TEST REPORT Test Report No.: 1-3959/17-01-02 ### **Testing Laboratory** #### **CTC advanced GmbH** Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken/Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com e-mail: mail@ctcadvanced.com #### **Accredited Test Laboratory:** RSS-102 Issue 5 The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01 ### **Applicant** #### Datalogic S.r.l. Via San Vitalino, 13 40012 Lippo di Calderara di Reno (Bologna)/ITALY Phone: +39 05 13 14 70 11 Contact: Eucarpio Guarisco e-mail: <u>eucarpio.guarisco@datalogic.com</u> Phone: +39 05 13 14 72 85 Fax: --- #### Manufacturer #### Datalogic S.r.l. Via San Vitalino, 13 40012 Lippo di Calderara di Reno (Bologna)/ITALY #### Test Standard/s Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR)in the Human Head from Wireless Communications Devices: Measurement Techniques Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) For further applied test standards please refer to section 3 of this test report. #### **Test Item** Kind of test item: Terminal Device type: portable device Model name: Joya Touch A6 S/N serial number: Z17P01264 (HH), Z17P01190 (Gun), Z17P01303 (Conducted) FCC-ID: U4GJTAWB IC: 3862E-JTAWB Hardware status: HW rev: 5 Software status: Android 6.0.1 Frequency: see technical details Antenna: 2 integrated antennas Battery option: BT-44 Li-ion 3.75V Battery / 3030mAh / 11.3Wh Module information: Simtech module SIMT 1502, incorporating Qualcomm WCN3660B Radio chipset 802.11a/b/g/n Test sample status: identical prototype Exposure category: general population / uncontrolled environment This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. | Test Report authorised: | lest performed: | |--|--| | | | | Alexander Hnatovskiy | Marco Scigliano | | Lab Manager Radio Communications & EMC | Testing Manager Radio Communications & EMC | | T - 1 | | C | 4 4 | _ | |--------------|----------|------|--------|---| | Ian | Δ | T CO | ntant | • | | Iab | | | ntents | 3 | 1 | 1 | Table o | of contents | 2 | |-----|---------------------|---|----| | 2 | Genera | Il information | 3 | | _ | 2.1 | Notes and disclaimer | | | | 2.1 | Application details | | | | 2.3 | Statement of compliance | | | | 2.4 | Technical details | | | | 2.5 | Transmitter and Antenna Operating Configurations | | | 3 | Test st | andards/ procedures references | 5 | | | 3.1 | RF exposure limits | | | 4 | Summa | ary of Measurement Results | | | 5 | | nvironment | | | 6 | | et-up | | | • | | • | | | | 6.1 | Measurement system | | | | 6.1.1
6.1.2 | System Description | | | | 6.1.3 | Probe description | | | | 6.1.4 | Phantom description | | | | 6.1.5 | Device holder description | | | | 6.1.6 | Scanning procedure | 12 | | | 6.1.7 | Spatial Peak SAR Evaluation | | | | 6.1.8 | Data Storage and Evaluation | | | | 6.1.9
6.1.10 | Tissue simulating liquids: dielectric properties | | | | 6.1.11 | Measurement uncertainty evaluation for SAR test | | | | 6.1.12 | Measurement uncertainty evaluation for System Check | | | | 6.1.13 | System check | | | | 6.1.14 | System check procedure | | | | 6.1.15 | System validation | 27 | | 7 | Detaile | d Test Results | 28 | | | 7.1 | Conducted power measurements | 28 | | | 7.1.1 | Conducted power measurements WLAN 2.4 GHz | | | | 7.1.2 | Conducted power measurements WLAN 5 GHz | | | | 7.1.1 | Conducted average power measurements Bluetooth 2.4 GHz | | | | 7.1.1 | Conducted average power measurements Bluetooth LE 2.4 GHz | | | | 7.1.2
7.2 | SAR measurement positions | | | | 7.2.1 | General description of test procedures | | | | 7.2.2 | Results overview | | | | 7.2.3 | Multiple Transmitter Information | | | 8 | Test ed | puipment and ancillaries used for tests | 36 | | 9 | Observ | vations | 36 | | Anr | nex A: | System performance check | 37 | | Anr | nex B: | DASY5 measurement results | 46 | | | Annex | B.1: WLAN 2450 MHz | 46 | | | Annex | B.2: WLAN 5 GHz | 49 | | | | B.3: BLUETOOTH 2450 MHz | | | | Annex | B.4: Liquid depth | 53 | | Anr | nex C: | Photo documentation | 55 | | Annex D: | Calibration parameters | 55 | |----------|------------------------|----| | Annex E: | RSS-102 Annex A and B | 55 | | Annex F: | Document History | 56 | | Annex G: | Further Information | 56 | #### 2 General information #### 2.1 Notes and disclaimer The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH. This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH". CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer. Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided. Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH. All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval. ## 2.2 Application details Date of receipt of order: 2017-06-14 Date of receipt of test item: 2017-06-16 Start of test: 2017-06-16 End of test: 2017-06-21 Person(s) present during the test: #### 2.3 Statement of compliance The SAR values found for the Joya Touch A6 Terminal are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1992, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure. ## 2.4 Technical details | Band tested for this test report | Technology | Lowest transmit frequency/MHz | Highest transmit frequency/MHz | Lowest receive Frequency/MHz | Highest receive Frequency/MHz | Kind of modulation | Power Class | Tested power control level | Test channel low | Test channel middle | Test channel high | Max. cond. avg output power/dBm | |----------------------------------|------------|-------------------------------|--------------------------------|------------------------------|-------------------------------|--------------------|-------------|----------------------------|------------------|---------------------|-------------------|---------------------------------| | \boxtimes | WLAN
US | 2412 | 2462 | 2412 | 2462 | CCK
OFDM | | max | 1 | 6 | 11 | 15.7 | | | WLAN | 5180 | 5240 | 5180 | 5240 | OFDM | | max | | 40 | | 11.4 | | | WLAN | 5260 | 5320 | 5260 | 5320 | OFDM | | max | | 56 | | 10.4 | | | WLAN | 5500 | 5700 | 5500 | 5700 | OFDM | | max | | | 140 | 11.5 | | \boxtimes | WLAN | 5745 | 5825 | 5745 | 5825 | OFDM | | max | 149 | | | 10.5 | | \boxtimes | ВТ | 2402 | 2480 | 2402 | 2480 | GFSK | 3 | max | 0 | 39 | 78 | 5.3 | ## 2.5 Transmitter and Antenna Operating Configurations | Simultaneous transmission conditions | | | | | |--------------------------------------|---|---------------------|--|--| | WLAN 5 GHz | + | BT/BLE ¹ | | | Table 1: Simultaneous transmission conditions BLE¹ - Bluetooth low energy # 3 Test standards/ procedures references | Test Standard | Version | Test Standard Description | |-------------------------------|---------------------|--| | IEEE 1528-2013 | 2013-06 | Recommended Practice for Determining the Peak Spatial-
Average Specific Absorption Rate (SAR) in the Human
Head from Wireless Communications Devices:
Measurement Techniques | | RSS-102 Issue 5 | 2015-03 | Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) | | Canada's Safety
Code No. 6 | 2015-06 | Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz | | IEEE Std. C95-3 | 2002 | IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF
and Microwave | | IEEE Std. C95-1 | 2005 | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. | | IEC 62209-2 | 2010 | Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices. Human models, instrumentation, and procedures. Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) | | FCC KDBs: | | | | KDB 865664D01v01 | August 7,
2015 | FCC OET SAR measurement requirements 100 MHz to 6 GHz | | KDB 865664D02v01 | October 23,
2015 | RF Exposure Compliance Reporting and Documentation Considerations | | KDB 447498D01v06 | October 23,
2015 | Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies | | KDB 648474D04v01 | October 23,
2015 | SAR Evaluation Considerations for Wireless Handsets | | KDB 248227D01v02 | October 23,
2015 | SAR Measurement Procedures for 802.11 a/b/g Transmitters | ## 3.1 RF exposure limits | Human Exposure | Uncontrolled Environment General Population | Controlled Environment Occupational | |--|---|-------------------------------------| | Spatial Peak SAR*
(Brain and Trunk) | 1.60 mW/g | 8.00 mW/g | | Spatial Average SAR** (Whole Body) | 0.08 mW/g | 0.40 mW/g | | Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist) | 4.00 mW/g | 20.00 mW/g | Table 2: RF exposure limits The limit applied in this test report is shown in bold letters #### Notes: - The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time - ** The Spatial Average value of the SAR averaged over the whole body. - *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). ## 4 Summary of Measurement Results | \boxtimes | No deviations from the technical specifications ascertained | | | |---|---|-------|-------| | | Deviations from the technical specifications ascertained | | | | Maximum SAR value reported for 1g (W/kg) | | | | | DTS UNII | | | UNII | | head | | 0.285 | 0.146 | | body worn | 0 mm distance | 0.828 | 0.538 | | collocated SSAR evaluation (WLAN 5GHz + BT) | | | 0.602 | NOTE: Only BT2450MHz and WLAN5GHz can transmit simultaneous #### 5 Test Environment Ambient temperature: $20 - 24 \, ^{\circ}\text{C}$ Tissue Simulating liquid: $20 - 24 \, ^{\circ}\text{C}$ Relative humidity content: 40 - 50 % Air pressure: not relevant for this kind of testing Power supply: 230 V / 50 Hz Exact temperature values for each test are shown in the table(s) under 7.1 and/or on the measurement plots. #### 6 Test Set-up ### 6.1 Measurement system ## 6.1.1 System Description - The DASY system for performing compliance tests consists of the following items: - A standard high precision 6-axis robot (Stäubli RX/TX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE). - A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. - A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY measurement server. - The DASY measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 7. - DASY software and SEMCAD data evaluation software. - Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc. - The generic twin phantom enabling the testing of left-hand and right-hand usage. - The triple flat and eli phantom for the testing of handheld and body-mounted wireless devices. - The device holder for handheld mobile phones and mounting device adaptor for laptops - Tissue simulating liquid mixed according to the given recipes. - System check dipoles allowing to validate the proper functioning of the system. ## 6.1.2 Test environment The DASY measurement system is placed in a laboratory room within an environment which avoids influence on SAR measurements by ambient electromagnetic fields and any reflection from the environment. The pictures at the beginning of the photo documentation show a complete view of the test environment. The system allows the measurement of SAR values larger than 0.005 mW/g. ## 6.1.3 Probe description | Isotropic E-Field Probe ES3DV3 for Dosimetric Measurements | | | | | |--|---|--|--|--| | Te | Technical data according to manufacturer information | | | | | Construction | Symmetrical design with triangular core | | | | | | Interleaved sensors | | | | | | Built-in shielding against static charges | | | | | | PEEK enclosure material (resistant to organic solvents, | | | | | | e.g., butyl diglycol) | | | | | Calibration | Calibration certificate in Appendix D | | | | | Frequency | 10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 3 | | | | | | GHz) | | | | | Directivity | ± 0.2 dB in HSL (rotation around probe axis) | | | | | | ± 0.3 dB in HSL (rotation normal to probe axis) | | | | | Dynamic range | 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB | | | | | Dimensions | Overall