

Page: 1 of 129

SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

Personal Device Assistant **Equipment Under Test**

Datalogic Brand Name DL-Axist Model No.

types with WLAN/BT/NFC **TYPE**

Datalogic ADC S.r.l. **Company Name**

Via San Vitalino no. 13, Calderara di Reno - 40012 **Company Address**

(Bologna) - Italy

IEEE /ANSI C95.1, C95.3, IEEE 1528, **Standards**

KDB248227D01v02r02,KDB865664D01v01r04, KDB865664D02v01r02,KDB648474D04v01r03.

KDB447498D01v06,

FCC ID U4GDLNFCR1 **Date of Receipt** Nov. 24, 2015

Date of Test(s) Dec. 28, 2015 ~ Jan. 05, 2016

Date of Issue Mar. 11, 2016

In the configuration tested, the EUT complied with the standards specified above.

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Taiwan Electronic & Communication Laboratory or testing done by SGS Taiwan Electronic & Communication Laboratory in connection with distribution or use of the product described in this report must be approved by SGS Taiwan Electronic & Communication Laboratory in writing.

Signed on	behalf	of SGS
-----------	--------	--------

Sr. Engineer

Date: Mar. 11, 2016

Asst. Supervisor

John Yeh

Date: Mar. 11, 2016

Page: 2 of 129

Revision History

Report Number	Revision	Description	Issue Date
E5/2015/B0015	Rev.00	Initial creation of document	Jan. 11, 2015
E5/2015/B0015	Rev.01	1 st modification	Jan. 20, 2015
E5/2015/B0015	Rev.02	2 nd modification	Feb. 04, 2016
E5/2015/B0015	Rev.03	3 rd modification	Feb. 26, 2016
E5/2015/B0015	Rev.04	4 th modification	Mar. 11, 2016

Page: 3 of 129

Contents

1. General Information	4
1.1 Testing Laboratory	
1.2 Details of Applicant	
1.3 Description of EUT	5
1.4 Test Environment	18
1.5 Operation Description	18
1.6 Positioning Procedure	20
1.7 Evaluation Procedures	21
1.8 Probe Calibration Procedures	23
1.9 The SAR Measurement System	26
1.10 System Components	28
1.11 SAR System Verification	30
1.12 Tissue Simulant Fluid for the Frequency Band	32
1.13 Test Standards and Limits	34
2. Summary of Results	36
3. Simultaneous Transmission Analysis	42
3.1 Estimated SAR calculation	43
3.2 SPLSR evaluation and analysis	43
4. Instruments List	47
5. Measurements	48
6. SAR System Performance Verification	78
7. DAE & Probe Calibration Certificate	
8. Uncertainty Budget	
9. Phantom Description	
10. System Validation from Original Equipment Supplier	
iv. Oystoni vandation nom original Equipment ouppliel	

Page: 4 of 129

1. General Information

1.1 Testing Laboratory

SGS Taiwan Ltd. Electronics & Communication Laboratory					
No.134, Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipe City, Taiwan					
Tel	+886-2-2299-3279				
Fax	+886-2-2298-0488				
Internet	http://www.tw.sgs.com/				

1.2 Details of Applicant

Company Name	Datalogic ADC S.r.l.
Company Address	Via San Vitalino no. 13, Calderara di Reno - 40012 (Bologna) - Italy

Page: 5 of 129

1.3 Description of EUT

Equipment Under Test	Personal Device Assistant						
Brand Name	Datalogic						
Model No.	DL-Axist						
TYPE	types with WLAN/BT/NFC						
FCC ID	U4GDLNFCR1						
Mode of Operation		⊠Bluet	ooth				
Duty Cycle	WLAN 802.11 a/b/g/n(20M/40M)		1				
Duty Cycle	Bluetooth		1				
	WLAN 802.11 b/g/n(20M)	2412	_	2462			
	WLAN 802.11 n(40M)	2422	_	2452			
	WLAN802.11 a/n(20M) 5.2G	5180	_	5240			
	WLAN802.11 a/n(20M) 5.3G	5260	_	5320			
	WLAN802.11 a/n(20M) 5.5G	5500	_	5700			
TX Frequency Range (MHz)	WLAN802.11 a/n(20M) 5.8G	5745	_	5825			
(1411 12)	WLAN802.11 n(40M) 5.2G	5190	_	5230			
	WLAN802.11 n(40M) 5.3G	5270	_	5310			
	WLAN802.11 n(40M) 5.5G	5510	_	5670			
	WLAN802.11 n(40M) 5.8G	5755	_	5795			
	Bluetooth	2402	_	2480			
	WLAN 802.11 b/g/n(20M)	1	_	11			
	WLAN 802.11 n(40M)	3	_	9			
Channel Number (ARFCN)	WLAN802.11 a/n(20M) 5.2G	36	_	48			
	WLAN802.11 a/n(20M) 5.3G	52	_	64			
	WLAN802.11 a/n(20M)5.6G	100	_	140			

Page: 6 of 129

Channel Number (ARFCN)	WLAN802.11 a/n(20M)5.8G	149	_	165
	WLAN802.11 n(40M) 5.2G	38	_	46
	WLAN802.11 n(40M) 5.3G	54	_	62
	WLAN802.11 n(40M) 5.6G	102	_	134
	WLAN802.11 n(40M) 5.8G	151	_	159
	Bluetooth	0	_	78

	Max. SAR (1 g) (Unit: W/Kg)						
Antenna	Mode	Band	Measured	Reported	Position / Channel		
	WLAN802.11 b	0.093	0.095	□Left ⊠Right ⊠Cheek □Tilt 1 Channel			
		WLAN802.11 a 5.2G	0.316	0.322	□Left ⊠Right □Cheek ⊠Tilt <u>40</u> Channel		
Main	Main Head	WLAN802.11 a 5.3G	0.399	0.432	□Left ⊠Right □Cheek ⊠Tilt <u>56</u> Channel		
		WLAN802.11 n(40M) 5.6G	0.096	0.104	□Left ⊠Right ⊠Cheek □Tilt 102 Channel		
		WLAN802.11 a 5.8G	0.201	0.216	□Left ⊠Right □Cheek ⊠Tilt 149 Channel		

Report No. : E5/2015/B0015 Page : 7 of 129

Max. SAR (1 g) (Unit: W/Kg)						
Antenna	Mode	Band	Measured	Reported	Position / Channel	
		WLAN802.11 b	0.032	0.033	☐Front ☐Back 1Channel	
		WLAN802.11 a 5.2G	0.049	0.050		
Main	Body- worn	WLAN802.11 a 5.3G	0.062	0.067	⊠Front □Back 56 Channel	
	WLAN802.11 n(40M) 5.6G	0.020	0.022			
	WLAN802.11 a 5.8G	0.027	0.029	⊠Front □Back 149 Channel		

	Max. SAR (10 g) (Unit: W/Kg)						
Antenna	Mode	Band	Measured	Reported	Position / Channel		
	WLAN802.11 b	0.278	0.283	☐Front ☐Back ☐Bottom ☐Top ☐Left ☐Right1 _Channel			
		WLAN802.11 a 5.2G	0.297	0.303	☐Front ☐Back ☐Bottom ☐Top ☐Left ☐Right40Channel		
Main	Hand	WLAN802.11 a 5.3G	0.404	0.438	☐Front ☐Back ☐Bottom ☐Top ☐Left ☐Right56Channel		
	WLAN802.11 n(40M) 5.6G	0.188	0.204	☐Front ☐Back ☐Bottom ☐Top ☐Left ☐RightChannel			
			WLAN802.11 a 5.8G	0.260	0.279	☐Front ☐Back ☐Bottom ☐Top ☐Left ☐Right ☐149 Channel	

Report No. : E5/2015/B0015 Page : 8 of 129

Max. SAR (1 g) (Unit: W/Kg)						
Antenna	Mode	Band	Measured	Reported	Position / Channel	
	WLAN802.11 b	0.015	0.015	□Left ⊠Right ⊠Cheek □Tilt 1 Channel		
		WLAN802.11 a 5.2G	0.027	0.029	□Left ⊠Right □Cheek □Tilt 40 Channel	
Aux	Head	WLAN802.11 a 5.3G	0.075	0.082	□Left ⊠Right ⊠Cheek □Tilt56 _Channel	
		WLAN802.11 n(40M) 5.6G	0.0070	0.103		
		WLAN802.11 a 5.8G	0.054	0.063	□Left ⊠Right ⊠Cheek □Tilt149 _Channel	

Max. SAR (1 g) (Unit: W/Kg)						
Antenna	Mode	Band	Measured	Reported	Position / Channel	
		WLAN802.11 b	0.036	0.036	☐Front ☐Back 1Channel	
		WLAN802.11 a 5.2G	0.043	0.046	☐Front ☐Back 40 Channel	
Aux	Body- worn	WLAN802.11 a 5.3G	0.031	0.034	⊠Front □Back <u>56</u> Channel	
	WLAN802.11 n(40M) 5.6G	0.046	0.068	☐Front ☐Back 134 Channel		
		WLAN802.11 a 5.8G	0.039	0.045	⊠Front □Back <u>149</u> Channel	

Page: 9 of 129

	Max. SAR (10 g) (Unit: W/Kg)							
Antenna	Mode	Band	Measured	Reported	Position / Channel			
		WLAN802.11 b	0.136	0.137	☐Front ☐Back ☐Bottom ☐Top ☐Left ☐Right1 _Channel			
		WLAN802.11 a 5.2G	0.137	0.147				
Aux	Hand	WLAN802.11 a 5.3G	0.136	0.149				
		WLAN802.11 n(40M) 5.6G	0.196	0.289				
		WLAN802.11 a 5.8G	0.167	0.194	<pre></pre>			

Page: 10 of 129

WLAN802.11 a/b/g/n (20M/40M) conducted power table:

Antenna	SI	SO	MIMO
Band	Chain 0	Chain 1	Chain0+1
WLAN802.11b	V	V	
WLAN802.11g	V	V	
WLAN802.11n(20M)	V	V	V
WLAN802.11n(40M)	V	V	
WLAN802.11a	V	V	
WLAN802.11n(20M) 5G	V	V	1
WLAN802.11n(40M) 5G	V	V	_

 11001111 / 1	5110 /		
802.11 b		Max. Rated Avg.	Average Power Output (dBm)
СП	Frequency	Power + Max.	Data Rate (Mbps)
СН	(MHz)	Tolerance (dBm)	1
1	2412	14.5	14.42
6	2437	14.5	14.16
11	2462	14.5	13.92

	802.11 g	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	6
1	2412	11.5	11.25
6	2437	11.5	11.14
11	2462	11.5	10.67

808	2.11 n(20M)	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
ОП	(MHz)	Tolerance (dBm)	6.5
1	2412	13	11.98
6	2437	13	11.64
11	2462	13	11.25

Page: 11 of 129

802	2.11 n(40M)	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	13.5
3	2422	10	9.61
6	2437	11.5	10.15
9	2452	10	9.15

8	302.11 a		Average Device Output (dDm)	
5.2/5	5.3/5.6/5.8G	Max. Rated Avg. Power + Max.	Average Power Output(dBm)	
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)	
ОП	(MHz)		6	
36	5180	11.5	11.12	
40	5200	11.5	11.42	
44	5220	11.5	10.97	
48	5240	11.5	10.95	
52	5260	11.5	10.51	
56	5280	11.5	11.15	
60	5300	11.5	10.65	
64	5320	11.5	11.13	
100	5500	10	9.13	
116	5580	10	9.49	
120	5600	10	10.00	
140	5700	10	8.71	
149	5745	9	8.69	
157	5785	9	8.47	
165	5825	9	8.15	

Page: 12 of 129

wain (C	110)			
802	.11 n(20M)		Average Power Output(dBm)	
5.2/5	5.3/5.6/5.8G	Max. Rated Avg. Power + Max.	Average i ower Output(ubiii)	
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)	
ОП	(MHz)		6.5	
36	5180	11.5	11.10	
40	5200	11.5	11.43	
44	5220	11.5	11.50	
48	5240	11.5	11.49	
52	5260	11.5	10.69	
56	5280	11.5	11.37	
60	5300	11.5	10.67	
64	5320	11.5	10.66	
100	5500	10	9.31	
116	5580	10	9.54	
120	5600	10	9.98	
140	5700	10	8.82	
149	5745	9	8.79	
157	5785	9	8.57	
165	5825	9	8.29	

Report No. : E5/2015/B0015 Page : 13 of 129

iviaiii (C	waiii (CHO)				
802	.11 n(40M)		Average Power Output(dBm)		
5.2/5	5.3/5.6/5.8G	Max. Rated Avg.			
СН	Frequency	Power + Max. Tolerance (dBm)	Data Rate (Mbps)		
СП	(MHz)	, ,	13.5		
38	5190	10.5	10.50		
46	5230	10.5	10.31		
54	5270	10.5	10.05		
62	5310	10.5	10.12		
102	5510	11	10.65		
110	5550	11	10.95		
118	5590	11	9.47		
126	5630	11	9.28		
134	5670	11	9.68		
151	5755	8	7.21		
159	5795	8	6.77		

Page: 14 of 129

Aux (CH1)

Aux (off)						
		802.11 b	Max. Rated Avg.	Average Power Output (dBm)		
	СН	Frequency	Power + Max. Tolerance (dBm)	Data Rate (Mbps)		
	ОП	(MHz)		1		
	1	2412	14.5	14.46		
	6	2437	14.5	14.21		
	11	2462	14.5	13.99		

	802.11 g	Max. Rated Avg.	Average Power Output (dBm)
СН	Frequency	Power + Max.	Data Rate (Mbps)
СП	(MHz)	Tolerance (dBm)	6
1	2412	11.5	11.3
6	2437	11.5	11.19
11	2462	11.5	10.76

80	2.11 n(20M)	Max. Rated Avg. Power + Max. Tolerance (dBm)	Average Power Output (dBm)
СН	Frequency		Data Rate (Mbps)
СП	(MHz)		6.5
1	2412	13	11.99
6	2437	13	11.68
11	2462	13	11.29

802	2.11 n(40M)	Max. Rated Avg.	Average Power Output (dBm)		
СН	Frequency	Power + Max.	Data Rate (Mbps)		
ОП	(MHz)	Tolerance (dBm)	13.5		
3	2422	10	9.65		
6	2437	11.5	11.23		
9	2452	10	9.22		

Report No. : E5/2015/B0015 Page : 15 of 129

Aux (CH1)

802.11 a					
5.2/5.3/5.6/5.8G Frequency		Max. Rated Avg.	Average Power Output(dBm)		
		Power + Max. Tolerance (dBm)	Data Rate (Mbps)		
0.1	(MHz)		6		
36	5180	11.5	10.74		
40	5200	11.5	11.20		
44	5220	11.5	10.54		
48	5240	11.5	10.91		
52	5260	11.5	10.48		
56	5280	11.5	11.10		
60	5300	11.5	10.51		
64	5320	11.5	10.45		
100	5500	10	8.81		
116	5580	10	9.41		
120	5600	10	9.67		
140	5700	10	8.31		
149	5745	9	8.35		
157	5785	9	8.34		
165	5825	9	8.04		

Report No. : E5/2015/B0015 Page : 16 of 129

Aux (CH1)

	AUX (CTI)							
802	.11 n(20M)		Average Power Output(dBm)					
5.2/5	5.3/5.6/5.8G	Max. Rated Avg. Power + Max.	Average i ower output(dbiii)					
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)					
36	(MHz)		6.5					
36	5180	11.5	11.05					
40	5200	11.5	11.39					
44	5220	11.5	11.35					
48	5240	11.5	11.48					
52	5260	11.5	10.64 11.32					
56	5280	11.5						
60	5300	11.5	10.51					
64	5320	11.5	10.52					
100	5500	10	9.05					
116	5580	10	9.44					
120	5600	10	9.57					
140	5700	10	8.38					
149	5745	9	8.49					
157	5785	9	8.31					
165	5825	9	8.21					

