR value : 6.051 W/kg
10 gram SAR value : 1.549 W/kg
Area Scan Peak SAR : 8.199 W/kg
Zoom Scan Peak SAR : 22.418 W/kg

SAR-Z Axis
at Hotspot x:0.31 y:-0.19

SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 07:47:38 AM
End Time : 08-Jun-2010 08:10:36 AM
Scanning Time : 1378 secs

Product Data

Device Name : Validation
Serial No. : 5600
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5600.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 8.510 W/kg
Power Drift-Finish: 8.512 W/kg
Power Drift (%) : 0.031

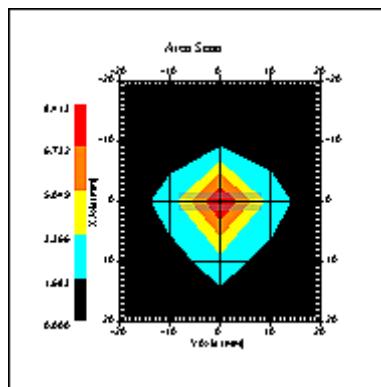
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

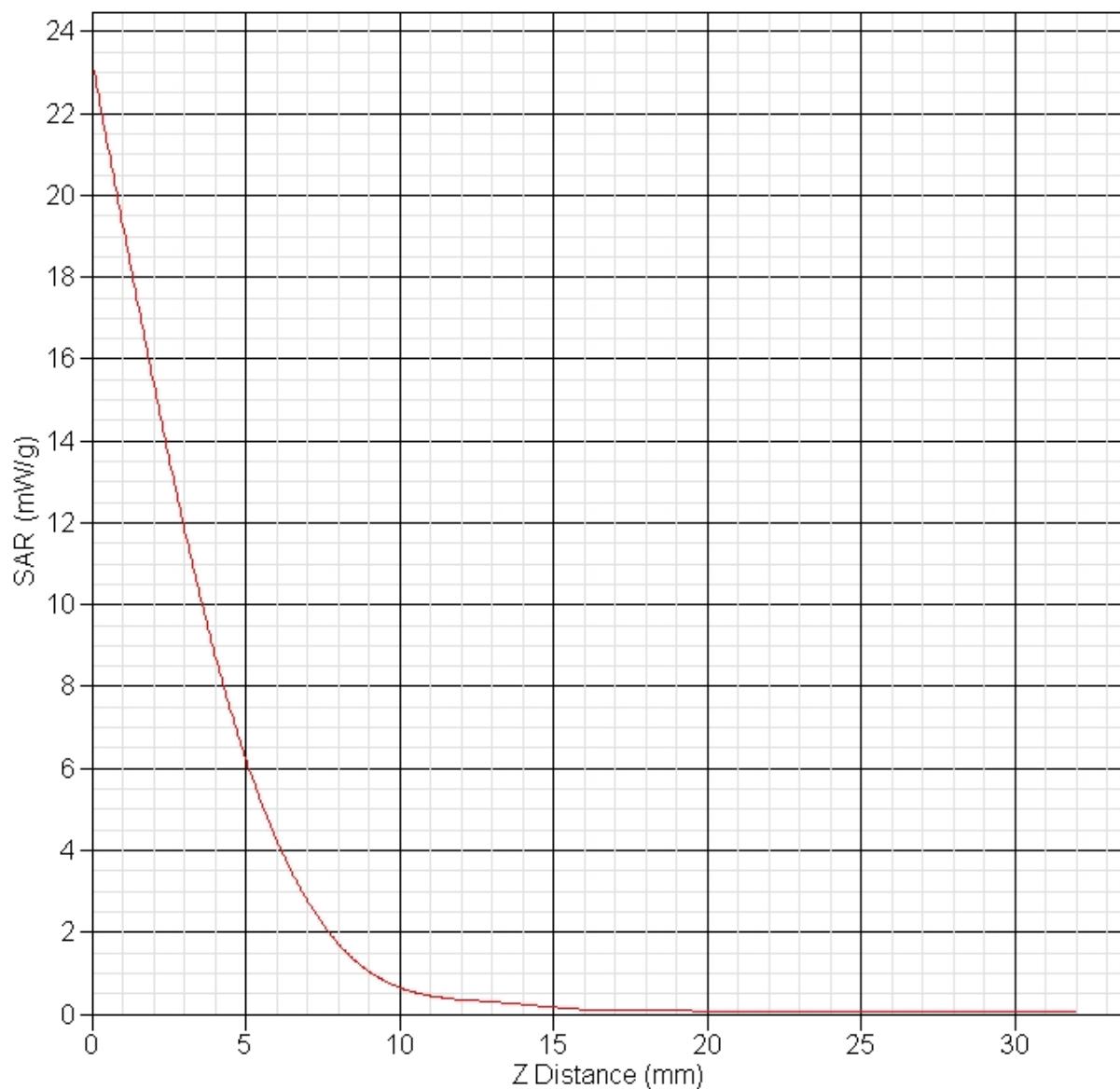
Type : BODY
Serial No. : 5600
Frequency : 5600.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.36 F/m
Sigma : 5.82 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5600.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 8:54:57 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm


Other Data

DUT Position : Touch
Separation : 10 mm
Channel : Mid

1 gram SAR value : 6.442 W/kg
10 gram SAR value : 1.737 W/kg
Area Scan Peak SAR : 8.413 W/kg
Zoom Scan Peak SAR : 23.318 W/kg

SAR-Z Axis
at Hotspot x:0.32 y:-0.15

SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 11:01:42 AM
End Time : 08-Jun-2010 11:24:38 AM
Scanning Time : 1376 secs

Product Data

Device Name : Validation
Serial No. : 5800
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5800.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch
Power Drift-Start : 6.863 W/kg
Power Drift-Finish: 6.935 W/kg
Power Drift (%) : 1.045

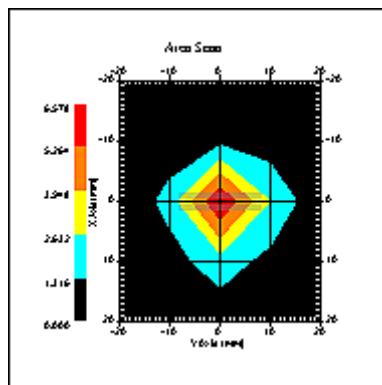
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

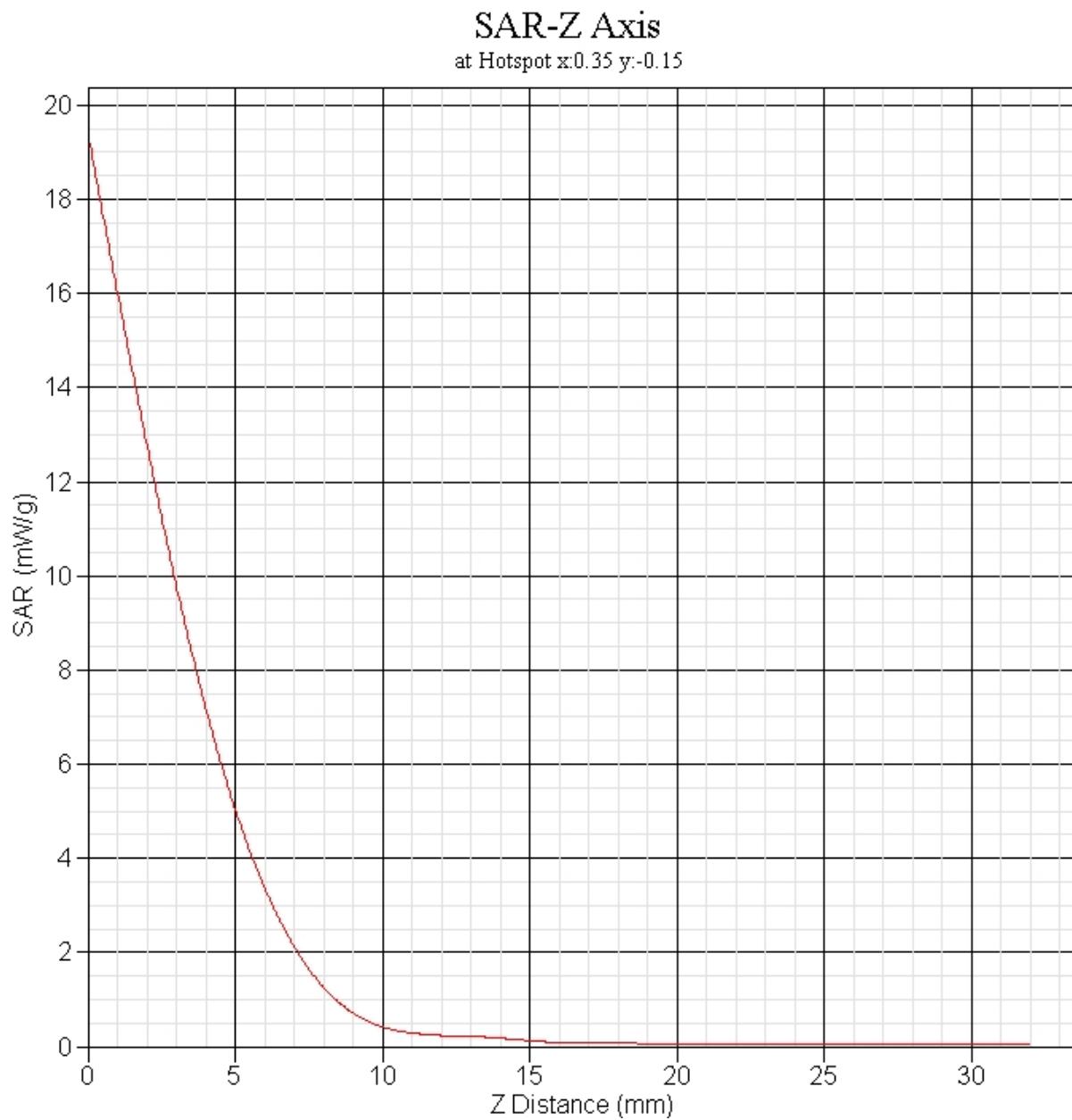
Tissue Data

Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.15 F/m
Sigma : 6.01 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5800.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.2
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data


Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 4:10:18 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 10 mm
Channel : Mid

1 gram SAR value : 6.335 W/kg
10 gram SAR value : 1.952 W/kg
Area Scan Peak SAR : 8.578 W/kg
Zoom Scan Peak SAR : 19.415 W/kg

Appendix B – SAR Test Data Plots

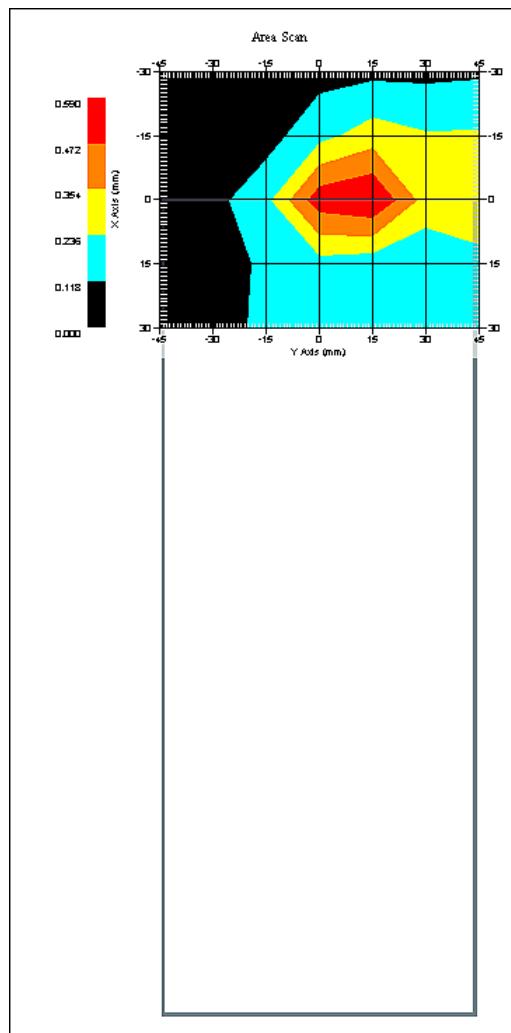
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 08:10:43 AM
End Time : 07-Jun-2010 08:25:22 AM
Scanning Time : 879 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : DSSS
Model : Falcon X3
Frequency : 2450.00 MHz
Max. Transmit Pwr : 0.06 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Front
Power Drift-Start : 0.544 W/kg
Power Drift-Finish: 0.543 W/kg
Power Drift (%) : -0.316

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 41.00 RH%
Epsilon : 51.89 F/m
Sigma : 1.97 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217
Last Calib. Date : 21-Oct-2009
Frequency : 2450.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 3.61
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 9:13:17 AM
Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.556 W/kg
10 gram SAR value : 0.327 W/kg
Area Scan Peak SAR : 0.590 W/kg
Zoom Scan Peak SAR : 1.010 W/kg

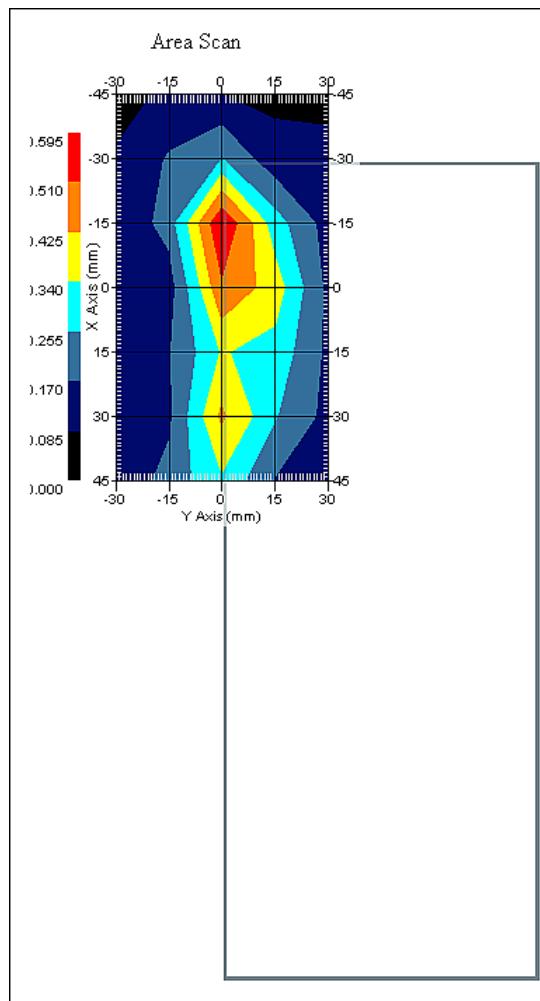
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 08:34:37 AM
End Time : 07-Jun-2010 08:49:14 AM
Scanning Time : 877 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : DSSS
Model : Falcon X3
Frequency : 2450.00 MHz
Max. Transmit Pwr : 0.06 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Front
Power Drift-Start : 0.570 W/kg
Power Drift-Finish: 0.598 W/kg
Power Drift (%) : 4.992

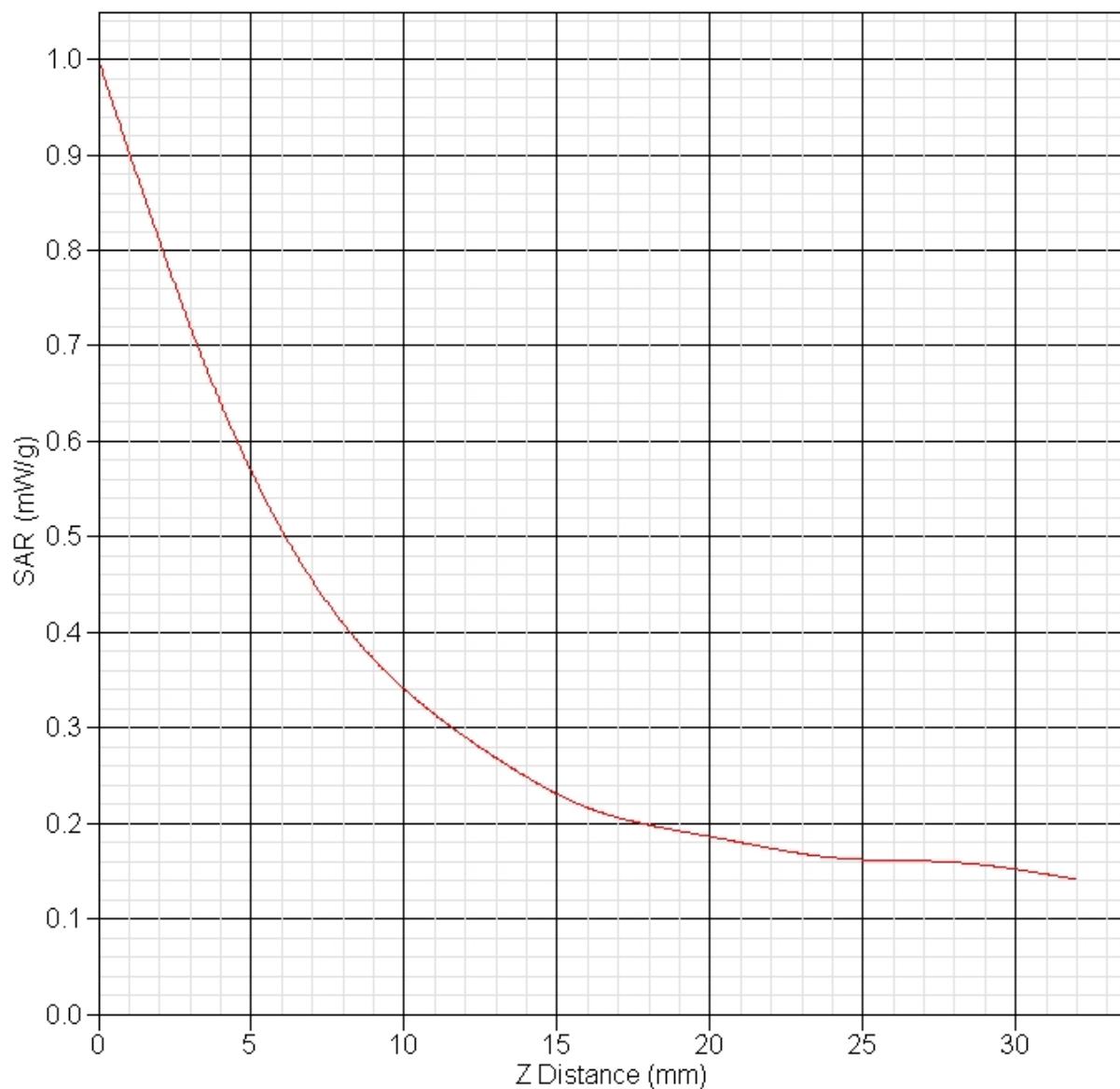
Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 41.00 RH%
Epsilon : 51.89 F/m
Sigma : 1.97 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217
Last Calib. Date : 21-Oct-2009
Frequency : 2450.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 3.61
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 9:13:17 AM
Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.559 W/kg
10 gram SAR value : 0.317 W/kg
Area Scan Peak SAR : 0.594 W/kg
Zoom Scan Peak SAR : 1.000 W/kg

SAR-Z Axis
at Hotspot x:8.13 y:-0.10

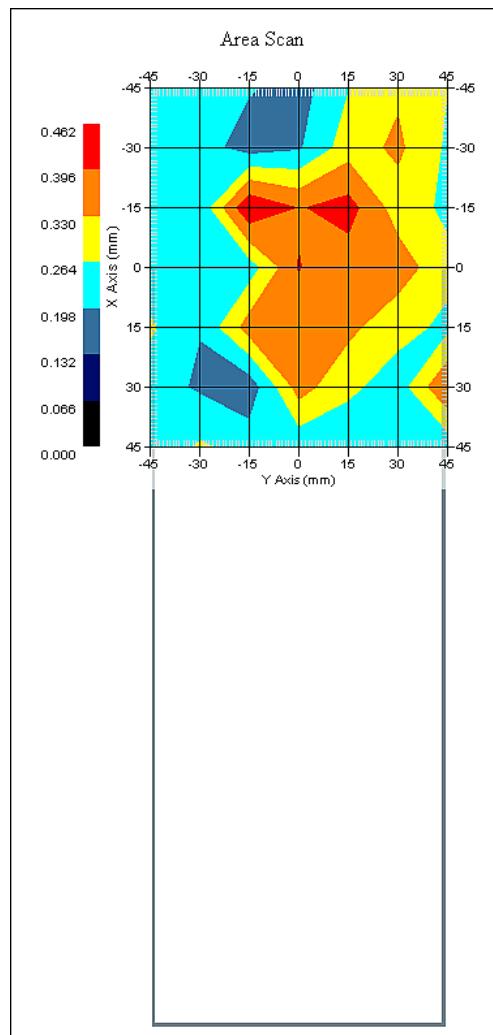
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 10:05:11 AM
End Time : 07-Jun-2010 10:22:41 AM
Scanning Time : 1050 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : OFDM
Model : Falcon X3
Frequency : 2450.00 MHz
Max. Transmit Pwr : 0.06 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Front
Power Drift-Start : 0.285 W/kg
Power Drift-Finish: 0.294 W/kg
Power Drift (%) : 3.410

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 41.00 RH%
Epsilon : 51.89 F/m
Sigma : 1.97 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217
Last Calib. Date : 21-Oct-2009
Frequency : 2450.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 3.61
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 12:45:53 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.452 W/kg
10 gram SAR value : 0.330 W/kg
Area Scan Peak SAR : 0.461 W/kg
Zoom Scan Peak SAR : 0.720 W/kg