length: 330 mm | | | | | | Tip length: 20 mm | | | | | | Body diameter: 12 mm | | | | | | Tip diameter: 3.9 mm | | | | | | Distance from probe tip to dipole centers: 2.0 mm | | | | | Application | General dosimetry up to 3 GHz | | | | | | Compliance tests of mobile phones | | | | | | Fast automatic scanning in arbitrary phantoms (ES3DV3) | | | | | Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements | | | | | |--|--|--|--|--| | Techni | Technical data according to manufacturer information | | | | | Construction | Symmetrical design with triangular core | | | | | | Interleaved sensors | | | | | | Built-in shielding against static charges | | | | | | PEEK enclosure material (resistant to organic solvents, e.g., | | | | | | DGBE) | | | | | Calibration | ISO/IEC 17025 calibration service available. | | | | | Frequency | 10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to | | | | | | 6 GHz) | | | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis) | | | | | | ± 0.5 dB in tissue material (rotation normal to probe axis) | | | | | Dynamic range | 10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically<1 | | | | | | μW/g) | | | | | Dimensions | Overall length: 337 mm (Tip: 20mm) | | | | | | Tip length: 2.5 mm (Body: 12mm) | | | | | | Typical distance from probe tip to dipole centers: 1mm | | | | | Application | High precision dosimetric measurements in any exposure | | | | | | scenario (e.g., very strong gradient fields). Only probe which | | | | | | enables compliance testing for frequencies up to 6 GHz with | | | | | | precision of better 30%. | | | | ## 6.1.4 Phantom description The used SAM Phantom meets the requirements specified in FCC KDB865664 D01 for Specific Absorption Rate (SAR) measurements. The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm. Triple Modular Phantom consists of three identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Covers prevent evaporation of the liquid. Phantom material is resistant to DGBE based tissue simulating liquids. ## 6.1.5 Device holder description The DASY device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used. Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM. ## 6.1.6 Scanning procedure - The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files
and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions. - The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %. - The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement. - The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges ≤ 2GHz is 15 mm in x- and y- dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table: | Area scan grid spacing for different frequency ranges | | | | | |---|--------------|--|--|--| | Frequency range | Grid spacing | | | | | ≤ 2 GHz | ≤ 15 mm | | | | | 2 – 4 GHz | ≤ 12 mm | | | | | 4 – 6 GHz | ≤ 10 mm | | | | Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B. • A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x, y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table: | Zooi | <u>m scan grid spacing and v</u> | olume for different fre | quency ranges | |-----------------|----------------------------------|-------------------------|--------------------------| | Frequency range | Grid spacing for x, y axis | Grid spacing for z axis | Minimum zoom scan volume | | ≤ 2 GHz | ≤ 8 mm | ≤ 5 mm | ≥ 30 mm | | 2 – 3 GHz | ≤ 5 mm* | ≤ 5 mm | ≥ 28 mm | | 3 – 4 GHz | ≤ 5 mm* | ≤ 4 mm | ≥ 28 mm | | 4 – 5 GHz | ≤ 4 mm* | ≤ 3 mm | ≥ 25 mm | | 5 – 6 GHz | ≤ 4 mm* | ≤ 2 mm | ≥ 22 mm | ^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7. ## 6.1.7 Spatial Peak SAR Evaluation The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages. - The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'. - The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR - values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube. - All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found. ### **Extrapolation** The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other. #### Interpolation The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff]. #### **Volume Averaging** At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average. #### **Advanced Extrapolation** DASY uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes. ## 6.1.8 Data Storage and Evaluation #### Data Storage The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4", ".DA5x". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### Data Evaluation by SEMCAD Device parameters: The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: - Sensitivity Normi, aio, ai1, ai2 Conversion factor ConvF_i Diode compression point Dcpi Frequency f $\begin{array}{ccc} & - \operatorname{Crest} \operatorname{factor} & \operatorname{cf} \\ \operatorname{Media} \operatorname{parameters} & - \operatorname{Conductivity} & \sigma \end{array}$ - Density ho These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot cf/dcp_i$$ with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$ H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$ with V_i = compensated signal of channel i (i = x, y, z)Norm_i = sensor sensitivity of channel i (i = x, y, z) [mV/(V/m)²] for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of
channel i in V/m H_i = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$ The primary field data are used to calculate the derived field units. $$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$ with SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field. $$P_{pwe} = E_{tot}^2 / 3770$$ or $P_{pwe} = H_{tot}^2 \cdot 37.7$ with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m ## 6.1.9 Tissue simulating liquids: dielectric properties The following materials are used for producing the tissue-equivalent materials. (Liquids used for tests described in section 7. are marked with \boxtimes): | Ingredients (% of weight) | | Frequency (MHz) | | | | | | | | | | | | | | |---------------------------|----------|-----------------|-------|-------|----------|----------|----------|--------|---------|--|--|--|--|--|--| | frequency band | <u> </u> | 750 | □ 835 | 900 | <u> </u> | <u> </u> | <u> </u> | ⊠ 2450 | ⊠ 5000 | | | | | | | | Water | 38.56 | 41.1 | 41.45 | 40.92 | 54.37 | 55.35 | 55.19 | 54.7 | 64 - 78 | | | | | | | | Salt (NaCl) | 3.95 | 1.4 | 1.45 | 1.48 | 0.63 | 0.38 | 0.19 | 0.0 | 2 - 3 | | | | | | | | Sugar | 56.32 | 57.0 | 56.0 | 56.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | HEC | 0.98 | 0.2 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | Bactericide | 0.19 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | | | | | | | | Tween 20 | 0.0 | 0.0 | 0.0 | 0.0 | 44.90 | 44.17 | 44.52 | 45.2 | 0.0 | | | | | | | | Emulsifiers | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 - 15 | | | | | | | | Mineral Oil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11 - 18 | | | | | | | Table 3: Head tissue dielectric properties | Ingredients (% of weight) | | Frequency (MHz) | | | | | | | | | | | | | |---------------------------|-------|-----------------|-------|-------|----------|--------|--------|--------|---------|--|--|--|--|--| | frequency band | □ 450 | ☐ 7 50 | □ 835 | □ 900 | <u> </u> | □ 1750 | □ 1900 | ⊠ 2450 | ⊠ 5000 | | | | | | | Water | 51.16 | 51.7 | 52.4 | 56.0 | 71.40 | 71.45 | 71.56 | 71.65 | 64 - 78 | | | | | | | Salt (NaCl) | 1.49 | 0.9 | 1.40 | 0.76 | 0.55 | 0.5 | 0.39 | 0.3 | 2 - 3 | | | | | | | Sugar | 46.78 | 47.2 | 45.0 | 41.76 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | HEC | 0.52 | 0.0 | 1.0 | 1.21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | Bactericide | 0.05 | 0.1 | 0.1 | 0.27 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | | | | | | | Tween 20 | 0.0 | 0.0 | 0.0 | 0.0 | 27.95 | 27.95 | 27.95 | 27.95 | 0.0 | | | | | | | Emulsifiers | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 - 15 | | | | | | | Mineral Oil | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11 - 18 | | | | | | Table 4: Body tissue dielectric properties Salt: 99+% Pure Sodium Chloride Water: De-ionized, $16M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose Sugar: 98+% Pure Sucrose Tween 20: Polyoxyethylene (20) sorbitan monolaurate ## 6.1.10 Tissue simulating liquids: parameters | Liquid | Eroa | Target he | ead tissue | М | easurem | ent head | l tissue | | Magauramant | |---------------|----------------|--------------|--------------|--------------|---------|-----------------|----------|-------|------------------| | Liquid
HSL | Freq.
(MHz) | Permittivity | Conductivity | Permittivity | Dev. | Condu | ctivity | Dev. | Measurement date | | TIOL | (1711 12) | Femiliary | (S/m) | Femilitimity | Dev. | ٤" | (S/m) | Dev. | date | | 2450 | 2402 | 39.29 | 1.76 | 38.4 | -2.3% | 12.69 | 1.70 | -3.5% | 2017-06-21 | | | 2412 | 39.27 | 1.77 | 38.9 | -0.9% | 12.69 | 1.70 | -3.6% | | | | 2437 | 39.22 | 1.79 | 38.2 | -2.5% | 12.82 | 1.74 | -2.8% | | | | 2442 | 39.21 | 1.79 | 38.2 | -2.6% | 12.82 | 1.74 | -2.9% | | | | 2450 | 39.20 | 1.80 | 38.2 | -2.7% | 12.83 | 1.75 | -2.9% | | | | 2462 | 39.18 | 1.81 | 38.2 | -2.6% | 12.87 | 1.76 | -2.8% | | | | 2472 | 39.17 | 1.82 | 38.2 | -2.6% | 12.97 | 1.78 | -2.2% | | | | 2480 | 39.16 | 1.83 | 38.1 | -2.7% | 13.03 | 1.80 | -1.9% | | | 5GHz | 5180 | 36.01 | 4.63 | 36.9 | 2.5% | 16.05 | 4.62 | -0.2% | 2017-06-21 | | | 5200 | 35.99 | 4.66 | 37.0 | 2.7% | 16.07 | 4.65 | -0.1% | | | | 5260 | 35.92 | 4.72 | 36.8 | 2.4% | 16.13 | 4.72 | 0.1% | | | | 5500 | 35.64 | 4.96 | 36.4 | 2.0% | 16.16 | 4.94 | -0.4% | | | | 5700 | 35.41 | 5.17 | 36.1 | 1.9% | 16.15 | 5.12 | -0.9% | | | | 5800 | 35.30 | 5.27 | 36.0 | 2.0% | 16.21 | 5.23 | -0.8% | | | | 5805 | 35.30 | 5.27 | 36.0 | 2.1% | 16.20 | 5.23 | -0.7% | | Table 5: Parameter of the head tissue simulating liquid | Liquid | Eroa | Target bo | ody tissue | M | leasurem | ent body | tissue | | Magauramant | |---------------|-------------|--------------|--------------|--------------|----------|-----------------|---------|--------|------------------| | Liquid