Report No. : E5/2015/B0015 Page : 17 of 129

Aux (CH1)

Aux (CH1)							
802	.11 n(40M)		Average Power Output/dPm)				
5.2/5.3/5.6/5.8G		Max. Rated Avg. Power + Max.	Average Power Output(dBm)				
СН	Frequency	Tolerance (dBm)	Data Rate (Mbps)				
OH	(MHz)	· · ·	13.5				
38	5190	10.5	10.40				
46	5230	10.5	10.21				
54	5270	10.5	9.73				
62	5310	10.5	10.03				
102	5510	11	9.10				
110	5550	11	10.51				
118	5590	11	9.15				
126	5630	11	9.08				
134	5670	11	9.31				
151	5755	8	7.14				
159	5795	8	6.60				

MIMO(CH0 + CH1)

	WLAN802.1	1 n (20M)	Average Power Output (dBm)			
СН	_	Max. Rated Avg.	Data Rate			
	Frequency (MHz)	Power + Max. Tolerance (dBm)	HT8			
			ch 0	ch 1	ch 0+1	
1	2412	16	12.80	12.05	15.45	
6	2437	16	13.20	12.20	15.74	
11	2462	16	13.05	12.61	15.85	

Page: 18 of 129

1.4 Test Environment

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

1.5 Operation Description

- 1. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.
- 2. During the SAR testing, the DASY 5 system checks power drift by comparing the e-field strength of one specific location measured at the beginning with that measured at the end of the SAR testing.
- 3. Testing head SAR at lowest, middle and highest channel for all bands with Left Tilt /Left Cheek/Right Tilt/Right Cheek conditions.
- 4. Testing body-worn SAR for front and backside by separating the EUT and the phantom 15mm.
- 5. Since an overall diagonal dimension of the device > 16.0 cm, the phablet procedures are applied to evaluate SAR compliance for each applicable wireless mode and frequency band. Testing SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR.
- 6. According to KDB447498D01v06 The 1-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] · [√f(GHz)] ≤ 3.0 for 1-g SAR, SAR evaluation is not required.

			fror	nt/ back side	es
Mode	Maximum power (dBm)	Maximum power(mW)	test separation distance (mm)	Exclusion threshold	Require SAR testing?
ВТ	4.5	2.818	15	0.296	NO

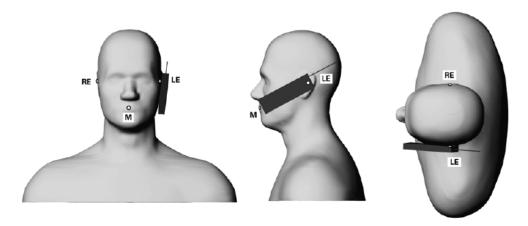
Page: 19 of 129

802.11b DSSS SAR Test Requirements:

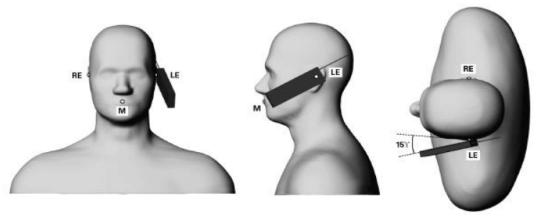
- 7. SAR is measured for 2.4 GHz 802.11b DSSS mode using the highest measured maximum output power channel, when the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 8. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

802.11g/n OFDM SAR Test Exclusion Requirements:

9. SAR is not required for 802.11g/n since the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.


Initial Test Configuration:

- 10. An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band.
- 11. SAR is measured using the highest measured maximum output power channel. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 12. BT and Main use the same antenna path and Bluetooth can't transmit simultaneously with Main.
- 13. For the 2nd battery, the highest reported SAR for each wireless technology, frequency band, and applicable exposure condition must be repeated with the additional battery.
- 14. According to KDB447498D01v05r02, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is \leq 0.8 W/kg, when the transmission band is \leq 100 MHz.
- 15. According to KDB865664D01v01r04, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit)



Page: 20 of 129

1.6 Positioning Procedure

Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning.

Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning.

Cheek/Touch Position:

The handset was brought toward the mouth of the head phantom by pivoting against the ear reference point until any point of the mouthpiece or keypad touched the phantom.

Ear/Tilt Position:

With the phone aligned in the Cheek/Touch position, the handset was tilted away from the mouth with respect to the test device reference point by 15 degrees.

Page: 21 of 129

1.7 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
- 3. The generation of a high-resolution mesh within the measured volume.
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid.
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface.
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans.

The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is

Page: 22 of 129

placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found.

If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

Page: 23 of 129

1.8 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

1.8.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ($\delta T / \delta t$) in the liquid.

$$SAR = \frac{\sigma}{\rho} |E|^2 = c \frac{\delta T}{\delta t}$$

Whereby σ is the conductivity, ρ the density and c the heat capacity of the liquid.

Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:

 The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the liquid. Such effects cannot be completely avoided, as the measured field itself destroys the

Page: 24 of 129

thermal equilibrium in the liquid. With a careful setup these errors can be kept small.

- 2. The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.
- 3. The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (~ 2% for c; much better for ρ), there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed ±5%.
- 4. Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements. The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about $\pm 10\%$ (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is $\pm 5\%$ (RSS) when the same liquid is used for the calibration and for actual measurements and ± 7 -9% (RSS) when not, which is in good agreement with the estimates given in [2].

Page: 25 of 129

1.8.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids.

When using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

- 1. The setup must enable accurate determination of the incident power.
- 2. The accuracy of the calculated field strength will depend on the assessment of the dielectric parameters of the liquid.
- Due to the small wavelength in liquids with high permittivity, even small setups
 might be above the resonant cutoff frequencies. The field distribution in the
 setup must be carefully checked for conformity with the theoretical field
 distribution.

References

- [1] N. Kuster, Q. Balzano, and J.C. Lin, Eds., *Mobile Communications Safety*, Chapman & Hall, London, 1997.
- [2] K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, \Broadband calibration of E-field probes in lossy media", *IEEE Transactions on Microwave Theory and Techniques*, vol. 44, no. 10, pp. 1954{1962, Oct. 1996.
- [3] K. Jokela, P. Hyysalo, and L. Puranen, \Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", *IEEE Transactions on Instrumentation and Measurements*, vol. 47, no. 2, pp. 432{438, Apr. 1998.

Page: 26 of 129

1.9 The SAR Measurement System

A block diagram of the SAR measurement system is given in Fig. a. This SAR measurement system uses a Computer-controlled 3-D stepper motor system (SPEAG DASY 5 professional system). Model EX3DV4 field probes are used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

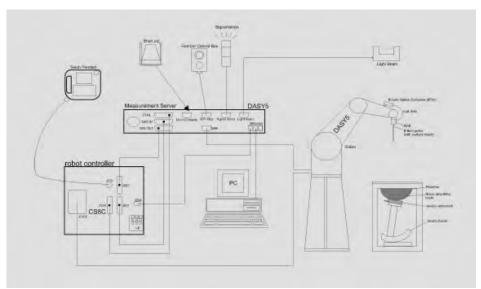


Fig. a A block diagram of the SAR measurement system

Page: 27 of 129

The DASY 5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension is for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- 5. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 7. A computer operating Windows7
- 8. DASY 5 software.
- 9. Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 10. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 11. The device holder for handheld mobile phones.
- 12. Tissue simulating liquid mixed according to the given recipes.
- 13. Validation dipole kits allowing to validate the proper functioning of the system.

Page: 28 of 129

1.10 System Components

EX3DV4 E-Field Probe

Teld I Tobe					
Symmetrical design with triangular core					
Built-in shielding against static charges					
PEEK enclosure material (resistant to					
organic solvents, e.g., DGBE)					
Basic Broad Band Calibration in air					
Conversion Factors (CF) for					
HSL2450/5200/5300/5600/5800 MHz					
Additional CF for other liquids and					
frequencies upon request					
10 MHz to > 6 GHz, Linearity: ± 0.6 dB					
± 0.3 dB in HSL (rotation around probe axis)					
± 0.5 dB in tissue material (rotation normal to probe axis)					
$10 \mu W/g \text{ to} > 100 \text{ mW/g}$					
Linearity: ± 0.2 dB (noise: typically < 1 μW/g)					
Tip diameter: 2.5 mm					
High precision dosimetric measurements in any exposure scenario					
(e.g., very strong gradient fields). Only probe which enables					
compliance testing for frequencies up to 6 GHz with precision of					
better 30%.					

Report No. : E5/2015/B0015 Page : 29 of 129

SAM PHANTOM V4.0C

SAM FITANTO	7W V 7.00					
Construction:	The shell corresponds to the spec	ifications of the Specific				
	Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528					
	and IEC 62209.					
	It enables the dosimetric evaluation	on of left and right hand phone				
	usage as well as body mounted us	sage at the flat phantom region. A				
	cover prevents evaporation of the	liquid. Reference markings on the				
	phantom allow the complete setup	o of all predefined phantom				
	positions and measurement grids	by manually teaching three points				
	with the robot.					
Shell	2 ± 0.2 mm					
Thickness:		The state of				
Filling	Approx. 25 liters	1				
Volume:						
Dimensions:	Height: 850 mm;					
	Length: 1000 mm;	- 6				
	Width: 500 mm					

DEVICE HOLDER

DEVIOL HOL		
Construction	In combination with the Twin SAM Phantom	1
	V4.0/V4.0C or Twin SAM, the Mounting	A PROPERTY AND ADDRESS OF
	Device (made from POM) enables the	
	rotation of the mounted transmitter in	
	spherical coordinates, whereby the rotation	
	point is the ear opening. The devices can	
	be easily and accurately positioned	
	according to IEC, IEEE, CENELEC, FCC or	
	other specifications. The device holder can	
	be locked at different phantom locations	Device Holder
	(left head, right head, flat phantom).	

Page: 30 of 129

1.11 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% (according to KDB865664D01v01r04) from the target SAR values.

These tests were done at 2450/5200/5300/5600/5800 MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was 21.7° C, the relative humidity was 62% and the liquid depth above the ear reference points was above 15 cm ($\leq 3G$) or 10 cm (>3G) in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

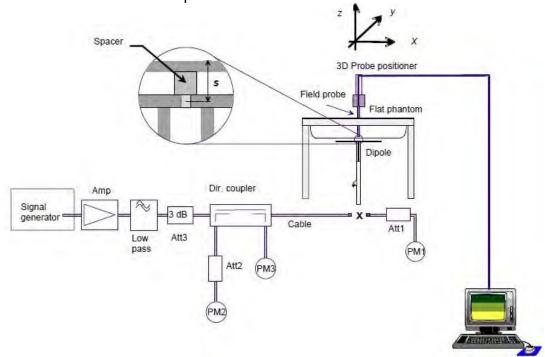


Fig. b The block diagram of system verification

Page: 31 of 129

Validation Kit	S/N	Frequency (MHz)		1W Target SAR-1g (mW/g)	Measured SAR-1g (mW/g)	Measured SAR-1g normalized to 1W (mW/g)	Deviation (%)	Measured Date
D2450V2	727	2450	Head	52	13.2	52.8	1.54%	Dec. 28, 2015
D2430 V2	121	2430	Body	51	12.9	51.6	1.18%	Dec. 29, 2015
	1000	5200	Head	77.9	7.99	79.9	2.57%	Dec. 30, 2015
			Body	73.5	7.29	72.9	-0.82%	Jan. 02, 2016
		5300 023 5600	Head	81.7	8.12	81.2	-0.61%	Dec. 30, 2015
D5GHzV2			Body	74.6	7.5	75	0.54%	Jan. 03, 2016
DJGHZVZ	1023		Head	81.4	8.01	80.1	-1.60%	Dec. 31, 2015
			Body	77.9	8.07	80.7	3.59%	Jan. 04, 2016
		5800	Head	78.2	8.05	80.5	2.94%	Jan. 01, 2016
			Body	75.6	7.42	74.2	-1.85%	Jan. 05, 2016

Table 1. Results of system validation

Page: 32 of 129

1.12 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this Head-simulant fluid were measured by using the Agilent Model 85070E Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Network Analyzer.

All dielectric parameters of tissue simulates were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the flat section of the phantom was at least 15 cm (≤3G) or 10 cm (>3G) during all tests. (Appendix Fig. 2)

Tissue Type	Measured Frequency (MHz)	Target Dielectric Constant, Er	Target Conductivity, σ (S/m)	Measured Dielectric Constant, Er	Measured Conductivity, σ (S/m)	% dev εr	% dev σ	Measurement Date	
	2412	39.268	1.766	39.473	1.792	-0.52%	-1.47%	Dec. 28, 2015	
	2450	39.200	1.800	39.283	1.839	-0.21%	-2.17%	Dec. 20, 2013	
	5200	35.986	4.655	36.541	4.672	-1.54%	-0.37%	Dec. 30, 2015	
	5280	35.894	4.737	36.199	4.784	-0.85%	-0.99%	Dec. 30, 2015	
Head	5300	35.871	4.758	36.142	4.808	-0.76%	-1.05%	Dec. 30, 2015	
пеац	5510	35.631	4.973	35.748	5.108	-0.33%	-2.71%		
	5600	35.494	5.096	35.552	5.216	-0.16%	-2.35%	Dec. 31, 2015	
	5670	35.449	5.137	35.437	5.265	0.03%	-2.49%		
	5745	35.363	5.214	35.336	5.385	0.08%	-3.28%	Jan. 01, 2016	
	5800	35.300	5.270	35.203	5.459	0.27%	-3.59%	Jan. 01, 2016	
	2412	52.751	1.914	53.004	1.903	-0.48%	0.57%	Dec. 29, 2015	
	2450	52.700	1.950	52.813	1.956	-0.21%	-0.31%	Dec. 29, 2015	
	5200	49.014	5.299	47.530	5.195	3.03%	1.96%	Jan. 02, 2016	
	5280	48.906	5.393	47.320	5.339	3.24%	1.00%	Jan. 03, 2016	
Body	5300	48.879	5.416	47.298	5.356	3.23%	1.11%	Jan. 03, 2016	
ьошу	5510	48.594	5.661	47.023	5.772	3.23%	-1.96%		
	5600	48.431	5.801	46.863	5.852	3.24%	-0.88%	Jan. 04, 2016	
	5670	48.376	5.848	46.793	5.904	3.27%	-0.96%		
	5745	48.275	5.936	46.650	6.160	3.37%	-3.77%	Jan. 05, 2016	
ľ	5800	48.200	6.000	46.520	6.246	3.49%	-4.10%	Jan. 03, 2016	

Table 2. Dielectric Parameters of Tissue Simulant Fluid

Page: 33 of 129

The composition of the tissue simulating liquid:

							<u> </u>		
	-			Ingredient					
	Frequency (MHz)	Mode	DGMBE	Water	Salt	Preventol D-7	Cellulose	Sugar	Total amount
	0450	Head	550ml	450ml	_	_	1	_	1.0L(Kg)
	2450	Body	301.7ml	698.3ml	_	_	_	_	1.0L(Kg)

Simulating Liquids for 5 GHz, Manufactured by SPEAG:

Ingredients	Water	Esters, Emulsifiers, Inhibitors	Sodium and Salt
(% by weight)	60-80	20-40	0-1.5

Table 3. Recipes for tissue simulating liquid

Page: 34 of 129

1.13 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017.