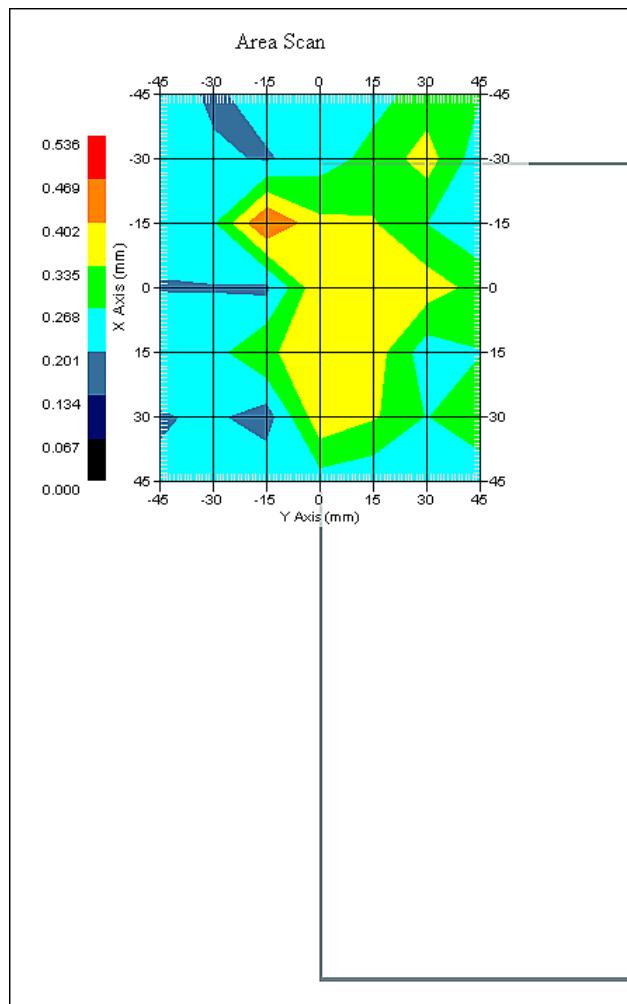
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 10:30:19 AM
End Time : 07-Jun-2010 10:47:56 AM
Scanning Time : 1057 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : OFDM
Model : Falcon X3
Frequency : 2450.00 MHz
Max. Transmit Pwr : 0.06 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Front
Power Drift-Start : 0.225 W/kg
Power Drift-Finish: 0.229 W/kg
Power Drift (%) : 1.776

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 41.00 RH%
Epsilon : 51.89 F/m
Sigma : 1.97 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217
Last Calib. Date : 21-Oct-2009
Frequency : 2450.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 3.61
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 12:45:53 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.363 W/kg
10 gram SAR value : 0.327 W/kg
Area Scan Peak SAR : 0.471 W/kg
Zoom Scan Peak SAR : 0.710 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 08:59:17 AM
End Time : 07-Jun-2010 09:13:54 AM
Scanning Time : 877 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : DSSS
Model : Falcon X3
Frequency : 2450.00 MHz
Max. Transmit Pwr : 0.06 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Back
Power Drift-Start : 0.243 W/kg
Power Drift-Finish: 0.233 W/kg
Power Drift (%) : -4.117

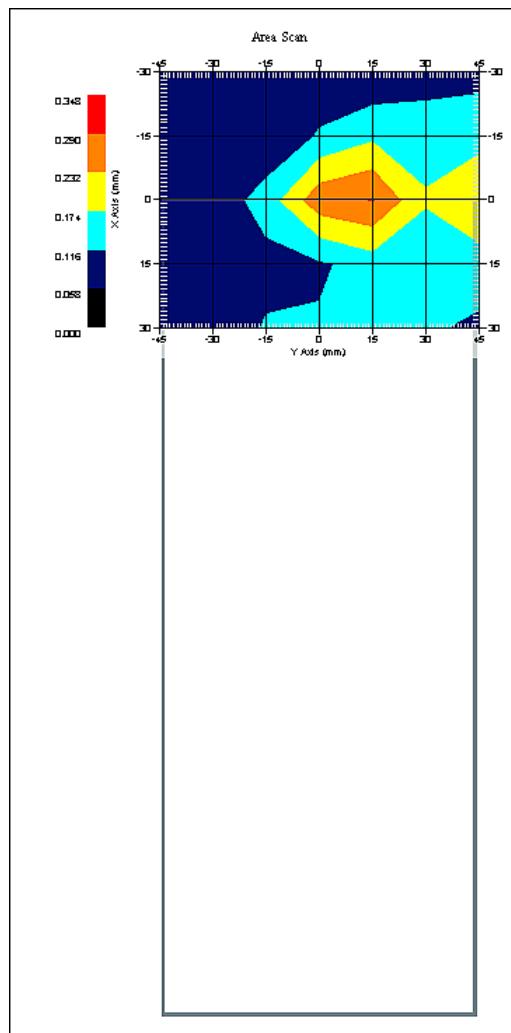
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 41.00 RH%
Epsilon : 51.89 F/m
Sigma : 1.97 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217
Last Calib. Date : 21-Oct-2009
Frequency : 2450.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 3.61
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 9:13:17 AM
Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.239 W/kg
10 gram SAR value : 0.168 W/kg
Area Scan Peak SAR : 0.292 W/kg
Zoom Scan Peak SAR : 0.340 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 09:19:53 AM
End Time : 07-Jun-2010 09:34:33 AM
Scanning Time : 880 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : DSSS
Model : Falcon X3
Frequency : 2450.00 MHz
Max. Transmit Pwr : 0.06 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Back
Power Drift-Start : 0.281 W/kg
Power Drift-Finish: 0.275 W/kg
Power Drift (%) : -2.101

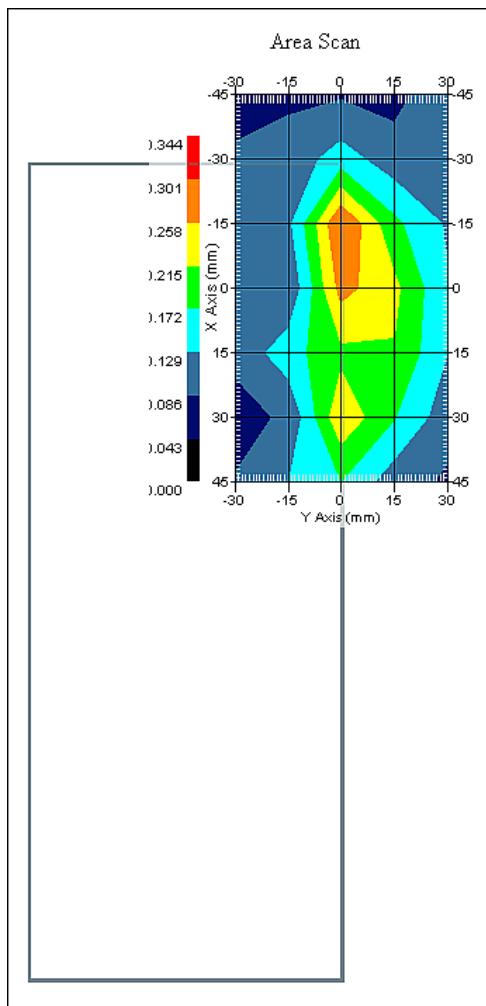
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 41.00 RH%
Epsilon : 51.89 F/m
Sigma : 1.97 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217
Last Calib. Date : 21-Oct-2009
Frequency : 2450.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 3.61
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 9:13:17 AM
Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.291 W/kg
10 gram SAR value : 0.193 W/kg
Area Scan Peak SAR : 0.302 W/kg
Zoom Scan Peak SAR : 0.490 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 10:54:03 AM
End Time : 07-Jun-2010 11:11:34 AM
Scanning Time : 1051 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : OFDM
Model : Falcon X3
Frequency : 2450.00 MHz
Max. Transmit Pwr : 0.06 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Back
Power Drift-Start : 0.264 W/kg
Power Drift-Finish: 0.264 W/kg
Power Drift (%) : -0.180

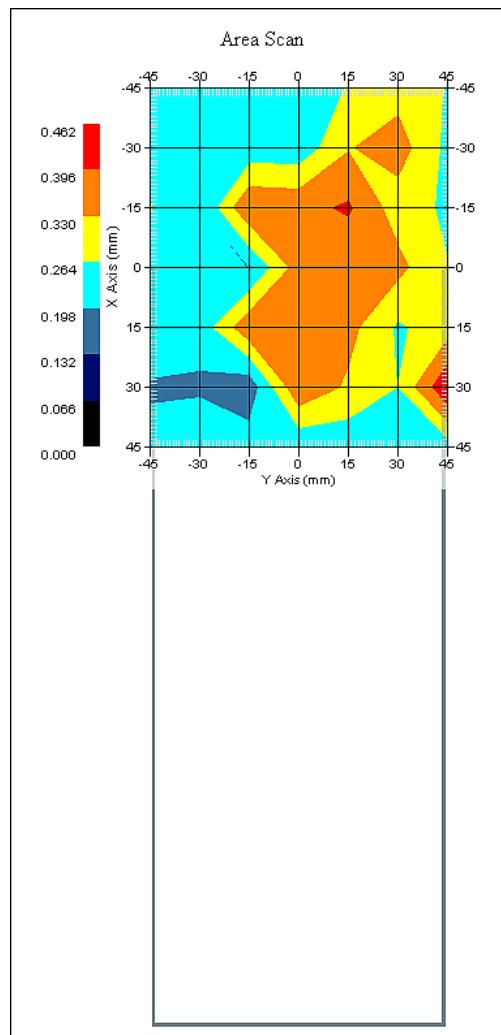
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 41.00 RH%
Epsilon : 51.89 F/m
Sigma : 1.97 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217
Last Calib. Date : 21-Oct-2009
Frequency : 2450.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 3.61
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 12:45:53 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.439 W/kg
10 gram SAR value : 0.319 W/kg
Area Scan Peak SAR : 0.460 W/kg
Zoom Scan Peak SAR : 0.810 W/kg

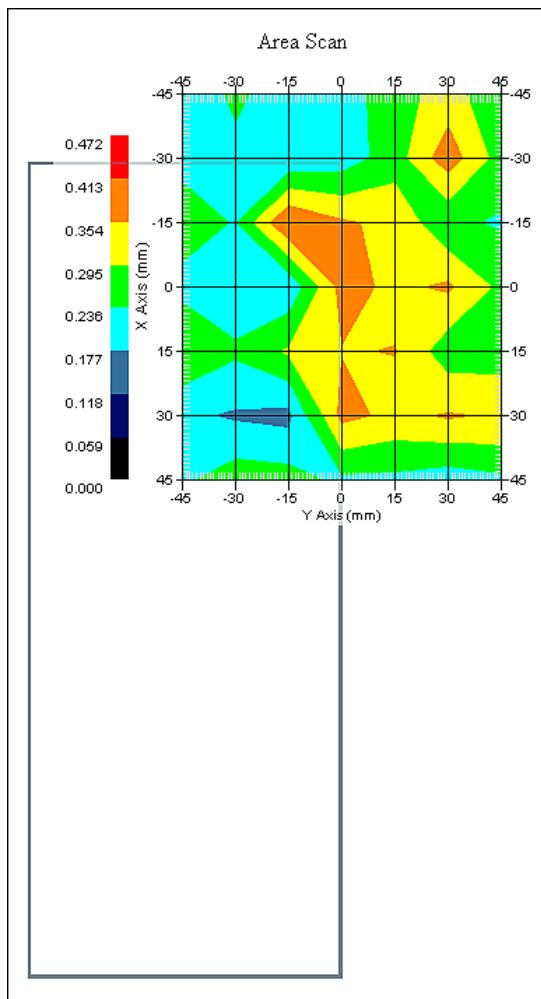
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 11:19:16 AM
End Time : 07-Jun-2010 11:36:42 AM
Scanning Time : 1046 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : OFDM
Model : Falcon X3
Frequency : 2450.00 MHz
Max. Transmit Pwr : 0.06 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Back
Power Drift-Start : 0.313 W/kg
Power Drift-Finish: 0.319 W/kg
Power Drift (%) : 1.914

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 41.00 RH%
Epsilon : 51.89 F/m
Sigma : 1.97 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217
Last Calib. Date : 21-Oct-2009
Frequency : 2450.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 3.61
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 12:45:53 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Mid

1 gram SAR value : 0.261 W/kg
10 gram SAR value : 0.227 W/kg
Area Scan Peak SAR : 0.415 W/kg
Zoom Scan Peak SAR : 0.360 W/kg

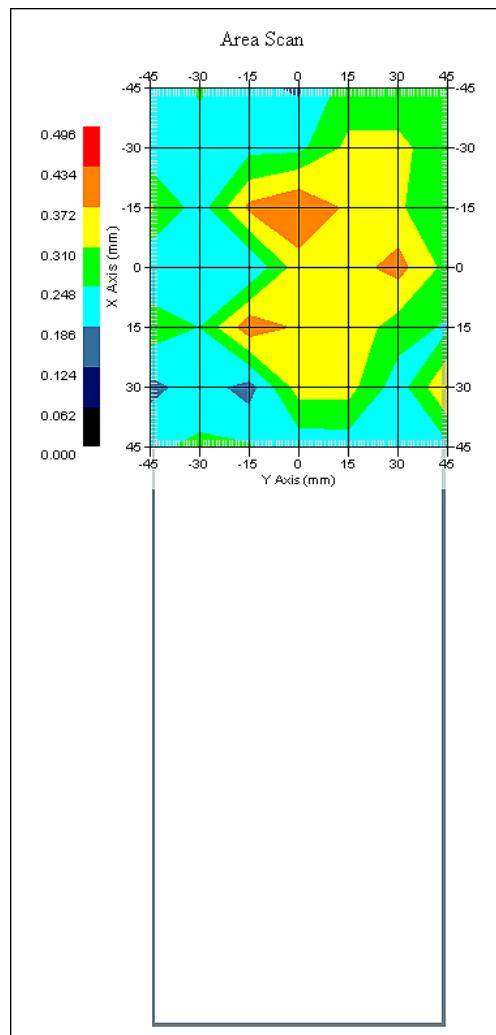
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 12:36:29 PM
End Time : 07-Jun-2010 01:03:52 PM
Scanning Time : 1643 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.2a OFDM
Model : Falcon X3
Frequency : 5200.00 MHz
Max. Transmit Pwr : 0.015 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Front
Power Drift-Start : 0.395 W/kg
Power Drift-Finish: 0.379 W/kg
Power Drift (%) : -4.052

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 47.39 F/m
Sigma : 5.36 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5200.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 12:45:53 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.350 W/kg
10 gram SAR value : 0.324 W/kg
Area Scan Peak SAR : 0.435 W/kg
Zoom Scan Peak SAR : 0.400 W/kg

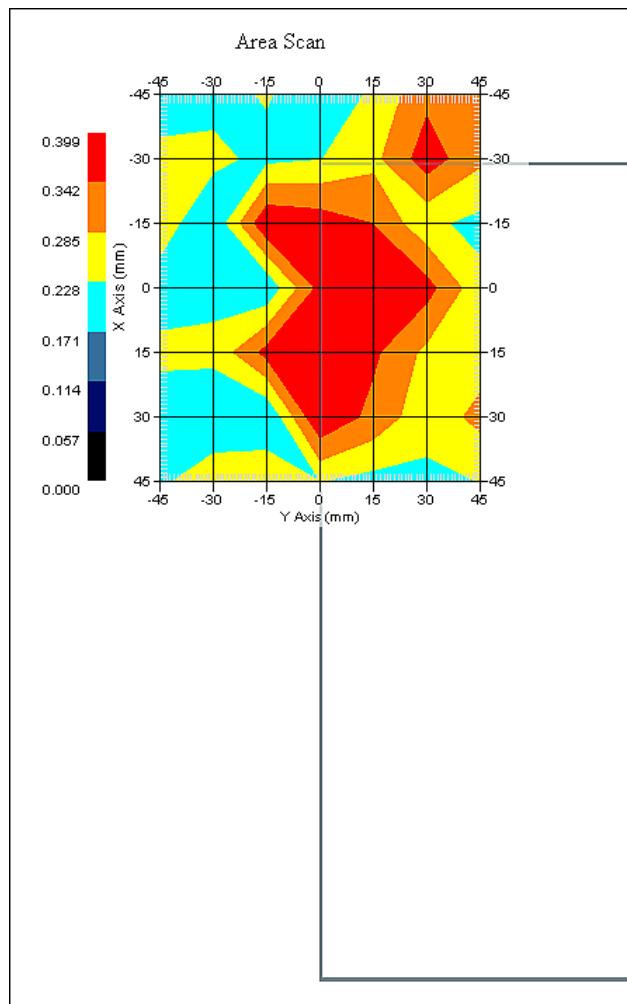
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 01:11:56 PM
End Time : 07-Jun-2010 01:39:28 PM
Scanning Time : 1652 secs

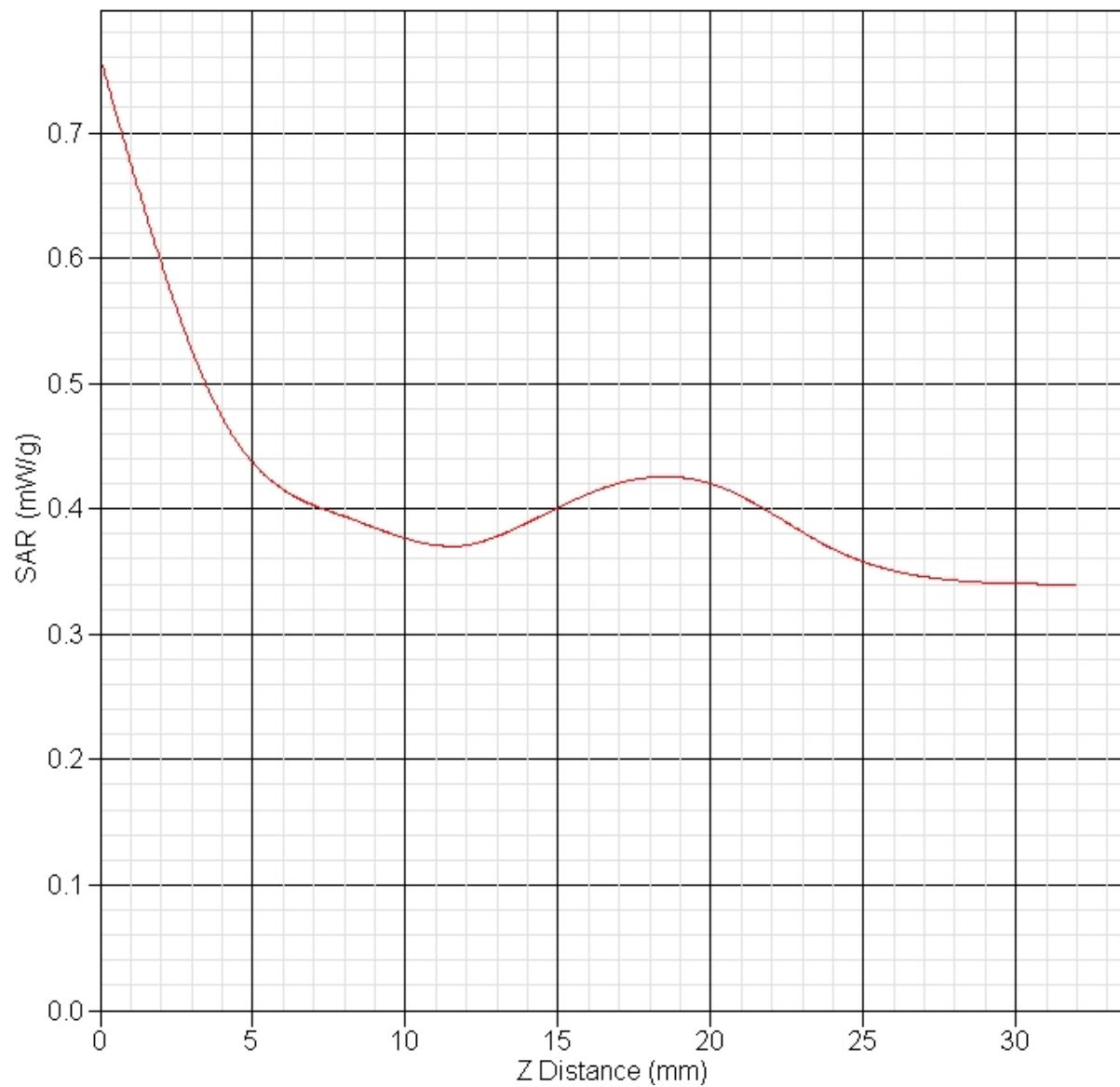
Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.2a OFDM
Model : Falcon X3
Frequency : 5200.00 MHz
Max. Transmit Pwr : 0.015 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Front
Power Drift-Start : 0.376 W/kg
Power Drift-Finish: 0.362 W/kg
Power Drift (%) : -3.723

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 47.39 F/m
Sigma : 5.36 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5200.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data


Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 12:45:53 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.432 W/kg
10 gram SAR value : 0.317 W/kg
Area Scan Peak SAR : 0.397 W/kg
Zoom Scan Peak SAR : 0.760 W/kg

SAR-Z Axis
at Hotspot x:7.10 y:22.87

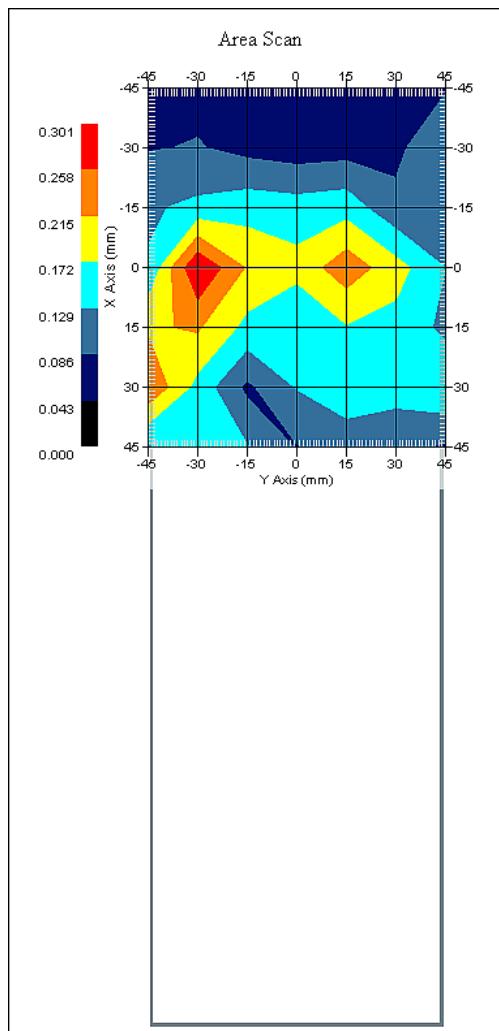
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 02:49:12 PM
End Time : 07-Jun-2010 03:16:34 PM
Scanning Time : 1642 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.3a OFDM
Model : Falcon X3
Frequency : 5200.00 MHz
Max. Transmit Pwr : 0.015 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Front
Power Drift-Start : 0.102 W/kg
Power Drift-Finish: 0.107 W/kg
Power Drift (%) : 4.415

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 47.39 F/m
Sigma : 5.36 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5200.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 12:19:12 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.285 W/kg
10 gram SAR value : 0.188 W/kg
Area Scan Peak SAR : 0.301 W/kg
Zoom Scan Peak SAR : 0.490 W/kg