MSL | Freq. (MHz) | Permittivity | Conductivity | Permittivity | Dov. 9/ | Condu | ctivity | Dev. % | Measurement date | | IVIOL | (1011 12) | Permittivity | (S/m) | Permittivity | Dev. % | ۳3 | (S/m) | Dev. % | uale | | 2450 | 2402 | 52.76 | 1.90 | 51.1 | -3.2% | 14.81 | 1.98 | 3.9% | 2017-06-19 | | | 2412 | 52.75 | 1.91 | 51.1 | -3.2% | 14.84 | 1.99 | 4.0% | | | | 2437 | 52.72 | 1.94 | 51.0 | -3.2% | 14.92 | 2.02 | 4.4% | | | | 2442 | 52.71 | 1.94 | 51.0 | -3.2% | 14.95 | 2.03 | 4.6% | | | | 2450 | 52.70 | 1.95 | 51.0 | -3.2% | 14.98 | 2.04 | 4.7% | | | | 2462 | 52.68 | 1.97 | 51.0 | -3.3% | 15.01 | 2.06 | 4.5% | | | | 2472 | 52.67 | 1.98 | 51.0 | -3.3% | 15.01 | 2.06 | 4.2% | | | | 2480 | 52.66 | 1.99 | 50.9 | -3.3% | 15.02 | 2.07 | 4.0% | | | 5GHz | 5180 | 49.04 | 5.28 | 48.0 | -2.0% | 18.64 | 5.37 | 1.8% | 2017-06-17 | | | 5200 | 49.01 | 5.30 | 48.0 | -2.0% | 18.71 | 5.41 | 2.1% | | | | 5260 | 48.93 | 5.37 | 47.6 | -2.8% | 18.73 | 5.48 | 2.1% | | | | 5500 | 48.61 | 5.65 | 47.2 | -2.9% | 18.98 | 5.81 | 2.8% | | | | 5700 | 48.34 | 5.88 | 46.9 | -3.0% | 18.92 | 6.00 | 2.0% | | | | 5800 | 48.20 | 6.00 | 46.9 | -2.8% | 18.93 | 6.11 | 1.8% | | | | 5805 | 48.20 | 6.00 | 46.9 | -2.7% | 18.97 | 6.13 | 2.1% | | Table 6: Parameter of the body tissue simulating liquid Note: The dielectric properties have been measured using the contact probe method at 22°C. ## 6.1.11 Measurement uncertainty evaluation for SAR test | | DASY5 | Uncertainty | / Budg | et | | | | | |------------------------------|--------------|--------------|---------|------|---------|------------|---------------|--------------------------------| | According to IEEE | | · · | _ | | MHz - 3 | 3 GHz rang | е | | | Source of | certainty Va | Probability | Divisor | Ci | Ci | Standard | d Uncertainty | v _i ² or | | uncertainty | ± % | Distribution | | (1g) | (10g) | ± %, (1g) | ± %, (10g) | V _{eff} | | Measurement System | | | | | | | | | | Probe calibration | ± 6.0 % | | 1 | 1 | 1 | ± 6.0 % | | 8 | | Axial isotropy | ± 4.7 % | Rectangular | √ 3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | 8 | | Hemispherical isotropy | ± 9.6 % | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | 8 | | Boundary effects | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.6 % | ± 0.6 % | 8 | | Probe linearity | ± 4.7 % | Rectangular | √ 3 | 1 | 1 | ± 2.7 % | ± 2.7 % | 8 | | System detection limits | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.6 % | ± 0.6 % | 8 | | Readout electronics | ± 0.3 % | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | 8 | | Response time | ± 0.8 % | Rectangular | √ 3 | 1 | 1 | ± 0.5 % | ± 0.5 % | 8 | | Integration time | ± 2.6 % | Rectangular | √ 3 | 1 | 1 | ± 1.5 % | ± 1.5 % | 8 | | RF ambient noise | ± 3.0 % | Rectangular | √ 3 | 1 | 1 | ± 1.7 % | ± 1.7 % | 8 | | RF ambient reflections | ± 3.0 % | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | 8 | | Probe positioner | ± 0.4 % | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | 8 | | Probe positioning | ± 2.9 % | Rectangular | √ 3 | 1 | 1 | ± 1.7 % | ± 1.7 % | 8 | | Max.SAR evaluation | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.6 % | ± 0.6 % | 8 | | Test Sample Related | | | | | | | | | | Device positioning | ± 2.9 % | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | Device holder uncertainty | ± 3.6 % | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | 5 | | Power drift | ± 5.0 % | Rectangular | √ 3 | 1 | 1 | ± 2.9 % | ± 2.9 % | 8 | | Phantom and Set-up | | | | | | | | | | Phantom uncertainty | ± 4.0 % | Rectangular | √ 3 | 1 | 1 | ± 2.3 % | | 8 | | Liquid conductivity (target) | ± 5.0 % | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | | 8 | | Liquid conductivity (meas.) | ± 5.0 % | Rectangular | √ 3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | 8 | | Liquid permittivity (target) | ± 5.0 % | | √ 3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | 8 | | Liquid permittivity (meas.) | ± 5.0 % | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | 8 | | Combined Std. | | | | | | ± 11.1 % | ± 10.8 % | 387 | | Expanded Std. | | | | | | ± 22.1 % | ± 21.6 % | | Table 7: Measurement uncertainties Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2003. The budget is valid for 2G and 3G communication signals and frequency range 300MHz - 3 GHz. For these conditions it represents a worst-case analysis. For specifc tests and configurations, the uncertainty could be considerable smaller. | Relative | DASY5 Un | certainty Bu | ıdaet f | for S | ΔR Te | ete | | | |-----------------------------|--------------|--------------|---------|-------|-------|------------------|------------------|--------------------------------| | According to IEE | | _ | • | | | | | | | | certainty Va | | Divisor | Ci | Ci | | Uncertainty | v _i ² or | | Error Description | ± % | Distribution | | (1g) | (10g) | ± %, (1g) | ± %, (10g) | V _{eff} | | Measurement System | | | | |
| | | | | Probe calibration | ± 6.0 % | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | ∞ | | Axial isotropy | ± 4.7 % | Rectangular | √ 3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | ∞ | | Hemispherical isotropy | ± 9.6 % | Rectangular | √ 3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | ∞ | | Boundary effects | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.6 % | ± 0.6 % | ∞ | | Probe linearity | ± 4.7 % | Rectangular | √ 3 | 1 | 1 | ± 2.7 % | ± 2.7 % | ∞ | | System detection limits | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.6 % | ± 0.6 % | ∞ | | Modulation Response | ± 2.4 % | Rectangular | √ 3 | 1 | 1 | ± 1.4 % | ± 1.4 % | ∞ | | Readout electronics | ± 0.3 % | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | ∞ | | Response time | ± 0.8 % | Rectangular | √ 3 | 1 | 1 | ± 0.5 % | ± 0.5 % | ∞ | | Integration time | ± 2.6 % | Rectangular | √ 3 | 1 | 1 | ± 1.5 % | ± 1.5 % | 8 | | RF ambient noise | ± 3.0 % | Rectangular | √ 3 | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | RF ambient reflections | ± 3.0 % | Rectangular | √ 3 | 1 | 1 | ± 1.7 % | ± 1.7 % | 8 | | Probe positioner | ± 0.4 % | Rectangular | √ 3 | 1 | 1 | ± 0.2 % | ± 0.2 % | ∞ | | Probe positioning | ± 2.9 % | Rectangular | √ 3 | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | Max. SAR evaluation | ± 2.0 % | Rectangular | √ 3 | 1 | 1 | ± 1.2 % | ± 1.2 % | ∞ | | Test Sample Related | | | | | | | | | | Device positioning | ± 2.9 % | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | Device holder uncertainty | ± 3.6 % | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | 5 | | Power drift | ± 5.0 % | Rectangular | √ 3 | 1 | 1 | ± 2.9 % | ± 2.9 % | ∞ | | Phantom and Set-up | | | | | | | | | | Phantom uncertainty | ± 6.1 % | Rectangular | √ 3 | 1 | 1 | ± 3.5 % | ± 3.5 % | ∞ | | SAR correction | ± 1.9 % | Rectangular | √ 3 | 1 | 0.84 | ± 1.1 % | ± 0.9 % | 8 | | Liquid conductivity (meas.) | ± 5.0 % | Rectangular | √ 3 | 0.78 | 0.71 | ± 2.3 % | ± 2.0 % | 8 | | Liquid permittivity (meas.) | ± 5.0 % | Rectangular | √ 3 | 0.26 | 0.26 | ± 0.8 % | ± 0.8 % | ∞ | | Temp. Unc Conductivity | ± 3.4 % | Rectangular | √ 3 | 0.78 | 0.71 | ± 1.5 % | ± 1.4 % | ∞ | | Temp. Unc Permittivity | ± 0.4 % | Rectangular | √3 | 0.23 | 0.26 | ± 0.1 % | ± 0.1 % | ∞ | | Combined Uncertainty | | | | | | ± 11.3 % | ± 11.3 % | 330 | | Expanded Std. | | | | | | ± 22.7 % | ± 22.5 % | | | Uncertainty | | | | | | - LL.1 /0 | ± 22.5 /6 | | Table 8: Measurement uncertainties Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2013 and IEC 62209-1/2011 standards. The budget is valid for the frequency range 300MHz -3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller. | | | DAS | Y5 (| Uncertainty | Budg | et | | | | | | | |-----------------------------|-------|-------|------|----------------|---------|------|--------|------|---------------|------|-----------|--------------------------------| | According to | | | | 2/2010 for the | _ | | GHz ra | ange | 9 | | | | | Source of | Un | certa | inty | Probability | Divisor | Ci | Ci | 5 | Standard | l Un | certainty | v _i ² or | | uncertainty | | Value | 9 | Distribution | | (1g) | (10g) | ± 9 | %, (1g) | ± % | %, (10g) | V _{eff} | | Measurement System | | | | | | | | | | | | | | Probe calibration | ± | 6.6 | % | Normal | 1 | 1 | 1 | ± | 6.6 % | ± | 6.6 % | ∞ | | Axial isotropy | ± | 4.7 | % | Rectangular | √ 3 | 0.7 | 0.7 | ± | 1.9 % | ± | 1.9 % | 8 | | Hemispherical isotropy | ± | 9.6 | % | Rectangular | √ 3 | 0.7 | 0.7 | ± | 3.9 % | ± | 3.9 % | 8 | | Boundary effects | ± | 2.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.2 % | ± | 1.2 % | ∞ | | Probe linearity | ± | 4.7 | % | Rectangular | √ 3 | 1 | 1 | ± | 2.7 % | ± | 2.7 % | ∞ | | System detection limits | ± | 1.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | 8 | | Modulation Response | ± | 2.4 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.4 % | ± | 1.4 % | ∞ | | Readout electronics | ± | 0.3 | % | Normal | 1 | 1 | 1 | ± | 0.3 % | ± | 0.3 % | ∞ | | Response time | ± | 0.8 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.5 % | ± | 0.5 % | 8 | | Integration time | ± | 2.6 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.5 % | ± | 1.5 % | ∞ | | RF ambient noise | ± | 3.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.7 % | ± | 1.7 % | ∞ | | RF ambient reflections | ± | 3.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.7 % | ± | 1.7 % | 8 | | Probe positioner | ± | 8.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.5 % | ± | 0.5 % | 8 | | Probe positioning | ± | 6.7 | % | Rectangular | √ 3 | 1 | 1 | ± | 3.9 % | ± | 3.9 % | 8 | | Post-processing | ± | 4.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 2.3 % | ± | 2.3 % | 8 | | Test Sample Related | | | | | | | | | | | | | | Device positioning | ± | 2.9 | % | Normal | 1 | 1 | 1 | ± | 2.9 % | ± | 2.9 % | 145 | | Device holder uncertainty | ± | 3.6 | % | Normal | 1 | 1 | 1 | ± | 3.6 % | ± | 3.6 % | 5 | | Power drift | ± | 5.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 2.9 % | ± | 2.9 % | 8 | | Phantom and Set-up | | | | | | | | | | | | | | Phantom uncertainty | ± | 7.9 | % | Rectangular | √3 | 1 | 1 | ± | 4.6 % | ± | 4.6 % | ∞ | | SAR correction | ± | 1.9 | % | Rectangular | √3 | 1 | 0.84 | ± | 1.1 % | ± | 0.9 % | ∞ | | Liquid conductivity (meas.) | ± | 5.0 | % | Rectangular | √ 3 | 0.78 | 0.71 | ± | 2.3 % | ± | 2.0 % | 8 | | Liquid permittivity (meas.) | ± | 5.0 | % | Rectangular | √3 | 0.26 | 0.26 | ± | 0.8 % | ± | 0.8 % | ∞ | | Temp. Unc Conductivity | ± | 3.4 | % | Rectangular | √3 | 0.78 | 0.71 | ± | 1.5 % | ± | 1.4 % | ∞ | | Temp. Unc Permittivity | ± | 0.4 | % | Rectangular | √ 3 | 0.23 | 0.26 | ± | 0.1 % | ± | 0.1 % | 8 | | Combined Uncertainty | | | | | | | | ± | 12.7 % | ± | 12.6 % | 330 | | Expanded Std. | | | | | | | | | 25.4 % | | 25.3 % | | | Uncertainty | | | | | | | | ± | 25.4 % | ± | 23.3 % | | | Table 9: Measurement uncert | ainti | 00 | | | | | | | | | | | Table 9: Measurement uncertainties. Worst-Case uncertainty budget for DASY5 assessed according to according to IEC 62209-2/2010 standard. The budget is valid for the frequency range 300MHz - 6 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller. | Polat | ive DASV5 | Uncertainty | , Bude | not fo | r SAR | Tasts | | | |------------------------------|--------------|---------------|---------|--------|-------|-----------|-------------|--------------------------------| | | | <u>-</u> | | | | | | | | According | to IEEE 1528 | /2003 and IEC | 1 | 1 | 1 | | | | | | Uncertainty | Probability | Divisor | Ci | Ci | Standard | Uncertainty | v _i ² or | | Error Description | Value | Distribution | | (1g) | (10g) | ± %, (1g) | ± %, (10g) | V _{eff} | | Measurement System | | | | | | | | | | Probe calibration | ± 6.6 % | Normal | 1 | 1 | 1 | ± 6.6 % | | ∞ | | Axial isotropy | ± 4.7 % | Rectangular | √ 3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | ∞ | | Hemispherical isotropy | ± 9.6 % | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | 8 | | Boundary effects | ± 2.0 % | Rectangular | √ 3 | 1 | 1 | ± 1.2 % | ± 1.2 % | ∞ | | Probe linearity | ± 4.7 % | Rectangular | √ 3 | 1 | 1 | ± 2.7 % | ± 2.7 % | 8 | | System detection limits | ± 1.0 % | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | 8 | | Readout electronics | ± 0.3 % | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | 8 | | Response time | ± 0.8 % | Rectangular | √ 3 | 1 | 1 | ± 0.5 % | ± 0.5 % | 8 | | Integration time | ± 2.6 % | Rectangular | √ 3 | 1 | 1 | ± 1.5 % | ± 1.5 % | 8 | | RF ambient noise | ± 3.0 % | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | 8 | | RF ambient reflections | ± 3.0 % | Rectangular | √ 3 | 1 | 1 | ± 1.7 % | ± 1.7 % | 8 | | Probe positioner | ± 0.8 % | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | 8 | | Probe positioning | ± 6.7 % | Rectangular | √3 | 1 | 1 | ± 3.9 % | ± 3.9 % | 8 | | Max. SAR evaluation | ± 4.0 % | Rectangular | √ 3 | 1 | 1 | ± 2.3 % | ± 2.3 % | ∞ | | Test Sample Related | | | | | | | | | | Device positioning | ± 2.9 % | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | Device holder uncertainty | ± 3.6 % | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | 5 | | Power drift | ± 5.0 % | Rectangular | √ 3 | 1 | 1 | ± 2.9 % | ± 2.9 % | 8 | | Phantom and Set-up | | | | | | | | | | Phantom uncertainty | ± 4.0 % | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | 8 | | Liquid conductivity (target) | ± 5.0 % | Rectangular | √ 3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | 8 | | Liquid conductivity (meas.) | ± 5.0 % | Rectangular | √ 3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | 8 | | Liquid permittivity (target) | ± 5.0 % | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | 8 | | Liquid permittivity (meas.) | ± 5.0 % | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | 8 | | Combined Uncertainty | | | | | | ± 12.1 % | ± 11.9 % | 330 | | Expanded Std. | | | | | | | ± 23.8 % | | | Uncertainty | | | | | | ± 24.3 % | ± 23.0 % | | | Table 10: Measurement unce | 4 - 1 - 41 | | | | | | | | Table 10: Measurement uncertainties Worst-Case uncertainty budget for DASY5 valid for 3G communication signals and frequency range 3 - 6 GHz. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerable smaller. | Relat | ive | DA | SY5 | Uncertaint | y Bud | get fo | or SAF | R T | ests | | | | |-----------------------------|-------|-------|------|----------------|---------|---------------------|---------|-----|----------------|----------|----------------|--------------------------------| | Accordin | g to | IEE | E 15 | 28/2013 and II | EC6220 | 9-1/20 ⁻ | 11 (3-6 | GHz | z range) | | | | | | Un | certa | inty | Probability | Divisor | Ci | Ci | St | andard l | Jnce | ertainty | v _i ² or | | Error Description | | Value | Э | Distribution | | (1g) | (10g) | ± | %, (1g) | ± % | %, (10g) | V _{eff} | | Measurement System | | | | | | | | | | | | | | Probe calibration | ± | 6.6 | % | Normal | 1 | 1 | 1 | ± | 6.6 % | ± | 6.6 % | ∞ | | Axial isotropy | ± | 4.7 | % | Rectangular | √ 3 | 0.7 | 0.7 | ± | 1.9 % |
