

TEST REPORT

No. I20D00140-SRD06

For

Client:	Datalogic S.r.l.	
Production:	Smartphone	
Model Name:	MEMOR 10	
Brand Name:	Datalogic	
FCC ID:	U4GDL35US	
Hardware Version:	V00 (US)	
Software Version:	2.05.07.20190919	
Issued date:	2020-11-12	

NOTE

- 1. The test results in this test report relate only to the devices specified in this report.
- 2. This report shall not be reproduced except in full without the written approval of East China Institute of Telecommunications.
- 3. For the test results, the uncertainty of measurement is not taken into account when judging the compliance with specification, and the results of measurement or the average value of measurement results are taken as the criterion of the compliance with specification directly.

Test Laboratory: East China Institute of Telecommunications Add: Block No.4, No.766, Jingang Road, Pudong District, Shanghai, P. R. China Tel: +86 21 63843300 E-Mail: <u>welcome@ecit.org.cn</u>

East China Institute of Telecommunications

Revision Version

Report Number	Revision	Date	Memo
I20D00140-SRD06	00	2020-11-05	Initial creation of test report
I20D00140-SRD06	01	2020-11-12	First modification of test report

CONTENTS

1.	TEST L	ABORATORY	5
1.1.	TESTIN	G LOCATION	5
1.2.	TESTIN	G ENVIRONMENT6	5
1.3.	PROJE	CT DATA	5
1.4.	SIGNAT	URE	5
2.	CLIENT	INFORMATION	,
2.1.	APPLIC	ANT INFORMATION	,
2.2.	MANUF	ACTURER INFORMATION7	,
3.	EQUIPN	IENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	3
3.1.	ABOUT	EUT 8	3
3.2.	INTERN	AL IDENTIFICATION OF EUT USED DURING THE TEST	}
3.3.	INTERN	AL IDENTIFICATION OF AE USED DURING THE TEST	}
4.	REFERI	ENCE DOCUMENTS9	•
4.1.	REFERI	ENCE DOCUMENTS FOR TESTING9	•
5.	TEST R	ESULTS)
5.1.	SUMMA	RY OF TEST RESULTS)
5.2.	STATE	11/11/11/11/11/11/11/11/11/11/11/11/11/	ł
6.	TEST E	QUIPMENT UTILIZED 12	2
7.	TEST E	NVIRONMENT13	}
8.	MEASU	REMENT UNCERTAINTY14	ł
ANN	EX A.	MEASUREMENT RESULTS15	5
ANN	EX A.1.	EMISSION LIMT	5
ANN	EX B.	DEVIATIONS FROM PRESCRIBED TEST METHODS	•
ANN	EX C.	DETAILED TEST RESULTS)
		MAIN TERMS	
_			

ANNEX C.2.	TERMS USED IN CONDITION COLUMN	20
ANNEX C.3.	TERMS USED IN VERDICT COLUMN	20
ANNEX C.4.	TERMS USED IN NOTE COLUMN	20
ANNEX D.	ACCREDITATION CERTIFICATE	21

1. Test Laboratory

1.1. Testing Location

Company Name	East China Institute of Telecommunications	
Address	Block No.4, No.766, Jingang Road, Pudong District, Shanghai, P. R.	
Addless	China	
Postal Code	201206	
Telephone	(+86)-021-63843300	
FCC registration No	CN1177	

1.2. Testing Environment

Normal Temperature	15°C-35°C
Relative Humidity	25%-75%

1.3. Project data

Project Leader	Chen Minfei
Testing Start Date	2020-09-16
Testing End Date	2020-10-20

1.4. Signature

刘艳

Liu Yan (Prepared this test report)

Fan Songyan (Reviewed this test report)

Zheng Zhongbin (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name	Datalogic S.r.I.
Address	Via San Vitalino no. 13, Calderara di Reno – 40012 (BO) - Italy
Telephone	+39 051 314 72 16
Postcode	/

2.2. Manufacturer Information

Company Name	MOBIWIRE MOBILES (NINGBO) CO.,LTD	
Address	No.999,Dacheng East Road,FenghuaCity,Zhejiang Province, China.	
Telephone	+86 574 59555707	
Postcode	/	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Production	Smartphone
Model name	MEMOR 10
LTE Frequency Band	Band 2/4/5/7/12/13/17/25/26
Extreme Temperature	-20/+50°C
Nominal Voltage	3.80V
Extreme High Voltage	4.35V
Extreme Low Voltage	3.60V

Note:

- a. Photographs of EUT are shown in ANNEX A of this test report.
- b. The value of the antenna gain is provided by the customer. For specific antenna information, please check the antenna specifications of the customer.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N01(HE)	358328100030199	V00 (US)	2.05.07.20190919	2020-09-22
N02(LE)	359737090161724	V00 (US)	2.05.07.20190919	2020-09-22

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	RF cable	

*AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version			
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY	2018-10-01			
	MATTERS; GENERAL RULES AND REGULATIONS	2018-10-01			
FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS	2018-10-01			
	SERVICES	2018-10-01			
ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment	2016			
	Measurement and Performance Standards	2010			
ANSI C63.26	American National Standard of Procedures for				
	Compliance Testing of Licensed Transmitters Used in	2015			
	Licensed Radio				
KDB 971168 D01	Measurement Guidance for Certification of Licensed	v03r01			
	Digital Transmitters	V03101			

5. Test Results

5.1. Summary of Test Results

LTE Band 12

Test Name	Clause in FCC rules	Section in this report	Verdict
Emission Limit	2.1051 27.53(g)	A.2	Р

Note: please refer to Annex C in this test report for the detailed test results.