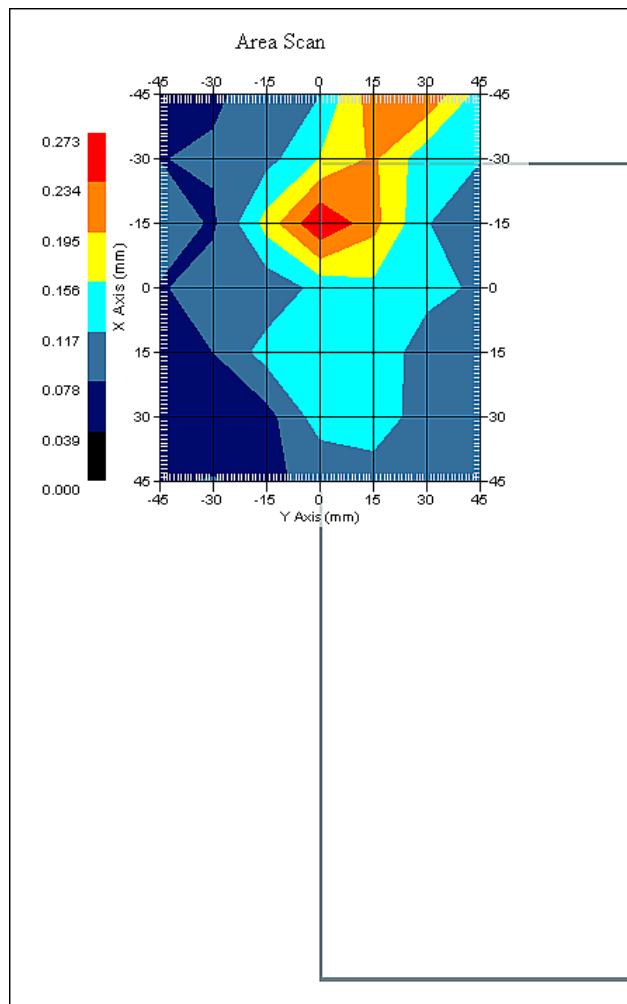
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 03:26:16 PM
End Time : 07-Jun-2010 03:53:43 PM
Scanning Time : 1647 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.3a OFDM
Model : Falcon X3
Frequency : 5200.00 MHz
Max. Transmit Pwr : 0.015 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Front
Power Drift-Start : 0.266 W/kg
Power Drift-Finish: 0.260 W/kg
Power Drift (%) : -2.253

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 47.39 F/m
Sigma : 5.36 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5200.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 12:19:12 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.241 W/kg
10 gram SAR value : 0.163 W/kg
Area Scan Peak SAR : 0.272 W/kg
Zoom Scan Peak SAR : 0.390 W/kg

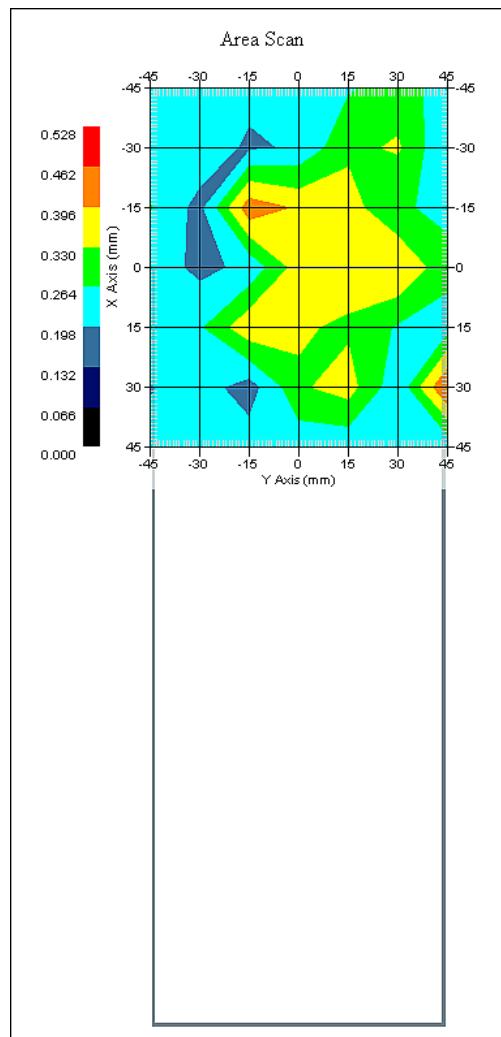
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 01:45:22 PM
End Time : 07-Jun-2010 02:12:57 PM
Scanning Time : 1655 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.2a OFDM
Model : Falcon X3
Frequency : 5200.00 MHz
Max. Transmit Pwr : 0.015 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Back
Power Drift-Start : 0.446 W/kg
Power Drift-Finish: 0.463 W/kg
Power Drift (%) : 3.810

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 47.39 F/m
Sigma : 5.36 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5200.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 12:45:53 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.335 W/kg
10 gram SAR value : 0.318 W/kg
Area Scan Peak SAR : 0.465 W/kg
Zoom Scan Peak SAR : 0.180 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 02:17:30 PM
End Time : 07-Jun-2010 02:44:59 PM
Scanning Time : 1649 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.2a OFDM
Model : Falcon X3
Frequency : 5200.00 MHz
Max. Transmit Pwr : 0.015 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Back
Power Drift-Start : 0.336 W/kg
Power Drift-Finish: 0.321 W/kg
Power Drift (%) : -4.467

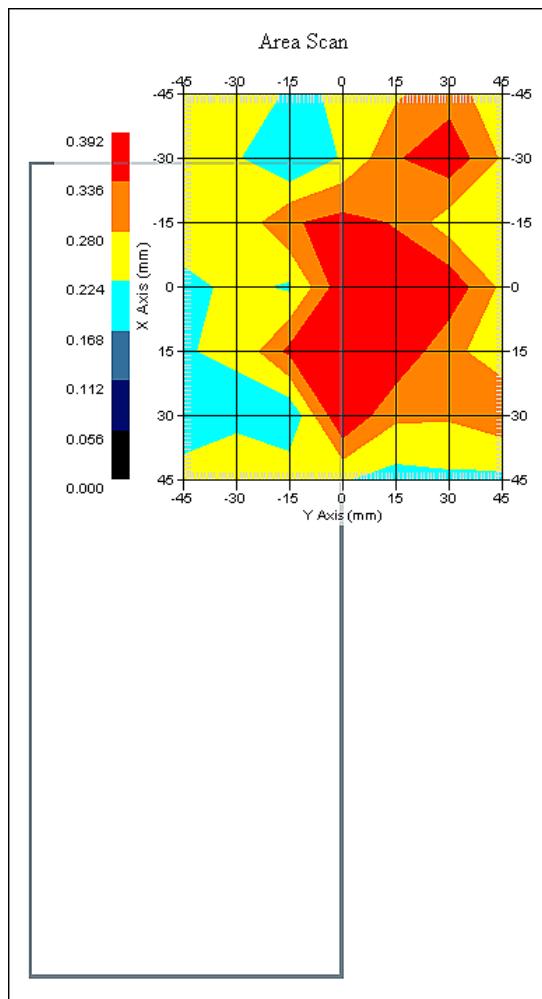
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 47.39 F/m
Sigma : 5.36 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5200.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Jun-2010
Set-up Time : 12:45:53 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.391 W/kg
10 gram SAR value : 0.307 W/kg
Area Scan Peak SAR : 0.392 W/kg
Zoom Scan Peak SAR : 0.660 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 04:06:09 PM
End Time : 07-Jun-2010 04:33:52 PM
Scanning Time : 1663 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.3a OFDM
Model : Falcon X3
Frequency : 5200.00 MHz
Max. Transmit Pwr : 0.015 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Back
Power Drift-Start : 0.089 W/kg
Power Drift-Finish: 0.088 W/kg
Power Drift (%) : -0.972

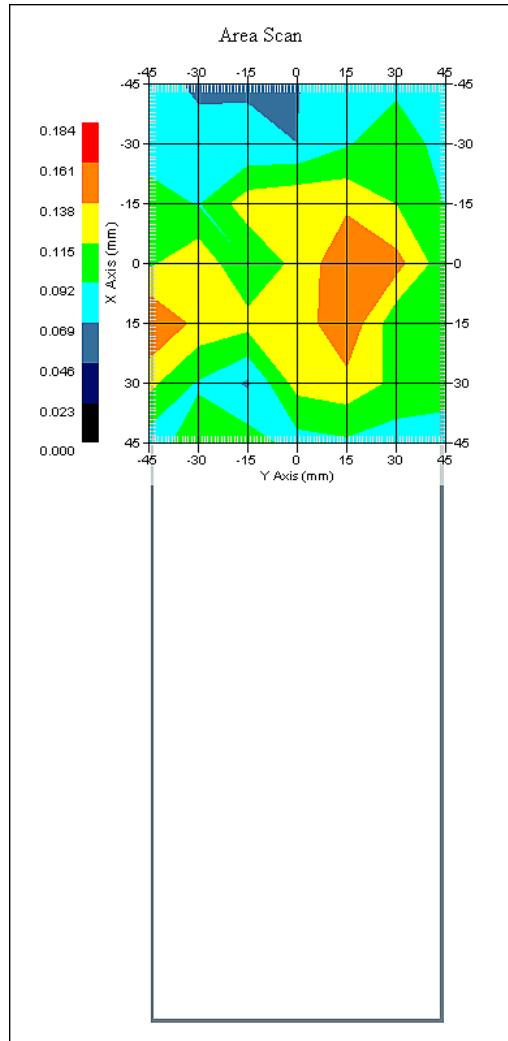
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 47.39 F/m
Sigma : 5.36 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5200.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 12:19:12 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.163 W/kg
10 gram SAR value : 0.122 W/kg
Area Scan Peak SAR : 0.162 W/kg
Zoom Scan Peak SAR : 0.240 W/kg

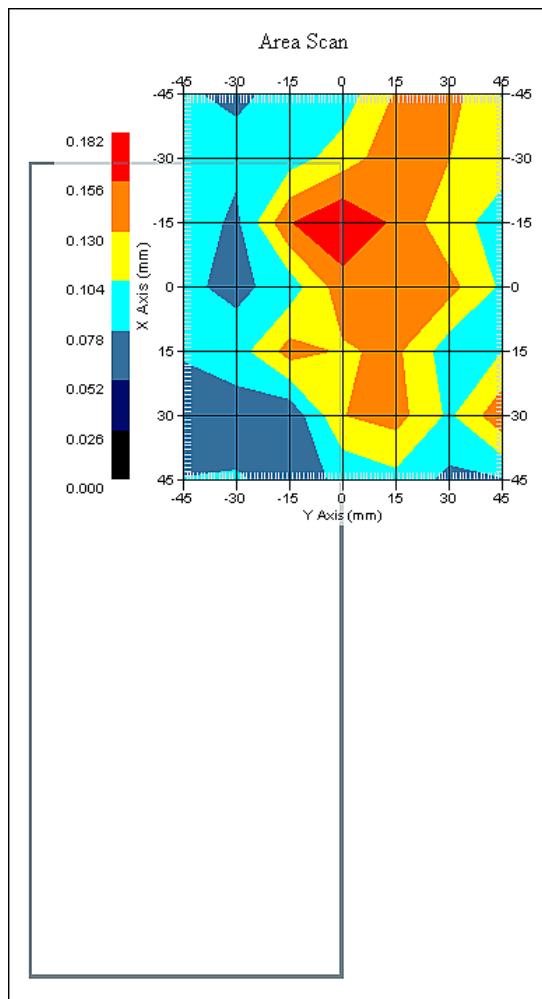
SAR Test Report

By Operator : Jay
Measurement Date : 07-Jun-2010
Starting Time : 07-Jun-2010 04:43:01 PM
End Time : 07-Jun-2010 05:10:36 PM
Scanning Time : 1655 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.3a OFDM
Model : Falcon X3
Frequency : 5200.00 MHz
Max. Transmit Pwr : 0.015 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Back
Power Drift-Start : 0.148 W/kg
Power Drift-Finish: 0.150 W/kg
Power Drift (%) : 1.352

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz
Last Calib. Date : 07-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 47.39 F/m
Sigma : 5.36 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5200.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 12:19:12 PM
Area Scan : 7x7x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.137 W/kg
10 gram SAR value : 0.121 W/kg
Area Scan Peak SAR : 0.181 W/kg
Zoom Scan Peak SAR : 0.210 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 07:57:36 AM
End Time : 08-Jun-2010 08:24:56 AM
Scanning Time : 1640 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.6a OFDM
Model : Falcon X3
Frequency : 5600.00 MHz
Max. Transmit Pwr : 0.01 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Front
Power Drift-Start : 0.117 W/kg
Power Drift-Finish: 0.118 W/kg
Power Drift (%) : 0.859

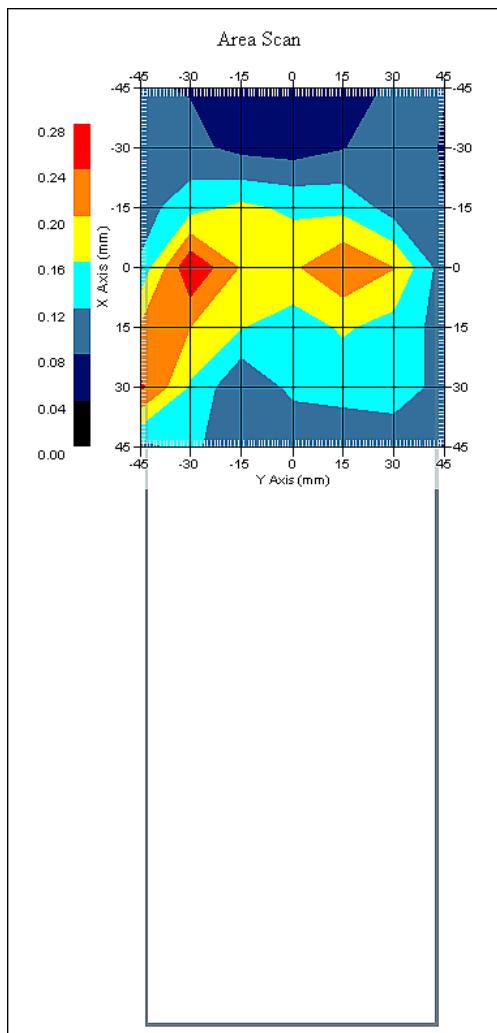
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 5600
Frequency : 5600.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.36 F/m
Sigma : 5.82 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5600.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 8:54:57 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.273 W/kg
10 gram SAR value : 0.178 W/kg
Area Scan Peak SAR : 0.278 W/kg
Zoom Scan Peak SAR : 0.450 W/kg

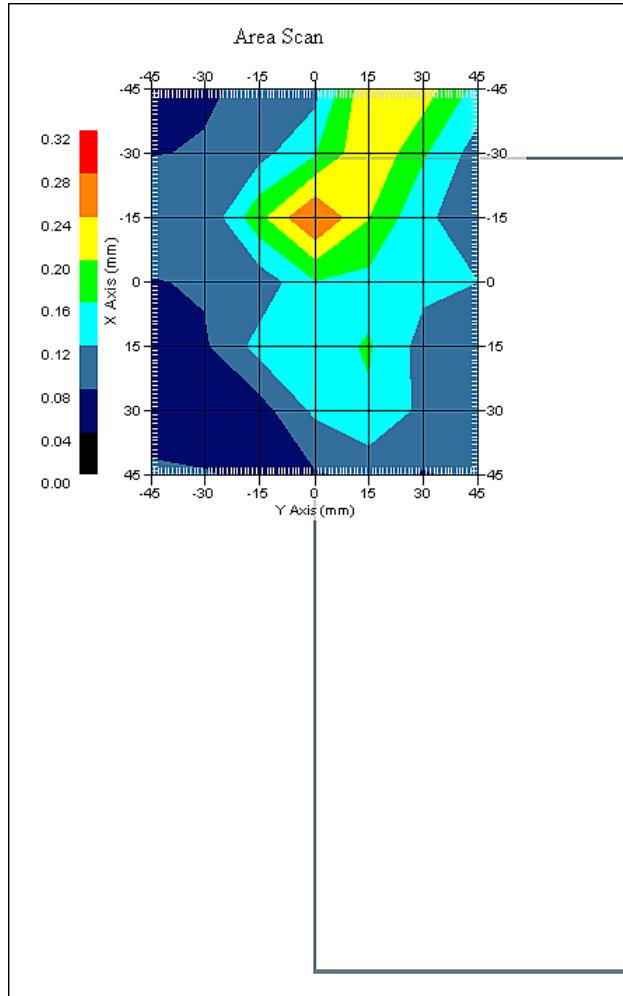
SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 08:34:24 AM
End Time : 08-Jun-2010 09:01:48 AM
Scanning Time : 1644 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.6a OFDM
Model : Falcon X3
Frequency : 5600.00 MHz
Max. Transmit Pwr : 0.01 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Front
Power Drift-Start : 0.256 W/kg
Power Drift-Finish: 0.262 W/kg
Power Drift (%) : 2.449

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5600
Frequency : 5600.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.36 F/m
Sigma : 5.82 S/m
Density : 1000.00 kg/cu. m


Probe Data
Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5600.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 8:54:57 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.248 W/kg
10 gram SAR value : 0.175 W/kg
Area Scan Peak SAR : 0.282 W/kg
Zoom Scan Peak SAR : 0.370 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 02:43:48 PM
End Time : 08-Jun-2010 03:08:29 PM
Scanning Time : 1481 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.8a OFDM
Model : Falcon X3
Frequency : 5800.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Front
Power Drift-Start : 0.727 W/kg
Power Drift-Finish: 0.716 W/kg
Power Drift (%) : -1.512

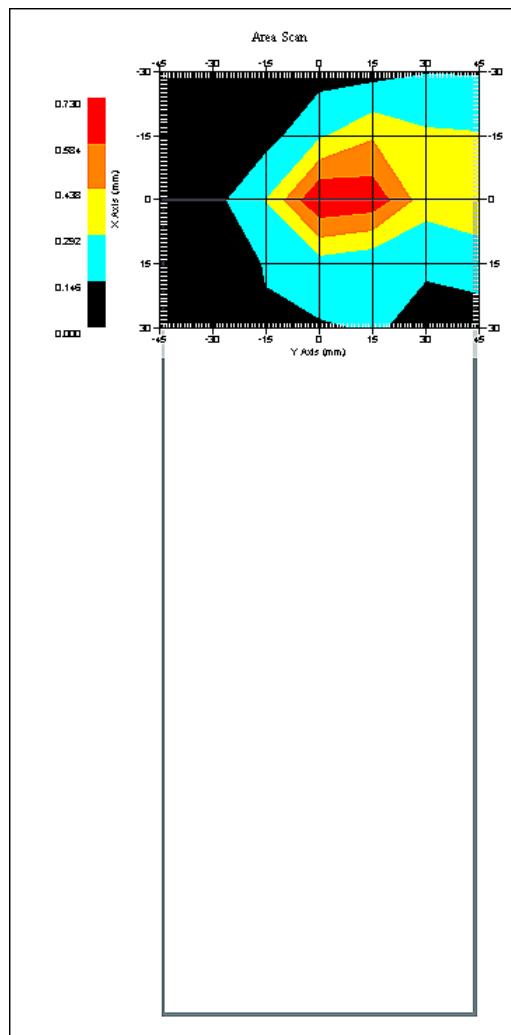
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

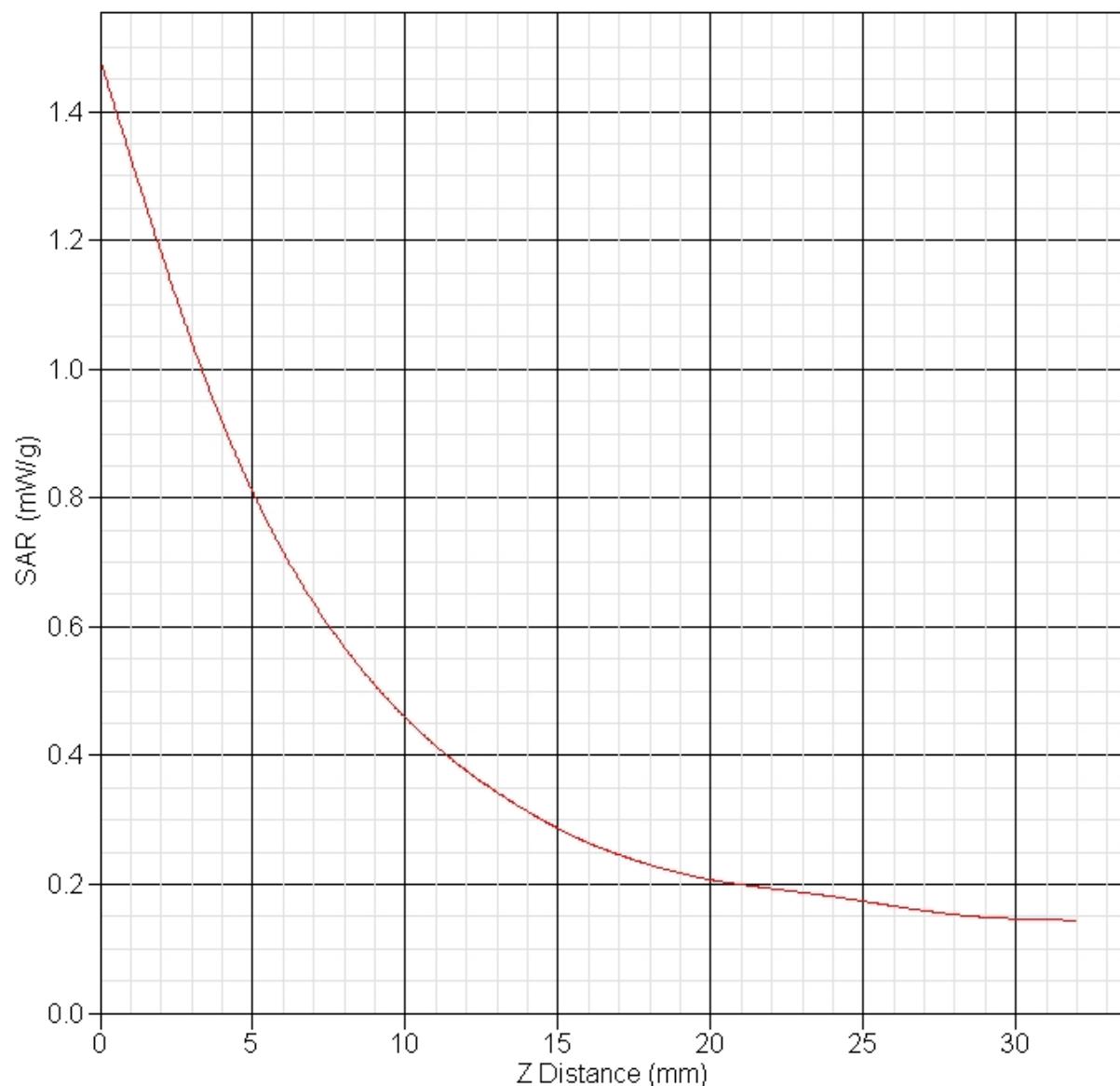
Tissue Data

Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.15 F/m
Sigma : 6.01 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5800.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.2
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data


Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 4:10:18 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.766 W/kg
10 gram SAR value : 0.396 W/kg
Area Scan Peak SAR : 0.728 W/kg
Zoom Scan Peak SAR : 1.481 W/kg

SAR-Z Axis
at Hotspot x:-7.96 y:7.87

SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 02:12:42 PM
End Time : 08-Jun-2010 02:37:21 PM
Scanning Time : 1479 secs

Product Data
Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.8a OFDM
Model : Falcon X3
Frequency : 5800.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Front
Power Drift-Start : 0.732 W/kg
Power Drift-Finish: 0.736 W/kg
Power Drift (%) : 0.520

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.15 F/m
Sigma : 6.01 S/m
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5800.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.2
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 4:10:18 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.697 W/kg
10 gram SAR value : 0.381 W/kg
Area Scan Peak SAR : 0.735 W/kg
Zoom Scan Peak SAR : 1.271 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 09:14:40 AM
End Time : 08-Jun-2010 09:42:16 AM
Scanning Time : 1656 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.6a OFDM
Model : Falcon X3
Frequency : 5600.00 MHz
Max. Transmit Pwr : 0.01 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Back
Power Drift-Start : 0.083 W/kg
Power Drift-Finish: 0.086 W/kg
Power Drift (%) : 3.617

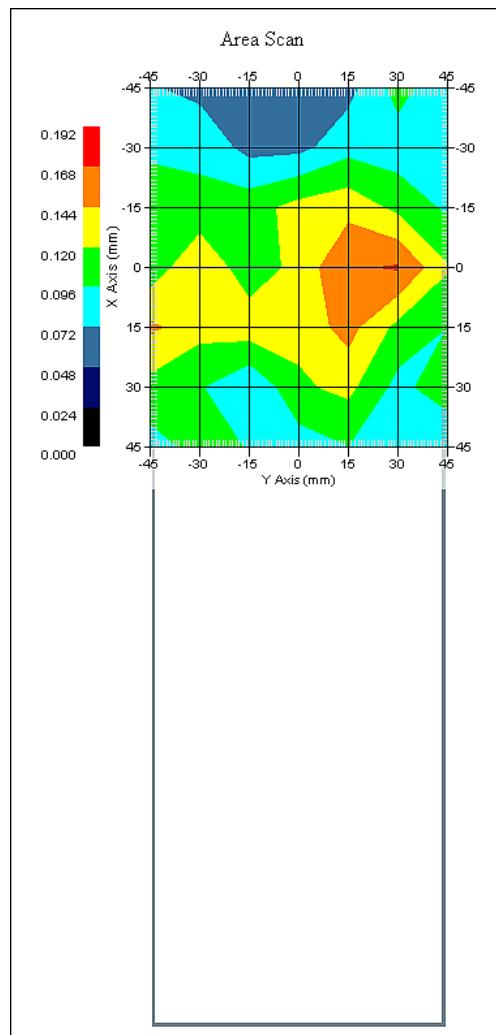
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 5600
Frequency : 5600.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.36 F/m
Sigma : 5.82 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5600.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 8:54:57 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.157 W/kg
10 gram SAR value : 0.114 W/kg
Area Scan Peak SAR : 0.170 W/kg
Zoom Scan Peak SAR : 0.310 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 09:51:15 AM
End Time : 08-Jun-2010 10:18:43 AM
Scanning Time : 1648 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.6a OFDM
Model : Falcon X3
Frequency : 5600.00 MHz
Max. Transmit Pwr : 0.01 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Back
Power Drift-Start : 0.181 W/kg
Power Drift-Finish: 0.190 W/kg
Power Drift (%) : 4.972

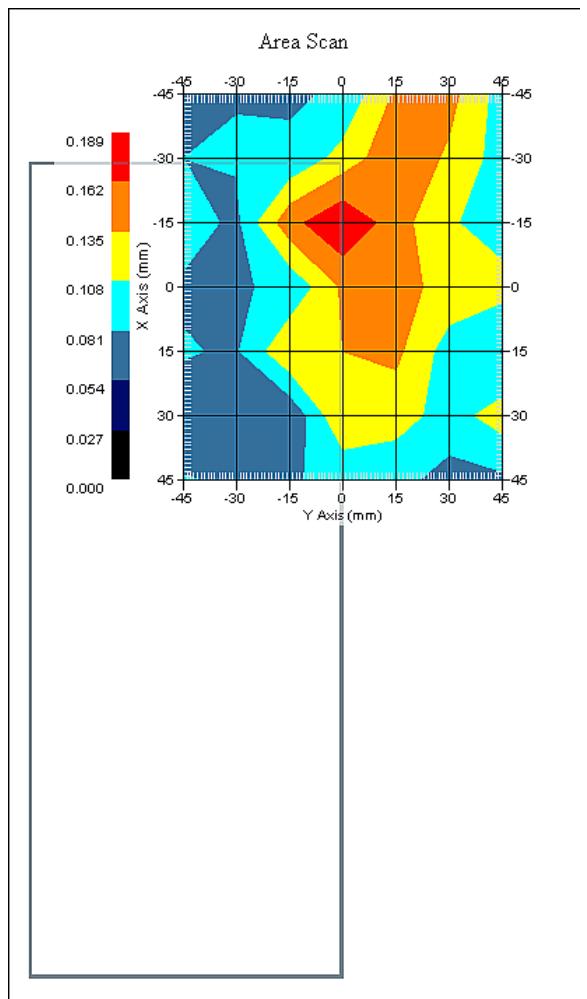
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 5600
Frequency : 5600.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.36 F/m
Sigma : 5.82 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5600.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 8:54:57 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.166 W/kg
10 gram SAR value : 0.134 W/kg
Area Scan Peak SAR : 0.186 W/kg
Zoom Scan Peak SAR : 0.220 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 01:40:42 PM
End Time : 08-Jun-2010 02:05:26 PM
Scanning Time : 1484 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.8a OFDM
Model : Falcon X3
Frequency : 5800.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Main
Orientation : Back
Power Drift-Start : 0.361 W/kg
Power Drift-Finish: 0.362 W/kg
Power Drift (%) : 0.347

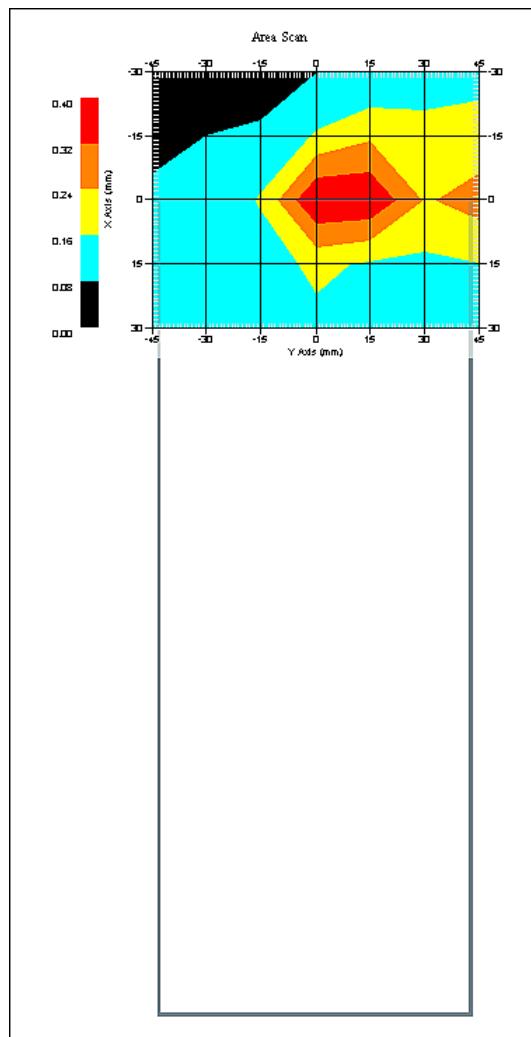
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.15 F/m
Sigma : 6.01 S/m
Density : 1000.00 kg/cu. m

Probe Data


Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5800.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.2
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 4:10:18 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch
Separation : 0
Channel : Low

1 gram SAR value : 0.383 W/kg
10 gram SAR value : 0.244 W/kg
Area Scan Peak SAR : 0.398 W/kg
Zoom Scan Peak SAR : 0.610 W/kg

SAR Test Report

By Operator : Jay
Measurement Date : 08-Jun-2010
Starting Time : 08-Jun-2010 01:09:24 PM
End Time : 08-Jun-2010 01:34:09 PM
Scanning Time : 1485 secs

Product Data

Device Name : Datalogic Mobile
Serial No. : 1
Mode : 5.8a OFDM
Model : Falcon X3
Frequency : 5800.00 MHz
Max. Transmit Pwr : 0.1 W
Drift Time : 0 min(s)
Length : 225 mm
Width : 88 mm
Depth : 50 mm
Antenna Type : Internal - Aux
Orientation : Back
Power Drift-Start : 0.408 W/kg
Power Drift-Finish: 0.404 W/kg
Power Drift (%) : -1.052

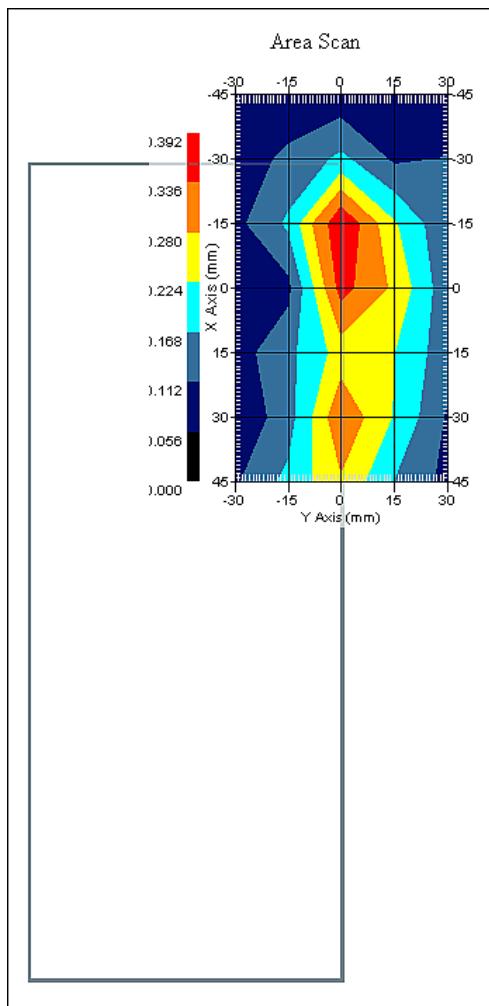
Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data

Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz
Last Calib. Date : 08-Jun-2010
Temperature : 20.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 48.15 F/m
Sigma : 6.01 S/m
Density : 1000.00 kg/cu. m

Probe Data

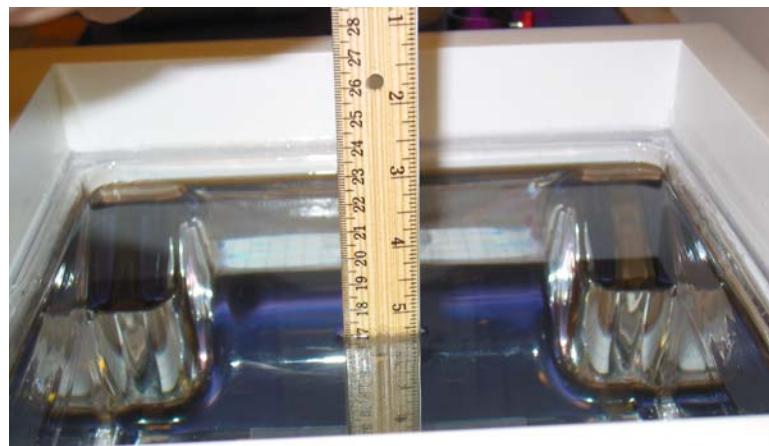

Name : Probe E030-001 - RFEL
Model : E030
Type : E-Field Triangle
Serial No. : E030-001
Last Calib. Date : 15-Jul-2009
Frequency : 5800.00 MHz
Duty Cycle Factor: 1
Conversion Factor: 4.2
Probe Sensitivity: 1.20 1.20 1.20 μ V/ (V/m)²
Compression Point: 95.00 mV
Offset : 1.06 mm

Measurement Data

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Jun-2010
Set-up Time : 4:10:18 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm


Other Data

DUT Position : Touch
Separation : 0
Channel : Low



1 gram SAR value : 0.389 W/kg
10 gram SAR value : 0.235 W/kg
Area Scan Peak SAR : 0.389 W/kg
Zoom Scan Peak SAR : 0.700 W/kg

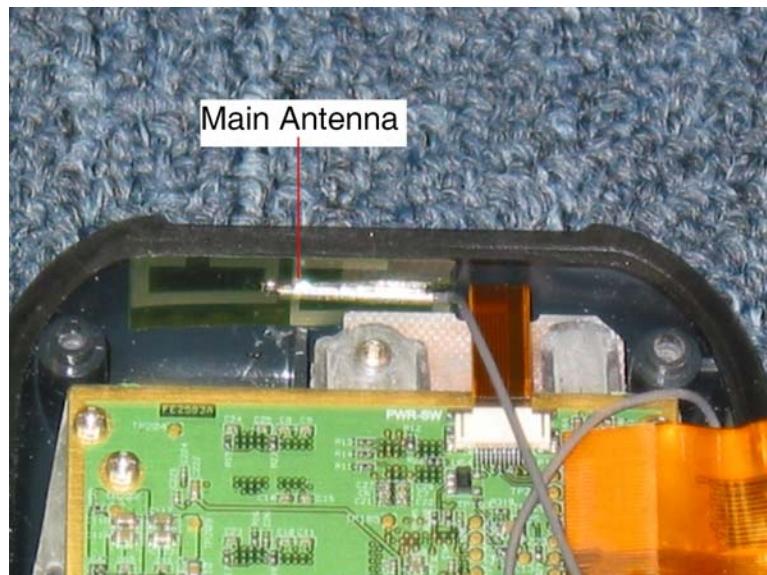
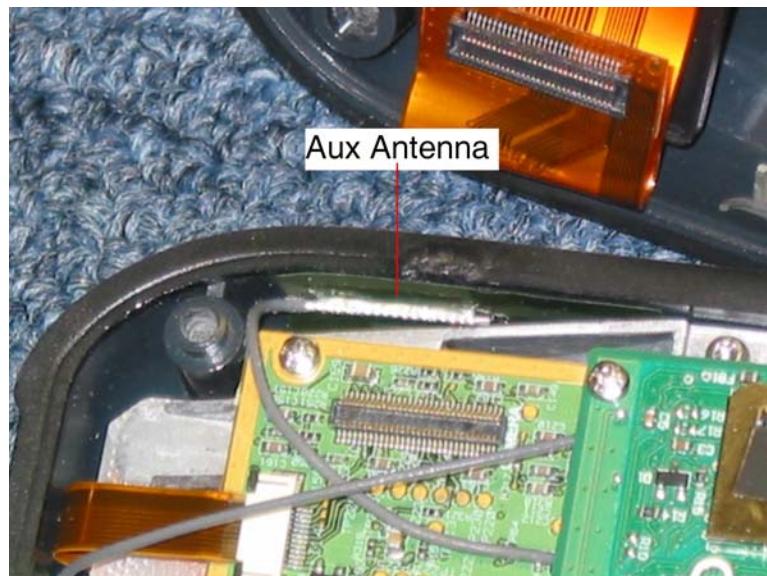
Appendix C – SAR Test Setup Photos

System Body Configuration

Body Tissue Depth

Front Main Antenna Test Position

Front Aux Antenna Test Position



Back Main Antenna Test Position

Back Aux Antenna Test Position

Front of Device**Back of Device**

Battery**RF Module**

Main Antenna**Aux Antenna**

Appendix D – Probe Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1086

Client.: RFEL

C E R T I F I C A T E O F C A L I B R A T I O N

It is certified that the equipment identified below has been calibrated in the
NCL CALIBRATION LABORATORIES by qualified personnel following recognized
procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 2450 MHz

BODY Calibration

Manufacturer: APREL Laboratories

Model No.: E-020

Serial No.: 217

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2
Project No: RFEL-E020-CAL-5477

Calibrated: 21st October 2009
Released on: 28th October 2009

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary
This calibration has been conducted in line with the SCC ISO-IEC 17025 Scope of Accreditation

Accredited Laboratory Number 48

Released By: _____

NCL CALIBRATION LABORATORIES

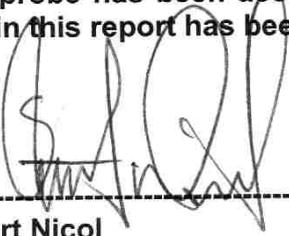
51 SPECTRUM WAY
NEPEAN, ONTARIO
CANADA K2R 1E6

Division of APREL Lab.
TEL: (613) 820-4988
FAX: (613) 820-4161

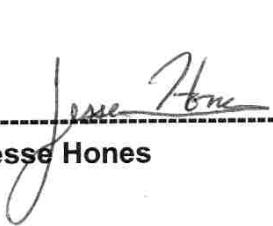
Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 217.

References


SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"
SSI-TP-011 Tissue Calibration Procedure
IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"
IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions


Probe 217 was a re-calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C
Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type:	E-Field Probe E-020
Serial Number:	217
Frequency:	2450 MHz
Sensor Offset:	1.56 mm
Sensor Length:	2.5 mm
Tip Enclosure:	Ertalyte*
Tip Diameter:	<5 mm
Tip Length:	60 mm
Total Length:	290 mm

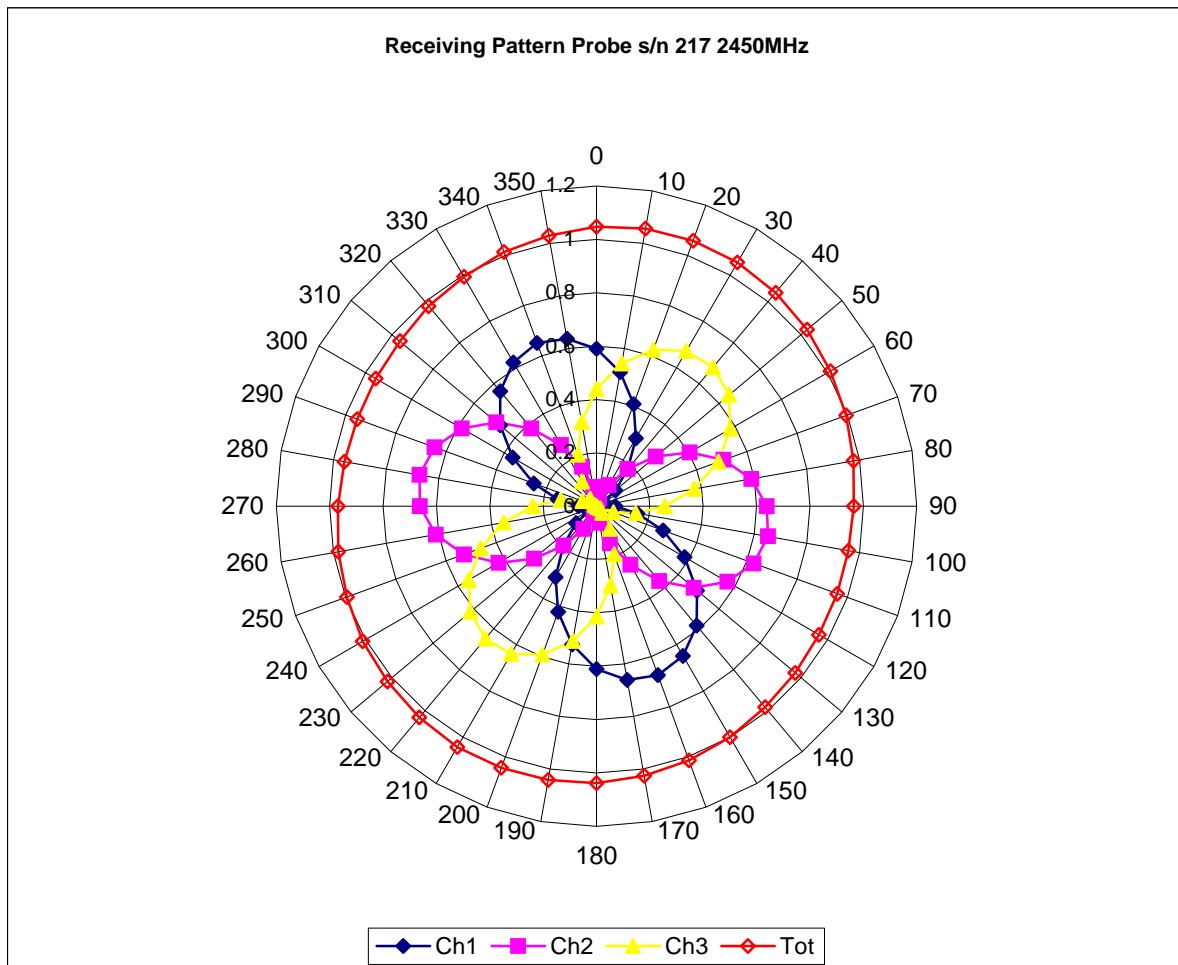
*Resistive to recommended tissue recipes per IEEE-1528