± | 1.9 % | - 8 | | Hemispherical isotropy | ± | 9.6 | % | Rectangular | √ 3 | 0.7 | 0.7 | ± | 3.9 % | ± | 3.9 % | 8 | | Boundary effects | ± | 2.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.2 % | ± | 1.2 % | ∞ | | Probe linearity | ± | 4.7 | % | Rectangular | √ 3 | 1 | 1 | ± | 2.7 % | ± | 2.7 % | 8 | | System detection limits | ± | 1.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | 8 | | Modulation Response | ± | 2.4 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.4 % | Ħ | 1.4 % | 8 | | Readout electronics | ± | 0.3 | % | Normal | 1 | 1 | 1 | ± | 0.3 % | ± | 0.3 % | 8 | | Response time | ± | 0.8 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.5 % | ± | 0.5 % | ∞ | | Integration time | ± | 2.6 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.5 % | ± | 1.5 % | 8 | | RF ambient noise | ± | 3.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.7 % | +1 | 1.7 % | 8 | | RF ambient reflections | ± | 3.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.7 % | + | 1.7 % | 8 | | Probe positioner | ± | 8.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.5 % | + | 0.5 % | ∞ | | Probe positioning | ± | 6.7 | % | Rectangular | √ 3 | 1 | 1 | ± | 3.9 % | ± | 3.9 % | 8 | | Max. SAR evaluation | ± | 4.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 2.3 % | ± | 2.3 % | 8 | | Test Sample Related | | | | | | | | | | | | | | Device positioning | ± | 2.9 | % | Normal | 1 | 1 | 1 | ± | 2.9 % | ± | 2.9 % | 145 | | Device holder uncertainty | ± | 3.6 | % | Normal | 1 | 1 | 1 | ± | 3.6 % | ± | 3.6 % | 5 | | Power drift | ± | 5.0 | % | Rectangular | √3 | 1 | 1 | ± | 2.9 % | + | 2.9 % | 8 | | Phantom and Set-up | | | | | | | | | | | | | | Phantom uncertainty | ± | 6.6 | % | Rectangular | √ 3 | 1 | 1 | ± | 3.8 % | ± | 3.8 % | | | SAR correction | ± | 1.9 | % | Rectangular | √ 3 | 1 | 0.84 | ± | 1.1 % | ± | 0.9 % | ∞ | | Liquid conductivity (meas.) | ± | 5.0 | % | Rectangular | √3 | 0.78 | 0.71 | ± | 2.3 % | ± | 2.0 % | | | Liquid permittivity (meas.) | ± | 5.0 | % | Rectangular | √3 | 0.26 | 0.26 | ± | 0.8 % | ± | 0.8 % | | | Temp. Unc Conductivity | ± | 3.4 | % | Rectangular | √3 | 0.78 | 0.71 | ± | 1.5 % | ± | 1.4 % | | | Temp. Unc Permittivity | ± | 0.4 | % | Rectangular | √3 | 0.23 | 0.26 | ± | 0.1 % | ± | 0.1 % | | | Combined Uncertainty | | | | | | | | ± | 12.4 % | ± | 12.4 % | 330 | | Expanded Std. | | | | | | | | _ | 24.9 % | _ | 24.8 % | | | Uncertainty | | | | | | | | | 24.9 /0 | <u> </u> | 24.0 /0 | | | Table 11: Measurement unce | rtoin | +i | | | | | | | | | | | Table 11: Measurement uncertainties Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2013 and IEC 62209-1/2011 standards. The budget is valid for the frequency range 3GHz -6GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller. # 6.1.12 Measurement uncertainty evaluation for System Check | Uncertainty of | of a | Sys | | n Performa
the 0.3 - 3 | | | | DA | SY5 S | yst | em | | |-----------------------------|------|--------|---|---------------------------|---------|----------------|-------|----------|----------|-----|----------|--------------------------------| | Source of | Llo | certai | | Probability | Divisor | C _i | Ci | St | andard I | Unc | ertainty | v _i ² or | | | | Value | • | Distribution | | | | | | 1 | , | · | | uncertainty | | value | ; | DISTIDUTION | | (1g) | (10g) | ±` | %, (1g) | ± 7 | %, (10g) | V _{eff} | | Measurement System | | | | | | | | <u> </u> | | | | | | Probe calibration | ± | 6.0 | % | Normal | 1 | 1 | 1 | ± | 6.0 % | | 6.0 % | ∞ | | Axial isotropy | ± | 4.7 | % | Rectangular | √ 3 | 0.7 | 0.7 | ± | 1.9 % | _ | 1.9 % | ∞ | | Hemispherical isotropy | ± | 0.0 | % | Rectangular | √ 3 | 0.7 | 0.7 | ± | 0.0 % | _ | 0.0 % | ∞ | | Boundary effects | ± | 1.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | ∞ | | Probe linearity | ± | 4.7 | % | Rectangular | √ 3 | 1 | 1 | ± | 2.7 % | ± | 2.7 % | ∞ | | System detection limits | ± | 1.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.6 % | | 0.6 % | ∞ | | Readout electronics | ± | 0.3 | % | Normal | 1 | 1 | 1 | ± | 0.3 % | _ | 0.3 % | ∞ | | Response time | ± | 0.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.0 % | ± | 0.0 % | ∞ | | Integration time | ± | 0.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.0 % | ± | 0.0 % | ∞ | | RF ambient conditions | ± | 3.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.7 % | ± | 1.7 % | ∞ | | Probe positioner | ± | 0.4 | % | Rectangular | √ 3 | 1 | 1 | ± | 0.2 % | ± | 0.2 % | 8 | | Probe positioning | ± | 2.9 | % | Rectangular | √3 | 1 | 1 | ± | 1.7 % | ± | 1.7 % | 8 | | Max. SAR evaluation | ± | 1.0 | % | Rectangular | √3 | 1 | 1 | ± | 0.6 % | ± | 0.6 % | 8 | | Test Sample Related | | | | | | | | | | | | | | Dev. of experimental dipole | ± | 0.0 | % | Rectangular | √3 | 1 | 1 | ± | 0.0 % | ± | 0.0 % | ∞ | | Source to liquid distance | ± | 2.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 1.2 % | ± | 1.2 % | 8 | | Power drift | ± | 3.4 | % | Rectangular | √ 3 | 1 | 1 | ± | 2.0 % | ± | 2.0 % | 8 | | Phantom and Set-up | | | | | | | | | | | | | | Phantom uncertainty | ± | 4.0 | % | Rectangular | √ 3 | 1 | 1 | ± | 2.3 % | ± | 2.3 % | ∞ | | SAR correction | ± | 1.9 | % | Rectangular | √ 3 | 1 | 0.84 | ± | 1.1 % | ± | 0.9 % | ∞ | | Liquid conductivity (meas.) | ± | 5.0 | % | Normal | 1 | 0.78 | 0.71 | ± | 3.9 % | ± | 3.6 % | ∞ | | Liquid permittivity (meas.) | ± | 5.0 | % | Normal | 1 | 0.26 | 0.26 | ± | 1.3 % | ± | 1.3 % | ∞ | | Temp. unc Conductivity | ± | 1.7 | % | Rectangular | √3 | 0.78 | 0.71 | ± | 0.8 % | | 0.7 % | ∞ | | Temp. unc Permittivity | ± | 0.3 | % | Rectangular | √3 | 0.23 | 0.26 | ± | 0.0 % | ± | 0.0 % | ∞ | | Combined Uncertainty | | | | | | | | ± | 9.1 % | ± | 8.9 % | 330 | | Expanded Std. | | | | | | | | | 40.2.0/ | | 47.0.0/ | | | Uncertainty | | | | - Orașta es Oba | | | | | 18.2 % | ± | 17.9 % | | Table 12: Measurement uncertainties of the System Check with DASY5 (0.3-3GHz) | Uncertainty of | of a Syster | n Performa | nce C | heck | with | DASY5 S | ystem | | |--|-------------|--------------|---------|----------------|-------|-----------|-------------|--------------------------------| | • | _ | r the 3 - 6 | | | | | • | | | Source of | Uncertainty | Probability | Divisor | C _i | Ci | Standard | Uncertainty | v _i ² or | | uncertainty | Value | Distribution | | (1g) | (10g) | ± %, (1g) | ± %, (10g) | v _{eff} | | Measurement System | | | | | | | | | | Probe calibration | ± 6.6 % | Normal | 1 | 1 | 1 | ± 6.6 % | ± 6.6 % | 8 | | Axial isotropy | ± 4.7 % | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | 8 | | Hemispherical isotropy | ± 0.0 % | Rectangular | √ 3 | 0.7 | 0.7 | ± 0.0 % | ± 0.0 % | 8 | | Boundary effects | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.6 % | ± 0.6 % | 8 | | Probe linearity | ± 4.7 % | Rectangular | √ 3 | 1 | 1 | ± 2.7 % | ± 2.7 % | 8 | | System detection limits | ± 1.0 % | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | 8 | | Readout electronics | ± 0.3 % | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | 8 | | Response time | ± 0.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.0 % | ± 0.0 % | 8 | | Integration time | ± 0.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.0 % | ± 0.0 % | 8 | | RF ambient conditions | ± 3.0 % | Rectangular | √ 3 | 1 | 1 | ± 1.7 % | ± 1.7 % | 8 | | Probe positioner | ± 0.8 % | Rectangular | √ 3 | 1 | 1 | ± 0.5 % | ± 0.5 % | 8 | | Probe positioning | ± 6.7 % | Rectangular | √ 3 | 1 | 1 | ± 3.9 % | ± 3.9 % | 8 | | Max. SAR evaluation | ± 1.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.6 % | ± 0.6 % | 8 | | Test Sample Related | | | | | | | | | | Dev. of experimental dipole | ± 0.0 % | Rectangular | √ 3 | 1 | 1 | ± 0.0 % | ± 0.0 % | 8 | | Source to liquid distance | ± 2.0 % | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % | 8 | | Power drift | ± 3.4 % | Rectangular | √3 | 1 | 1 | ± 2.0 % | ± 2.0 % | 8 | | Phantom and Set-up | | | | | | | | | | Phantom uncertainty | ± 4.0 % | Rectangular | √ 3 | 1 | 1 | ± 2.3 % | ± 2.3 % | 8 | | SAR correction | ± 1.9 % | Rectangular | √3 | 1 | 0.84 | ± 1.1 % | ± 0.9 % | 8 | | Liquid conductivity (meas.) | ± 5.0 % | Normal | 1 | 0.78 | 0.71 | ± 3.9 % | ± 3.6 % | 8 | | Liquid permittivity (meas.) | ± 5.0 % | Normal | 1 | 0.26 | 0.26 | ± 1.3 % | ± 1.3 % | 8 | | Temp. unc Conductivity | ± 1.7 % | Rectangular | √ 3 | 0.78 | 0.71 | ± 0.8 % | ± 0.7 % | 8 | | Temp. unc Permittivity | ± 0.3 % | Rectangular | √ 3 | 0.23 | 0.26 | ± 0.0 % | ± 0.0 % | 8 | | Combined Uncertainty | | | | | | ± 10.1 % | ± 10.0 % | 330 | | Expanded Std. | | | | | | ± 20.2 % | ± 19.9 % | | | Uncertainty Table 13: Measurement unce | | | | | | | ± 13.3 % | | Table 13: Measurement uncertainties of the System Check with DASY5 (3-6GHz) Note: Worst case probe calibration uncertainty has been applied for all probes used during the measurements. ## 6.1.13 System check The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE 1528. The following table shows system check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A). | | | Syste | m performe | nce check (| (1000 mV | V) | | | |-----------------------|-----------------|---|--|---|---------------------------|--|----------------------------|---------------| | System validation Kit | Frequency | Target
SAR _{1g}
/mW/g
(+/- 10%) | Target
SAR _{10g}
/mW/g (+/-
10%) | Measured
SAR _{1g} /
mW/g | SAR _{1g}
dev. | Measured
SAR _{10g} /
mW/g | SAR _{10g}
dev. | Measured date | | D2450V2
S/N: 710 | 2450 MHz
HSL | 52.60 | 24.80 | 55.00 | 4.6% | 26.00 | 4.8% | 2017-06-21 | | D2450V2
S/N: 710 | 2450 MHz
MSL | 51.10 | 24.20 | 50.00 | -2.2% | 23.20 | -4.1% | 2017-06-19 | | D2450V2
S/N: 710 | 2450 MHz
MSL |
51.10 | 24.20 | 48.00 | -6.1% | 22.44 | -7.3% | 2017-06-20 | | D5GHzV2
S/N: 1055 | 5200 MHz
HSL | 82.50 | 23.60 | 76.30 | -7.5% | 22.00 | -6.8% | 2017-06-21 | | D5GHzV2
S/N: 1055 | 5500 MHz
HSL | 87.10 | 24.80 | 80.50 | -7.6% | 22.70 | -8.5% | 2017-06-21 | | D5GHzV2