These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter.

Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

1. Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over a 10 grams of tissue (defined as a tissue volume in the shape of a cube).

Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

2. Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube).

Page: 35 of 129

Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube).

General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure.

Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section. (Table .6)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR (Brain)	1.60 m W/g	8.00 m W/g
Spatial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Spatial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table 4. RF exposure limits

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Page: 36 of 129

2. Summary of Results

WLAN802.11 b

Antenna	Mode	Position	Distance (mm)	СН	H Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dRm)	Measured Avg. Power (dBm)	Scaling	Averaged SAR over 1g (W/kg)		Plot page
									Measured	Reported	
		RE Cheek	-	1	2412	14.5	14.42	1.86%	0.093	0.095	48
	Head	RE Tilt	-	1	2412	14.5	14.42	1.86%	0.076	0.077	-
Main	пеац	LE Cheek	-	1	2412	14.5	14.42	1.86%	0.075	0.076	-
IVIAIII		LE Tilt	-	1	2412	14.5	14.42	1.86%	0.056	0.057	-
	Body- worn	Front side	15	1	2412	14.5	14.42	1.86%	0.027	0.028	-
		Back side	15	1	2412	14.5	14.42	1.86%	0.032	0.033	49

Antenna	Mode	Position	Distance (mm)	СН	Freq. (MHz)	Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged SAR over 10g (W/kg)		Plot page
						Tolerance (dBm)	(dBm)		Measured	Reported	
		Front side	0	1	2412	14.5	14.42	1.86%	0.044	0.045	-
Main	Hand	Back side	0	1	2412	14.5	14.42	1.86%	0.081	0.083	-
ivialli	папи	Top side	0	1	2412	14.5	14.42	1.86%	0.058	0.059	-
		Left side	0	1	2412	14.5	14.42	1.86%	0.278	0.283	50

Antenna	Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance (dRm)	Measured Avg. Power (dBm)	Scaling	Averaged SAR over 1g (W/kg)		Plot page
									Measured	Reported	
		RE Cheek	-	1	2412	14.5	14.46	0.93%	0.015	0.015	51
	Head	RE Tilt	-	1	2412	14.5	14.46	0.93%	0.00446	0.005	-
Aux	Heau	LE Cheek	-	1	2412	14.5	14.46	0.93%	0.011	0.011	-
Aux		LE Tilt	-	1	2412	14.5	14.46	0.93%	0.00615	0.006	-
	Body- worn	Front side	15	1	2412	14.5	14.46	0.93%	0.018	0.018	-
		Back side	15	1	2412	14.5	14.46	0.93%	0.036	0.036	52

Antenna	Mode	e Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power (dBm)	Scaling	Averaged SAR over 10g (W/kg)		Plot page
						Tolerance (dBm)			Measured	Reported	
		Front side	0	1	2412	14.5	14.46	0.93%	0.081	0.082	-
		Back side	0	1	2412	14.5	14.46	0.93%	0.129	0.130	-
Aux	Hand	Bottom side	0	1	2412	14.5	14.46	0.93%	0.136	0.137	53
		Right side	0	1	2412	14.5	14.46	0.93%	0.087	0.088	-
		Left side	0	1	2412	14.5	14.46	0.93%	0.016	0.016	-

Page: 37 of 129

WLAN802.11 a 5.2G

Antenna	Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/	U	Plot page
		,			Tolerance (dBm)	(dBm)		Measured	Reported		
	Head	RE Cheek	-	40	5200	11.5	11.42	1.86%	0.243	0.248	-
		RE Tilt	-	40	5200	11.5	11.42	1.86%	0.316	0.322	54
Main	Heau	LE Cheek	-	40	5200	11.5	11.42	1.86%	0.113	0.115	-
IVIAIII		LE Tilt	-	40	5200	11.5	11.42	1.86%	0.111	0.113	-
	Body-	Front side	15	40	5200	11.5	11.42	1.86%	0.049	0.050	55
	worn	Back side	15	40	5200	11.5	11.42	1.86%	0.027	0.028	-

Antenna Mode	Mode	Position	Position	Distance (mm)	СН	Freq. (MHz)	Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged 10 (W/)g	Plot page
					Tolerance (dBm)	(dBm)		Measured	Reported			
		Front side	0	40	5200	11.5	11.42	1.86%	0.109	0.111	-	
Main	Hand	Back side	0	40	5200	11.5	11.42	1.86%	0.078	0.079	-	
iviaiii	Hand	Top side	0	40	5200	11.5	11.42	1.86%	0.155	0.158	-	
		Left side	0	40	5200	11.5	11.42	1.86%	0.297	0.303	56	

Antenna Mode	Mode	Position	Distance (mm)	СН	Freq.	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/	_	Plot page
		,		, ,	Tolerance (dBm)	(dBm)		Measured	Reported		
		RE Cheek	-	40	5200	11.5	11.20	7.15%	0.027	0.029	57
	Head	RE Tilt	-	40	5200	11.5	11.20	7.15%	0.0048	0.005	-
Aux	пеац	LE Cheek	-	40	5200	11.5	11.20	7.15%	0.026	0.028	-
Aux		LE Tilt	-	40	5200	11.5	11.20	7.15%	0.00291	0.003	-
E	Body-	Front side	15	40	5200	11.5	11.20	7.15%	0.032	0.034	-
	worn	Back side	15	40	5200	11.5	11.20	7.15%	0.043	0.046	58

Antenna M	Mode	Position	Distance (mm)	. I CH	CH Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged 10 (W/)g	Plot page
			,		,	Tolerance (dBm)	(dBm)		Measured	Reported	
		Front side	0	40	5200	11.5	11.20	7.15%	0.137	0.147	59
		Back side	0	40	5200	11.5	11.20	7.15%	0.019	0.020	-
Aux	Hand	Bottom side	0	40	5200	11.5	11.20	7.15%	0.039	0.042	-
		Right side	0	40	5200	11.5	11.20	7.15%	0.056	0.060	-
		Left side	0	40	5200	11.5	11.20	7.15%	0.00279	0.003	-

Page: 38 of 129

WLAN802.11 a 5.3G

Antenna Mode	Mode	Position	Distance (mm)	СН	Freq.	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/	U	Plot page
		, ,		, ,	Tolerance (dBm)	(dBm)		Measured	Reported		
		RE Cheek	-	56	5280	11.5	11.15	8.39%	0.320	0.347	-
ا ا	Head	RE Tilt	-	56	5280	11.5	11.15	8.39%	0.399	0.432	60
Main	пеац	LE Cheek	-	56	5280	11.5	11.15	8.39%	0.141	0.153	-
IVIAIII		LE Tilt	-	56	5280	11.5	11.15	8.39%	0.123	0.133	-
Body- worn	Body-	Front side	15	56	5280	11.5	11.15	8.39%	0.062	0.067	61
	worn	Back side	15	56	5280	11.5	11.15	8.39%	0.031	0.034	-

Antenna Mode	Mode	Position	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged 10 (W/)g	Plot page
				, ,	Tolerance (dBm)	(dBm)		Measured	Reported			
		Front side	0	56	5280	11.5	11.15	8.39%	0.141	0.153	-	
Main	Hand	Back side	0	56	5280	11.5	11.15	8.39%	0.088	0.095	-	
Main H	Hanu	Top side	0	56	5280	11.5	11.15	8.39%	0.230	0.249	-	
		Left side	0	56	5280	11.5	11.15	8.39%	0.404	0.438	62	

Antenna Mode	Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/	_	Plot page
		, ,			Tolerance (dBm)	(dBm)		Measured	Reported		
		RE Cheek	-	56	5280	11.5	11.10	9.65%	0.075	0.082	63
	Head	RE Tilt	-	56	5280	11.5	11.10	9.65%	0.00195	0.002	-
Aux	Heau	LE Cheek	-	56	5280	11.5	11.10	9.65%	0.046	0.050	-
Aux		LE Tilt	-	56	5280	11.5	11.10	9.65%	0.00633	0.007	-
	Body-	Front side	15	56	5280	11.5	11.10	9.65%	0.031	0.034	64
	worn	Back side	15	56	5280	11.5	11.10	9.65%	0.028	0.031	-

Antenna Mode	Mode	Position	Distance (mm)	СН	Freq.	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged 10 (W/)g	Plot page
		Front side	,		,	Tolerance (dRm)	(dBm)		Measured	Reported	,
		Front side	0	56	5280	11.5	11.10	9.65%	0.136	0.149	65
		Back side	0	56	5280	11.5	11.10	9.65%	0.080	0.088	-
Aux	Hand	Bottom side	0	56	5280	11.5	11.10	9.65%	0.030	0.033	-
		Right side	0	56	5280	11.5	11.10	9.65%	0.034	0.037	-
		Left side	0	56	5280	11.5	11.10	9.65%	0.00608	0.007	-

Page: 39 of 129

WLAN802.11 n(40M) 5.6G

Antenna Mode	Mode	Position	Distance (mm)	СН	Freq.	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/	-	Plot page
		,			Tolerance (dRm)	(dBm)		Measured	Reported		
		RE Cheek	-	102	5510	11	10.65	8.39%	0.096	0.104	66
	Head	RE Tilt	-	102	5510	11	10.65	8.39%	0.093	0.101	-
Main	пеац	LE Cheek	-	102	5510	11	10.65	8.39%	0.047	0.051	-
IVIAIII		LE Tilt	-	102	5510	11	10.65	8.39%	0.042	0.046	-
	Body-	Front side	15	102	5510	11	10.65	8.39%	0.020	0.022	67
	worn	Back side	15	102	5510	11	10.65	8.39%	0.00977	0.011	-

Antenna Mode	Mode	Position	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged 10 (W/)g	Plot page
					Tolerance (dBm)	(dBm)		Measured	Reported			
		Front side	0	102	5510	11	10.65	8.39%	0.043	0.047	-	
Main	Hand	Back side	0	102	5510	11	10.65	8.39%	0.023	0.025	-	
Main Ha	Hallu	Top side	0	102	5510	11	10.65	8.39%	0.061	0.066	-	
		Left side	0	102	5510	11	10.65	8.39%	0.188	0.204	68	

Antenna Mode	Mode	Position	Distance (mm)	СН	Freq.	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/	-	Plot page	
		,			Tolerance (dBm)	(dBm)		Measured	Reported	. 0		
		RE Cheek	-	134	5670	11	9.31	47.57%	0.068	0.100	-	
	Head	RE Tilt	-	134	5670	11	9.31	47.57%	0.00537	0.008	-	
Aux	пеац	LE Cheek	-	134	5670	11	9.31	47.57%	0.070	0.103	69	
Aux		LE Tilt	-	134	5670	11	9.31	47.57%	0.00124	0.002	-	
E	Body-	Front side	15	134	5670	11	9.31	47.57%	0.045	0.066	-	
	worn	Back side	15	134	5670	11	9.31	47.57%	0.046	0.068	70	

Antenna	Antenna Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max. Tolerance	Measured Avg. Power (dBm)	Scaling	Averaged 10 (W/)g 'kg)	Plot page
		Front side	0	134	5670	(dRm) 11	9.31	47.57%	Measured 0.196	Reported 0.289	71
		Back side	0	134	5670	11	9.31	47.57%	0.057	0.084	-
Aux	Hand	Bottom side	0	134	5670	11	9.31	47.57%	0.027	0.040	-
		Right side	0	134	5670	11	9.31	47.57%	0.056	0.083	-
		Left side	0	134	5670	11	9.31	47.57%	0.00796	0.012	-

Page: 40 of 129

WLAN802.11 a 5.8G

Antenna	Mode	Position	Distance (mm)	СН	Freq.	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/	0	Plot page
			, ,		, í	Tolerance (dRm)	(dBm)		Measured	Reported	
	Head	RE Cheek	-	149	5745	9	8.69	7.40%	0.160	0.172	-
		RE Tilt	-	149	5745	9	8.69	7.40%	0.201	0.216	72
Main	пеац	LE Cheek	-	149	5745	9	8.69	7.40%	0.088	0.095	-
IVIAIII		LE Tilt	-	149	5745	9	8.69	7.40%	0.080	0.086	-
	Body- worn	Front side	15	149	5745	9	8.69	7.40%	0.027	0.029	73
		Back side	15	149	5745	9	8.69	7.40%	0.00980	0.011	-

Antenna	Mode Position		Distance (mm)		Freq. (MHz)	Max. Rated Avg. Power + Max.	Fower	Scaling	Averaged SAR over 10g (W/kg)		Plot page
						Tolerance (dBm)	(dBm)		Measured	Reported	
		Front side	0	149	5745	9	8.69	7.40%	0.056	0.060	-
Main	Hand	Back side	0	149	5745	9	8.69	7.40%	0.013	0.014	-
Main	TIATIU	Top side	0	149	5745	9	8.69	7.40%	0.079	0.085	-
		Left side	0	149	5745	9	8.69	7.40%	0.260	0.279	74

Antenna	Mode	Position	Distance (mm)	СН	Freq.	Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged SAR over 1g (W/kg)		Plot page
					` ′	Tolerance (dBm)	(dBm)		Measured	Reported	
	Head	RE Cheek	-	149	5745	9	8.35	16.14%	0.054	0.063	75
		RE Tilt	-	149	5745	9	8.35	16.14%	0.000865	0.001	-
Aux	пеац	LE Cheek	-	149	5745	9	8.35	16.14%	0.014	0.016	-
Aux		LE Tilt	-	149	5745	9	8.35	16.14%	0.00717	0.008	-
	Body- worn	Front side	15	149	5745	9	8.35	16.14%	0.039	0.045	76
		Back side	15	149	5745	9	8.35	16.14%	0.037	0.043	-

Antenna	Mode	Position	Distance OH Freq. Avg.		Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged SAR over 10g (W/kg)		Plot page	
						(dRm)	(dBm)		Measured	Reported	
		Front side	0	149	5745	9	8.35	16.14%	0.167	0.194	77
		Back side	0	149	5745	9	8.35	16.14%	0.105	0.122	-
Aux	Hand	Bottom side	0	149	5745	9	8.35	16.14%	0.0065	0.0075	-
		Right side	0	149	5745	9	8.35	16.14%	0.089	0.103	-
	•	Left side	0	149	5745	9	8.35	16.14%	0.018	0.021	-

Page: 41 of 129

2nd Battery

Antenna	Mode	Position	Distance (mm)	СН	Freq. (MHz)	Max. Rated Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged S (W/		Plot page
						Tolerance (dBm)	(dBm)		Measured	Reported	
		RE Cheek	-	1	2412	14.5	14.42	1.86%	0.082	0.084	-
		RE Tilt	-	40	5200	11.5	11.42	1.86%	0.276	0.281	-
Main		RE Tilt	-	56	5280	11.5	11.15	8.39%	0.375	0.406	-
	Head	RE Cheek	-	102	5510	11	10.65	8.39%	0.085	0.092	-
		RE Tilt	-	149	5745	9	8.69	7.40%	0.193	0.207	-
	пеац	RE Cheek	-	1	2412	14.5	14.46	0.93%	0.012	0.012	-
		RE Cheek	-	40	5200	11.5	11.20	7.15%	0.023	0.025	-
Aux		RE Cheek	-	56	5280	11.5	11.10	9.65%	0.068	0.075	-
		LE Cheek	-	134	5670	11	9.31	47.57%	0.063	0.093	-
		RE Cheek	-	149	5745	9	8.35	16.14%	0.046	0.053	-
		Back side	15	1	2412	14.5	14.42	1.86%	0.021	0.021	-
		Front side	15	40	5200	11.5	11.42	1.86%	0.046	0.047	-
Main		Front side	15	56	5280	11.5	11.15	8.39%	0.056	0.061	-
		Front side	15	102	5510	11	10.65	8.39%	0.018	0.020	-
	Body-	Front side	15	149	5745	9	8.69	7.40%	0.023	0.025	-
	worn	Back side	15	1	2412	14.5	14.46	0.93%	0.023	0.023	-
		Back side	15	40	5200	11.5	11.20	7.15%	0.028	0.030	-
Aux		Front side	15	56	5280	11.5	11.10	9.65%	0.029	0.032	-
, tux		Back side	15	134	5670	11	9.31	47.57%	0.029	0.043	-
	-	Front side	15	149	5745	9	8.35	16.14%	0.036	0.042	-