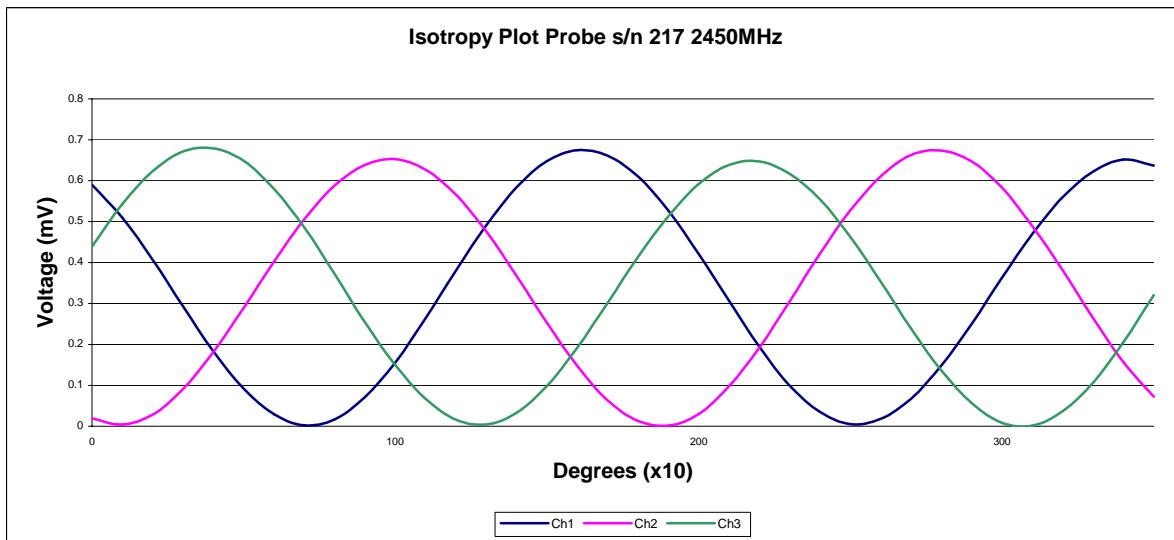
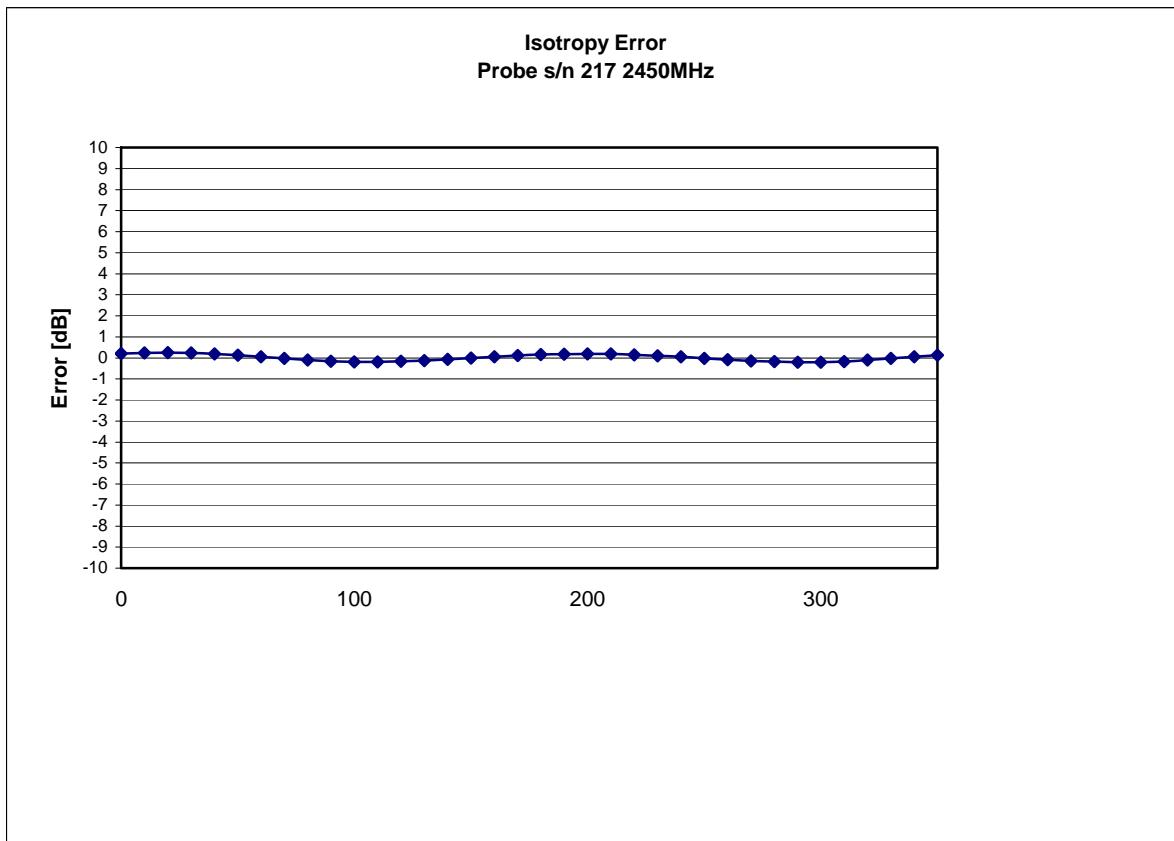
Sensitivity in Air

Channel X:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Channel Y:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Channel Z:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Diode Compression Point:	95 mV

Sensitivity in Body Tissue Measured**Frequency:** 2450 MHz**Epsilon:** 53.4 (+/-5%) **Sigma:** 1.95 S/m (+/-5%)**ConvF****Channel X:** 3.61**Channel Y:** 3.61**Channel Z:** 3.61

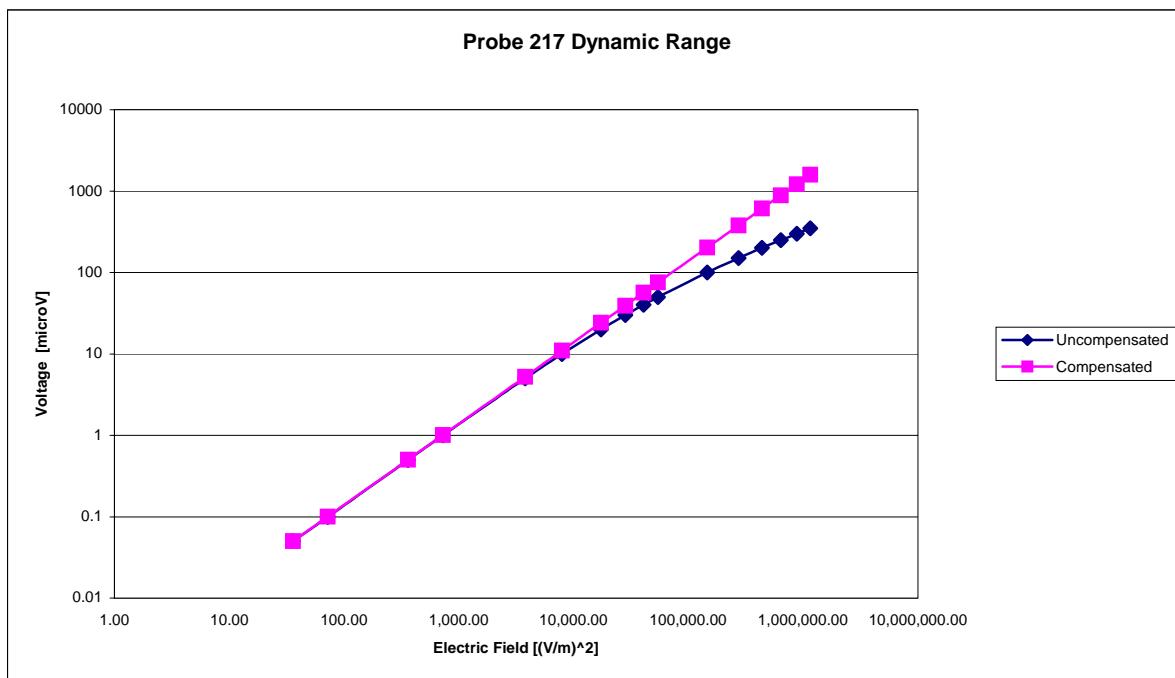
Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

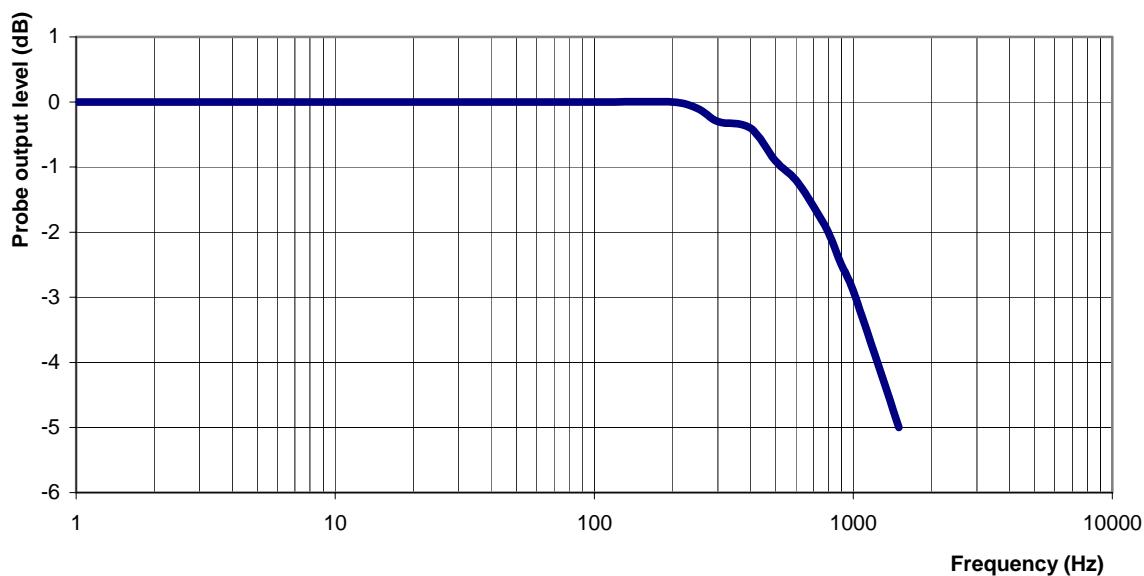


Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.

Spatial Resolution:

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.


Receiving Pattern 2450 MHz (Air)

Isotropy Error 2450 MHz (Air)**Isotropicity Tissue:**


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB
Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue

Frequency: 2450 MHz

Epsilon: 53.4 (+/-5%) **Sigma:** 1.95 S/m (+/-5%)

ConvF

Channel X: 3.61 7%(K=2)

Channel Y: 3.61 7%(K=2)

Channel Z: 3.61 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 MΩ.

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1004

Client.: RFEL

C E R T I F I C A T E O F C A L I B R A T I O N

It is certified that the equipment identified below has been calibrated in the
NCL CALIBRATION LABORATORIES by qualified personnel following recognized
procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 5200 MHz

BODY Calibration

Manufacturer: APREL Laboratories

Model No.: E-020

Serial No.: E030-001

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2
Project No: RFEB-ALSE030-cal-5453

Calibrated: 9th July 2009
Released on: 16th July 2009

APREL Laboratories Certified Under Laboratory 48 of SCC

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By: _____

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY
NEPEAN, ONTARIO
CANADA K2R 1E6

Division of APREL Lab.
TEL: (613) 820-4988
FAX: (613) 820-4161

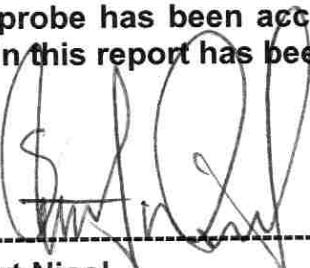
NCL Calibration Laboratories

Division of APREL Laboratories.

Introduction

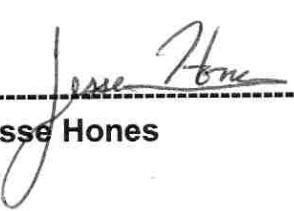
This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E030-001.

References


SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"
SSI-TP-011 Tissue Calibration Procedure
IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"
IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe E030-001 is a re-calibration.


Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C
Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type:	E-Field Probe E-030
Serial Number:	E030-001
Frequency:	5200 MHz
Sensor Offset:	1.06 mm
Sensor Length:	2.5 mm
Tip Enclosure:	Composite*
Tip Diameter:	<2.5 mm
Tip Length:	55 mm
Total Length:	289 mm

*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

Channel X:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Channel Y:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Channel Z:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Diode Compression Point:	95 mV

Sensitivity in Body Tissue Measured

Frequency: 5200 MHz

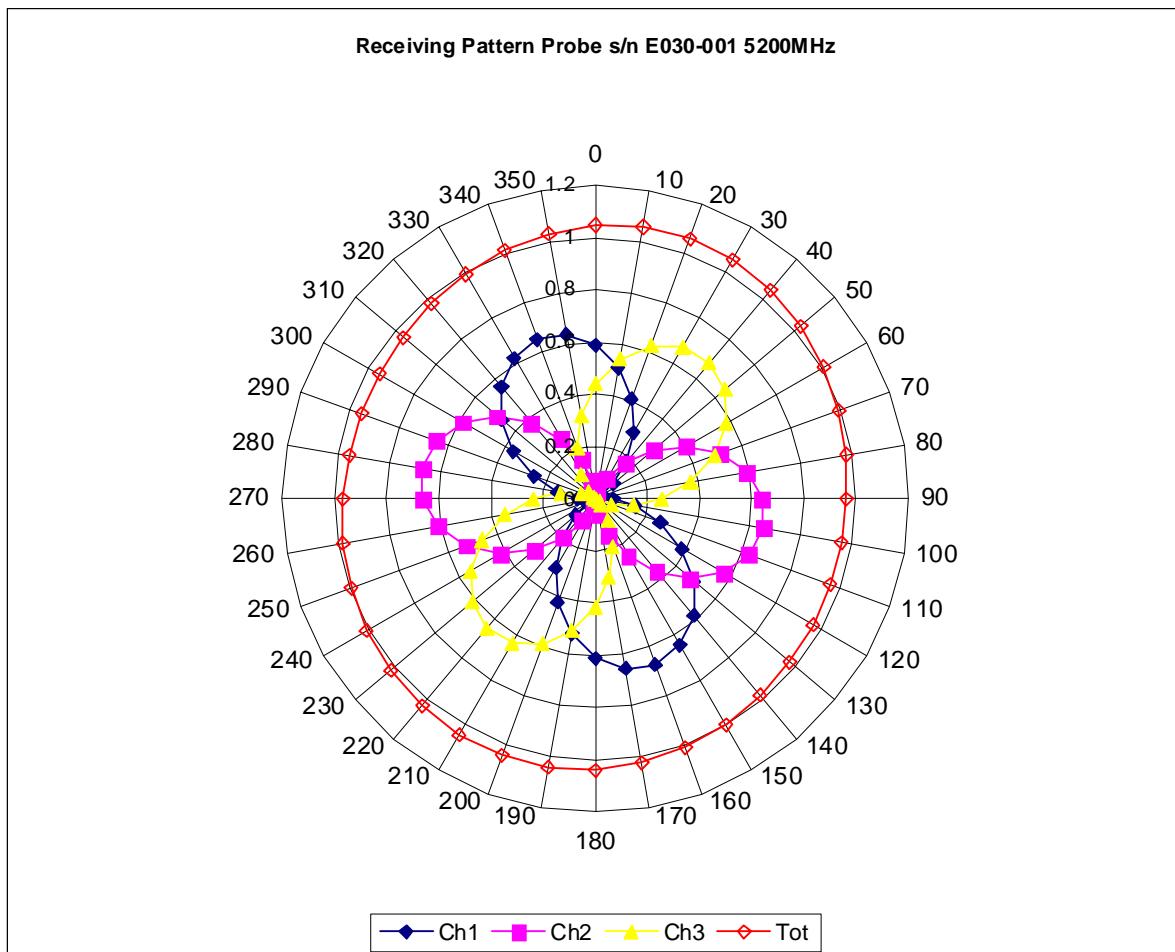
Epsilon: 47.96 **Sigma:** 5.15 S/m

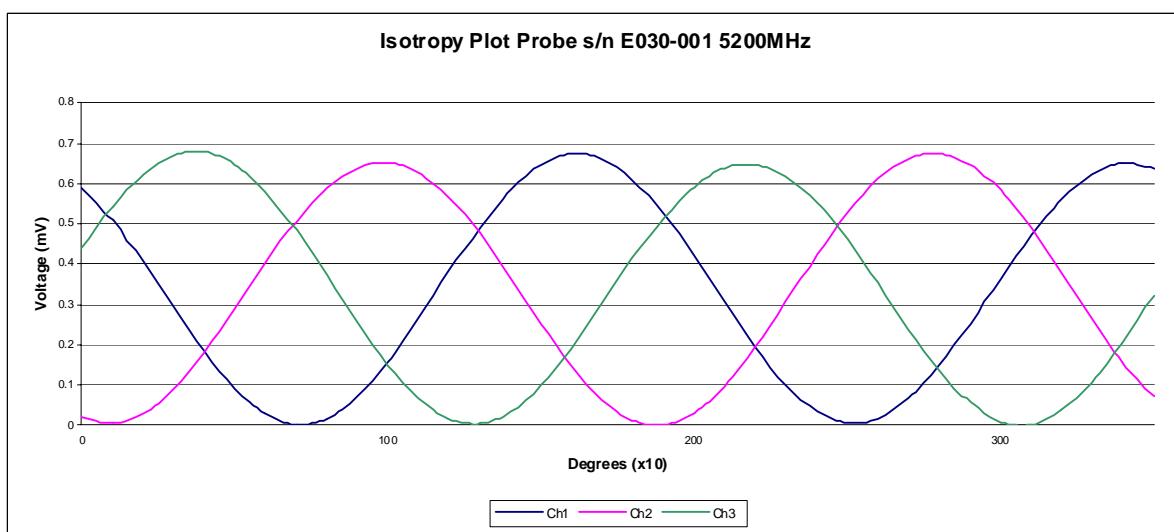
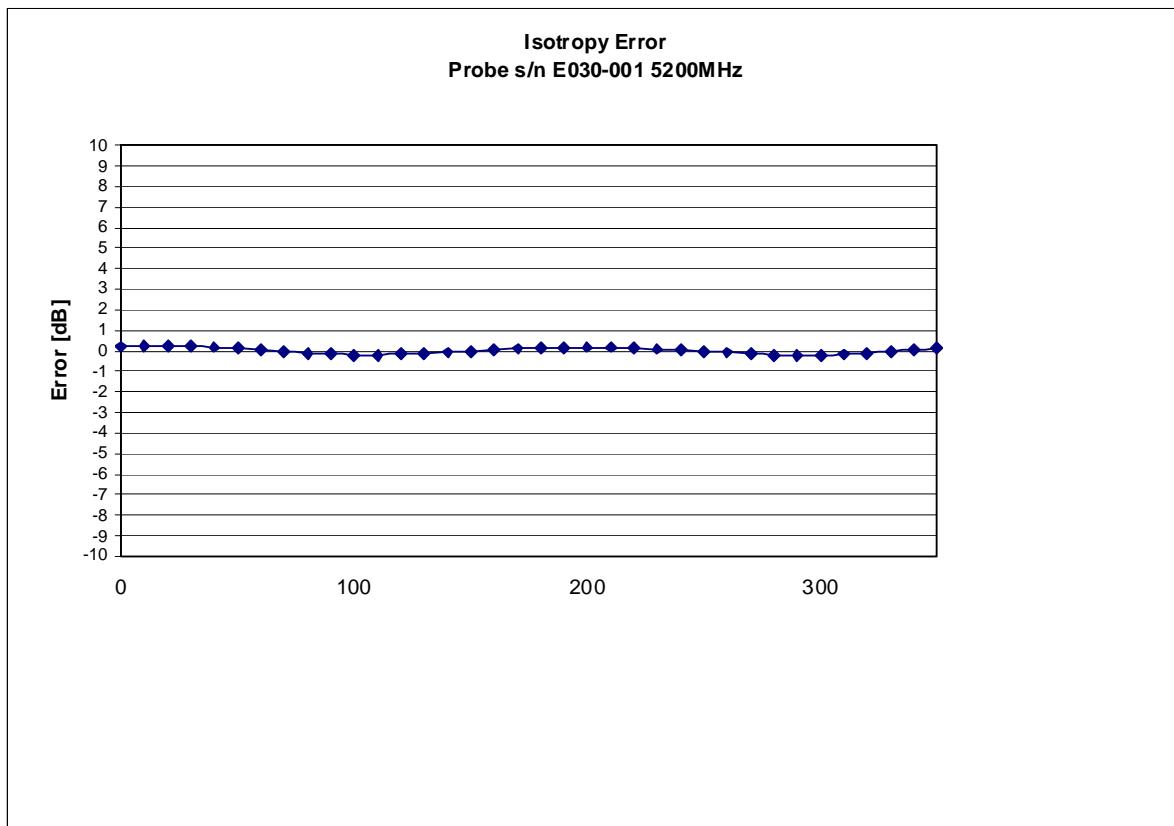
ConvF:

Channel X: 4.4

Channel Y: 4.4

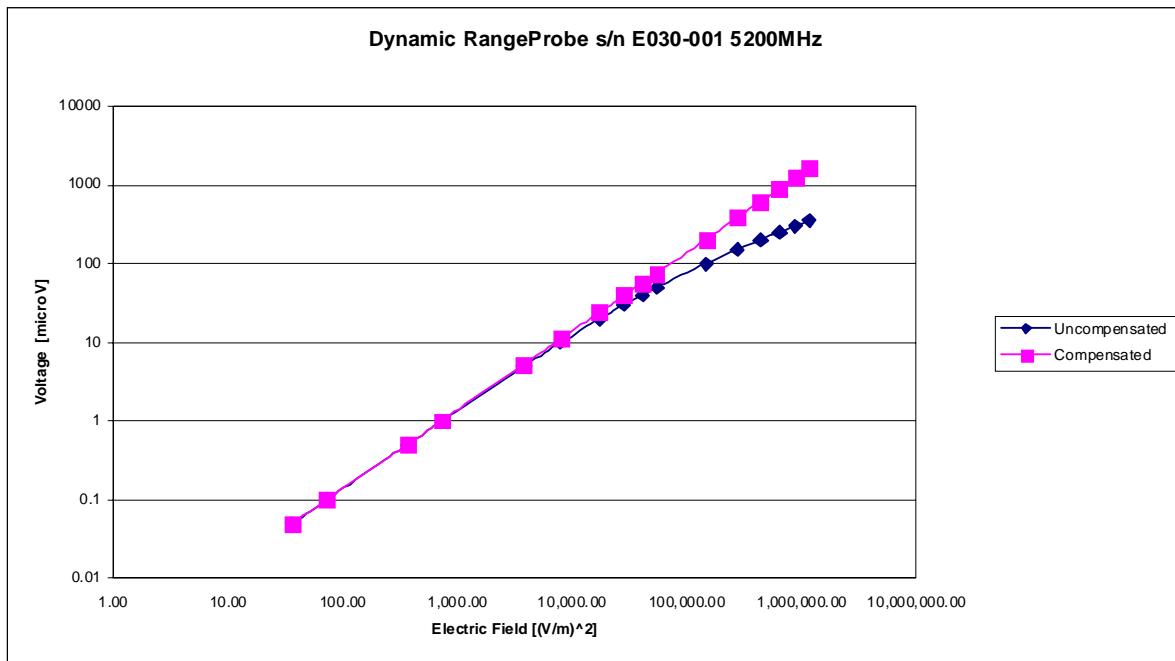
Channel Z: 4.4


Boundary Effect:

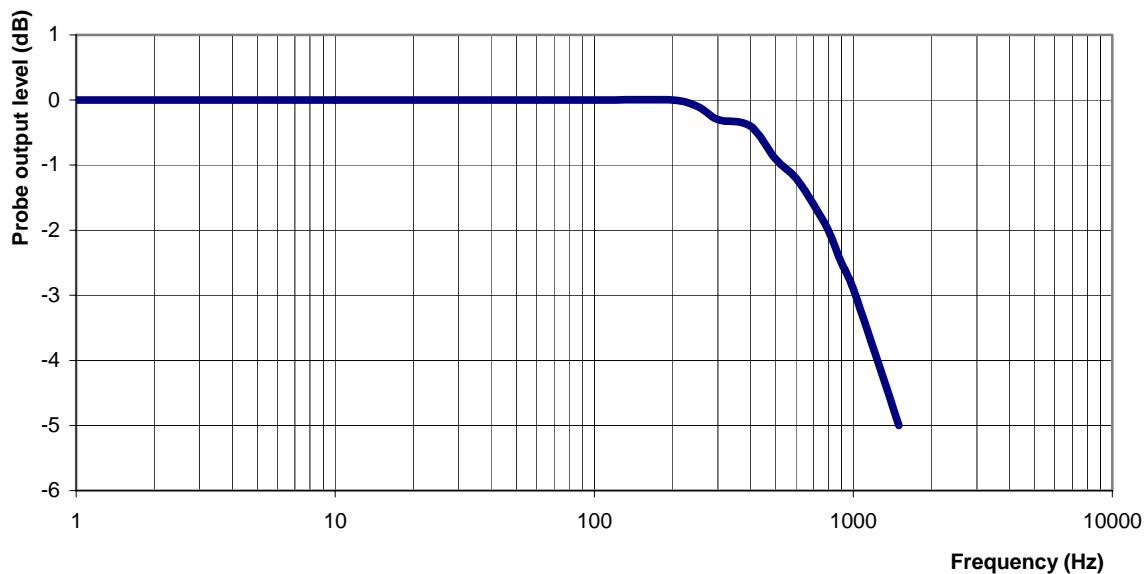


Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

Spatial Resolution:

The measured probe tip diameter is 2.5mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.