S/N: 1055 | 5800 MHz
HSL | 82.80 | 23.50 | 81.50 | -1.6% | 23.10 | -1.7% | 2017-06-21 | | D5GHzV2
S/N: 1055 | 5200 MHz
MSL | 76.60 | 21.50 | 73.80 | -3.7% | 20.90 | -2.8% | 2017-06-17 | | D5GHzV2
S/N: 1055 | 5500 MHz
MSL | 83.80 | 23.30 | 77.70 | -7.3% | 21.70 | -6.9% | 2017-06-17 | | D5GHzV2
S/N: 1055 | 5800 MHz
MSL | 80.30 | 22.20 | 78.00 | -2.9% | 21.80 | -1.8% | 2017-06-17 | Table 14: Results system check ## 6.1.14 System check procedure The system check is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW for frequencies below 2 GHz or 100 mW for frequencies above 2 GHz. To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot). System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system. ## 6.1.15 System validation The system validation is performed in a similar way as a system check. It needs to be performed once a SAR measurement system has been established and allows an evaluation of the system accuracy with all components used together with the specified system. It has to be repeated at least once a year or when new system components are used (DAE, probe, phantom, dipole, liquid type). In addition to the procedure used during system check a system validation also includes checks of probe isotropy, probe modulation factor and RF signal. The following table lists the system validations relevant for this test report: | Frequency
(MHz) | DASY
SW | Dipole
Type /SN | Probe
Type /
SN | Calibrated signal type(s) | DAE
unit
Type /
SN | head
validation | body
validation | |--------------------|------------|--------------------|-----------------------|---------------------------|-----------------------------|--------------------|--------------------| | 2450 | V52.8.7 | D2450V2
/ 710 | EX3DV4
/ 3944 | CW | DAE3/
477 | | 2017-05-22 | | 2450 | V52.8.7 | D2450V2
/ 710 | EX3DV4
/ 3320 | CW | DAE3/
413 | 2017-02-10 | | | 5200 | V52.8.7 | D5GHzV2
/ 1055 | EX3DV4
/ 3944 | CW | DAE3/
477 | 2017-05-16 | 2017-05-18 | | 5500 | V52.8.7 | D5GHzV2
/ 1055 | EX3DV4
/ 3944 | CW | DAE3/
477 | 2017-05-16 | 2017-05-18 | | 5800 | V52.8.7 | D5GHzV2
/ 1055 | EX3DV4
/ 3944 | CW | DAE3/
477 | 2017-05-16 | 2017-05-18 | ## 7 Detailed Test Results ## 7.1 Conducted power measurements For the measurements the Rohde & Schwarz NRP power meter was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was also checked before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below. ## 7.1.1 Conducted power measurements WLAN 2.4 GHz | 802. | .11b | maximum average conducted output power [dBm] | | | | | | | |---------|-------------|--|------------|------|--------|--|--|--| | Band | Band Ch | | Mbps 2Mbps | | 11Mbps | | | | | 2450MHz | 1 | 15.6 | 15.4 | 15.1 | 14.8 | | | | | | 6 | 15.7 | 15.5 | 15.2 | 15 | | | | | | 11 | 15.6 | 15.4 | 15.1 | 14.9 | | | | | | wer
ings | 16.0 | 16.0 | 16.0 | 16.0 | | | | Table 15: Test results conducted power measurement 802.11b | 802.11 | 9 | maximum average conducted output power [dBm] | | | | | | | | | |-------------------|---|--|-------|--------|-------------|-------------|--------|--------|--------|--| | Band Ch | | 6Mbps | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | | | 2450MHz | 1 | 12.7 | 12.5 | 12.3 | 11.9 | 11.5 | 10.9 | 9.7 | 7.9 | | | | 6 | 14.1 | 13.8 | 13.6 | 13.1 | 12.9 | 12.3 | 9.8 | 7.9 | | | 11 | | 12.5 | 12.2 | 11.9 | 11.5 | 11.1 | 10.7 | 10.2 | 8.2 | | | Power
Settings | | | | A | ccording fo | ollowing ta | ble* | | | | Table 16: Test results conducted power measurement 802.11g #### *)Power settings for 11 a/g: | OWEI SELL | ings for it a | · 9· | | | |-----------|---------------|------|---------|-------| | | Rate | CH 1 | CH 2-10 | CH 11 | | | 6 Mbps | 13.5 | 15.0 | 13.0 | | | 9 Mbps | 13.5 | 15.0 | 13.0 | | | 12 Mbps | 13.5 | 15.0 | 13.0 | | 11 a/g | 18 Mbps | 13.5 | 15.0 | 13.0 | | | 24 Mbps | 13.5 | 15.0 | 13.0 | | | 36 Mbps | 13.5 | 15.0 | 13.0 | | | 48 Mbps | 13.0 | 13.0 | 13.0 | | | 54 Mbps | 11.0 | 11.0 | 11.0 | | 802.11n H | T-20 | maximum average conducted output power [dBm] | | | | | | | | | | |------------------|------|--|-----------------------------|----------|--------|--------|--------|----------|--------|--|--| | Band | Ch | MCS-0 | MCS-1 | MCS-2 | MCS-3 | MCS-4 | MCS-5 | MCS-6 | MCS-7 | | | | Dallu | | 6.5Mbps | 13Mbps | 19.5Mbps | 26Mbps | 39Mbps | 52Mbps | 58.5Mbps | 65Mbps | | | | 2450MHz | 1 | 11.9 | 11.5 | 11.1 | 10.7 | 10.1 | 9.7 | 9.0 | 7.3 | | | | | 6 | 14.2 | 13.7 | 13.3 | 12.9 | 12.4 | 10.5 | 9.0 | 7.3 | | | | | 11 | 11.6 | 11.2 | 10.8 | 10.4 | 9.8 | 9.4 | 9.0 | 7.3 | | | | Power
Setting | | | According following table** | | | | | | | | | Table 17: Test results conducted power measurement 802.11n HT-20 **)Power settings for 11 n-HT20: | | Rate | CH 1 | CH 2-10 | CH 11 | |--------|------------|------|---------|-------| | | MCS 0 | 12.5 | 15.0 | 12.0 | | | MCS 1 | 12.5 | 15.0 | 12.0 | | | MCS 2 | 12.5 | 15.0 | 12.0 | | 11 a/g | MCS 3 | 12.5 | 15.0 | 12.0 | | | MCS 4 | 12.5 | 15.0 | 12.0 | | | MCS 5 | 12.5 | 13.5 | 12.0 | | | MCS 6 12.0 | | 12.0 | 12.0 | | | MCS 7 | 10.5 | 10.5 | 10.5 | ## 7.1.2 Conducted power measurements WLAN 5 GHz | 802.11 | la | | maxi | mum avera | age condu | cted outp | ut power [| dBm] | | |-------------------|-----|-------|-------|-----------|-----------|-----------|------------|--------|--------| | Band | Ch | 6Mbps | 9Mbps | 12Mbps | 18Mbps | 24Mbps | 36Mbps | 48Mbps | 54Mbps | | 5200 | 36 | 11.4 | 11.1 | 10.9 | 10.5 | 10.1 | 9.5 | 8.6 | 7.6 | | | 40 | 11.1 | 10.8 | 10.6 | 10.2 | 9.8 | 9.2 | 8.3 | 7.3 | | | 44 | 10.8 | 10.5 | 10.3 | 9.9 | 9.5 | 8.9 | 8.0 | 7.0 | | | 48 | 10.6 | 10.3 | 10.1 | 9.7 | 9.3 | 8.7 | 7.8 | 6.8 | | 5300 | 52 | 10.4 | 10.1 | 9.9 | 9.5 | 9.1 | 8.5 | 7.6 | 6.6 | | | 56 | 10.1 | 9.8 | 9.6 | 9.2 | 8.8 | 8.2 | 7.3 | 6.3 | | | 60 | 10.1 | 9.8 | 9.6 | 9.2 | 8.8 | 8.2 | 7.3 | 6.3 | | | 64 | 9.9 | 9.6 | 9.4 | 9.0 | 8.6 | 8.0 | 7.1 | 6.1 | | 5600 | 100 | 10.8 | 10.5 | 10.3 | 9.9 | 9.5 | 8.9 | 8.0 | 7.0 | | | 104 | 10.4 | 10.1 | 9.9 | 9.5 | 9.1 | 8.5 | 7.6 | 6.6 | | | 108 | 10.1 | 9.8 | 9.6 | 9.2 | 8.8 | 8.2 | 7.3 | 6.3 | | | 112 | 10.3 | 10.0 | 9.8 | 9.4 | 9.0 | 8.4 | 7.5 | 6.5 | | | 116 | 10.3 | 10.0 | 9.8 | 9.4 | 9.0 | 8.4 | 7.5 | 6.5 | | | 120 | 10.5 | 10.2 | 10.0 | 9.6 | 9.2 | 8.6 | 7.7 | 6.7 | | | 124 | 10.8 | 10.5 | 10.3 | 9.9 | 9.5 | 8.9 | 8.0 | 7.0 | | | 128 | 11.0 | 10.7 | 10.5 | 10.1 | 9.7 | 9.1 | 8.2 | 7.2 | | | 132 | 11.2 | 10.9 | 10.7 | 10.3 | 9.9 | 9.3 | 8.4 | 7.4 | | | 136 | 11.4 | 11.1 | 10.9 | 10.5 | 10.1 | 9.5 | 8.6 | 7.6 | | | 140 | 11.5 | 11.2 | 11.0 | 10.6 | 10.2 | 9.6 | 8.7 | 7.7 | | 5800 | 149 | 9.7 | 9.4 | 9.2 | 8.8 | 8.4 | 7.8 | 6.9 | 5.9 | | | 153 | 10.4 | 10.1 | 9.9 | 9.5 | 9.1 | 8.5 | 7.6 | 6.6 | | | 157 | 10.4 | 10.1 | 9.9 | 9.5 | 9.1 | 8.5 | 7.6 | 6.6 | | | 161 | 10.5 | 10.2 | 10.0 | 9.6 | 9.2 | 8.6 | 7.7 | 6.7 | | | 165 | 10.1 | 9.8 | 9.6 | 9.2 | 8.8 | 8.2 | 7.3 | 6.3 | | Power
Settings | | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.0 | 11.0 | Table 18: Test results conducted power measurement 802.11a | | 802.11 | n HT-20 / 8 | 02.11ac VI | HT-20 maxi | mum avera | age condu | cted outpu | t power [d | Bm] | |------------------------|--------|-------------|------------|------------|-----------|-----------|------------|------------|--------| | Band | Ch | MCS-0 | MCS-1 | MCS-2 | MCS-3 | MCS-4 | MCS-5 | MCS-6 | MCS-7 | | [MHz] | CII | 6.5Mbps | 13Mbps | 19.5Mbps | 26Mbps | 39Mbps | 52Mbps | 58.5Mbps | 65Mbps | | 5200 | 36 | 11.3 | 11.1 | 10.9 | 10.5 | 10.1 | 8.6 | 7.0 | 5.6 | | | 40 | 11.0 | 10.8 | 10.6 | 10.2 | 9.8 | 8.3 | 6.7 | 5.3 | | | 44 | 10.8 | 10.6 | 10.4 | 10.0 | 9.6 | 8.1 | 6.5 | 5.1 | | | 48 | 10.6 | 10.4 | 10.2 | 9.8 | 9.4 | 7.9 | 6.3 | 4.9 | | 5300 | 52 | 10.3 | 10.1 | 9.9 | 9.5 | 9.1 | 7.6 | 6.0 | 4.6 | | | 56 | 10.1 | 9.9 | 9.7 | 9.3 | 8.9 | 7.4 | 5.8 | 4.4 | | | 60 | 10.1 | 9.9 | 9.7 | 9.3 | 8.9 | 7.4 | 5.8 | 4.4 | | | 64 | 9.9 | 9.7 | 9.5 | 9.1 | 8.7 | 7.2 | 5.6 | 4.2 | | 5600 | 100 | 10.8 | 10.6 | 10.4 | 10.0 | 9.6 | 8.1 | 6.5 | 5.1 | | | 104 | 10.4 | 10.2 | 10.0 | 9.6 | 9.2 | 7.7 | 6.1 | 4.7 | | | 108 | 10.1 | 9.9 | 9.7 | 9.3 | 8.9 | 7.4 | 5.8 | 4.4 | | | 112 | 10.2 | 10.0 | 9.8 | 9.4 | 9.0 | 7.5 | 5.9 | 4.5 | | | 116 | 10.3 | 10.1 | 9.9 | 9.5 | 9.1 | 7.6 | 6.0 | 4.6 | | | 120 | 10.5 | 10.3 | 10.1 | 9.7 | 9.3 | 7.8 | 6.2 | 4.8 | | | 124 | 10.8 | 10.6 | 10.4 | 10.0 | 9.6 | 8.1 | 6.5 | 5.1 | | | 128 | 11.0 | 10.8 | 10.6 | 10.2 | 9.8 | 8.3 | 6.7 | 5.3 | | | 132 | 11.2 | 11.0 | 10.8 | 10.4 | 10.0 | 8.5 | 6.9 | 5.5 | | | 136 | 11.3 | 11.1 | 10.9 | 10.5 | 10.1 | 8.6 | 7.0 | 5.6 | | | 140
| 11.4 | 11.2 | 11.0 | 10.6 | 10.2 | 8.7 | 7.1 | 5.7 | | 5800 | 149 | 9.7 | 9.5 | 9.3 | 8.9 | 8.5 | 7.0 | 5.4 | 4.0 | | | 153 | 10.3 | 10.1 | 9.9 | 9.5 | 9.1 | 7.6 | 6.0 | 4.6 | | | 157 | 10.4 | 10.2 | 10.0 | 9.6 | 9.2 | 7.7 | 6.1 | 4.7 | | | 161 | 10.1 | 9.9 | 9.7 | 9.3 | 8.9 | 7.4 | 5.8 | 4.4 | | | 165 | 10.1 | 9.9 | 9.7 | 9.3 | 8.9 | 7.4 | 5.8 | 4.4 | | Power
Settings 12.5 | | | 12.5 | 12.5 | 12.5 | 12.5 | 12.0 | 10.5 | 9.0 | Table 19: Test results conducted power measurement 802.11n HT-20 / 802.11ac VHT-20 ## 7.1.1 Conducted average power measurements Bluetooth 2.4 GHz | | Channel | Fraguenov (MHz) | Average power (dBm) | | | | | | |--|---------|------------------|---------------------|---------------|--------|--|--|--| | | | riequency (winz) | GFSK | $\pi/4$ DQPSK | 8-DPSK | | | | | | 0 | 2402 | 4.8 | 2.4 | 2.4 | | | | | | 39 | 2441 | 5.3 | 2.9 | 2.9 | | | | | | 78 | 2480 | 3.4 | 1.0 | 1.0 | | | | Table 20: Test results conducted average power measurement Bluetooth Classic 2.4 GHz #### **Continuous TX mode** Power: 0x08 Mode: 1-PRBS9 (GFSK) 2- PRBS9 ($\pi/4$ -DQPSK) 3- PRBS9 (8-DPSK) ## 7.1.1 Conducted average power measurements Bluetooth LE 2.4 GHz | Channel | Frequency (MHz) | Average power (dBm) | | | | | | |---------|-------------------|---------------------|--|--|--|--|--| | Charmer | Frequency (Miriz) | GFSK | | | | | | | 0 | 2404 -0.2 | | | | | | | | 19 | 2444 | 0.8 | | | | | | | 39 | 9 2480 -1.3 | | | | | | | Table 21: Test results conducted average power measurement BLUETOOTH LE 2.4 GHz (PRBS9, 37 Length of test data) ## 7.1.2 SAR measurement positions | SAR measurement positions | | | | | | | | | | | |---|-----|-----|-----|-----|----|----|--|--|--|--| | mode front rear left edge right edge top edge bottom edge | | | | | | | | | | | | WLAN 2450 | yes | yes | yes | yes | no | no | | | | | | WLAN 5.2GHz | yes | yes | yes | yes | no | no | | | | | | WLAN 5.3GHz | yes | yes | yes | yes | no | no | | | | | | WLAN 5.6GHz | yes | yes | yes | yes | no | no | | | | | | WLAN 5.8GHz | yes | yes | yes | yes | no | no | | | | | Pictures and antenna positions are shown in the external Photo documentation 1-3959/17-01-02_Photos #### 7.2 SAR test results ## 7.2.1 General description of test procedures - Test positions as described in the tables above are in accordance with the specified test standard. - Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results). - WLAN was tested in 802.11a/b mode with 1 MBit/s and 6 MBit/s. - Required WLAN test channels were selected according to KDB 248227 - According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional. - According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - IEEE 1528-2013 requires the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used. #### 7.2.2 Results overview | | | | measured / e | extrapol | ated SA | R num | bers - H | ead - W | LAN 24 | 50 MHz | | | | |------|-----------------------|---------|---------------------|--------------|-------------------------|---------|--------------------------|------------|--------|-----------------------|------------|----------------|--------| | Ch. | Freq.