Antenna	Mode	Position Distance (mm)		I (:H I		Freq. Avg. Power + Max.	Measured Avg. Power	Scaling	Averaged 10 (W/)g	Plot page
			, ,		,	Tolerance (dBm)	(dBm)		Measured	Reported	
		Left side	0	1	2412	14.5	14.42	1.86%	0.252	0.257	-
	Hand	Left side	0	40	5200	11.5	11.42	1.86%	0.273	0.278	-
Main		Left side	0	56	5280	11.5	11.15	8.39%	0.372	0.403	-
		Left side	0	102	5510	11	10.65	8.39%	0.167	0.181	-
		Left side	0	149	5745	9	8.69	7.40%	0.231	0.248	-
	папи	Bottom side	0	1	2412	14.5	14.46	0.93%	0.128	0.129	-
		Front side	0	40	5200	11.5	11.20	7.15%	0.131	0.140	-
Aux		Front side	0	56	5280	11.5	11.10	9.65%	0.129	0.141	-
		Front side	0	134	5670	11	9.31	47.57%	0.186	0.274	-
		Front side	0	149	5745	9	8.35	16.14%	0.162	0.188	-

Page: 42 of 129

3. Simultaneous Transmission Analysis

Simultaneous Transmission Scenarios:

Simultaneous Transmit Configurations	Head	Body-Worn	Hand
2.4GHz Wi-Fi MIMO	Yes	Yes	Yes
BT + 2.4GHz Aux	NA	Yes	Yes
BT + 5GHz Aux	NA	Yes	Yes

Page: 43 of 129

3.1 Estimated SAR calculation

According to KDB447498 D01v05 – When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

Estimated SAR =
$$\frac{\text{Max.tune up power(mW)}}{\text{Min.test separation distance(mm)}} \times \frac{\sqrt{f(GHz)}}{7.5}$$

If the minimum test separation distance is < 5mm, a distance of 5mm is used for estimated SAR calculation. When the test separation distance is >50mm, the 0.4W/kg is used for SAR-1g.

Mode	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (Body) (mm)	Estimated SAR 1g (Body) (W/kg)
Bluetooth	2480	4.5	15	0.039

Mode	Frequency (MHz)	Maximum Power (dBm)	Separation Distance (Hand) (mm)	Estimated SAR 10g (Hand) (W/kg)
Bluetooth	2480	4.5	5	0.047

3.2 SPLSR evaluation and analysis

Per KDB447498D01, when the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR sum to peak location separation ratio(SPLSR).

The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion.

The ratio is determined by (SAR1 + SAR2)^1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 (0.1) for all antenna pairs in the configuration to qualify for 1-g (10-g) SAR test exclusion.

SAR1 and SAR2 are the highest reported or estimated SAR for each antenna in the pair, and Ri is the separation distance between the peak SAR locations for the antenna pair in mm.

When standalone test exclusion applies, SAR is estimated; the peak location is assumed to be at the feed-point or geometric center of the antenna.

Page: 44 of 129

Simultaneous Transmission Combination

		reported SAF	R WLAN 2.4	GHz, ΣSAR	evaluation		
Frequency	D	osition	reported S	SAR / W/kg	ΣSAR	Calculated	SPLSR
band	Position		Main	Aux	<1.6W/kg	distance (mm)	(≦0.04)
	Head	Right cheek	0.095	0.015	0.110	-	-
WLAN802.11 b		Right tilt	0.077	0.005	0.082	-	ı
WLANOUZ.IID		Left cheek	0.076	0.011	0.087	-	-
		Left tilt	0.057	0.006	0.063	-	-
WLAN802.11 b	Body-	Front	0.028	0.018	0.046	-	-
WLAN802.11 D	worn	Back	0.033	0.036	0.069	-	1

reported SAR WLAN and Bluetooth, ΣSAR evaluation											
Frequency	_		reported	SAR / W/kg	ΣSAR	Calculated	SPLSR				
band	Pos	ition	Aux	Bluetooth	<1.6W/kg	distance (mm)	(≦0.04)				
WLAN802.11 b	Body-	Front	0.018	0.039	0.057	-	=				
WLANOUZ.11 D	Worn	Back	0.036	0.039	0.075	-	-				
WLAN802.11 a	Body-	Front	0.034	0.039	0.073	-	-				
5.2G	Worn	Back	0.046	0.039	0.085	-	-				
WLAN802.11 a	Body-	Front	0.034	0.039	0.073	-	-				
5.3G	Worn	Back	0.031	0.039	0.07	-	-				
WLAN802.11	Body-	Front	0.066	0.039	0.105	-	-				
n(40M) 5.6G	Worn	Back	0.068	0.039	0.107	-	-				
WLAN802.11 a	Body-	Front	0.045	0.039	0.084	-	-				
5.8G	Worn	Back	0.043	0.039	0.082	-	-				

	reported SAR WLAN 2.4GHz, ΣSAR evaluation												
Frequency	Position		reported S	AR / W/kg	ΣSAR	Calculated	SPLSR						
band		OSILIOTI	Main	Aux	<4.0W/kg	distance (mm)	(≦0.1)						
	Hand	Front side	0.045	0.082	0.127	-	-						
		Back side	0.083	0.130	0.213	-	-						
WLAN802.11 b		Top side	0.059	-	1	-	1						
WLANOUZ.II D		Bottom side	-	0.137	-	1	-						
		Left side	0.283	0.016	0.299	-	1						
		Right side	-	0.088	-	-	-						

Page: 45 of 129

reported SAR WLAN and Bluetooth, ΣSAR evaluation									
Frequency	Position		reported SAR / W/kg		ΣSAR	Calculated	SPLSR		
band	Р	OSILIOTI	Aux	Bluetooth	<4.0W/kg	distance (mm)	(≦0.1)		
	Hand	Front side	0.082	0.047	0.129	-	-		
		Back side	0.130	0.047	0.177	-	ı		
WLAN802.11 b		Top side	1	0.047	ı	-	1		
WLANOUZ.II D		Bottom side	0.137	0.047	0.184	-	-		
		Left side	0.016	0.047	0.063	-	1		
		Right side	0.088	0.047	0.135	-	-		

reported SAR WLAN and Bluetooth, ΣSAR evaluation									
Frequency band	Dooition		reported SAR / W/kg		ΣSAR	Calculated	SPLSR		
	٢	Position		Bluetooth	<4.0W/kg	distance (mm)	(≦0.1)		
	Hand	Front side	0.147	0.047	0.194	-	-		
		Back side	0.020	0.047	0.067	-	-		
WLAN802.11 a		Top side	-	0.047	-	-	-		
5.2G		Bottom side	0.042	0.047	0.089	-	-		
		Left side	0.003	0.047	0.050	-	-		
		Right side	0.060	0.047	0.107	-	-		

reported SAR WLAN and Bluetooth, ΣSAR evaluation									
Frequency	Position		reported SAR / W/kg		ΣSAR	Calculated	SPLSR		
band	Г	OSILIOIT	Aux	Bluetooth	<4.0W/kg	distance (mm)	(≦0.1)		
	Hand	Front side	0.149	0.047	0.196	-	-		
		Back side	0.088	0.047	0.135	-	-		
WLAN802.11 a		Top side	-	0.047	-	-	-		
5.3G		Bottom side	0.033	0.047	0.080	-	-		
		Left side	0.007	0.047	0.054	-	-		
		Right side	0.037	0.047	0.084	-	-		

Page: 46 of 129

reported SAR WLAN and Bluetooth, ΣSAR evaluation									
Frequency		osition	reported SAR / W/kg		ΣSAR	Calculated	SPLSR		
band	Г	OSILIOIT	Aux	Bluetooth	<4.0W/kg	g distance (mm)	(≦0.1)		
	Hand	Front side	0.289	0.047	0.336	-	-		
		Back side	0.084	0.047	0.131	-	-		
WLAN802.11		Top side	-	0.047	-	ı	-		
n(40M) 5.6G		Bottom side	0.040	0.047	0.087	-	-		
		Left side	0.083	0.047	0.130	ı	-		
		Right side	0.012	0.047	0.059	-	-		

reported SAR WLAN and Bluetooth, ΣSAR evaluation									
Frequency		ooition	reported SAR / W/kg		ΣSAR	Calculated	SPLSR		
band	Position	OSILIOTI	Aux	Bluetooth	<4.0W/kg	distance (mm)	(≦0.1)		
	Hand	Front side	0.194	0.047	0.241	-	-		
		Back side	0.122	0.047	0.169	1	-		
WLAN802.11 a		Top side	1	0.047	-	-	ı		
5.8G		Bottom side	0.008	0.047	0.055	1	-		
		Left side	0.021	0.047	0.068	-	1		
		Right side	0.103	0.047	0.150	-	-		

Page: 47 of 129

4. Instruments List

mstruments List									
Manufacturer	Device	Type	Serial number	Date of last calibration	Date of next calibration				
Schmid & Partner Engineering AG	Dosimetric E-Field Probe	EX3DV4	3938	Oct.01,2015	Sep.30,2016				
Schmid & Partner	System Validation	D2450V2	727	Apr.22,2015	Apr.21,2016				
Engineering AG	Dipole	D5GHzV2	1023	Jan.29,2015	Jan.29,2016				
Schmid & Partner Engineering AG	Data acquisition Electronics	DAE4	1260	Sep.24,2015	Sep.23,2016				
Schmid & Partner Engineering AG	Software	DASY 52 V52.8.8	N/A	Calibration not required	Calibration not required				
Schmid & Partner Engineering AG	Phantom	SAM	N/A	Calibration not required	Calibration not required				
Network Analyzer	Agilent	E5071C	MY461075302	Jan.27,2015	Jan.26,2016				
Agilent	Dielectric Probe Kit	85070E	MY44300677	Calibration not required	Calibration not required				
Agilent	Dual-directional	777D	MY46151242	Feb.11,2015	Feb.10,2016				
Agiletit	coupler	772D	MY52180142	Feb.11,2015	Feb.00,2016				
Agilent	RF Signal Generator	N5181A	MY50145142	Feb.06.2015	Feb.05.2016				
Agilent	Power Meter	E4417A	MY52240003	Jul.15,2015	Jul.14,2016				
Agilent	Power Sensor	E9301H	MY52200004	Jul.15,2015	Jul.14,2016				
TECPEL	Digital thermometer	DTM-303A	TP130075	Mar.27,2015	Mar.26,2016				

Page: 48 of 129

5. Measurements

Date: 2015/12/28

WLAN 802.11b Head Re Cheek CH 1 Main

Communication System: WLAN 2.45G; Frequency: 2412 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.792 \text{ S/m}$; $\epsilon_r = 39.473$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

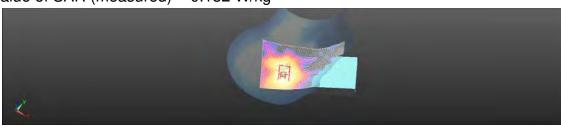
- Probe: EX3DV4 SN3938; ConvF(7.11, 7.11, 7.11); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- · Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (91x171x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.126 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm


Reference Value = 6.356 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.175 W/kg

SAR(1 g) = 0.093 W/kg; SAR(10 g) = 0.048 W/kg

Maximum value of SAR (measured) = 0.132 W/kg

0 dB = 0.132 W/kg = -8.80 dBW/kg

Page: 49 of 129

Date: 2015/12/29

WLAN 802.11b_Body-worn_Back side_CH 1_Main_15mm

Communication System: WLAN 2.45G; Frequency: 2412 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.903 \text{ S/m}$; $\varepsilon_r = 53.004$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

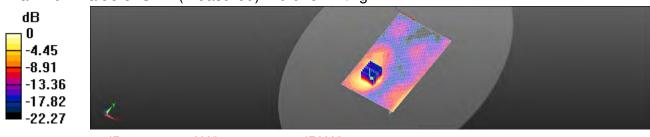
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (101x171x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.0463 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dv=5mm, dz=5mm

Reference Value = 1.097 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.0620 W/kg

SAR(1 g) = 0.032 W/kg; SAR(10 g) = 0.018 W/kg

Maximum value of SAR (measured) = 0.0452 W/kg

0 dB = 0.0452 W/kg = -13.45 dBW/kg

Page: 50 of 129

Date: 2015/12/29

WLAN 802.11b_Hand_Left side_CH 1_Main_0mm

Communication System: WLAN 2.45G; Frequency: 2412 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.903 \text{ S/m}$; $\varepsilon_r = 53.004$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (51x171x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 1.14 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 4.309 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 0.662 W/kg; SAR(10 g) = 0.278 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

0 dB = 1.05 W/kg = 0.19 dBW/kg

Page: 51 of 129

Date: 2015/12/28

WLAN 802.11b Head Re Cheek CH 1 Aux

Communication System: WLAN(2.45G); Frequency: 2412 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.792 \text{ S/m}$; $\epsilon_r = 39.473$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

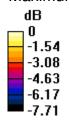
DASY5 Configuration:

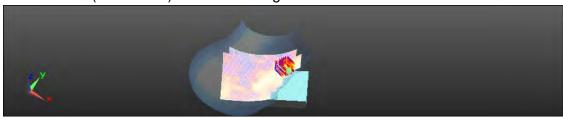
- Probe: EX3DV4 SN3938; ConvF(7.11, 7.11, 7.11); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (101x161x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.0215 W/kg

Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dv=5mm, dz=5mm


Reference Value = 2.225 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.0610 W/kg

SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.010 W/kg

Maximum value of SAR (measured) = 0.0183 W/kg

0 dB = 0.0183 W/kg = -17.38 dBW/kg

Page: 52 of 129

Date: 2015/12/29

WLAN 802.11b_Body-worn_Back side_CH 1_Aux_15mm

Communication System: WLAN(2.45G); Frequency: 2412 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.903$ S/m; $\epsilon_r = 53.004$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (121x191x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.0486 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dv=5mm, dz=5mm

Reference Value = 2.280 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.0650 W/kg

SAR(1 g) = 0.036 W/kg; SAR(10 g) = 0.021 W/kg

Maximum value of SAR (measured) = 0.0507 W/kg

Page: 53 of 129

Date: 2015/12/29

WLAN 802.11b_Hand_Bottom side_CH 1_Aux_0mm

Communication System: WLAN(2.45G); Frequency: 2412 MHz

Medium parameters used: f = 2412 MHz; $\sigma = 1.903 \text{ S/m}$; $\varepsilon_r = 53.004$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

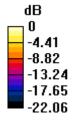
Phantom: Body

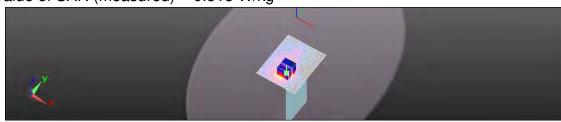
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (81x101x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.493 W/kg

Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dv=5mm, dz=5mm


Reference Value = 3.864 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.709 W/kg