Receiving Pattern 5200 MHz (Air)

Isotropy Error 5200 MHz (Air)**Isotropicity Tissue:**


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB
Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue Measured

Frequency: 5200 MHz

Epsilon: 47.96 **Sigma:** 5.15 S/m

ConvF

Channel X: 4.4 7%(K=2)

Channel Y: 4.4 7%(K=2)

Channel Z: 4.4 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 MΩ.

Boundary Effect:

For a distance of 0.58mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2.1%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1006

Client.: RFEL

C E R T I F I C A T E O F C A L I B R A T I O N

It is certified that the equipment identified below has been calibrated in the
NCL CALIBRATION LABORATORIES by qualified personnel following recognized
procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 5600 MHz

BODY Calibration

Manufacturer: APREL Laboratories

Model No.: E-020

Serial No.: E030-001

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2
Project No: RFEB-ALSE030-cal-5453

Calibrated: 14th July 2009
Released on: 16th July 2009

APREL Laboratories Certified Under Laboratory 48 of SCC

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By: _____

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY
NEPEAN, ONTARIO
CANADA K2R 1E6

Division of APREL Lab.
TEL: (613) 820-4988
FAX: (613) 820-4161

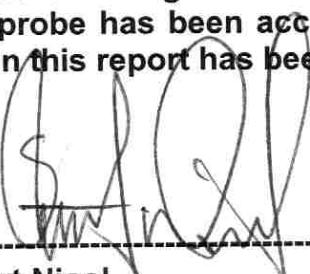
NCL Calibration Laboratories

Division of APREL Laboratories.

Introduction

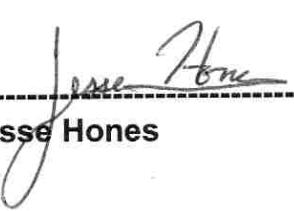
This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E030-001.

References


SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"
SSI-TP-011 Tissue Calibration Procedure
IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"
IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe E030-001 was a new probe.


Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C
Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type:	E-Field Probe E-030
Serial Number:	E030-001
Frequency:	5600 MHz
Sensor Offset:	1.06 mm
Sensor Length:	2.5 mm
Tip Enclosure:	Composite*
Tip Diameter:	<2.5 mm
Tip Length:	55 mm
Total Length:	289 mm

*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

Channel X:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Channel Y:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Channel Z:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Diode Compression Point:	95 mV

Sensitivity in Body Tissue Measured

Frequency: 5600 MHz

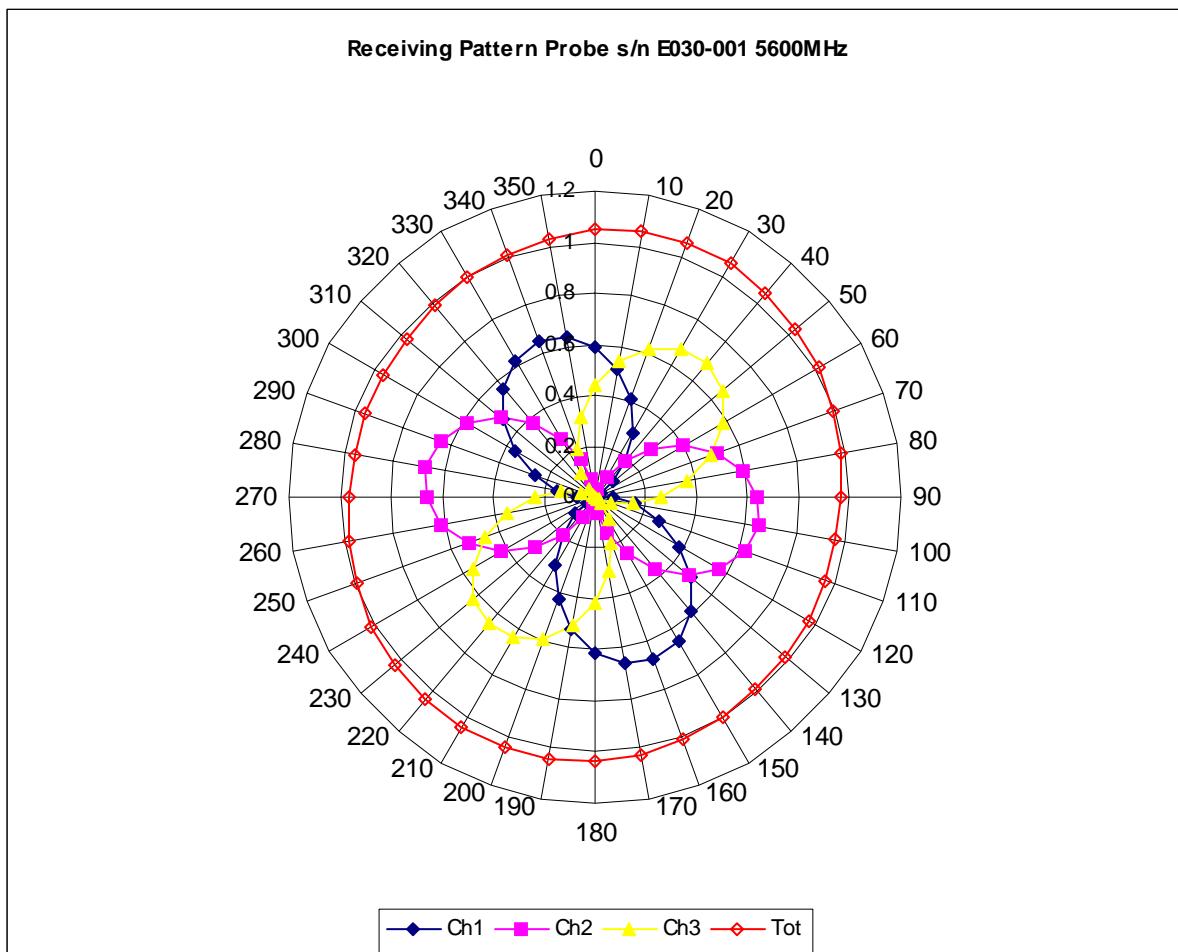
Epsilon: 46.76 **Sigma:** 5.84 S/m

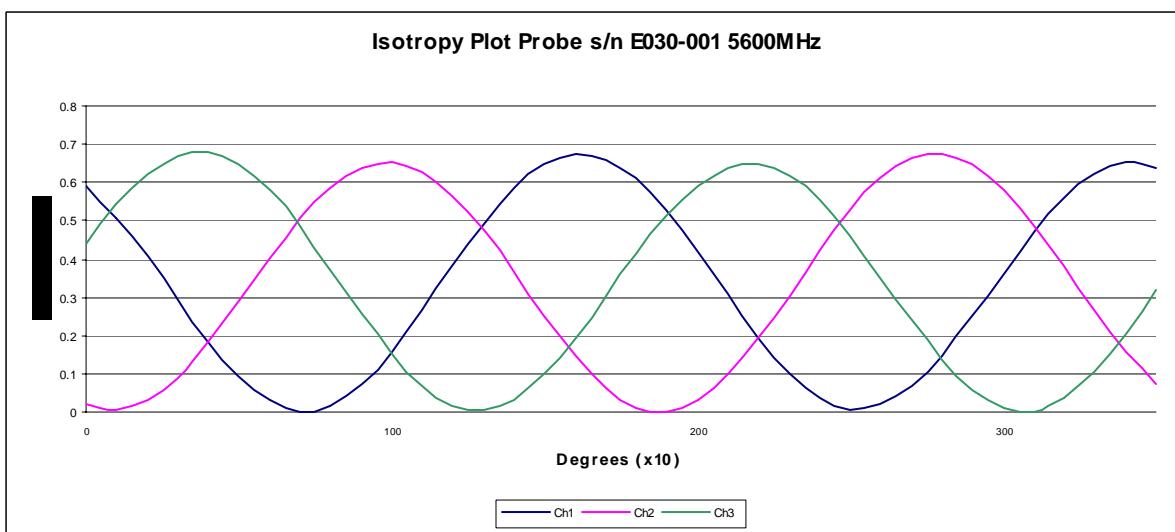
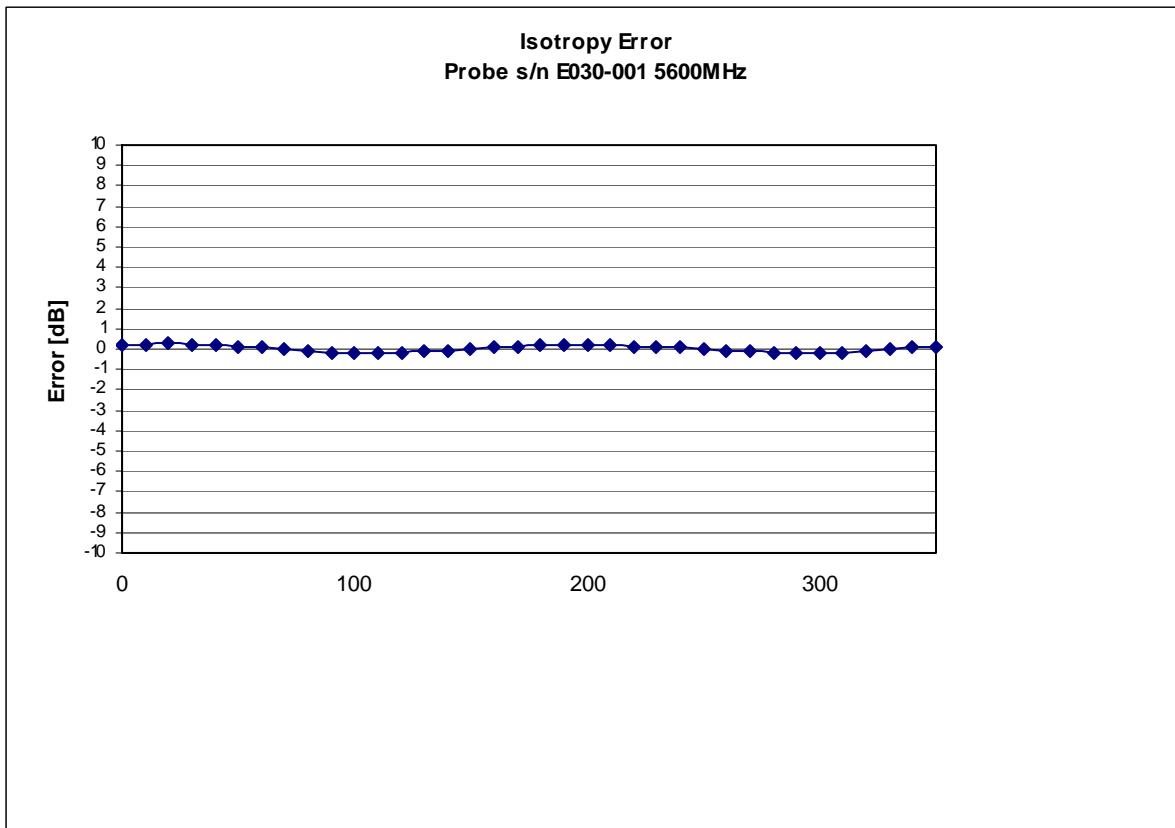
ConvF:

Channel X: 4.0

Channel Y: 4.0

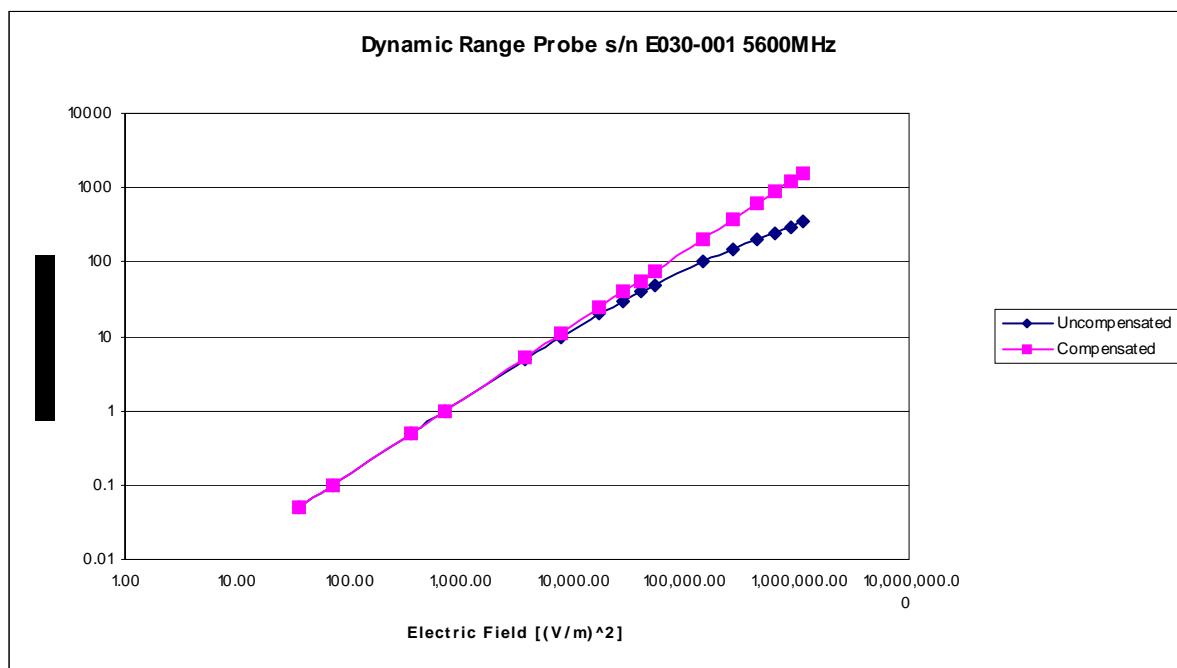
Channel Z: 4.0


Boundary Effect:

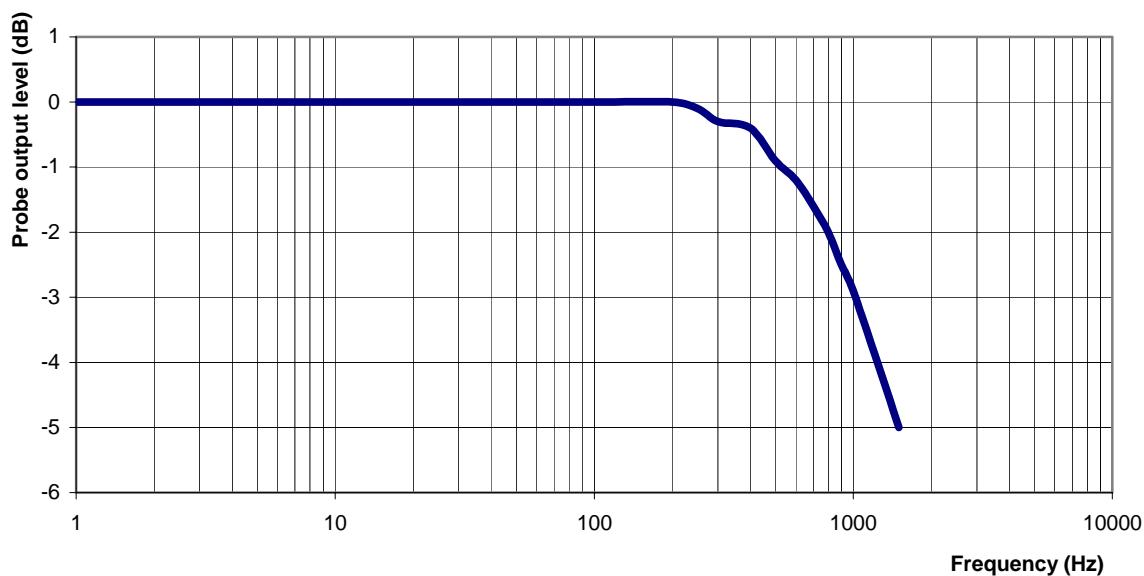


Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

Spatial Resolution:

The measured probe tip diameter is 2.5mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.


Receiving Pattern 5600 MHz (Air)

Isotropy Error 5600 MHz (Air)**Isotropicity Tissue:**


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB
Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue Measured

Frequency: 5600 MHz

Epsilon: 46.76 **Sigma:** 5.84 S/m

ConvF

Channel X: 4.0 7% (K=2)

Channel Y: 4.0 7% (K=2)

Channel Z: 4.0 7% (K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of $5\text{ M}\Omega$.

Boundary Effect:

For a distance of 0.58mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2.1%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1008

Client.: RFEL

C E R T I F I C A T E O F C A L I B R A T I O N

It is certified that the equipment identified below has been calibrated in the
NCL CALIBRATION LABORATORIES by qualified personnel following recognized
procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 5800 MHz

BODY Calibration

Manufacturer: APREL Laboratories

Model No.: E-020

Serial No.: E030-001

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2
Project No: RFEB-ALSE030-cal-5453

Calibrated: 15th July 2009
Released on: 16th April 2009

APREL Laboratories Certified Under Laboratory 48 of SCC

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By: _____

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY
NEPEAN, ONTARIO
CANADA K2R 1E6

Division of APREL Lab.
TEL: (613) 820-4988
FAX: (613) 820-4161

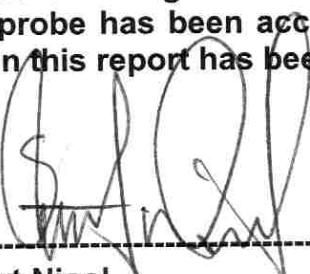
NCL Calibration Laboratories

Division of APREL Laboratories.

Introduction

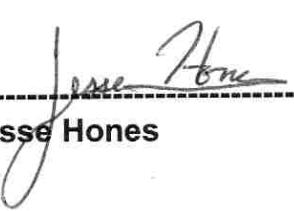
This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E030-001.

References


SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"
SSI-TP-011 Tissue Calibration Procedure
IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"
IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe E030-001 was a new probe.


Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C
Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type:	E-Field Probe E-030
Serial Number:	E030-001
Frequency:	5800 MHz
Sensor Offset:	1.06 mm
Sensor Length:	2.5 mm
Tip Enclosure:	Composite*
Tip Diameter:	<2.5 mm
Tip Length:	55 mm
Total Length:	289 mm

*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

Channel X:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Channel Y:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Channel Z:	$1.2 \mu\text{V}/(\text{V}/\text{m})^2$
Diode Compression Point:	95 mV

Sensitivity in Body Tissue Measured

Frequency: 5800 MHz

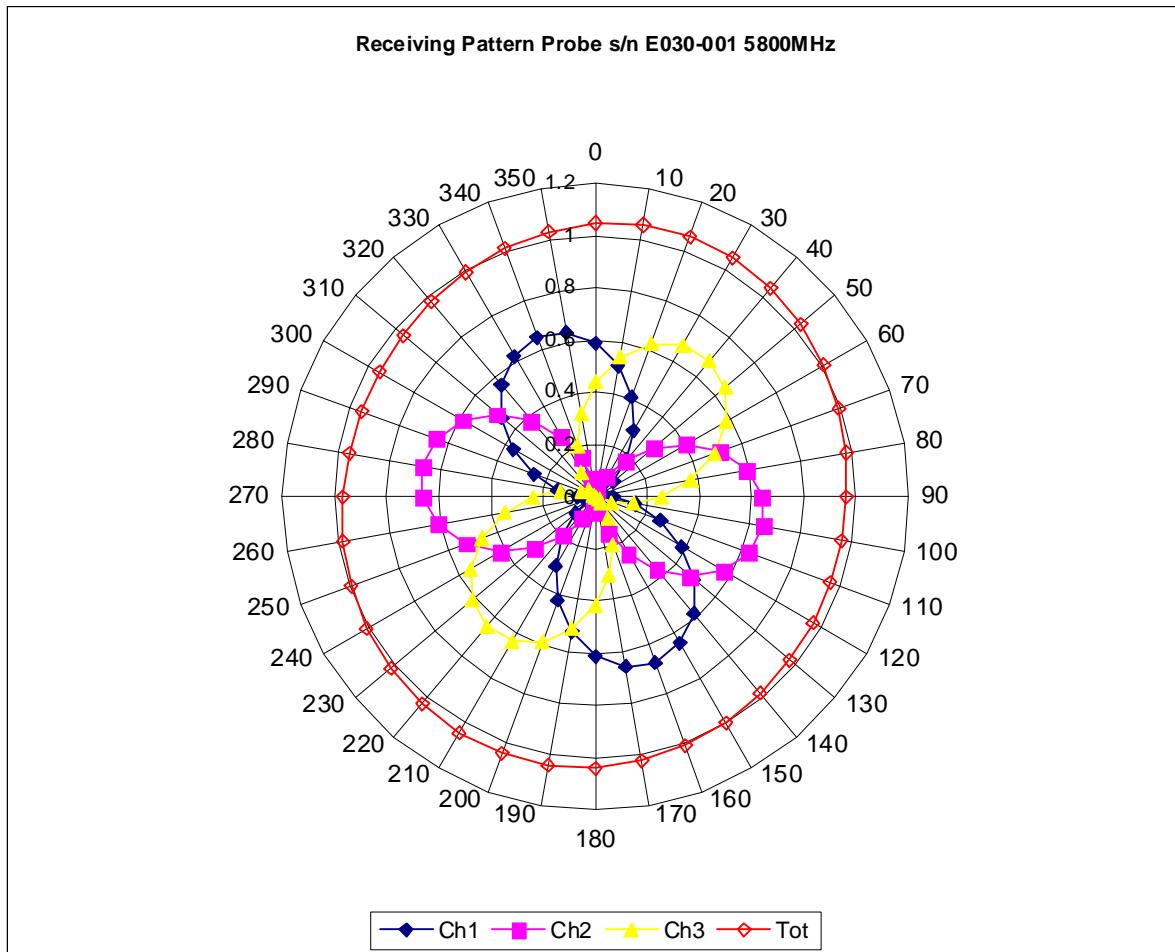
Epsilon: 46.28 **Sigma:** 6.22 S/m

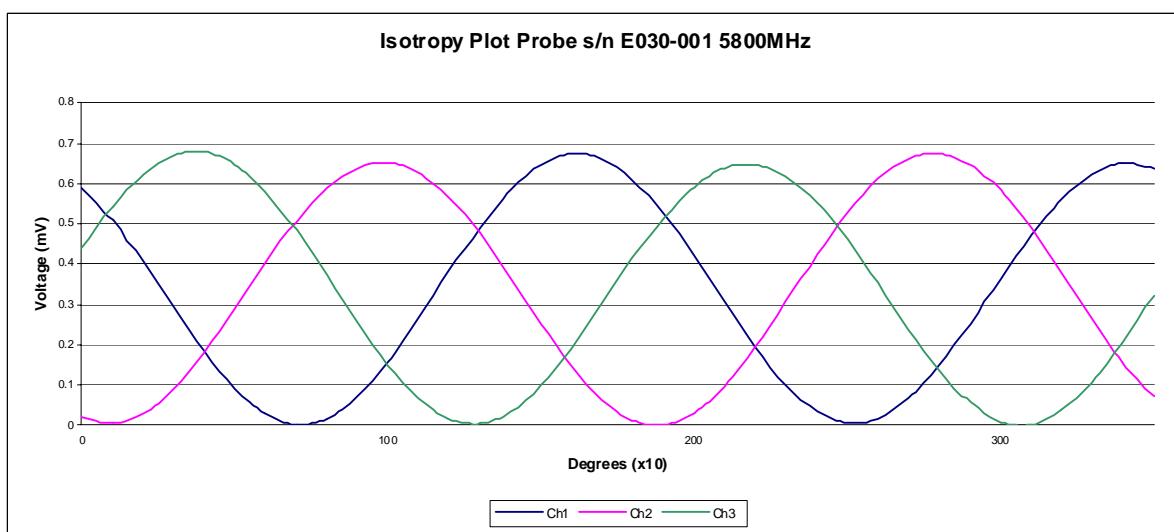
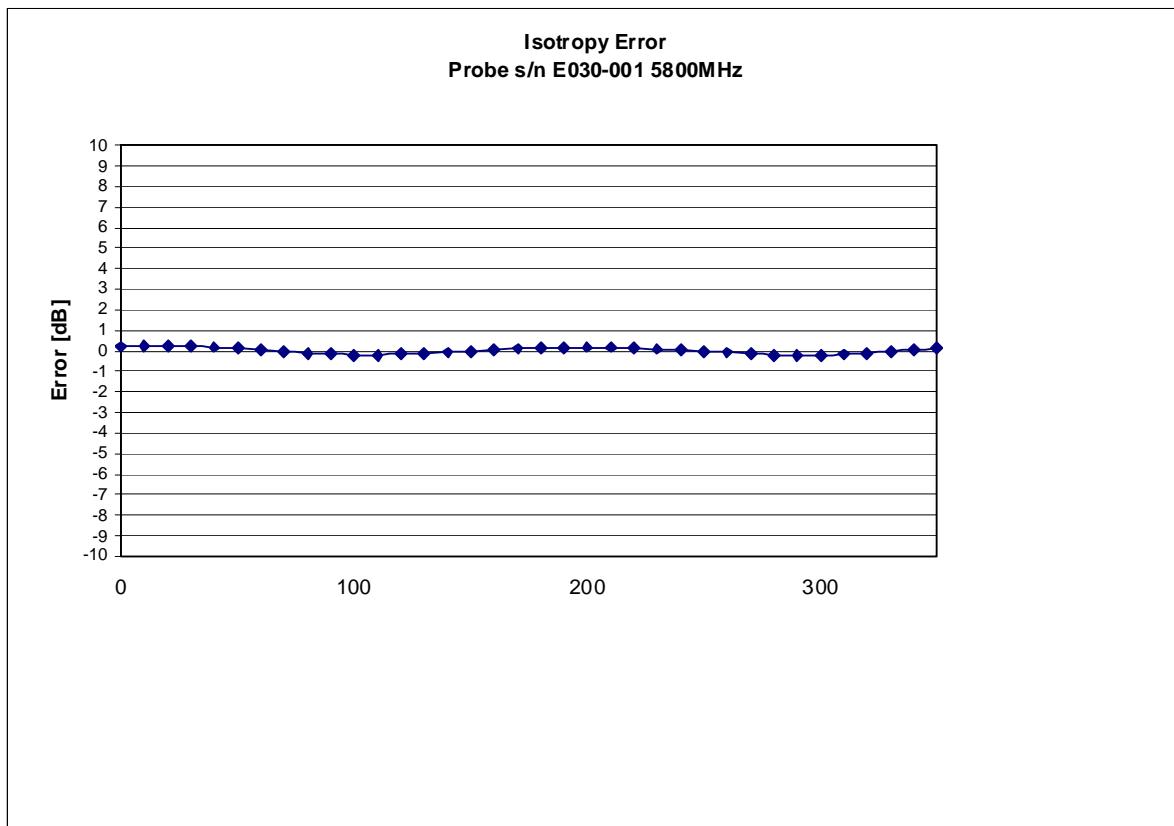
ConvF:

Channel X: 4.2

Channel Y: 4.2

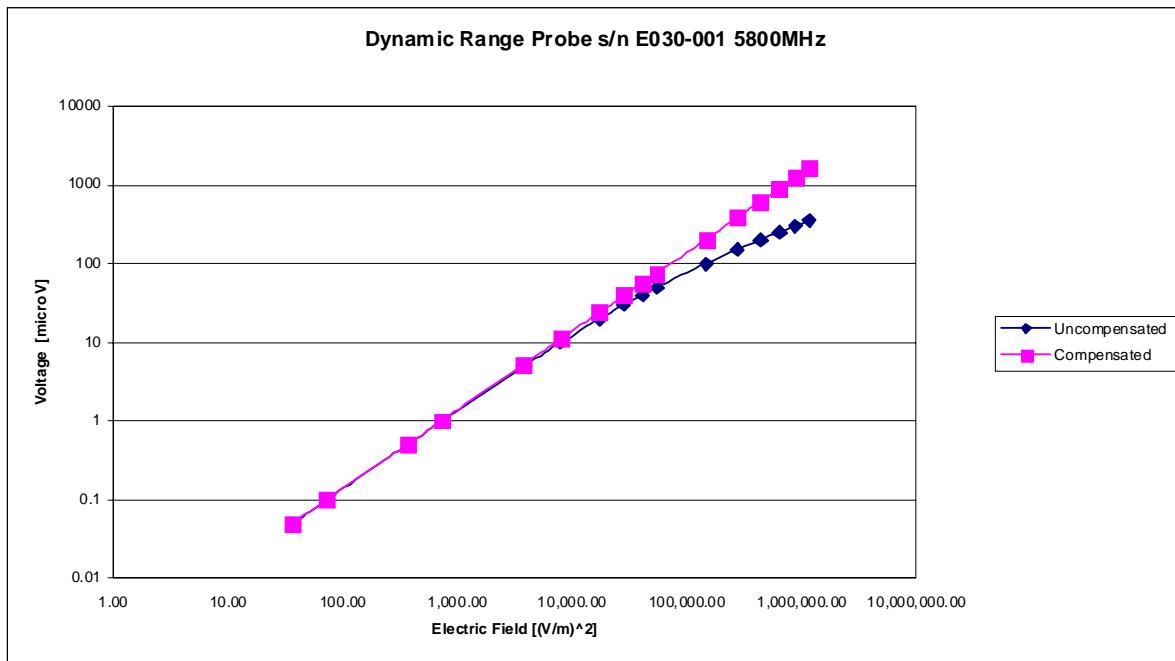
Channel Z: 4.2


Boundary Effect:

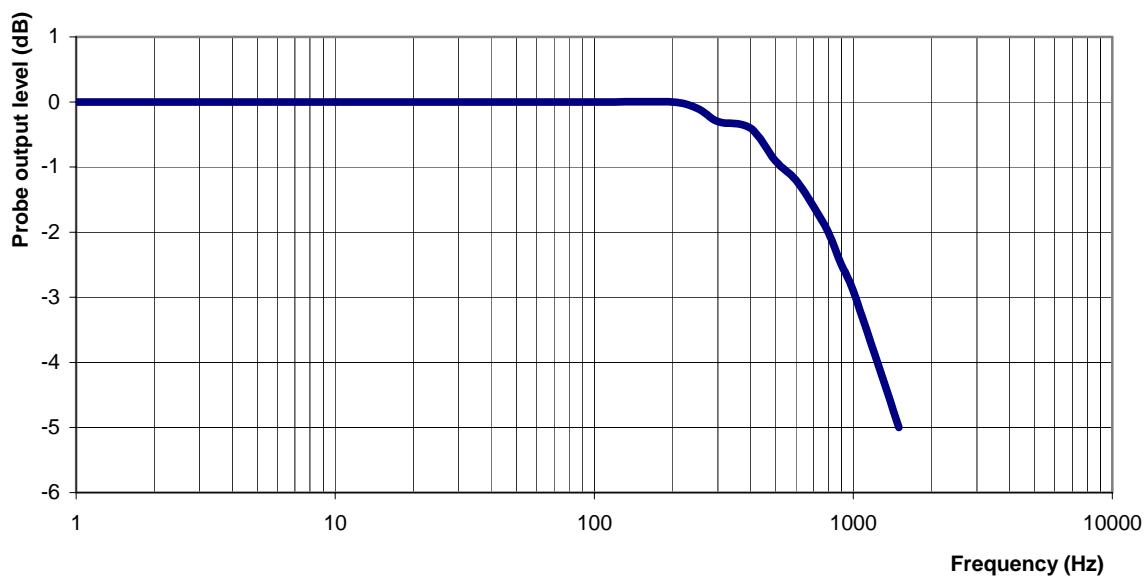


Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

Spatial Resolution:

The measured probe tip diameter is 2.5mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.


Receiving Pattern 5800 MHz (Air)

Isotropy Error 5800 MHz (Air)**Isotropicity Tissue:**


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB
Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue Measured

Frequency: 5800 MHz

Epsilon: 46.28 **Sigma:** 6.22 S/m

ConvF

Channel X: 4.2 7% (K=2)

Channel Y: 4.2 7% (K=2)

Channel Z: 4.2 7% (K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of $5\text{ M}\Omega$.

Boundary Effect:

For a distance of 0.58mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2.1%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

Appendix E – Dipole Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1109
Project Number: RFEB-5495

C E R T I F I C A T E O F C A L I B R A T I O N

It is certified that the equipment identified below has been calibrated in the
NCL CALIBRATION LABORATORIES by qualified personnel following recognized
procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories

Part number: ALS-D-2450-S-2

Frequency: 2450 MHz

Serial No: RFE-278

Customer: RFEL

Calibrated: 12th January 2010
Released on: 12th January 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By: _____

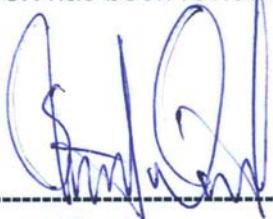
NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY
NEPEAN, ONTARIO
CANADA K2R 1E6

Division of APREL Lab.
TEL: (613) 820-4988
FAX: (613) 820-4162

NCL Calibration Laboratories

Division of APREL Laboratories.


Conditions

Dipole RFE-278 was a new calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C
Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

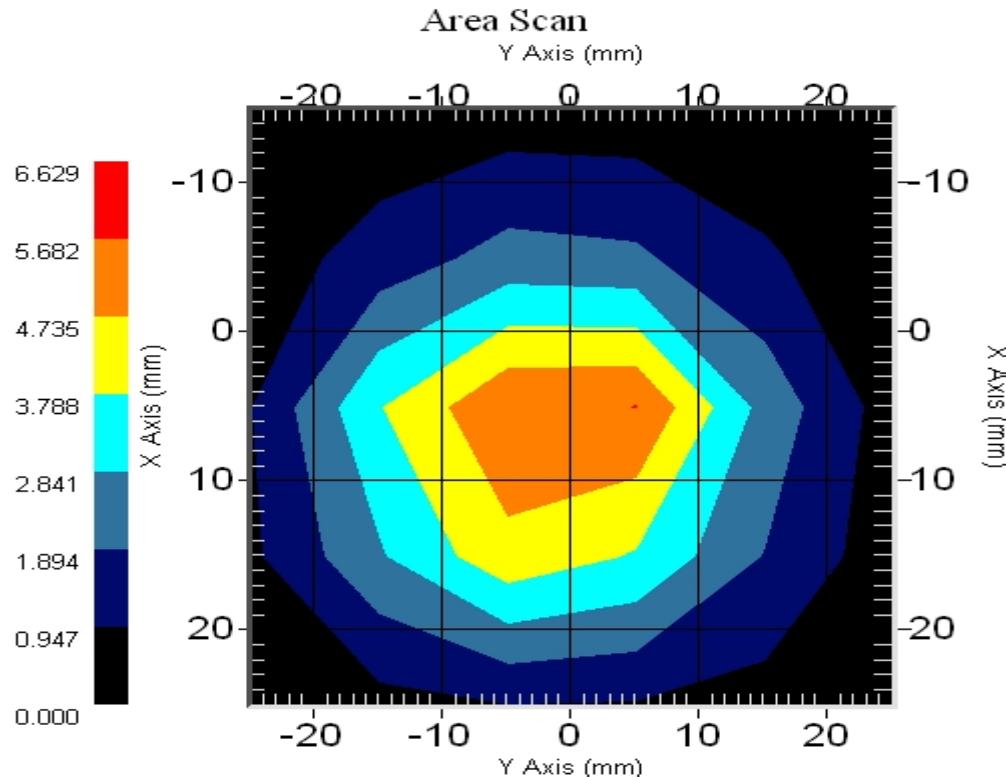
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 51.5 mm
Height: 30.4 mm

Electrical Specification

SWR: 1.070 U
Return Loss: -29.451 dB
Impedance: 50.710 Ω

System Validation Results @ 100mW

Frequency	1 Gram	10 Gram	Peak
2450 MHz	5.31	2.44	10.18

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole RFE-278. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 226.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure

SSI-TP-016 Tissue Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole RFE-278 was a re-calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C

Temperature of the Tissue: 20 °C +/- 0.5°C

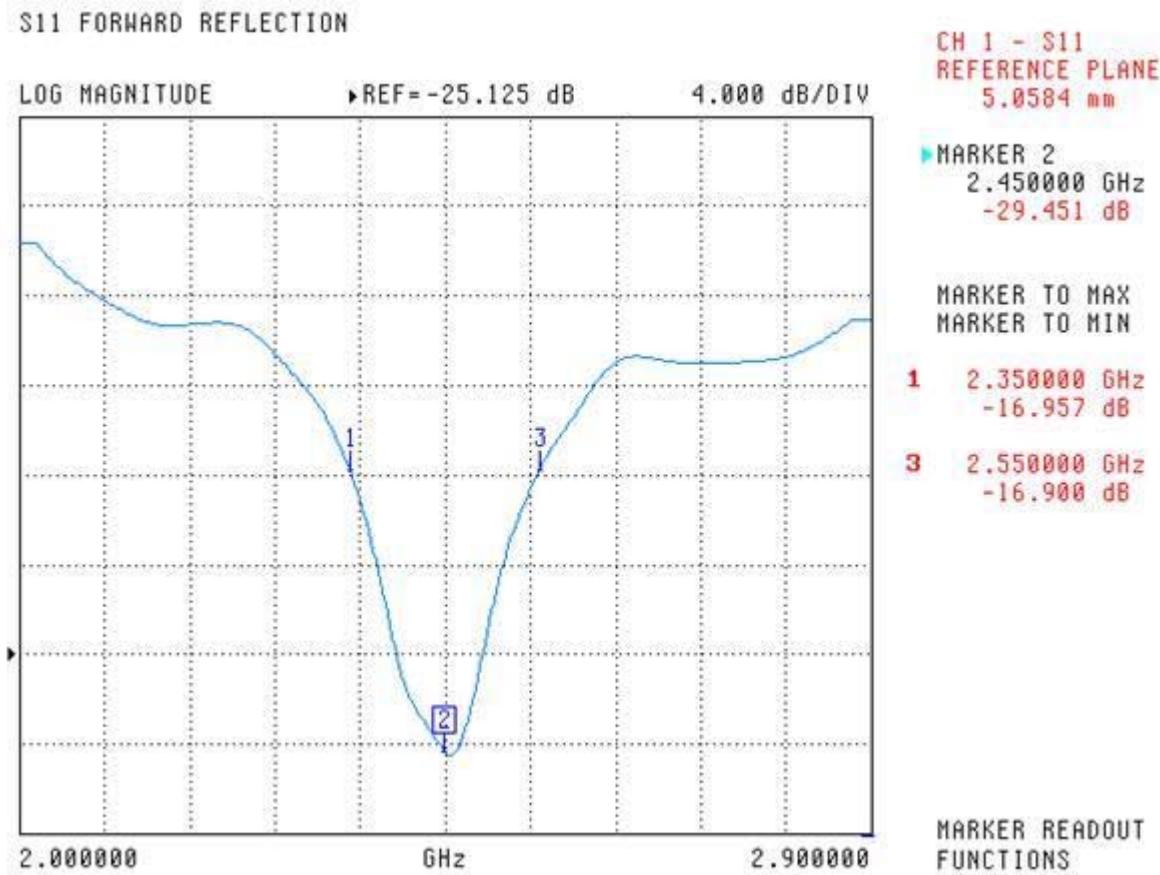
NCL Calibration Laboratories

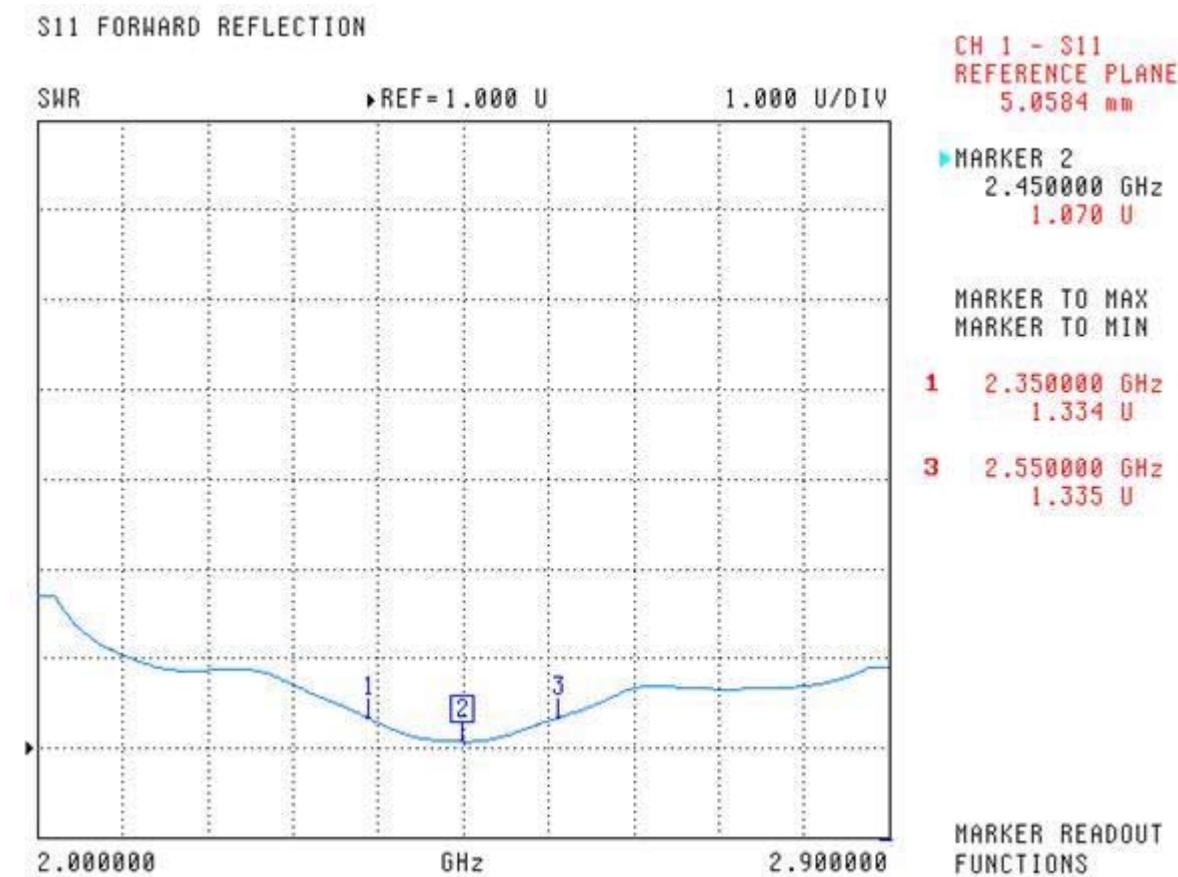
Division of APREL Laboratories.