(MHz) | test | Position | cond.
(dB | P _{max}
Bm) | SA | SAR _{1g} (W/kg) | | | R _{10g} (W/I | kg) | power
drift | liquid | | CII. | | cond. | | decl.** | meas. | meas. | extrap. | 100%
DF | meas. | extrap. | 100%
DF | (dB) | (°C) | | | Serial No.: Z17P01264 | | | | | | | | | | | | | | 1 | 2412 | 1Mbit/s | left cheek | 17.0 | 15.6 | 0.200 | 0.276 | 0.282 | 0.114 | 0.157 | 0.161 | 0.00 | 22.7 | | 6 | 2437 | 1Mbit/s | left cheek | 17.0 | 15.7 | 0.204 | 0.275 | 0.281 | 0.117 | 0.158 | 0.161 | 0.15 | 22.7 | | 11 | 2462 | 1Mbit/s | left cheek | 17.0 | 15.6 | 0.202 | 0.279 | 0.285 | 0.115 | 0.159 | 0.162 | -0.03 | 22.7 | | 6 | 2437 | 1Mbit/s | left tilted 15° | 17.0 | 15.7 | 0.059 | 0.080 | 0.081 | 0.032 | 0.042 | 0.043 | 0.05 | 22.7 | | 6 | 2437 | 1Mbit/s | right cheek | 17.0 | 15.7 | 0.126 | 0.170 | 0.173 | 0.070 | 0.094 | 0.096 | 0.06 | 22.7 | | 6 | 2437 | 1Mbit/s | right tilted
15° | 17.0 | 15.7 | 0.054 | 0.073 | 0.074 | 0.029 | 0.039 | 0.039 | 0.06 | 22.7 | | | | | | | Serial | No.: Z1 | 7P01190 |) | | | | | | | 6 | 2437 | 1Mbit/s | left cheek | 17.0 | 15.7 | 0.141 | 0.190 | 0.194 | 0.083 | 0.111 | 0.114 | 0.15 | 22.7 | Table 22: Test results head SAR WLAN 2450MHz (see max. SAR plot in Annex B1 WLAN 2450MHz - head) | | measured / extrapolated SAR numbers - body worn - WLAN 2450 MHz | | | | | | | | | | | | | | |------|---|---------|--------------------------|---------------------------------|-------|-----------|--------------------------|------------|-------|-----------------------|------------|----------------|--------|--| | Ch. | Freq.
(MHz) | test | Position
0mm
dist. | cond. P _{max}
(dBm) | | SA | SAR _{1g} (W/kg) | | | R _{10g} (W/I | kg) | power
drift | liquid | | | OII. | | cond. | | decl.** | meas. | meas. | extrap. | 100%
DF | meas. | extrap. | 100%
DF | (dB) | (°C) | | | | Serial No.: Z17P01264 | | | | | | | | | | | | | | | 6 | 2437 | 1Mbit/s | front | 17.0 | 15.7 | 0.447 | 0.603 | 0.615 | 0.228 | 0.308 | 0.314 | 0.00 | 23.6 | | | 6 | 2437 | 1Mbit/s | rear | 17.0 | 15.7 | 0.116 | 0.156 | 0.160 | 0.064 | 0.086 | 0.088 | -0.01 | 23.6 | | | 1 | 2412 | 1Mbit/s | left | 17.0 | 15.6 | 0.552 | 0.762 | 0.778 | 0.247 | 0.341 | 0.348 | -0.02 | 23.6 | | | 6 | 2437 | 1Mbit/s | left | 17.0 | 15.7 | 0.554 | 0.747 | 0.763 | 0.246 | 0.332 | 0.339 | 0.01 | 23.6 | | | 11 | 2462 | 1Mbit/s | left | 17.0 | 15.6 | 0.588 | 0.812 | 0.828 | 0.255 | 0.352 | 0.359 | 0.00 | 23.6 | | | 6 | 2437 | 1Mbit/s | right | 17.0 | 15.7 | 0.041 | 0.056 | 0.057 | 0.021 | 0.028 | 0.029 | 0.06 | 23.6 | | | | | | | | Seria | al No.: Z | 17P011 | 90 | | | | | | | | 11 | 2462 | 1Mbit/s | left | 17.0 | 15.6 | 0.388 | 0.536 | 0.547 | 0.177 | 0.244 | 0.249 | -0.08 | 23.6 | | Table 23: Test results body worn SAR WLAN 2450MHz (see max. SAR plot in Annex B1 WLAN2450MHz - body) | | measured / extrapolated SAR numbers - head - WLAN 5 GHz | | | | | | | | | | | | | |-----|---|---------|------------------|---------|------------------|----------|----------------------|------------|-------|-----------------------|------------|----------------|--------| | Ch | Freq.
(MHz) | test | Position 0mm | • | P _{max} | | R _{1g} (W/k | | | R _{10g} (W/I | kg) | power
drift | liquid | | Ch. | | cond. | dist. | decl.** | meas. | meas. | extrap. | 100%
DF | meas. | extrap. | 100%
DF | (dB) | (°C) | | | | | | | Serial N | lo.: Z17 | P01264 | | | | | | | | 36 | 5180 | 6Mbit/s | left cheek | 13.0 | 11.4 | 0.036 | 0.051 | 0.053 | 0.013 | 0.019 | 0.019 | 0.01 | 23.0 | | 52 | 5260 | 6Mbit/s | left cheek | 12.0 | 10.4 | 0.031 | 0.044 | 0.045 | 0.010 | 0.014 | 0.015 | -0.07 | 23.0 | | 140 | 5700 | 6Mbit/s | left cheek | 13.0 | 11.5 | 0.101 | 0.143 | 0.146 | 0.033 | 0.046 | 0.047 | 0.10 | 23.0 | | 161 | 5805 | 6Mbit/s | left cheek | 12.0 | 10.5 | 0.096 | 0.135 | 0.138 | 0.031 | 0.043 | 0.044 | 0.08 | 23.0 | | 36 | 5180 | 6Mbit/s | left tilted 15° | 13.0 | 11.4 | 0.011 | 0.016 | 0.016 | 0.003 | 0.005 | 0.005 | -0.04 | 23.0 | | 52 | 5260 | 6Mbit/s | left tilted 15° | 12.0 | 10.4 | 0.004 | 0.006 | 0.006 | 0.001 | 0.001 | 0.001 | 0.00 | 23.0 | | 140 | 5700 | 6Mbit/s | left tilted 15° | 13.0 | 11.5 | 0.001 | 0.002 | 0.002 | 0.004 | 0.006 | 0.006 | -0.07 | 23.0 | | 161 | 5805 | 6Mbit/s | left tilted 15° | 12.0 | 10.5 | 0.016 | 0.023 | 0.023 | 0.005 | 0.008 | 0.008 | -0.14 | 23.0 | | 36 | 5180 | 6Mbit/s | right cheek | 13.0 | 11.4 | 0.023 | 0.034 | 0.035 | 0.008 | 0.012 | 0.012 | -0.07 | 23.0 | | 52 | 5260 | 6Mbit/s | right cheek | 12.0 | 10.4 | 0.003 | 0.004 | 0.004 | 0.001 | 0.001 | 0.001 | 0.11 | 23.0 | | 140 | 5700 | 6Mbit/s | right cheek | 13.0 | 11.5 | 0.031 | 0.043 | 0.044 | 0.011 | 0.015 | 0.016 | -0.11 | 23.0 | | 161 | 5805 | 6Mbit/s | right cheek | 12.0 | 10.5 | 0.033 | 0.046 | 0.047 | 0.012 | 0.017 | 0.017 | -0.04 | 23.0 | | 36 | 5180 | 6Mbit/s | right tilted 15° | 13.0 | 11.4 | 0.001 | 0.002 | 0.002 | 0.000 | 0.000 | 0.000 | 0.00 | 23.0 | | 52 | 5260 | 6Mbit/s | right tilted 15° | 12.0 | 10.4 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.11 | 23.0 | | 140 | 5700 | 6Mbit/s | right tilted 15° | 13.0 | 11.5 | 0.008 | 0.011 | 0.011 | 0.002 | 0.002 | 0.002 | -0.12 | 23.0 | | 161 | 5805 | 6Mbit/s | right tilted 15° | 12.0 | 10.5 | 0.021 | 0.029 | 0.030 | 0.004 | 0.006 | 0.006 | -0.19 | 23.0 | | | | | | | Serial N | lo.: Z17 | P01190 | | | | | | | | 140 | 5700 | 6Mbit/s | left cheek | 13.0 | 11.5 | 0.028 | 0.039 | 0.040 | 0.009 | 0.012 | 0.013 | 0.19 | 23.0 | Table 24: Test results head SAR WLAN 5GHz (see max. SAR plot in Annex B2 WLAN5GHz - head) | | | me | easured / | extrapo | lated S | AR nun | nbers - b | ody w | orn - W | LAN 5 G | Hz | | | |------|-----------------------|---------|-----------------|--------------|---------|-----------|-----------|------------|---------
-----------------------|------------|----------------|--------| | Ch. | Freq.
(MHz) | test | Position
0mm | cond.