SAR(1 g) = 0.330 W/kg; SAR(10 g) = 0.136 W/kg

Maximum value of SAR (measured) = 0.518 W/kg

0 dB = 0.518 W/kg = -2.86 dBW/kg

Page: 54 of 129

Date: 2015/12/30

WLAN 802.11a 5.2G Head Re Tilt CH 40 Main

Communication System: WLAN 5G; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.672 \text{ S/m}$; $\epsilon_r = 36.541$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.9, 4.9, 4.9); Calibrated: 2015/10/1;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

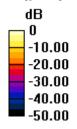
Phantom: Head

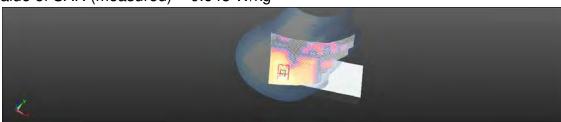
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (111x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.725 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 1.014 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.316 W/kg; SAR(10 g) = 0.091 W/kg

Maximum value of SAR (measured) = 0.648 W/kg

0 dB = 0.648 W/kg = -1.89 dBW/kg

Page: 55 of 129

Date: 2016/1/2

WLAN 802.11a 5.2G_Body-worn_Front side_CH 40_Main_15mm

Communication System: WLAN 5G; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.195 \text{ S/m}$; $\varepsilon_r = 47.53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

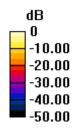
DASY5 Configuration:

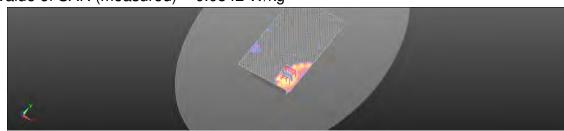
- Probe: EX3DV4 SN3938; ConvF(4.19, 4.19, 4.19); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (121x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0889 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 0.7100 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.183 W/kg

SAR(1 g) = 0.049 W/kg; SAR(10 g) = 0.020 W/kg

Maximum value of SAR (measured) = 0.0842 W/kg

0 dB = 0.0842 W/kg = -10.75 dBW/kg

Page: 56 of 129

Date: 2016/1/2

WLAN 802.11a 5.2G_Hand_Left side_CH 40_Main_0mm

Communication System: WLAN 5G; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.195 \text{ S/m}$; $\epsilon_r = 47.53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.19, 4.19, 4.19); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

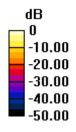
Phantom: Body

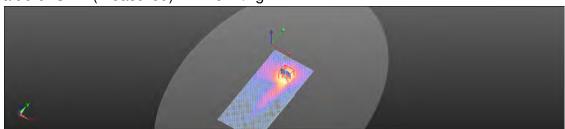
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (61x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 2.44 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 1.216 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 5.46 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.297 W/kg

Maximum value of SAR (measured) = 2.45 W/kg

0 dB = 2.45 W/kg = 3.89 dBW/kg

Page: 57 of 129

Date: 2015/12/30

WLAN 802.11a 5.2G Head Re Cheek CH 40 Aux

Communication System: WLAN(5G); Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.672 \text{ S/m}$; $\epsilon_r = 36.541$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

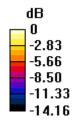
DASY5 Configuration:

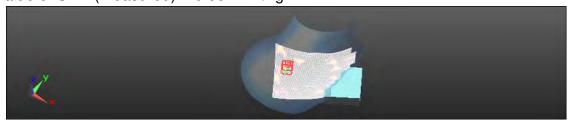
- Probe: EX3DV4 SN3938; ConvF(4.9, 4.9, 4.9); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- · Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (121x191x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0603 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 0.7070 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.0520 W/kg

SAR(1 g) = 0.027 W/kg; SAR(10 g) = 0.020 W/kg

Maximum value of SAR (measured) = 0.0517 W/kg

0 dB = 0.0517 W/kg = -12.87 dBW/kg

Page: 58 of 129

Date: 2016/1/2

WLAN 802.11a 5.2G_Body-worn_Back side_CH 40_Aux_15mm

Communication System: WLAN(5G); Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.195 \text{ S/m}$; $\varepsilon_r = 47.53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

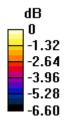
DASY5 Configuration:

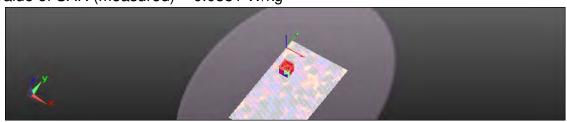
- Probe: EX3DV4 SN3938; ConvF(4.19, 4.19, 4.19); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (141x241x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0754 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 2.466 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.043 W/kg; SAR(10 g) = 0.039 W/kg

Maximum value of SAR (measured) = 0.0831 W/kg

0 dB = 0.0831 W/kg = -10.80 dBW/kg

Page: 59 of 129

Date: 2016/1/2

WLAN 802.11a 5.2G_Hand_Front side_CH 40_Aux_0mm

Communication System: WLAN(5G); Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.195 \text{ S/m}$; $\epsilon_r = 47.53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

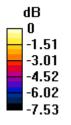
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(4.19, 4.19, 4.19); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (161x241x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.284 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 3.948 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.380 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.137 W/kg

Maximum value of SAR (measured) = 0.380 W/kg

0 dB = 0.380 W/kg = -4.20 dBW/kg

Page: 60 of 129

Date: 2015/12/30

WLAN 802.11a 5.3G Head Re Tilt CH 56 Main

Communication System: WLAN 5G; Frequency: 5280 MHz

Medium parameters used: f = 5280 MHz; $\sigma = 4.784 \text{ S/m}$; $\varepsilon_r = 36.199$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.81, 4.81, 4.81); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

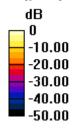
Phantom: Head

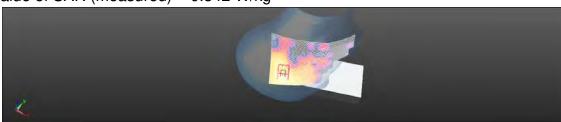
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (111x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.916 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dv=4mm, dz=2mm


Reference Value = 1.071 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.399 W/kg; SAR(10 g) = 0.114 W/kg

Maximum value of SAR (measured) = 0.842 W/kg

0 dB = 0.842 W/kg = -0.75 dBW/kg

Page: 61 of 129

Date: 2016/1/3

WLAN 802.11a 5.3G_Body-worn_Front side_CH 56_Main_15mm

Communication System: WLAN 5G; Frequency: 5280 MHz

Medium parameters used: f = 5280 MHz; $\sigma = 5.339 \text{ S/m}$; $\varepsilon_r = 47.32$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

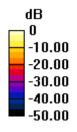
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(4.09, 4.09, 4.09); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (121x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.108 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 1.075 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.215 W/kg

SAR(1 g) = 0.062 W/kg; SAR(10 g) = 0.025 W/kg

Maximum value of SAR (measured) = 0.111 W/kg

0 dB = 0.111 W/kg = -9.54 dBW/kg

Page: 62 of 129

Date: 2016/1/3

WLAN 802.11a 5.3G_Hand_Left side_CH 56_Main_0mm

Communication System: WLAN 5G; Frequency: 5280 MHz

Medium parameters used: f = 5280 MHz; $\sigma = 5.339 \text{ S/m}$; $\epsilon_r = 47.32$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

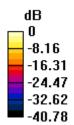
DASY5 Configuration:

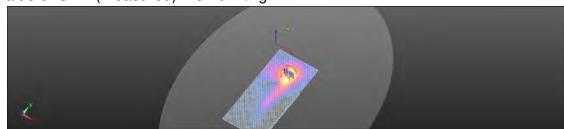
- Probe: EX3DV4 SN3938; ConvF(4.09, 4.09, 4.09); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (61x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 3.14 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 2.719 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 7.05 W/kg

SAR(1 g) = 1.51 W/kg; SAR(10 g) = 0.404 W/kg

Maximum value of SAR (measured) = 3.19 W/kg

0 dB = 3.19 W/kg = 5.04 dBW/kg

Page: 63 of 129

Date: 2015/12/30

WLAN 802.11a 5.3G Head Re Cheek CH 56 Aux

Communication System: WLAN(5G); Frequency: 5280 MHz

Medium parameters used: f = 5280 MHz; $\sigma = 4.784 \text{ S/m}$; $\varepsilon_r = 36.199$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

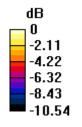
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(4.81, 4.81, 4.81); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (121x191x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0902 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 3.350 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.144 W/kg

SAR(1 g) = 0.075 W/kg; SAR(10 g) = 0.066 W/kg

Maximum value of SAR (measured) = 0.144 W/kg

0 dB = 0.144 W/kg = -8.42 dBW/kg

Page: 64 of 129

Date: 2016/1/3

WLAN 802.11a 5.3G_Body-worn_Front side_CH 56_Aux_15mm

Communication System: WLAN(5G); Frequency: 5280 MHz

Medium parameters used: f = 5280 MHz; $\sigma = 5.339 \text{ S/m}$; $\varepsilon_r = 47.32$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

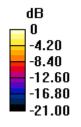
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(4.09, 4.09, 4.09); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (141x241x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0977 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 1.861 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.198 W/kg

SAR(1 g) = 0.031 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.116 W/kg

0 dB = 0.116 W/kg = -9.36 dBW/kg

Page: 65 of 129

Date: 2016/1/3

WLAN 802.11a 5.3G_Hand_Front side_CH 56_Aux_0mm

Communication System: WLAN(5G); Frequency: 5280 MHz

Medium parameters used: f = 5280 MHz; $\sigma = 5.339 \text{ S/m}$; $\varepsilon_r = 47.32$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

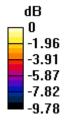
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(4.09, 4.09, 4.09); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (141x211x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.272 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 3.954 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.769 W/kg

SAR(1 g) = 0.194 W/kg; SAR(10 g) = 0.136 W/kg

Maximum value of SAR (measured) = 0.522 W/kg

0 dB = 0.522 W/kg = -2.82 dBW/kg

Page: 66 of 129

Date: 2015/12/31

WLAN 802.11n(40M) 5.6G_Head_Re Cheek_CH 102_Main

Communication System: WLAN 5G; Frequency: 5510 MHz

Medium parameters used: f = 5510 MHz; $\sigma = 5.108 \text{ S/m}$; $\epsilon_r = 34.748$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

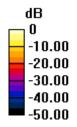
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(4.28, 4.28, 4.28); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (111x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.324 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 0.5370 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.925 W/kg

SAR(1 g) = 0.096 W/kg; SAR(10 g) = 0.025 W/kg

Maximum value of SAR (measured) = 0.213 W/kg

0 dB = 0.213 W/kg = -6.71 dBW/kg

Page: 67 of 129

Date: 2016/1/4

WLAN 802.11n 5.6G(40M)_Body-worn_Front side_CH 102_Main_15mm

Communication System: WLAN 5G; Frequency: 5510 MHz

Medium parameters used: f = 5510 MHz; $\sigma = 5.772 \text{ S/m}$; $\epsilon_r = 47.023$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

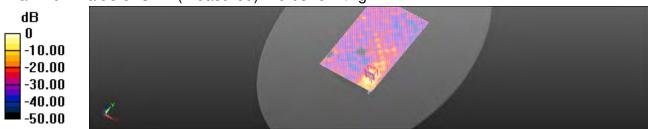
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(3.66, 3.66, 3.66); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (121x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0381 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 0.4300 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0710 W/kg

SAR(1 g) = 0.020 W/kg; SAR(10 g) = 0.00793 W/kg

Maximum value of SAR (measured) = 0.0348 W/kg

0 dB = 0.0348 W/kg = -14.58 dBW/kg

Page: 68 of 129

Date: 2016/1/4

WLAN 802.11n 5.6G(40M)_Hand_Left side_CH 102_Main_0mm

Communication System: WLAN 5G; Frequency: 5510 MHz

Medium parameters used: f = 5510 MHz; $\sigma = 5.772 \text{ S/m}$; $\varepsilon_r = 47.023$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(3.66, 3.66, 3.66); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

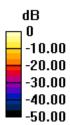
Phantom: Body

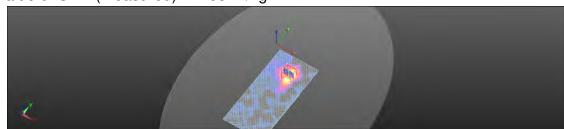
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (61x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 1.41 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 0.7050 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 3.43 W/kg

SAR(1 g) = 0.704 W/kg; SAR(10 g) = 0.188 W/kg

Maximum value of SAR (measured) = 1.53 W/kg

0 dB = 1.53 W/kg = 1.85 dBW/kg

Page: 69 of 129

Date: 2015/12/31

WLAN 802.11n 5.6G(40M)_Head_Le Cheek_CH 134_Aux

Communication System: WLAN(5G); Frequency: 5670 MHz

Medium parameters used: f = 5670 MHz; $\sigma = 5.265 \text{ S/m}$; $\varepsilon_r = 35.437$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

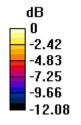
DASY5 Configuration:

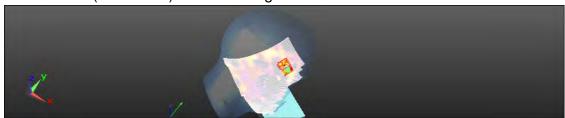
- Probe: EX3DV4 SN3938; ConvF(4.28, 4.28, 4.28); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (151x191x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.128 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 3.074 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.261 W/kg

SAR(1 g) = 0.070 W/kg; SAR(10 g) = 0.048 W/kg

Maximum value of SAR (measured) = 0.136 W/kg

0 dB = 0.136 W/kg = -8.66 dBW/kg

Page: 70 of 129

Date: 2016/1/4

WLAN 802.11n 5.6G(40M)_Body-worn_Back side_CH 134_Aux_15mm

Communication System: WLAN(5G); Frequency: 5670 MHz

Medium parameters used: f = 5670 MHz; $\sigma = 5.904$ S/m; $\epsilon_r = 46.793$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

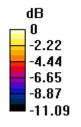
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(3.66, 3.66, 3.66); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (121x241x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.102 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 2.280 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.178 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.031 W/kg

Maximum value of SAR (measured) = 0.174 W/kg

0 dB = 0.174 W/kg = -7.59 dBW/kg

Page: 71 of 129

Date: 2016/1/4

WLAN 802.11n 5.6G(40M)_Hand_Front side_CH 134_Aux_0mm

Communication System: WLAN(5G); Frequency: 5670 MHz

Medium parameters used: f = 5670 MHz; $\sigma = 5.904$ S/m; $\epsilon_r = 46.793$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

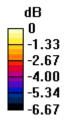
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(3.66, 3.66, 3.66); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (131x211x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.433 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 5.341 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.429 W/kg

SAR(1 g) = 0.229 W/kg; SAR(10 g) = 0.196 W/kg

Maximum value of SAR (measured) = 0.429 W/kg

0 dB = 0.429 W/kg = -3.68 dBW/kg

Page: 72 of 129

Date: 2016/1/1

WLAN 802.11a 5.8G Head Re Tilt CH 149 Main

Communication System: WLAN 5G; Frequency: 5745 MHz

Medium parameters used: f = 5745 MHz; $\sigma = 5.385 \text{ S/m}$; $\varepsilon_r = 35.336$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.41, 4.41, 4.41); Calibrated: 2015/10/1;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

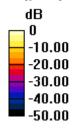
Phantom: Head

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (111x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.554 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 0.7000 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.201 W/kg; SAR(10 g) = 0.052 W/kg