Dipole Calibration Results

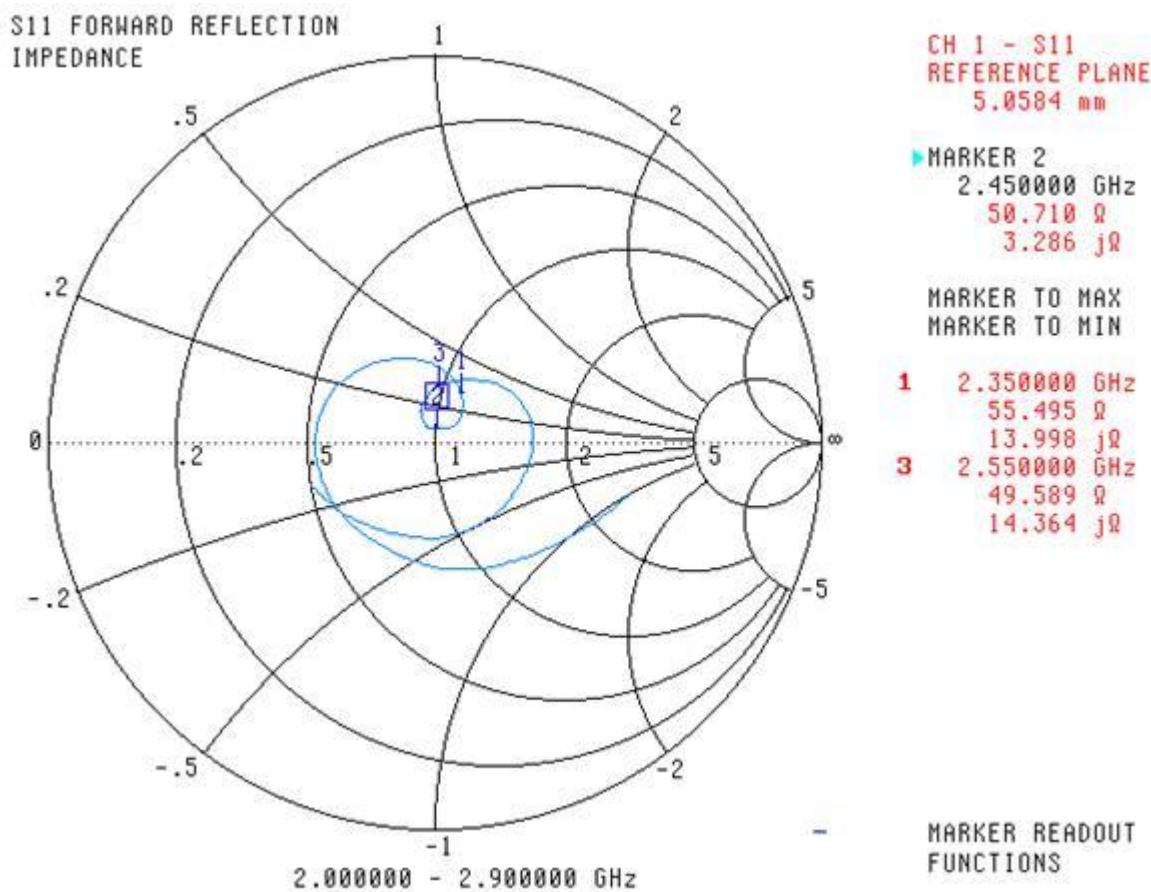
Mechanical Verification

APREL Length	APREL Height	Measured Length	Measured Height
51.5 mm	30.4 mm	52.1 mm	31.0 mm


Tissue Validation

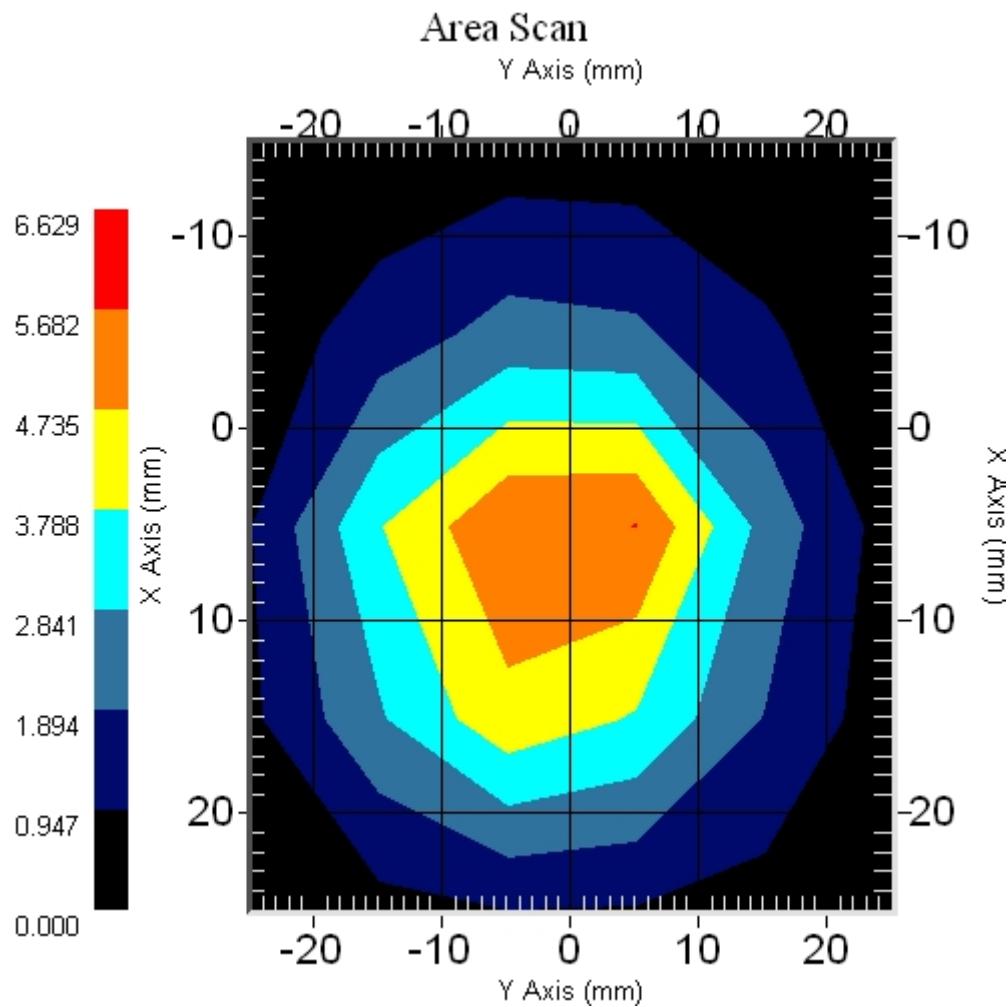

Head Tissue 2450 MHz	Measured
Dielectric constant, ϵ_r	39.8
Conductivity, σ [S/m]	1.85

Electrical Calibration


Test	Result
S11 R/L	-29.451 dB
SWR	1.070 U
Impedance	50.710 Ω

The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss


SWR

Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole**Results @ 100mW**

Head Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
2450 MHz	5.31	2.44	10.18

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1110, 1111, 1112
Project Number: Rfeb-5496, 5497, 5498

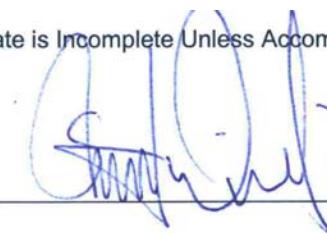
C E R T I F I C A T E O F C A L I B R A T I O N

It is certified that the equipment identified below has been calibrated in the
NCL CALIBRATION LABORATORIES by qualified personnel following recognized
procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories

Part number: ALS-D-BB-S-2


Frequency: 5200-5800 MHz

Serial No: 235-00801

Customer: RFEL

Calibrated: 12th January 2010
Released on: 12th January 2010

This Calibration Certificate is ~~Incomplete~~ Unless Accompanied with the Calibration Results Summary

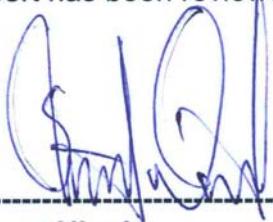
Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY
NEPEAN, ONTARIO
CANADA K2R 1E6

Division of APREL Lab.
TEL: (613) 820-4988
FAX: (613) 820-4162

NCL Calibration Laboratories


Division of APREL Laboratories.

Conditions

Dipole 235-00801 was new and taken from stock prior to calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C
Temperature of the Tissue: 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

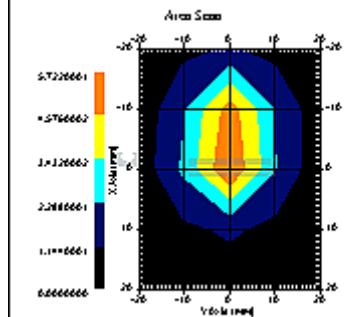
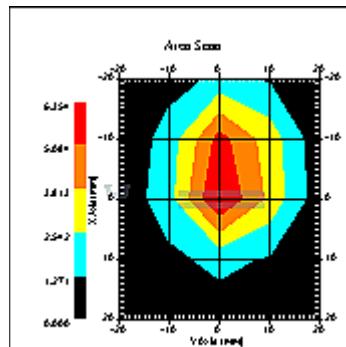
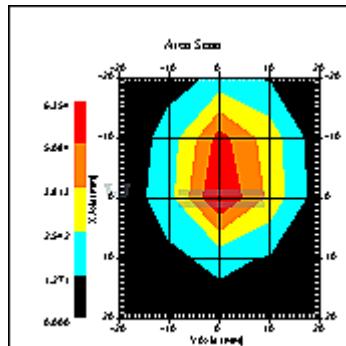
Mechanical Dimensions

Length: 23 mm
Height: 21 mm

Electrical Specification 5200MHz

SWR: 1.025 U
Return Loss: -38.354 dB
Impedance: 51.08 Ω

Electrical Specification 5600MHz




SWR: 1.025 U
Return Loss: -38.3 dB
Impedance: 49.303 Ω

Electrical Specification 5800MHz

SWR: 1.038 U
Return Loss: -34.609 dB
Impedance: 48.872 Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
5200 MHz	61.66	19.5	-
5600 MHz	65.03	21.2	-
5800 MHz	63.43	20.19	-

5200MHz**5600MHz****5800MHz**

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 235-00801. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-030 130 MHz to 26 GHz E-Field Probe Serial Number 215.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure

SSI-TP-016 Tissue Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

IEC-62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures"

Part 1: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEC-62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures"

Part 2 *Draft*: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)"

Conditions

Dipole 235-00801 was a re-calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C

Temperature of the Tissue: 20 °C +/- 0.5°C

NCL Calibration Laboratories

Division of APREL Laboratories.

Dipole Calibration Results

Mechanical Verification

APREL Length	APREL Height	Measured Length	Measured Height
23 mm	21 mm	23 mm	21 mm

Tissue Validation

Head Tissue 5200 MHz	Measured
Dielectric constant, ϵ_r	35.4
Conductivity, σ [S/m]	4.8

Head Tissue 5600 MHz	Measured
Dielectric constant, ϵ_r	36.1
Conductivity, σ [S/m]	5.17

Head Tissue 5800 MHz	Measured
Dielectric constant, ϵ_r	35.8
Conductivity, σ [S/m]	5.38

NCL Calibration Laboratories

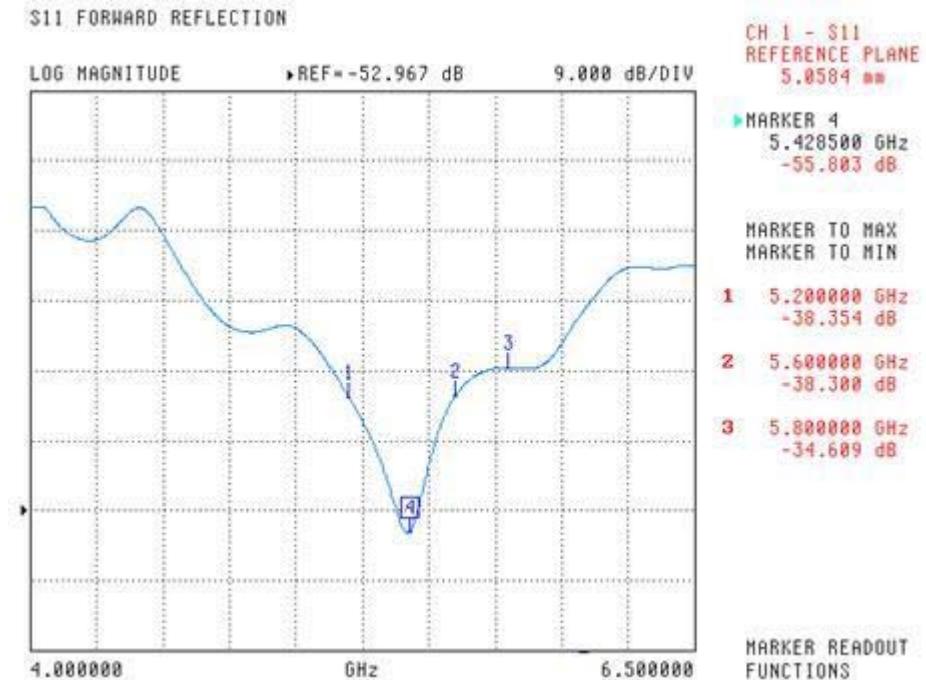
Division of APREL Laboratories.

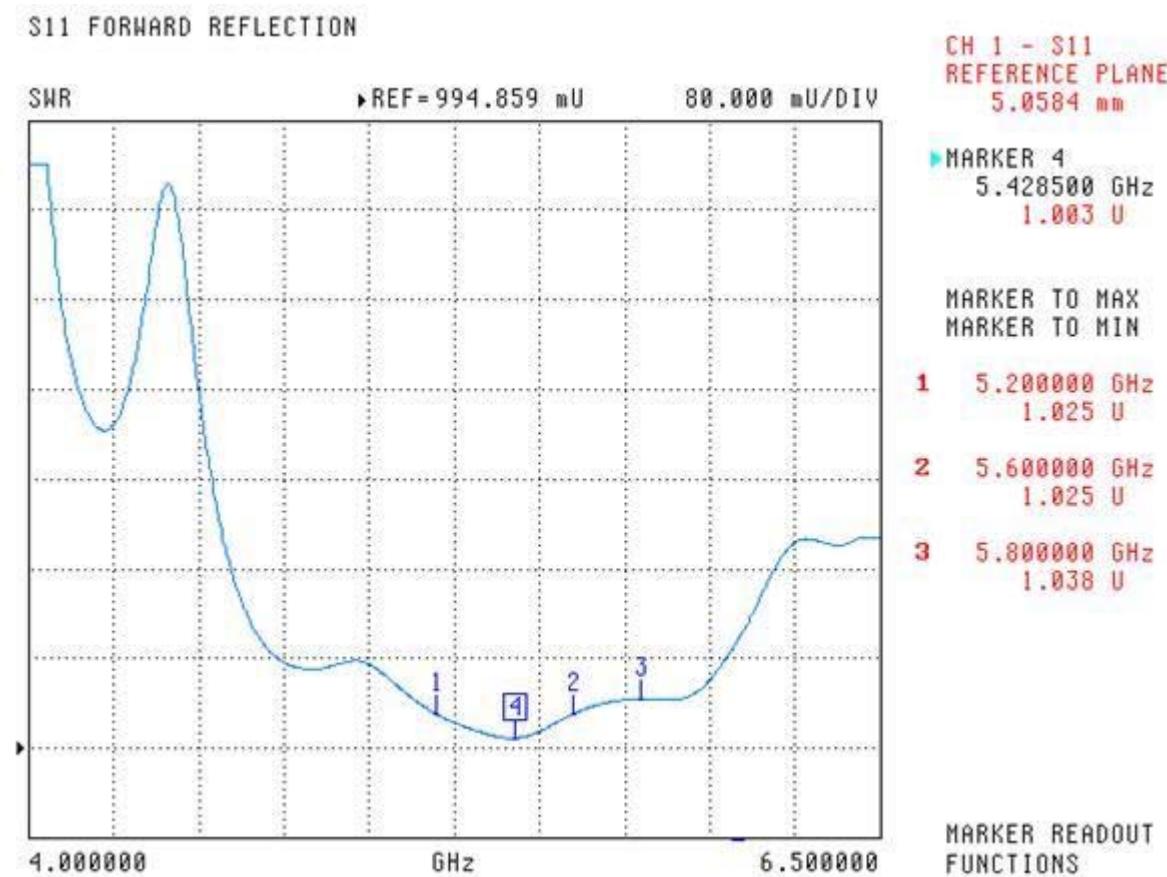
Electrical Calibration

Electrical Specification 5200MHz

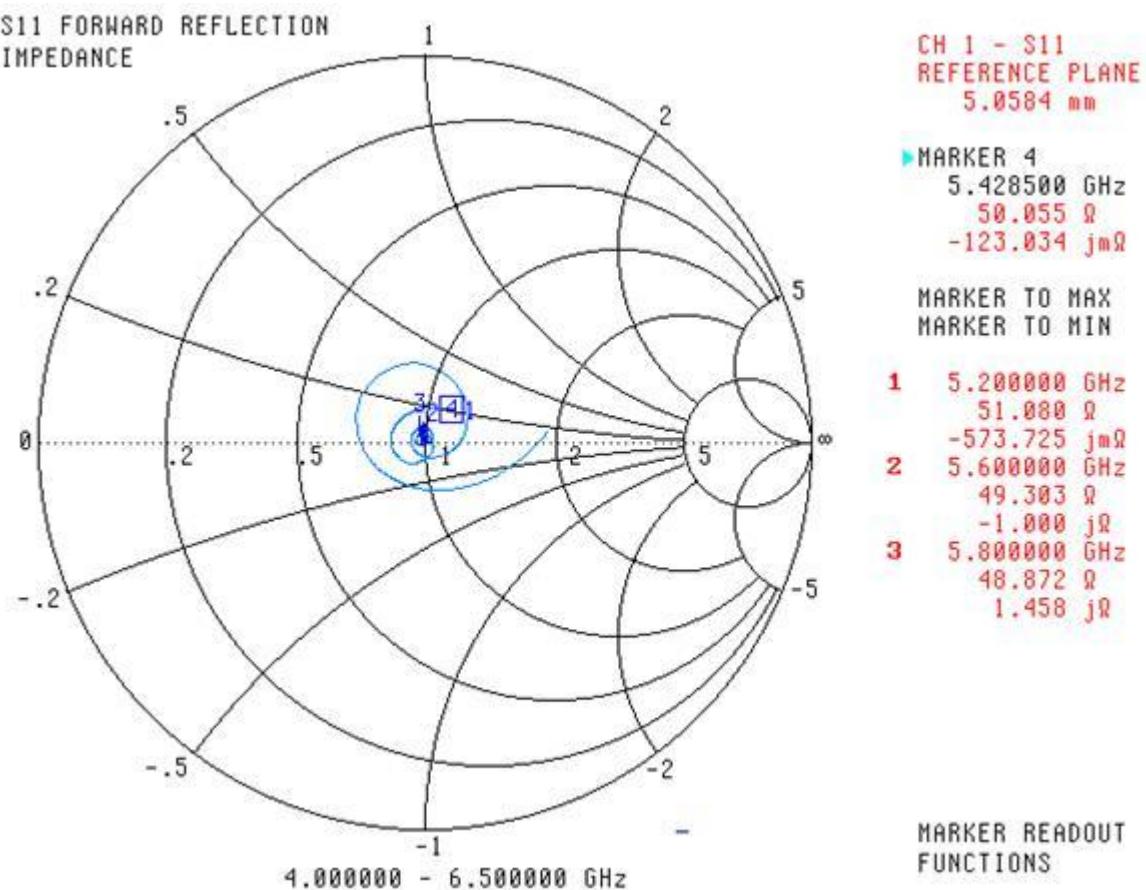
SWR: 1.025 U
Return Loss: -38.354 dB
Impedance: 51.08 Ω

Electrical Specification 5600MHz

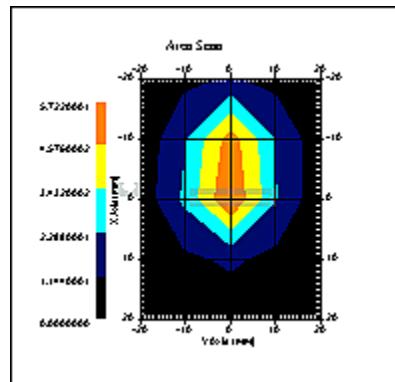
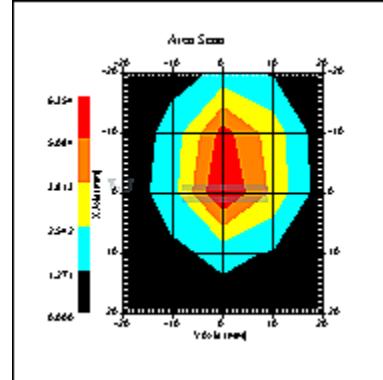
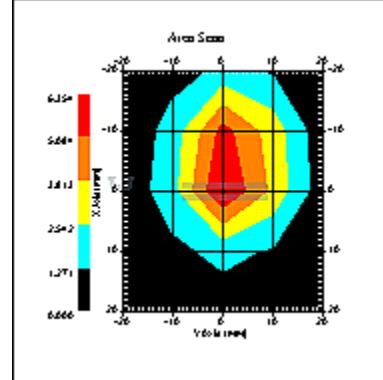

SWR: 1.025 U
Return Loss: -38.3 dB
Impedance: 49.303 Ω


Electrical Specification 5800MHz

SWR: 1.038 U
Return Loss: -34.609 dB
Impedance: 48.872 Ω


The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss




SWR

Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Frequency	1 Gram	10 Gram	Peak
5200 MHz	61.66	19.5	-
5600 MHz	65.03	21.2	-
5800 MHz	63.43	20.19	-

5200MHz**5600MHz****5800MHz**

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

Appendix F – Phantom Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: RFE-273

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the
NCL CALIBRATION LABORATORIES by qualified personnel following recognized
procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm \pm 10%
Pinna thickness is 6 mm \pm 10%

Resolution: 0.01 mm Calibrated to: 0.0 mm
Stability: OK Accuracy: < 0.1 mm

Calibrated By:

Karen K. Feb 17/04

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY
NEPEAN, ONTARIO
CANADA K2R 1E6

Division of APREL Lab.
TEL: (613) 820-4988
FAX: (613) 820-4161