(dB | | SA | NR1g (W/k | (g) | SA | R _{10g} (W/l | kg) | power
drift | liquid | | Oii. | | cond. | dist. | decl.** | meas. | meas. | extrap. | 100%
DF | meas. | extrap. | 100%
DF | (dB) | (°C) | | | Serial No.: Z17P01264 | | | | | | | | | | | | | | 36 | 5180 | 6Mbit/s | front | 13.0 | 11.4 | 0.048 | 0.069 | 0.071 | 0.018 | 0.026 | 0.027 | 0.08 | 23.0 | | 52 | 5260 | 6Mbit/s | front | 12.0 | 10.4 | 0.029 | 0.042 | 0.043 | 0.009 | 0.014 | 0.014 | 0.01 | 23.0 | | 140 | 5700 | 6Mbit/s | front | 13.0 | 11.5 | 0.144 | 0.203 | 0.208 | 0.051 | 0.073 | 0.074 | -0.07 | 23.0 | | 161 | 5805 | 6Mbit/s | front | 12.0 | 10.5 | 0.164 | 0.232 | 0.236 | 0.056 | 0.080 | 0.081 | -0.09 | 23.0 | | 36 | 5180 | 6Mbit/s | rear | 13.0 | 11.4 | 0.078 | 0.113 | 0.115 | 0.029 | 0.042 | 0.043 | -0.09 | 23.0 | | 52 | 5260 | 6Mbit/s | rear | 12.0 | 10.4 | 0.071 | 0.102 | 0.104 | 0.259 | 0.374 | 0.382 | -0.04 | 23.0 | | 140 | 5700 | 6Mbit/s | rear | 13.0 | 11.5 | 0.178 | 0.251 | 0.257 | 0.066 | 0.094 | 0.096 | 0.00 | 23.0 | | 161 | 5805 | 6Mbit/s | rear | 12.0 | 10.5 | 0.153 | 0.216 | 0.221 | 0.055 | 0.078 | 0.079 | -0.11 | 23.0 | | 36 | 5180 | 6Mbit/s | left | 13.0 | 11.4 | 0.152 | 0.220 | 0.224 | 0.052 | 0.075 | 0.077 | -0.12 | 23.0 | | 52 | 5260 | 6Mbit/s | left | 12.0 | 10.4 | 0.123 | 0.178 | 0.181 | 0.042 | 0.061 | 0.062 | -0.19 | 23.0 | | 140 | 5700 | 6Mbit/s | left | 13.0 | 11.5 | 0.373 | 0.527 | 0.538 | 0.122 | 0.172 | 0.176 | -0.07 | 23.0 | | 161 | 5805 | 6Mbit/s | left | 12.0 | 10.5 | 0.338 | 0.477 | 0.487 | 0.108 | 0.153 | 0.156 | -0.14 | 23.0 | | 36 | 5180 | 6Mbit/s | right | 13.0 | 11.4 | 0.019 | 0.028 | 0.029 | 0.006 | 0.008 | 0.008 | -0.07 | 23.0 | | 52 | 5260 | 6Mbit/s | right | 12.0 | 10.4 | 0.014 | 0.020 | 0.021 | 0.004 | 0.005 | 0.005 | 0.11 | 23.0 | | 140 | 5700 | 6Mbit/s | right | 13.0 | 11.5 | 0.028 | 0.039 | 0.040 | 0.008 | 0.012 | 0.012 | -0.11 | 23.0 | | 161 | 5805 | 6Mbit/s | right | 12.0 | 10.5 | 0.024 | 0.034 | 0.034 | 0.007 | 0.009 | 0.009 | 0.06 | 23.0 | | | | | | | Seri | al No.: Z | Z17P011 | 90 | | | | | | | 140 | 5700 | 6Mbit/s | left | 13.0 | 11.5 | 0.096 | 0.135 | 0.138 | 0.033 | 0.046 | 0.047 | -0.08 | 23.0 | | 161 | 5805 | 6Mbit/s | left | 12.0 | 10.5 | 0.087 | 0.123 | 0.125 | 0.029 | 0.041 | 0.042 | -0.07 | 23.0 | Table 25: Test results body worn SAR WLAN 5GHz (see max. SAR plot in Annex B2 WLAN5GHz - body) | | measured / extrapolated SAR numbers - head - BT 2450 MHz | | | | | | | | | | | | | |----|--|-------|------------------|------------------------|-------|--------------------------|---------|---------------------------|---------|---------------|--------|--|--| | Ch | Freq. | test | Position 0mm | cond. P _{max} | (dBm) | SAR _{1g} (W/kg) | | SAR _{10g} (W/kg) | | power | liquid | | | | | (MHz) | cond. | dist. | declared** | meas. | meas. | extrap. | meas. | extrap. | drift
(dB) | (°C) | | | | | Serial No.: Z17P01264 | | | | | | | | | | | | | | 39 | 2441 | GFSK | left cheek | 7.0 | 5.3 | 0.006 | 0.008 | 0.003 | 0.004 | 0.07 | 23.0 | | | | 39 | 2441 | GFSK | left tilted 15° | 7.0 | 5.3 | 0.004 | 0.006 | 0.002 | 0.002 | -0.09 | 23.0 | | | | 0 | 2402 | GFSK | right cheek | 5.0 | 4.8 | 0.006 | 0.006 | 0.003 | 0.003 | 0.03 | 23.0 | | | | 39 | 2441 | GFSK | right cheek | 7.0 | 5.3 | 0.007 | 0.011 | 0.003 | 0.005 | 0.02 | 23.0 | | | | 78 | 2480 | GFSK | right cheek | 5.0 | 3.4 | 0.005 | 0.008 | 0.003 | 0.004 | 0.06 | 23.0 | | | | 39 | 2441 | GFSK | right tilted 15° | 7.0 | 5.3 | 0.002 | 0.003 | 0.001 | 0.001 | -0.04 | 23.0 | | | | | Serial No.: Z17P01190 | | | | | | | | | | | | | | 39 | 2441 | GFSK | right cheek | 7.0 | 5.3 | 0.008 | 0.011 | 0.004 | 0.006 | 0.18 | 23.0 | | | Table 26: Test results head SAR BT 2450MHz (see max. SAR plot in Annex B3 BLUETOOTH 2450MHz - head) | | measured / extrapolated SAR numbers - body worn - BT 2450 MHz | | | | | | | | | | | | | | |----|---|-------|-----------|------------------------|-------|--------------------------|---------|---------------------------|---------|---------------|--------|--|--|--| | Ch | Freq. | test | Position | cond. P _{max} | (dBm) | SAR _{1g} (W/kg) | | SAR _{10g} (W/kg) | | power | liquid | | | | | | (MHz) | cond. | 0mm dist. | declared** | meas. | meas. | extrap. | meas. | extrap. | drift
(dB) | (°C) | | | | | | Serial No.: Z17P01264 | | | | | | | | | | | | | | | 39 | 2441 | GFSK | front | 7.0 | 5.3 | 0.018 | 0.027 | 0.009 | 0.014 | -0.17 | 23.6 | | | | | 39 | 2441 | GFSK | rear | 7.0 | 5.3 | 0.007 | 0.011 | 0.004 | 0.006 | 0.08 | 23.6 | | | | | 0 | 2402 | GFSK | left | 5.0 | 4.8 | 0.029 | 0.031 | 0.013 | 0.014 | -0.05 | 23.6 | | | | | 39 | 2441 | GFSK | left | 7.0 | 5.3 | 0.038 | 0.055 | 0.017 | 0.025 | -0.09 | 23.6 | | | | | 78 | 2480 | GFSK | left | 5.0 | 3.4 | 0.022 | 0.032 | 0.009 | 0.013 | 0.04 | 23.6 | | | | | 39 | 2441 | GFSK | right | 7.0 | 5.3 | 0.001 | 0.001 | 0.000 | 0.000 | 0.12 | 23.6 | | | | | | Serial No.: Z17P01190 | | | | | | | | | | | | | | | 39 | 2441 | GFSK | left | 7.0 | 5.3 | 0.043 | 0.064 | 0.020 | 0.029 | 0.02 | 23.6 | | | | Table 27: Test results body worn SAR BT 2450MHz (see max. SAR plot in Annex B3 BLUETOOTH 2450MHz - body) ## 7.2.3 Multiple Transmitter Information Simultaneous transmit evaluation according to FCC KDB 447498D01 General RF Exposure Guidance v05: | reported SAR WLAN 5GHz & BT 2.4GHz , ΣSAR evaluation | | | | | | | | | | |---|-------|--------------------------|----------|--|--|--|--|--|--| | Docition | SAR | SAR _{max} /W/kg | | | | | | | | | Position | WLAN | Bluetooth | <1.6W/kg | | | | | | | | left | 0.538 | 0.064 | 0.602 | | | | | | | | left cheek | 0.146 | 0.008 | 0.154 | | | | | | | | right cheek | 0.047 | 0.011 | 0.058 | | | | | | | Table 28: WLAN 5GHz and BT 2.4GHz ΣSAR evaluation ## 8 Test equipment and ancillaries used for tests To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below. | Equipment | Туре | Manufacturer | Serial No. | Last Calibration | Frequency (months) | |--------------------------------------|------------------|------------------------------------|------------|---------------------------------------|--------------------| | Dosimetric E-Field Probe | | Schmid & Partner
Engineering AG | 3320 | , , , , , , , , , , , , , , , , , , , | 12 | | Dosimetric E-Field Probe | EX3DV4 | Schmid & Partner
Engineering AG | 3944 | May 12, 2017 | 12 | | 2450 MHz System Validation Dipole | | Schmid & Partner
Engineering AG | 710 | August 15, 2016 | 36 | | 5 GHz System Validation Dipole | D5GHzV
2 | Schmid & Partner
Engineering AG | 1055 | August 14, 2015 | 36 | | Data acquisition electronics | DAE3V1 | Schmid & Partner
Engineering AG | 413 | January 11, 2017 | 12 | | Data acquisition electronics | DAE3V1 | Schmid & Partner
Engineering AG | 477 | May 12, 2017 | 12 | | Software | DASY52
52.8.7 | Schmid & Partner
Engineering AG | | N/A | | | SAM Twin Phantom V5.0 | QD 000
P40 C | Schmid & Partner
Engineering AG | 1813 | N/A | | | Triple Modular Flat Phantom V5.1 | QD 000
P51 C | Schmid & Partner
Engineering AG | 1154 | N/A | | | Network Analyser
300 kHz to 6 GHz | 8753ES | Hewlett Packard)* | US39174436 | January 28, 2016 | 24 | | Dielectric Probe Kit | 85070C | Hewlett Packard | US99360146 | N/A | 12 | | Signal Generator | 8671B | Hewlett Packard | 2823A00656 | January 31, 2017 | 24 | | Amplifier | | Amplifier
Reasearch | 20452 | N/A | | | Power Meter | NRP | Rohde & Schwarz | 101367 | January 31, 2017 | 24 | | Power Meter Sensor | NRP Z22 | Rohde & Schwarz | 100227 | January 31, 2017 | | | Power Meter Sensor | NRP Z22 | Rohde & Schwarz | 100234 | January 31, 2017 | 12 | | Directional Coupler | 778D | Hewlett Packard | 19171 | January 31, 2017 | 12 | ^{)*:} Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters. ## 9 Observations No observations exceeding those reported with the single test cases have been made. ### Annex A: System performance check Date/Time: 21.06.2017 07:32:30 ## SystemPerformanceCheck-D2450 HSL 2017-06-21 **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710** Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 2450 MHz; $\sigma = 1.834 \text{ S/m}$; $\varepsilon_r = 38.138$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 DASY5 Configuration: - Probe: ES3DV3 - SN3320; ConvF(4.67, 4.67, 4.67); Calibrated: 12.01.2017; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 2.0, 32.0 - Electronics: DAE3 Sn413; Calibrated: 11.01.2017 - Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## HSL2450/d=10mm, Pin=100 mW, dist=3.0mm/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 7.48 W/kg ## HSL2450/d=10mm, Pin=100 mW, dist=3.0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.643 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 10.9 W/kg SAR(1 g) = 5.5 W/kg; SAR(10 g) = 2.6 W/kg Maximum value of SAR (measured) = 7.22 W/kg 0 dB = 7.22 W/kg = 8.59 dBW/kg #### Additional information: Date/Time: 19.06.2017 07:08:40 ## SystemPerformanceCheck-D2450 MSL 2017-06-19 **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710** Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f =
2450 MHz; $\sigma = 2.041$ S/m; $\varepsilon_r = 50.996$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 SN3944; ConvF(7.86, 7.86, 7.86); Calibrated: 12.05.2017; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ### MSL2450/d=10mm, Pin=100 mW, dist=3.0mm/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 6.50 W/kg ### MSL2450/d=10mm, Pin=100 mW, dist=3.0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.911 V/m: Power Drift = -0.13 dB Peak SAR (extrapolated) = 10.1 W/kg SAR(1 g) = 5 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 6.58 W/kg 0 dB = 6.58 W/kg = 8.18 dBW/kg **Additional information:** Date/Time: 20.06.2017 14:10:54 ## SystemPerformanceCheck-D2450 MSL 2017-06-20 **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710** Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 2450 MHz; $\sigma = 1.98$ S/m; $\epsilon_r = 51.009$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 SN3944; ConvF(7.86, 7.86, 7.86); Calibrated: 12.05.2017; - Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 26.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## MSL/A, B) d=10mm, Pin=250mW/Area Scan (121x101x1): Interpolated grid: dx=0.7500 mm, dy=0.7500 mm Maximum value of SAR (interpolated) = 14.0 W/kg ## MSL/A, B) d=10mm, Pin=250mW/Zoom Scan (extended) (9x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.744 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 23.9 W/kg SAR(1 g) = 12 W/kg; SAR(10 g) = 5.61 W/kg Maximum value of SAR (measured) = 13.8 W/kg 0 dB = 13.8 W/kg = 11.40 dBW/kg #### Additional information: Date/Time: 21.06.2017 18:43:48 ## SystemPerformanceCheck-D5GHz HSL 2017-06-21 DUT: Dipole D5GHz; Type: D5GHzV2; Serial: 1055 Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5200 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 5200 MHz; $\sigma = 4.649$ S/m; $\varepsilon_r = 36.945$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 SN3944; ConvF(5.59, 5.59, 5.59); Calibrated: 12.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 23.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: SAM; Type: SAM; Serial: 1043 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ### HSL 5GHz/d=10mm, Pin=100mW 5.2GHz/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.3 W/kg ## HSL 5GHz/d=10mm, Pin=100mW 5.2GHz/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 66.792 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.5 W/kg **SAR(1 g) = 7.63 W/kg; SAR(10 g) = 2.2 W/kg**Maximum value of SAR (measured) = 18.7 W/kg 0 dB = 18.7 W/kg = 12.72 dBW/kg Additional information: Date/Time: 21.06.2017 19:38:29 ## SystemPerformanceCheck-D5GHz HSL 2017-06-21 DUT: Dipole D5GHz; Type: D5GHzV2; Serial: 1055 Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5500 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 5500 MHz; $\sigma = 4.944 \text{ S/m}$; $\varepsilon_r = 36.368$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 - SN3944; ConvF(5.28, 5.28, 5.28); Calibrated: 12.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor- Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 23.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: SAM; Type: SAM; Serial: 1043 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## HSL 5GHz/d=10mm, Pin=100mW 5.5GHz/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.9 W/kg ## HSL 5GHz/d=10mm, Pin=100mW 5.5GHz/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 68.366 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 35.2 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 20.5 W/kg 0 dB = 20.5 W/kg = 13.12 dBW/kg Additional information: Date/Time: 21.06.2017 20:02:56 ## SystemPerformanceCheck-D5GHz HSL 2017-06-21 DUT: Dipole D5GHz; Type: D5GHzV2; Serial: 1055 Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5800 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 5800 MHz; $\sigma = 5.229$ S/m; $\varepsilon_r = 36.032$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 SN3944; ConvF(4.98, 4.98, 4.98); Calibrated: 12.