Maximum value of SAR (measured) = 0.432 W/kg

0 dB = 0.432 W/kg = -3.64 dBW/kg

Page: 73 of 129

Date: 2016/1/5

WLAN 802.11a 5.8G_Body-worn_Front side_CH 149_Main_15mm

Communication System: WLAN 5G; Frequency: 5745 MHz

Medium parameters used: f = 5745 MHz; $\sigma = 6.16 \text{ S/m}$; $\epsilon_r = 46.65$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

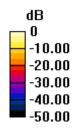
DASY5 Configuration:

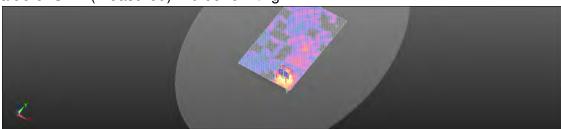
- Probe: EX3DV4 SN3938; ConvF(3.87, 3.87, 3.87); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (121x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.0524 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 0.6550 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.102 W/kg

SAR(1 g) = 0.027 W/kg; SAR(10 g) = 0.011 W/kg

Maximum value of SAR (measured) = 0.0518 W/kg

0 dB = 0.0518 W/kg = -12.86 dBW/kg

Page: 74 of 129

Date: 2016/1/5

WLAN 802.11a 5.8G_Hand_Left side_CH 149_Main_0mm

Communication System: WLAN 5G; Frequency: 5745 MHz

Medium parameters used: f = 5745 MHz; $\sigma = 6.16 \text{ S/m}$; $\epsilon_r = 46.65$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

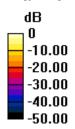
DASY5 Configuration:

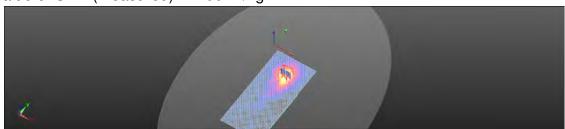
- Probe: EX3DV4 SN3938; ConvF(3.87, 3.87, 3.87); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (61x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 1.91 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 1.379 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 4.50 W/kg

SAR(1 g) = 0.938 W/kg; SAR(10 g) = 0.260 W/kg

Maximum value of SAR (measured) = 1.99 W/kg

0 dB = 1.99 W/kg = 2.98 dBW/kg

Page: 75 of 129

Date: 2016/1/1

WLAN 802.11a 5.8G Head Re Cheek CH 149 Aux

Communication System: WLAN(5G); Frequency: 5745 MHz

Medium parameters used: f = 5745 MHz; $\sigma = 5.385 \text{ S/m}$; $\varepsilon_r = 35.336$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

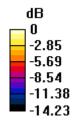
DASY5 Configuration:

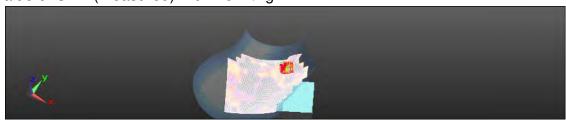
- Probe: EX3DV4 SN3938; ConvF(4.41, 4.41, 4.41); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Head
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (141x191x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.129 W/kg

Configuration/Head/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm


Reference Value = 2.448 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.168 W/kg

SAR(1 g) = 0.054 W/kg; SAR(10 g) = 0.033 W/kg

Maximum value of SAR (measured) = 0.115 W/kg

0 dB = 0.115 W/kg = -9.39 dBW/kg

Page: 76 of 129

Date: 2016/1/5

WLAN 802.11a 5.8G_Body-worn_Front side_CH 149_Aux_15mm

Communication System: WLAN(5G); Frequency: 5745 MHz

Medium parameters used: f = 5745 MHz; $\sigma = 6.16 \text{ S/m}$; $\varepsilon_r = 46.65$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(3.87, 3.87, 3.87); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (121x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.186 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2mm

Reference Value = 1.936 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.194 W/kg

SAR(1 g) = 0.039 W/kg; SAR(10 g) = 0.023 W/kg

Maximum value of SAR (measured) = 0.178 W/kg

0 dB = 0.178 W/kg = -7.50 dBW/kg

Page: 77 of 129

Date: 2016/1/5

WLAN 802.11a 5.8G Hand Front side CH 149 Aux 0mm

Communication System: WLAN(5G); Frequency: 5745 MHz

Medium parameters used: f = 5745 MHz; $\sigma = 6.16 \text{ S/m}$; $\varepsilon_r = 46.65$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

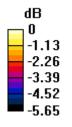
DASY5 Configuration:

- Probe: EX3DV4 SN3938; ConvF(3.87, 3.87, 3.87); Calibrated: 2015/10/1;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1260; Calibrated: 2015/9/24
- Phantom: Body
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (141x201x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.382 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm,


dy=4mm, dz=2mm

Reference Value = 4.864 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.390 W/kg

SAR(1 g) = 0.181 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 0.390 W/kg

0 dB = 0.390 W/kg = -4.09 dBW/kg

Page: 78 of 129

6. SAR System Performance Verification

Date: 2015/12/28

Dipole 2450 MHz_SN:727_Head

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.839 \text{ S/m}$; $\varepsilon_r = 39.283$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(7.11, 7.11, 7.11); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

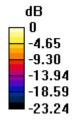
· Phantom: Head

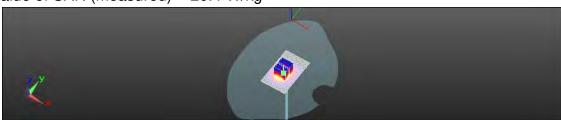
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=250mW/Area Scan (51x81x1): Interpolated grid: dx=12 mm, dv=12 mm

Maximum value of SAR (interpolated) = 21.4 W/kg

Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm


Reference Value = 103.5 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 28.0 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.04 W/kg

Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 20.4 W/kg = 13.10 dBW/kg

Page: 79 of 129

Date: 2015/12/29

Dipole 2450 MHz_SN:727_Body

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.956 \text{ S/m}$; $\varepsilon_r = 52.813$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

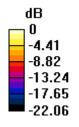
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

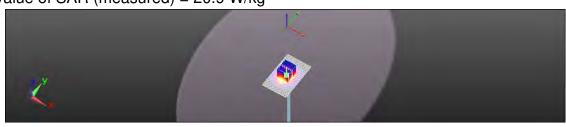
Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=250mW/Area Scan (51x81x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 21.6 W/kg


Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.1 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.22 W/kg Maximum value of SAR (measured) = 20.9 W/kg

0 dB = 20.9 W/kg = 13.20 dBW/kg

Page: 80 of 129

Date: 2015/12/30

Dipole 5200 MHz_SN:1023_Head

Communication System: CW; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.672 \text{ S/m}$; $\varepsilon_r = 36.541$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.9, 4.9, 4.9); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

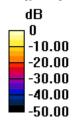
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

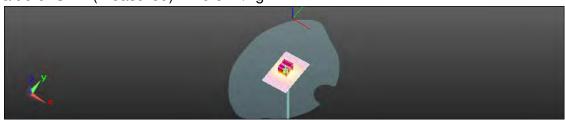
· Phantom: Head

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 17.0 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:


dx=4mm, dy=4mm, dz=2mm

Reference Value = 59.34 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dBW/kg

Page: 81 of 129

Date: 2016/1/2

Dipole 5200 MHz_SN:1023_Body

Communication System: CW; Frequency: 5200 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.195 \text{ S/m}$; $\epsilon_r = 47.53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.19, 4.19, 4.19); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

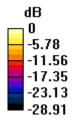
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

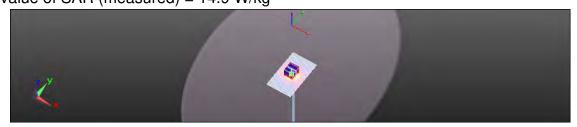
Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x101x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 15.1 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:


dx=4mm, dy=4mm, dz=2mm

Reference Value = 58.11 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 7.29 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 14.9 W/kg

0 dB = 14.9 W/kg = 11.73 dBW/kg

Page: 82 of 129

Date: 2015/12/30

Dipole 5300 MHz SN:1023 Head

Communication System: CW; Frequency: 5300 MHz

Medium parameters used: f = 5300 MHz; $\sigma = 4.808 \text{ S/m}$; $\varepsilon_r = 36.142$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.81, 4.81, 4.81); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

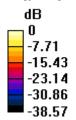
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

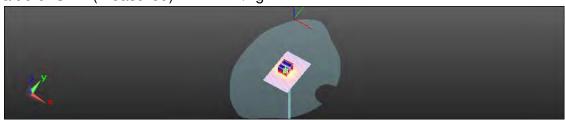
Phantom: Head

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 18.5 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:


dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.67 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 35.9 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

Page: 83 of 129

Date: 2016/1/3

Dipole 5300 MHz_SN:1023_Body

Communication System: CW; Frequency: 5300 MHz

Medium parameters used: f = 5300 MHz; $\sigma = 5.356 \text{ S/m}$; $\varepsilon_r = 47.298$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.09, 4.09, 4.09); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

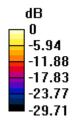
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x101x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 15.7 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 57.48 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 7.5 W/kg; SAR(10 g) = 2.17 W/kgMaximum value of SAR (measured) = 15.5 W/kg

0 dB = 15.5 W/kg = 11.90 dBW/kg

Page: 84 of 129

Date: 2015/12/31

Dipole 5600 MHz SN:1023 Head

Communication System: CW; Frequency: 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 5.216 \text{ S/m}$; $\varepsilon_r = 35.552$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.28, 4.28, 4.28); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

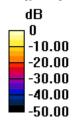
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

Phantom: Head

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 17.8 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.54 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 35.5 W/kg

SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 12.33 dBW/kg

Page: 85 of 129

Date: 2016/1/4

Dipole 5600 MHz_SN:1023_Body

Communication System: CW; Frequency: 5600 MHz

Medium parameters used: f = 5600 MHz; $\sigma = 5.852 \text{ S/m}$; $\varepsilon_r = 46.863$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(3.66, 3.66, 3.66); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

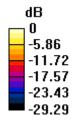
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x101x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 17.5 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 59.75 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 17.4 W/kg

0 dB = 17.4 W/kg = 12.41 dBW/kg

Page: 86 of 129

Date: 2016/1/1

Dipole 5800 MHz_SN:1023_Head

Communication System: CW; Frequency: 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 5.459 \text{ S/m}$; $\epsilon_r = 35.203$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(4.41, 4.41, 4.41); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

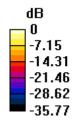
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

Phantom: Head

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x91x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 18.7 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 55.64 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 37.3 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 17.2 W/kg

0 dB = 17.2 W/kg = 12.36 dBW/kg

Page: 87 of 129

Date: 2016/1/5

Dipole 5800 MHz_SN:1023_Body

Communication System: CW; Frequency: 5800 MHz

Medium parameters used: f = 5800 MHz; $\sigma = 6.246 \text{ S/m}$; $\varepsilon_r = 46.52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3938; ConvF(3.87, 3.87, 3.87); Calibrated: 2015/10/1;

Sensor-Surface: 2mm (Mechanical Surface Detection)

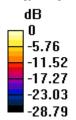
Electronics: DAE4 Sn1260; Calibrated: 2015/9/24

Phantom: Body

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Pin=100mW/Area Scan (61x101x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 15.8 W/kg


Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 56.05 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg

Page: 88 of 129

7. DAE & Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG russtrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst. Service suisse d'étalonnage Servizio svizzero di famitura Swiss Calibration Service

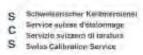
Appreciated by the Swiss Appreciation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

SGS - TW (Auden) Certificate No: DAE4-1260 Sep15 CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1260 QA CAL-06.v29 Cathranon procedurers) Calibration procedure for the data acquisition electronics (DAE) Calibration date: September 24, 2015 This calibration conflicate documents the transability to national standards, which reeize the physical units of measurements (SI) The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility, environment temperature (82 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Ketmley Multimeter Type 2001 SN: 0810278 09-Sep-15 (No:17153) Sep-16 Secondary Standards ID e Check Date (in house) Scheduled Check Auto DAE Calibration Unit SÉ UWS 053 AA 1001 06-Jan-15 (in house check) in house check: Jan-16 Calibrator Box V2.1 SE UMS 006 AA 1002 06-Jan-15 (in house credit) In himse check: Jan-16. Europea Technican Approved try **Fin Bamhot** This calibration certificate shall not be reproduced except in full without writing approval of the laboratory.

Certificate No: DAE4-1260_Sep15

Page 1 of 5


Page: 89 of 129

Calibration Laboratory of Schmid & Partner

Engineering AG upstrappe 45, 8004 Zurich, Switzenland

Accomplished by the Swes Accomplished Service (SAS) The Swise-Antireditation Service is one of the signaturies to the EA Mullisteral Agreement for the racognilion of calibration certificates Accrecitation No.: SCS 0108

Glossary

DAE Connector angle

data acquisition electronics

Information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle. mechanically by a tool inserted. Uncertainty is not required
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with Inputs shorted: Values on the Internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Vollage: Typical value for information. Below this voltage, a pattery. alarm signal is generated,
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Ceremone Ne: DAEA-1280 Sep15

Page 2 of 5

Page: 90 of 129

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = Low Range: 1LSB = High Range: 1LSB = 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Υ	z
High Range	406.043 ± 0.02% (k=2)	405.010 ± 0.02% (k=2)	405.577 ± 0.02% (k=2)
Low Range	3.95755 ± 1.50% (k=2)	4.01958 ± 1.50% (k=2)	4.00483 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	84.5°±1°
Confidence Aligie to be used in DAST system	04.0 ± 1

Page: 91 of 129

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	199996.71	-0.71	-0.00
Channel X + Input	20003.42	1.97	0.01
Channel X - Input	-19997.29	3.64	-0.02
Channel Y + Input	199997.03	-0.74	-0.00
Channel Y + Input	20002.19	0.75	0.00
Channel Y - Input	-20000.85	-0.08	0.00
Channel Z + Input	199995.02	-2.52	-0.00
Channel Z + Input	20000.79	-0.63	-0.00
Channel Z - Input	-20001.97	-1.09	0.01

Low Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	2001.31	0.02	0.00
Channel X + Input	201.74	0.05	0.03
Channel X - Input	-197.79	0.49	-0.25
Channel Y + Input	2001.47	0.11	0.01
Channel Y + Input	201.57	-0.09	-0.04
Channel Y - Input	-198.16	0.02	-0.01
Channel Z + Input	2001.06	-0.19	-0.01
Channel Z + Input	200.35	-1.16	-0.58
Channel Z - Input	-199.72	-1.47	0.74

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	1.97	-0.02
	- 200	0.99	-1.30
Channel Y	200	13.29	13.11
	- 200	-13.69	-13.98
Channel Z	200	-0.48	-0.25
	- 200	-1.06	-1.87

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

i	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		5.95	-2.35
Channel Y	200	9.12	-	6.99
Channel Z	200	9.45	7.26	

Certificate No: DAE4-1260_Sep15

Page: 92 of 129

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15911	14818
Channel Y	15818	16372
Channel Z	16044	16864

Input Offset Measurement
 DASY measurement parameters: Auto Zaro Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.60	-1.69	0.60	0.44
Channel Y	-0.89	-3.18	0.27	0.50
Channel Z	-1.05	-1.97	0.26	0.49

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1260_Sep15

Page 5 of 5

Page: 93 of 129

Calibration Laboratory of Schmid & Partner Engineering AG Zeophausstrase 43, 8694 Zenich, Switzerland

S

C

S

Schweizerischer Kalibriordienst Service susse d'étalonnage Servizio sylzzono di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accrepted by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the alignatures to the EA
Multisateral Agreement for the recognition of calibration certificates

Client SGS-TW (Auden)

Certificate No: EX3-3938_Oct15

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3938

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Coloration door

October 1, 2015

This cultivation conflictic documents the tracepointy in released standards, which recize the physical units of encaptements (SI). The majoraments and the oncertainties with confliction probability are given on the listinking pages and are part of the certificate.