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 23.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: SAM; Type: SAM; Serial: 1043 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## HSL 5GHz/d=10mm, Pin=100mW 5.8GHz/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.7 W/kg ## HSL 5GHz/d=10mm, Pin=100mW 5.8GHz/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 68.836 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 36.7 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 21.1 W/kg 0 dB = 21.1 W/kg = 13.24 dBW/kg **Additional information:** Date/Time: 17.06.2017 07:20:55 ## SystemPerformanceCheck-D5GHz MSL 2017-06-17 DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1055 Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5200 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 5200 MHz; σ = 5.411 S/m; ϵ_r = 48.029; ρ = 1000 kg/m³ Phantom section: Center Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 SN3944; ConvF(5.08, 5.08, 5.08); Calibrated: 12.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 23.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## MSL 5GHz/d=10mm, Pin=100mW 5.2GHz/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.3 W/kg ## MSL 5GHz/d=10mm, Pin=100mW 5.2GHz/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 62.945 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 7.38 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 18.6 W/kg 0 dB = 18.6 W/kg = 12.70 dBW/kg #### Additional information: position or distance of DUT to the phantom: 0 mm ambient temperature: 23.9°C; liquid temperature: 23.0°C Date/Time: 17.06.2017 07:51:54 ## SystemPerformanceCheck-D5GHz MSL 2017-06-17 DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1055 Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5500 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 5500 MHz; $\sigma = 5.807 \text{ S/m}$; $\varepsilon_r = 47.209$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 SN3944; ConvF(4.42, 4.42, 4.42); Calibrated: 12.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 23.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## MSL 5GHz/d=10mm, Pin=100mW 5.5GHz/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.5 W/kg ## MSL 5GHz/d=10mm, Pin=100mW 5.5GHz/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 63.952 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 35.3 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg Additional information: Date/Time: 17.06.2017 08:38:02 ## SystemPerformanceCheck-D5GHz MSL 2017-06-17 DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1055 Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Frequency: 5800 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 5800 MHz; $\sigma = 6.119 \text{ S/m}$; $\varepsilon_r = 46.863$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 SN3944; ConvF(4.36, 4.36, 4.36); Calibrated: 12.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 23.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## MSL 5GHz/d=10mm, Pin=100mW 5.8GHz/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.7 W/kg ## MSL 5GHz/d=10mm, Pin=100mW 5.8GHz/Zoom Scan (8x8x12)/Cube 0:
Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 64.300 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 36.7 W/kg SAR(1 g) = 7.8 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 20.5 W/kg 0 dB = 20.5 W/kg = 13.12 dBW/kg #### Additional information: #### Annex B: DASY5 measurement results SAR plots for **the highest measured SAR** in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02 #### Annex B.1: WLAN 2450 MHz Date/Time: 21.06.2017 09:52:40 ### IEEE1528_EN62209-WLAN2450 head DUT: Joya Touch Android; Type: 000AN04HL0HT0AN-GB0; Serial: Z17P01264 Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 2437 MHz; $\sigma = 1.817$ S/m; $\varepsilon_r = 38.167$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: ES3DV3 - SN3320; ConvF(4.67, 4.67, 4.67); Calibrated: 12.01.2017; - Sensor-Surface: 3mm (Mechanical Surface Detection), z = 2.0, 27.0 - Electronics: DAE3 Sn413; Calibrated: 11.01.2017 - Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Left-Hand-Side HSL (FCC)/Touch Position - Mid/Area Scan (111x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.247 W/kg ## Left-Hand-Side HSL (FCC)/Touch Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.831 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.341 W/kg SAR(1 g) = 0.204 W/kg; SAR(10 g) = 0.117 W/kg Maximum value of SAR (measured) = 0.248 W/kg 0 dB = 0.248 W/kg = -6.06 dBW/kg #### **Additional information:** Date/Time: 21.06.2017 14:04:12 ### IEEE1528 EN62209-WLAN2450 head DUT: Joya Touch Android; Type: 000AN04HL0HT0AN-GB0; Serial: Z17P01264 Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2462 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 2462 MHz; $\sigma = 1.849 \text{ S/m}$; $\varepsilon_r = 38.108$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Measurement Standard: DASY5 DASY5 Configuration: - Probe: ES3DV3 SN3320; ConvF(4.67, 4.67, 4.67); Calibrated: 12.01.2017; - Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 3mm (Mechanical Surface Detection), z = 2.0, 27.0 - Electronics: DAE3 Sn413; Calibrated: 11.01.2017 - Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Left-Hand-Side HSL (FCC)/Touch Position - High/Area Scan (111x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.250 W/kg ## Left-Hand-Side HSL (FCC)/Touch Position - High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.745 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.351 W/kg SAR(1 g) = 0.202 W/kg; SAR(10 g) = 0.115 W/kg Maximum value of SAR (measured) = 0.249 W/kg 0 dB = 0.249 W/kg = -6.04 dBW/kg #### Additional information: Date/Time: 19.06.2017 12:29:01 ## FCC WLAN2450 DUT: Joya Touch Android; Type: 000AN04HL0HT0AN-GB0; Serial: Z17P01264 Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2462 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 2462 MHz; $\sigma = 2.056 \text{ S/m}$; $\varepsilon_r = 50.974$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 - SN3944; ConvF(7.86, 7.86, 7.86); Calibrated: 12.05.2017; - Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 26.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## MSL2450 - 0mm/Left High/Area Scan (151x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.756 W/kg ## MSL2450 - 0mm/Left High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 13.723 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 1.27 W/kg SAR(1 g) = 0.588 W/kg; SAR(10 g) = 0.255 W/kg Maximum value of SAR (measured) = 0.771 W/kg 0 dB = 0.771 W/kg = -1.13 dBW/kg #### Additional information: position or distance of DUT to the phantom: 0 mm ### Annex B.2: WLAN 5 GHz Date/Time: 21.06.2017 17:25:24 ### IEEE1528_EN62209-WLAN5GHz head DUT: Joya Touch Android; Type: 000AN04HL0HT0AN-GB0; Serial: Z17P01264 Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5700 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 5700 MHz; $\sigma = 5.122$ S/m; $\varepsilon_r = 36.143$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 DASY5 Configuration: - Probe: EX3DV4 - SN3944; ConvF(4.97, 4.97, 4.97); Calibrated: 12.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor- Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 23.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: SAM; Type: SAM; Serial: 1043 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Left-Hand-Side HSL/Touch Position - Ch140/Area Scan (111x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.250 W/kg ## Left-Hand-Side HSL/Touch Position - Ch140/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.474 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.625 W/kg **SAR(1 g) = 0.101 W/kg; SAR(10 g) = 0.033 W/kg** Maximum value of SAR (measured) = 0.230 W/kg 0 dB = 0.230 W/kg = -6.38 dBW/kg #### Additional information: Date/Time: 17.06.2017 12:36:40 ### WLAN5GHz #### DUT: Joya Touch Android; Type: 000AN04HL0HT0AN-GB0; Serial: Z17P01264 Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5700 MHz; Communication System PAR: 0 dB; PMF: 1 Medium parameters used: f = 5700 MHz; $\sigma = 5.998 \text{ S/m}$; $\varepsilon_r = 46.901$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 SN3944; ConvF(4.24, 4.24, 4.24); Calibrated: 12.05.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 23.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## MSL5GHz - 0mm/Left Ch140/Area Scan (181x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.931 W/kg ### MSL5GHz - 0mm/Left Ch140/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 12.756 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.60 W/kg SAR(1 g) = 0.373 W/kg; SAR(10 g) = 0.122 W/kg Maximum value of SAR (measured) = 0.882 W/kg 0 dB = 0.882 W/kg = -0.55 dBW/kg #### Additional information: position or distance of DUT to the phantom: 0 mm ambient temperature: 23.9°C; liquid temperature: 23.0°C #### Annex B.3: BLUETOOTH 2450 MHz Date/Time: 21.06.2017 17:54:04 ### IEEE1528 EN62209-BT2450 head DUT: Joya Touch Android; Type: 000AN04HL0GT0AN-GBB; Serial: Z17P01190 Communication System: UID 0, Bluetooth (0); Communication System Band: BT; Frequency: 2441 MHz; Communication System PAR: 1.16 dB; PMF: 1.14288 Medium parameters used: f = 2441 MHz; $\sigma = 1.823$ S/m; $\epsilon_r = 38.15$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 DASY5 Configuration: - Probe: ES3DV3 - SN3320; ConvF(4.67, 4.67, 4.67); Calibrated: 12.01.2017; - Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 27.0 - Electronics: DAE3 Sn413; Calibrated: 11.01.2017 - Phantom: SAM front; Type: QD000P40CC; Serial: TP-1041 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) ## Right-Hand-Side HSL SN_Z17P01190/Touch Position - Mid/Area Scan (111x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0152 W/kg ## Right-Hand-Side HSL SN_Z17P01190/Touch Position - Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 2.340 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.0140 W/kg SAR(1 g) = 0.00776 W/kg; SAR(10 g) = 0.00392 W/kg Maximum value of SAR (measured) = 0.00953 W/kg 0 dB = 0.00953 W/kg = -20.21 dBW/kg #### **Additional information:** Date/Time: 20.06.2017 17:30:56 ## IEEE1528_EN62209-2-BT2450 body worn DUT: Joya Touch Android; Type: 000AN04HL0GT0AN-GBB; Serial: Z17P01190 Communication System: UID 0, Bluetooth (0); Communication System Band: BT; Frequency: 2441 MHz; Communication System PAR: 1.16 dB; PMF: 1.14288 Medium parameters used: f = 2441 MHz; $\sigma = 2.031$ S/m; $\varepsilon_r = 51.023$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 **DASY5** Configuration: - Probe: EX3DV4 SN3944; ConvF(7.86, 7.86, 7.86); Calibrated: 12.05.2017; - Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 26.0 - Electronics: DAE3 Sn477; Calibrated: 12.05.2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) MSL2450/Left High/Area Scan (131x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0618 W/kg # MSL2450/Left High/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 5.260 V/m: Power Drift = 0.02 dB
Peak SAR (extrapolated) = 0.0890 W/kg SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.020 W/kg 0 dB = 0.0588 W/kg = -12.31 dBW/kg ### Additional information: position or distance of DUT to the phantom: 0 mm ambient temperature: 23.9°C; liquid temperature: 23.6°C ## Annex B.4: Liquid depth Photo 2: Liquid depth 2450 MHz body simulating liquid Photo 3: Liquid depth 5 GHz head simulating liquid Photo 4: Liquid depth 5 GHz body simulating liquid ### Annex C: Photo documentation Photo documentation is described in the additional document: ## Appendix to test report no. 1-3959/17-01-02_Photos ### Annex D: Calibration parameters Calibration parameters are described in the additional document: Appendix to test report no. 1-3959/17-01-02_Caldata Calibration data, Phantom certificate and detail information of the DASY5 System ### Annex E: RSS-102 Annex A and B ICRF documents are described in the additional document: Appendix to test report no. 1-3959/17-01-02_ICRF RF Technical Brief Cover Sheet acc. To RSS-102 Annex A and Declaration of RX Exposure Compliance Annex B # **Annex F: Document History** | Version | Applied Changes | Date of Release | |---------|-----------------|-----------------| | | Initial Release | 2017-07-12 | | | | | ### Annex G: Further Information ### **Glossary** DUT - Device under Test EUT - Equipment under Test FCC - Federal Communication Commission FCC ID - Company Identifier at FCC HW - Hardware IC - Industry Canada Inv. No. - Inventory number N/A - not applicable SAR - Specific Absorption Rate S/N - Serial Number SW - Software UNII - Unlicensed National Information Infrastructure