All celebraters have been conducted in the closed laboratory facility: unincriminal temperature (22 ± 3/°C and numbers < 70%.

Calibration Equipment used (M&TE unlical for calibration)

Primary Standards	10:	Car Date (Cartificate No.)	Scheduled Calibration
Power meter E34191ii	Q841203874	CI-Apr-15 (No. 217-02128)	Man/fill
Power sensor E4412A	MY4149B087	Ot-Api-15 (No. 217-02125)	Mar 10
Reference 3 dB Attenuator	SN: 65054 (3b)	O1-Apr 15 (No. 217-02129)	Mar-16
Relevents 20 dB Attenuator	SN: 55277 (204)	Ot-Apv-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: 55129 (30b)	01-Apr-16 (No. 217-02133)	Mar-18
Datesence Prote EBXOV2	SN: 3013	30-Dec-14 (No. ES3-3013, Dec/4)	Dec-15
DAE#	SN: 660	14 Jun-15 (No. DAE4-680_Jann5)	Jan-16
Secondary Standards	ID.	Check Date (in harse)	Schedyled Check
RF cererator HP 86480.	LIS3642U01700	4-Aug-59 (in house cirech Acri-13)	in house check. Apr-16
Network Amalyzer HP 8753E	US37390585	13-Oct-01 (in house check Oct-14)	In house sheck: Oct-15

Continued by Sagar Elegan Lagor Sagar County

Approved by Kuga Pokovic Technical Manager

Technical Manager

Technical County

Technical C

This care ratio autificate shall not be reproduced except in full without written approval of the labeledory

Cartificate No: EX3-3838_Oct15 Page 1 of 11

Page: 94 of 129

Calibration Laboratory of

Schmid & Partner Engineering AG Zougrammirasco 43, 8004 Zimchi Switzerland

Schweimersper Kalindentient Service suites d'éta C Survição avizzaro di taratura Swiss Calibration Service

Accreditation No.: SCS 010B

According to the Swor Accrest town Service (IAS)

The Swins Accreditation Service is one of the e-gracerous to the EA Mulliawral Agramment for the racognition of uniformion nedifferent

Glossary:

biupit pritelumie euzett TSL NORME W. sensitivity in free space amsilivity in TSL / NORMo, y, z diode compression point Cary DCP

crest factor (1/duty, syste) of the RF signal modulation dependent linearization parameters ice A. B. C. D

Poarcalinn y is mitalion around probe axis.

Polarization 6 a regular around an uxis that is in the plane normal to probe axis (a) measurement corner),

i.e., if = 0 is normal to probe asis information used in DASY system to align probe sensor x to the rook coordinate system. Connector Angle

Calibration is Performed According to the Following Standards:

 iEEE 3rd 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques', June 2013
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close

proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005
IEC 02209-2: "Procedure to determine the Specific Absorption Rate (SAR) for wheless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010.

ti) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMs,y,z: Assessed for E-field polarization (i = 0) (f < 900 MHz in TEM-cell; f > 1900 MHz; R22 waveguide). NORMx.y.z are only intermediate values. i.e., the uncertainties of NORMx.y.z does not affect the E*-faild uncertainty heads TSL (see below ConvF).

NORMINAY.x = NORMA.y.x * requency_response (see Frequency Response Charl). This linearization is implemented in DASY4 software virisions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,v.z. DCP are numerical linearization parameters assessed based on the data of power-sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor made.

PAR. PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal

 $AX_iy_iz_iBX_iy_iz_iCX_iy_iz_iDx_iy_iz_iVRX_iy_iz_iA_iB_iC_D$ are numerical insertization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency run

the data of power sweep for specific modulation signal. The parameters do not depend on frequency represent vR. is the maximum calibration range expressed in RMS-voltage across the diode. Garwin and Boundary Effect Parameters. Assessed in flat phantom using E-field (or Temperature Transfer Standard for till 800 MHz) and inside waveguide using analytical field distributions based on power measurements for till 800 MHz. The same secups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These permitters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMs, y, z ** Convir whereby the uncertainty corresponds to that given for Convir. A frequency dependent Convir is used in DASY version 4 4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. MHz.

Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat chantom exposed by a patch antenna.

Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe to (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information pained by determining the NORMI (no uncertainty required).

Certificate No: EXX-3938 Oct 10.

Page 9 of 11

Page: 95 of 129

October 1, 2015 EX3DV4 - SN:3938

Probe EX3DV4

SN:3938

Manufactured: Calibrated:

May 2, 2013 October 1, 2015

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3938_Oct15

Page 3 of 11

Page: 96 of 129

EX3DV4-SN:3938

October 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.52	0.57	0.34	± 10.1 %
DCP (mV) ⁸	100.8	99.7	104.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^t (k=2)
0	CW	×	0.0	0.0	1.0	0.00	141.3	±2.7 %
		Y	0.0	0.0	1.0		147.2	
		Z	0.0	0.0	1.0		128.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical investication parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page: 97 of 129

EX3DV4-- SN:3938

October 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938

Calibration Parameter Determined in Head Tissue Simulating Media

Salibration	Parameter De	eterminea in	mead Hs	sue Simi	ланид ме	eula		
f (MHz) ^c	Relative Permittivity ^r	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^q	Depth ⁶ (mm)	Unc (k=2)
750	41.9	0.89	9.69	9.69	9.69	0.19	1.67	± 12.0 %
835	41.5	0.90	9.35	9.35	9.35	0.26	1.23	± 12.0 %
900	41.5	0.97	9.15	9.15	9.15	0.18	1.86	± 12.0 %
1450	40.5	1.20	7.86	7.86	7.86	0.13	2.63	± 12.0 %
1750	40.1	1.37	8.17	8.17	8.17	0.36	0.80	± 12.0 %
1900	40.0	1.40	7.89	7.89	7.89	0.32	0.80	± 12.0 %
2000	40.0	1.40	7.89	7.89	7.89	0.36	0.75	± 12.0 %
2300	39.5	1.67	7.46	7.46	7.46	0.34	88.0	± 12.0 %
2450	39.2	1.80	7.11	7.11	7.11	0.32	0.94	± 12.0 %
2600	39.0	1.96	6.79	6.79	6.79	0.24	1.23	± 12.0 %
5250	35.9	4.71	4.90	4.90	4.90	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.28	4.28	4.28	0.50	1.80	± 13.1 %
5750	35.4	5.22	4.41	4.41	4.41	0.50	1.80	± 13.1 %

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RS3 of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CornF assessments at 30, 64, 120, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be estanded to ± 110 MHz.

*A frequencies below 3 GHz, the validity of tissue parameters (e and o) can be relaxed to ± 10% H liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (e and o) is restricted to ± 5%. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters.

*Aphal/Daph are determined during colibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3938 Oct15

Page 5 of 11

Page: 98 of 129

October 1, 2015 EX3DV4-SN:3938

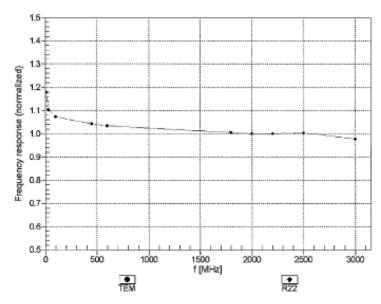
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.50	9.50	9.50	0.31	1.13	± 12.0 %
835	55.2	0.97	9.30	9.30	9.30	0.28	1.26	± 12.0 %
900	55.0	1.05	9.22	9.22	9.22	0.34	1.05	± 12.0 %
1450	54.0	1.30	7.96	7.96	7.96	0.16	2.05	± 12.0 %
1750	53.4	1.49	7.73	7.73	7.73	0.42	0.80	± 12.0 %
1900	53.3	1.52	7.41	7.41	7.41	0.32	0.90	± 12.0 %
2000	53.3	1.52	7.55	7.55	7.55	0.26	1.05	± 12.0 %
2300	52.9	1.81	7,27	7.27	7.27	0.36	0.84	± 12.0 %
2450	52.7	1.95	7.17	7.17	7.17	0.37	0.85	± 12.0 %
2600	52.5	2.16	6.90	6.90	6.90	0.33	0.90	± 12.0 %
5250	48.9	5.36	4.19	4.19	4.19	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.09	4,09	4.09	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.66	3.66	3.66	0.55	1.90	±13.1 %
5750	48.3	5.94	3.87	3,87	3.87	0.55	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), also it is restricted to ± 60 MHz. The uncertainty is the RSS of the ConvF uncertainty of osfibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 100 MHz respectively. Above 5 GHz frequency validity can be extended to ± 100 MHz respectively. Above 5 GHz frequency and the validity of fissue parameters (a and a) can be relaxed to ± 10% if legical compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of fissue parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target issue parameters.

Aphra/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip dismeter from the boundary.

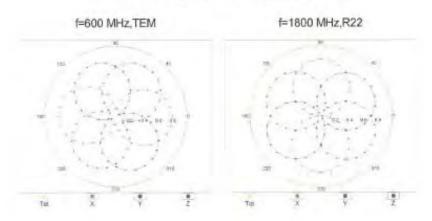

Certificate No: EX3-3938_Oct15 Page 6 of 11

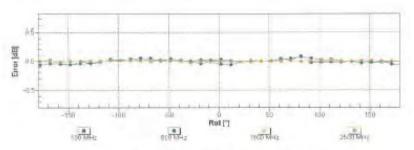
Page: 99 of 129

EX3DV4= SN:3938 October 1, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3938_Oct15 Page 7 of 11

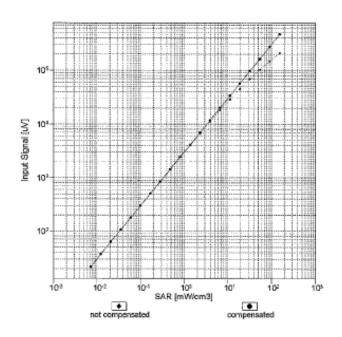


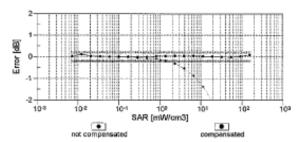
Page: 100 of 129

EX3DV4- SN:3938 Disober 1, 2015

Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



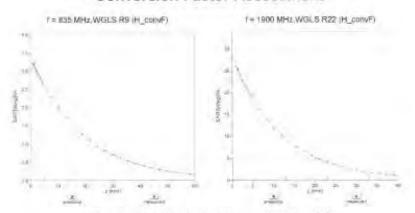

Page: 101 of 129

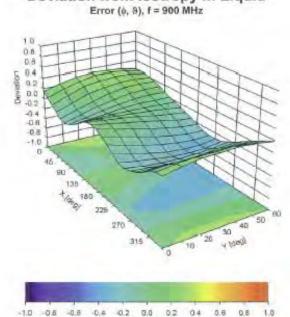
EX3DV4- SN:3938

October 1, 2015

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3938_Oct15


Page: 102 of 129

EX30V4-SN:3938 Dooser 1.2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: EX3-3938_Oct15

Page 10 of 11

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Page: 103 of 129

EX3DV4- SN:3938

October 1, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3938

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	-28.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Page: 104 of 129

8. Uncertainty Budget

Measurement Uncertainty evaluation template for DUT SAR test (3-6G)

Ī,	1_		_		f	L	h - * 6 / -	: - * - / -	
A	c Tolerance/	D Probabilit	е			g	h=c * f / e Standard	i=c * g / e Standard	k
Source of Uncertainty	Uncertainty	У	Div	Div Value	ci (1g)	ci (10g)	uncertainty	uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.55%	N	1	1	1	1	6.55%	6.55%	œ
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	œ
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	œ
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	80
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	œ
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	œ
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	œ
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	œ
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	œ
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	œ
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	œ
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	œ
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	œ
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	œ
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	œ
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	œ
Deviation from reference liquid target ε 'r(Body)	3.49%	N	1	1	0.64	0.43	2.23%	1.50%	М
Deviation from reference liquid target σ (Body)	4.10%	N	1	1	0.6	0.49	2.46%	2.01%	М
Combined standard uncertainty		RSS					12.10%	11.89%	
Expant uncertainty (95% confidence							24.19%	23.78%	

Page: 105 of 129

Measurement Uncertainty evaluation template for DUT SAR test (0.3-3G)

Α	С	D	е		f	g	h=c * f / e	i=c * g / e	k
Source of Uncertainty	Tolerance/ Uncertainty	Probabilit y	Div	Div Value	ci (1g)	ci (10g)	Standard uncertainty	Standard uncertainty	vi, or Veff
Measurement system									
Probe calibration	6.00%	N	1	1	1	1	6.00%	6.00%	8
Isotropy , Axial	3.50%	R	√3	1.732	1	1	2.02%	2.02%	∞
Isotropy, Hemispherical	9.60%	R	√3	1.732	1	1	5.54%	5.54%	8
Boundary Effect	1.00%	R	√3	1.732	1	1	0.58%	0.58%	∞
Linearity	4.70%	R	√3	1.732	1	1	2.71%	2.71%	∞
Detection Limits	1.00%	R	√3	1.732	1	1	0.58%	0.58%	~
Readout Electronics	0.30%	N	1	1	1	1	0.30%	0.30%	8
Response time	0.80%	R	√3	1.732	1	1	0.46%	0.46%	8
Integration Time	2.60%	R	√3	1.732	1	1	1.50%	1.50%	8
Measurement drift (class A evaluation)	1.75%	R	√3	1.732	1	1	1.01%	1.01%	8
RF ambient condition - noise	3.00%	R	√3	1.732	1	1	1.73%	1.73%	8
RF ambient conditions - reflections	3.00%	R	√3	1.732	1	1	1.73%	1.73%	8
Probe positioner Mechanical restrictions	0.40%	R	√3	1.732	1	1	0.23%	0.23%	8
Probe Positioning with respect to phantom	2.90%	R	√3	1.732	1	1	1.67%	1.67%	8
Post-processing	1.00%	R	√3	1.732	1	1	0.58%	0.58%	8
Max SAR Eval	1.00%	R	√3	1.732	1	1	0.58%	0.58%	8
Test Sample related									
Test sample positioning	2.90%	N	1	1	1	1	2.90%	2.90%	M-1
Device Holder Uncertainty	3.60%	N	1	1	1	1	3.60%	3.60%	M-1
Drift of output power	5.00%	R	√3	1.732	1	1	2.89%	2.89%	8
Phantom and Setup									
Phantom Uncertainty	4.00%	R	√3	1.732	1	1	2.31%	2.31%	∞
Deviation from reference liquid target ε 'r(Body)	0.52%	N	1	1	0.64	0.43	0.33%	0.22%	М
Deviation from reference liquid target σ (Body)	2.17%	N	1	1	0.6	0.49	1.30%	1.06%	М
Combined standard uncertainty		RSS					11.41%	11.37%	
Expant uncertainty (95% confidence							22.82%	22.75%	

Page: 106 of 129

9. Phantom Description

Schmid & Parmer Engineering AG

Zeughausstrases 42, 8004 Zurich, Switzerland. Phona +41 1 245 9700, Fax +41 1 245 9779 Info**G**apasg.com. http://www.apasg.com

Certificate of Conformity / First Article Inspection

item	SAM Twin Phentom V4.0	
Type No	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer	SPEAG Zeughausstrasse 43 CH-8004 Zürich Switzerland	

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series items (called samples) or are tested at each item.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness of shell	Compliant with the requirements according to the standards	2mm +/- 0.2mm in flat and specific areas of head section	First article, Samples, TP-1314 ff,
Material thickness at ERP	Compliant with the requirements according to the standards	6mm +/- 0.2mm at ERP	First article, All items
Material parameters	Dielectric parameters for required frequencies	300 MHz - 6 GHz; Relative permittivity < 5. Loss tangent < 0.05	Material samples
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards if handled and cleaned according to the instructions. Observe technical Note for material compatibility.	DEGMBE based simulating liquids	Pre-saries, First article, Material samples
Sagging	Compliant with the requirements according to the standards. Sagging of the flat section when filled with tissue simulating liquid.	< 1% typical < 0.8% if filled with 155mm of HSL900 and without OUT below	Prototypes, Sample testing

- nderds
 CENELEC EN 50361
 IEEE Skd 1528-2003
 IEO 52209 Part I
 FCC OET Sulletin 65, Supplement C, Edition 01-01
 The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standards [1] to [4]

07.07.2005

Salpeto & Parzeni Engineering A.Q. Zerighausprises 43, 8094 Zurief, Suitzerland Phone 441, 5 965 9790 720-481-97 248 0778 Schollenger com. http://www.sepseg.com

Doc He Mit - QO 000 PAR C - =

Signature / Stamp

Page: 107 of 129

10. System Validation from Original Equipment Supplier

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

client SGS-TW (Auden)

Certificate No: D2450V2-727_Apr15

	ERTIFICATE		
Object	D2450V2 - SN: 7	27	
Calibration procedure(s)	QA CAL-05.v9 Calibration proceed	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	April 22, 2015		
The measurements and the unce	rtainties with confidence pr	onal standards, which realize the physical un robability are given on the following pages an y facility: environment temperatura (22 ± 3)°C	d are part of the certificate.
	FF		
Calibration Equipment used (M&	E childal for calibration)		
Calibration Equipment used (M&) Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		07-Oct-14 (No. 217-02020)	Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783 MY41092317	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN; 5058 (20k)	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131)	Oct-15 Oct-15 Oct-15 Mar-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 05327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 05327 SN: 3205	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. E3S-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02031) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. E53-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 9481A Power sensor HP 98481A Power sensor HP 98481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 30-Dec-14 (No. ES3-3205_Dec14) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Oct-15 Oct-15 Oct-15 Mar-16 Mar-16 Dec-15 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D2450V2-727_Apr15

Page 1 of 8

Page: 108 of 129

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized; SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-727 Apr15

Page 2 of 8

Page: 109 of 129

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and calculations were appropriate	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-727_Apr15

Page: 110 of 129

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.2 Ω + 1.3 jΩ
Return Loss	- 24.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.8 Ω + 3.3 jΩ
Return Loss	- 28.6 dB

General Antenna Parameters and Design

Floatrical Dalay (and direction)	1,149 ns
Electrical Delay (one direction)	1.149 /15

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 09, 2003

Certificate No: D2450V2-727_Apr15

Page 4 of 8

Page: 111 of 129

DASY5 Validation Report for Head TSL

Date: 22.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{ S/m}$; $\varepsilon_r = 37.6$; $\rho = 1000 \text{ kg/m}^3$

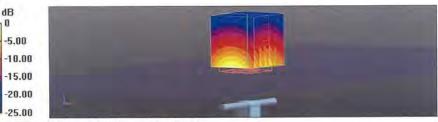
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.54, 4.54, 4.54); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

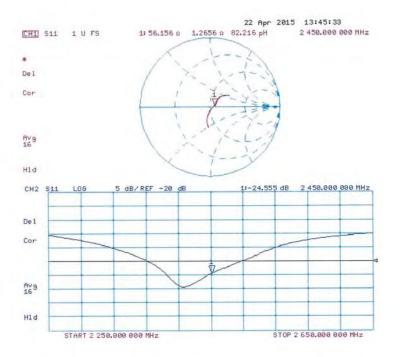

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.1 W/kg

Maximum value of SAR (measured) = 17.5 W/kg



0 dB = 17.5 W/kg = 12.43 dBW/kg

Page: 112 of 129

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-727_Apr15

Page: 113 of 129

DASY5 Validation Report for Body TSL

Date: 22.04.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 727

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 50.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

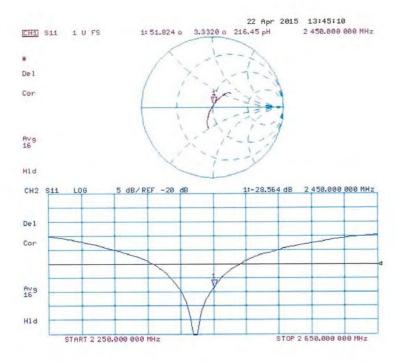
- Probe: ES3DV3 SN3205; ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.54 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kgMaximum value of SAR (measured) = 17.4 W/kg

0 dB = 17.4 W/kg = 12.41 dBW/kg


Certificate No: D2450V2-727_Apr15

Page 7 of 8

Page: 114 of 129

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-727_Apr15

Page: 115 of 129

Calibration Laboratory of Schmid & Partner Engineering AG isstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura 5 **Swiss Calibration Service**

Appreditation No.: SCS 0108

Accidented by the Swiss Accordination Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS-TW (Auden)

Certificate No: D5GHzV2-1023_Jan15 CALIBRATION CERTIFICATE D5GHzV2 - SN:1023 QA CAL-22.v2 Calibration procedure(s) Calibration procedure for dipole validation kits between 3-6 GHz. Calibration date: January 29, 2015 This calibration certificate documents the transability to national alandards, which realize the physical units of massaraments (SI): nants and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the classed laboratory facility environment temperature (22 ± 3)°C and numbers = 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards Power meter EPM-442A DA Call Date (Certificate No.) Scheduled Calthrange GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) DOI:15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Dot-15 Reference 20 dB Attanuator BN: 5058 (20k) 03-Apr-T4 (No. 217-01916) Type-N mismatch combination SN: 5047.2 / 05327 83-Apr-14 (No. 217-61921) Apr-15 ence Probe EX3DV4 SN: 3503 30-Dec-14 (No. EX3-3503, Dec14) Dec-15 DAFA SN: 601 18-Aug-14 (No DAE4-601_Aug14) Aug-15 Secondary Standards ID a Check Linte (in house) Scheduled Check RF generator R&S SMT 06 100005 04-Aug-89 (in house shack Out-13) In house chedic Oct-16 Network Analyzer HP 6753E US37590585 S4206 19-Oct-01 (In house check Oct-14). In house check: Oct-15. Function Calbrand by: Michael Webs Laboratory Technician Approved by: Katja Polović Technical Manages based Jercury 29, 2015

Certificate No: D5GHzV2-1023_Jan 15

Page 1 of 15

This calibration certificate shall not be regradueled except in full without written approval of the laberatury.

Page: 116 of 129

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Senvicerioche Kallprimpurei
C Service susse d'élatonnage
Service evizore d'invitore
S Series Celleration Service

Accomplisation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Mullithieral Agreement for the recognition of calibration certificates

Glossary:

TSL fissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures" Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 5 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013.

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- . SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificant No. 05GHzV2-1023_Jun15

Page 2 of 15

Page: 117 of 129

Measurement Conditions

DASY system configuration, as for as not given on page 1.

DASY Version	DASYS	V52.6.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Specer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	36.0	4.66 mhorm
Measured Head TSL parameters	[22,0±02] °C	36.3±0 %	4.56 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		-

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	100 mW Input power	7.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.9 W/kg = 19.9 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	100 mW Input power	2:32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W.	22.2 W/kg = 19.5 % (k=2)

Page: 118 of 129

Head TSL parameters at 5300 MHz

Due following nacismeters and calculations were arruled

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35,9	4.78 mhaim
Measured Head TSL parameters	(22.0 ± 0.2) °C	361 + 6 %	4.66 mho/m = 6 %
Head TSL temperature change during lest	<0.5 °C	-	-

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Heart TSL	Condition	
BAR measured	100 mW inpul power	6.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAH for nominal Head TSL parameters	nomalized to 1W	23.4 W/kg ± 19.5 % (kin2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	S5'0,-C	35.5	5.07 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6.%	4.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	-

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Hoad TSL parameters	WI al besilamon	81.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Page: 119 of 129

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Naminal Head TSL parameters	22.0 C	35.3	5.27 mholm
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 = 6.16	5.16 mho/m = 6 %
Head TSL temperature change during test	€ 0.5 °C		_

SAR result with Head TSL at 5800 MHz

SAR avereged over 1 cm ⁵ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR messured	100 mW input power	2-23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k×2)

Certificate No. D9GHzV2-1023_Jan15

Page 5 til 15

Page: 120 of 129

Body TSL parameters at 5200 MHz

he following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49,0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.4 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	<0.5°C		-

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Gondition	
SAR measured	100 mW input power	7,33 W/kg
SAR for nominal Body TSL parameters.	normalized to 1W	73.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm2 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2,04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg = 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	220.0	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	402=6%	5.55 mho/m = 8.%
Body TSL temperature change during test	< 0.5 °C		(400)

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR massurija	100 mW Input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm² (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ∈ 19.5 % (k=2)

Certificate No. D5GHzV2-1023 Jan 15

Page 5 of 15

Page: 121 of 129

Body TSL parameters at 5600 MHz
The following parameters and calculations were applied:

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	.82.0 °C	48.5	5.77 mholm
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %.	5.96 mho/m ± 6 %
Body TSL temperature change during test	≤05°C	-	

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW (rgul power	7.77 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.9 W/kg = 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAFI for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations:

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0°C	48.2	6,00 mno/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.4 ± 6.%	6.25 mho/m ± 6 %
Body TSL temperature change during fest	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7,54 W/kg
SAFI for nominal Body TSL parameters	normalized to fW	75,5 W/kg ± 19,9 % (k=2)

SAR averaged over 10 cm2 (10 g) of Body TSL	gondition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	30.7 W/kg = 19.5 % (k=2)

Page: 122 of 129

Appendix (Additional assessments outside the scope of SCS0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to leed point	49.2 (2 - 8.5 (2)	
Return Loss	-21.4 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	116E-110.73
Return Loss	- 2E, 2 nB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to lead point	53.4 (1 - 2.7)(1
Pleturn Loss	- 27.5 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.5 D + 1.0 JO
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	-49.0 Q - 7.1 jil
Reium Loss	- 22.8 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	51.5 Q - 2.2 JQ
Relum Loss	-31,7 dB

Antenna Parameters with Body TSL at 5600 MHz

impedance, transformed to feed point	54.6 Ω - 1.5 µI	
Return Loss	-26.8 dB	

Dertrigate No. D50HzV2-1023_Jan (4)

Page 6 of 15

Page: 123 of 129

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.8 A + 2.8 jQ	
Retirm Loss	24.5 dG	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 hs

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is maps of standard semirigid coasial cable. The center conductor of the feeding line is directly committed to the second arm of the dipole. The ansense is therefore short-circulated for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when leaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactimed by	SPEAG
Manufactured on	February 05, 2004

Certificate No. 1993HzV2-1023_Jen 15

Page 3 of 15

Page: 124 of 129

DASY5 Validation Report for Head TSL

Date: 28.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type; D5GHzV2; Serial: D5GHzV2 - SN:1023

Communication System: UID 0 - CW: Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.56$ S/m; $\epsilon_r = 36.3$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5300 MHz; $\sigma = 4.66$ S/m; $\epsilon_r = 36.1$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5000 MHz; $\sigma = 4.66$ S/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³. Medium parameters used: f = 5800 MHz; $\sigma = 5.18$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³.

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

DASY52 Configuration.

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2014, ConvF(5.21, 5.21, 5.21); Calibrated: 30.12.2014, ConvF(4.92, 4.92, 4.92); Calibrated: 30.12.2014, ConvF(4.9, 4.9, 4.9); Calibrated: 30.12.2014;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18,08,2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64:14 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.47 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.34 W/kg

Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

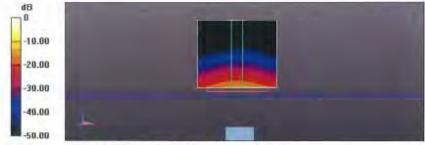
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.68 V/m, Power Drift = 0.08 dB

Peak 5AR (extrapolated) = 32.2 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.31 W/kg

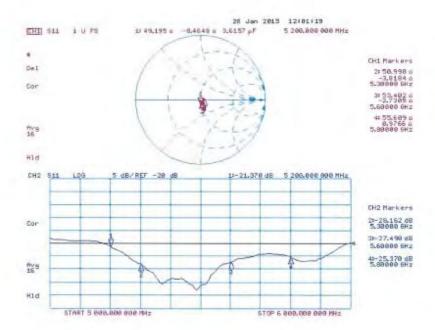
Maximum value of SAR (measured) = 18.9 W/kg


Certificate No: D5GHzV2-1023_Jan 15

Page 10 or 15

Page: 125 of 129

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.76 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 18.4 W/kg



0 dB = 17.8 W/kg = 12.50 dBW/kg

Page: 126 of 129

Impedance Measurement Plot for Head TSL

Page: 127 of 129

DASY5 Validation Report for Body TSL

Date: 29.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1023

Communication System: UID 0 - CW: Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: l = 5200 MHz; $\sigma = 5.42 \text{ S/m}$; $v_i = 49.4$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: l = 5300 MHz; $\alpha = 5.55$ S/m; $\kappa = 49.2$; $\rho = 1000$ kg/m $^{\circ}$. Medium parameters used: l = 5600 MHz; $\alpha = 1000$ kg/m $^{\circ}$. 5.96 S/m; $\epsilon_c = 48.7$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: f = 5800 MHz; $\sigma = 6.25 \text{ S/m}$; $\epsilon_c = 48.4$; $\rho = 6.25 \text{ S/m}$; $\epsilon_c = 48.4$; $\rho = 6.25 \text{ S/m}$; $\epsilon_c = 6.25 \text{ S/m$ 1000 kg/m³

Phantom section! Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY 52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.95, 4.95, 4.95); Calibrated: 30.12.2014, ConvF(4.76, 4.78, 4.78); Calibrated: 30,12,2014, ConvF(4.35, 4.35, 4.35); Calibrated: 30,12,2014, ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2014.
- Sensor-Surface: L4mm (Mechanical Surface Detection)
- . Electronics: DAE4 Sn601 Calibrated, 18:08:2014
- Flanton: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.97 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 7.33 W/kg; SAR(10 g) = 2.04 W/kgMaximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.58 V/m. Power Drift = -0.06 dB Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.07 W/kgMaximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.88 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 34.4 W/kg

SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.15 W/kg

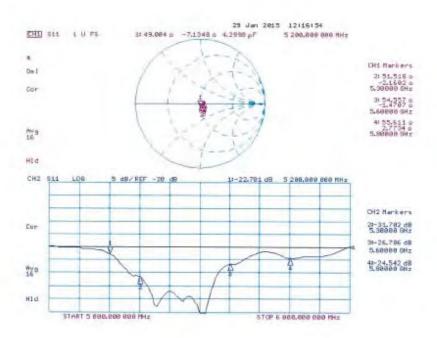
Maximum value of SAR (measured) = 19.3 W/kg.

Certificate No. D6GHzV2-1022 Jan15

Page 13 of 15

Page: 128 of 129

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.10 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 35.2 W/kg SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.07 W/kg Maximum value of SAR (measured) = 19.1 W/kg



0 dB = 17.3 W/kg = 12.38 dBW/kg

Page: 129 of 129

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1023_Jan15

Page 15 of 15

- End of 1st part of report -