The following terms are used in the above table.

Р	Pass, the EUT complies with the essential requirements in the standard.
NM	Not measure, the test was not measured by ECIT.
NA	Not applicable, the test was not applicable.
F	Fail, the EUT does not comply with the essential requirements in the standard.

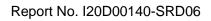
5.2. Statements

The MEMOR 10 is a variant product for testing. ECIT only performed test cases which identified with P/NM/NA/F results in Annex C.

ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report.

Note: This report only provides radiation data, and radiation data includes HE and LE scanning head, N01 corresponding to HE scanning head, N02 corresponding to LE scanning head, providing the worst mode data. The remaining data results please refer to report I18D00022-SRD06-LTE which was prepared by East China Institute of Telecommunications.

6. Test Equipment Utilized


Radiated emission test system

The test equipment and ancillaries used are as follows.

No.	Equipment	Model	Serial Number	Manufacturer	Calibration date	Cal.interval
1	Universal Radio Communicatio n Tester	CMW50 0	104178	R&S	2020-05-10	1 year
2	Test Receiver	ESU40	100307	R&S	2020-05-10	1 year
3	TRILOG Broadband Antenna	VULB9 163	VULB9163- 515	Schwarzbeck	2020-02-28	2 years
4	Double Ridged Guide Antenna	ETS-31 17	135890	ETS	2020-02-28	2 years
5	2-Line V-Network	ENV21 6	101380	R&S	2020-05-10	1 year
6	RF Signal Generator	SMF10 0A	102314	R&S	2020-05-10	1 year
7	Amplifier	SCU08	10146	R&S	2020-05-10	1 year

Anechoic chamber

Fully anechoic chamber by ETS.

7. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃
Relative humidity	Min. = 20%, Max. = 75 %
Shielding effectiveness	> 100 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃
Relative humidity	Min. =25 %, Max. =75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C		
Relative humidity	Min. = 25 %, Max. = 75 %		
Shielding effectiveness	> 100 dB		
Electrical insulation	> 10 kΩ		
Ground system resistance	< 0.5 Ω		
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz		
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz		
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz		

8. Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in ECIT documents. The detailed measurement uncertainty to see the column, k=2

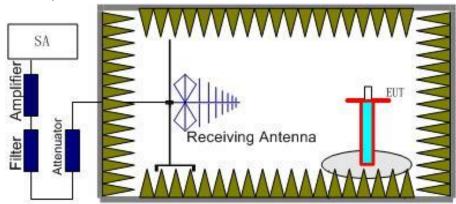
Measurement Items	Range	Confidence Level	Calculated Uncertainty
Maximum Peak Output Power	30MHz-3600MHz	95%	\pm 0.544dB
EBW and VBW	30MHz-3600MHz	95%	\pm 62.04Hz
Transmitter Spurious Emission-Conducted	30MHz-2GHz	95%	\pm 0.90dB
Transmitter Spurious Emission-Conducted	2GHz-3.6GHz	95%	\pm 0.88dB
Transmitter Spurious Emission-Conducted	3.6GHz-8GHz	95%	\pm 0.96dB
Transmitter Spurious Emission-Conducted	8GHz-20GHz	95%	\pm 0.94dB
Transmitter Spurious Emission-Radiated	9KHz-30MHz	95%	\pm 5.66dB
Transmitter Spurious Emission-Radiated	30MHz-1000MHz	95%	\pm 4.98dB
Transmitter Spurious Emission-Radiated	1000MHz -18000MHz	95%	\pm 5.06dB
Transmitter Spurious Emission-Radiated	18000MHz -40000MHz	95%	\pm 5.20dB
Frequency stability	1MHz-16GHz	95%	±62.04Hz

ANNEX A. MEASUREMENT RESULTS

ANNEX A.1. EMISSION LIMT

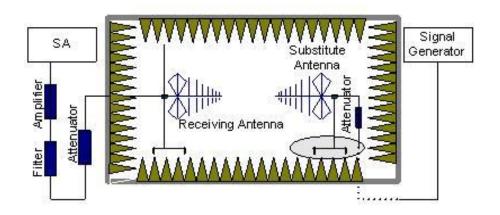
Reference

FCC: CFR 2.1051, 27.53(g)


A.1.1 Measurement Method

The measurements procedures in TIA-603E-2016 are used. This measurement is carried out in fully-anechoic chamber FAC-3.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier. The resolution bandwidth is set 1MHz as outlined in Part 27.53(g), Part 27.53(h), Part 27.53(m). The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE Bands 12.


The procedure of radiated spurious emissions is as follows:

1. Below 1 GHz, EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test.
 An amplifier should be connected in for the test.
 The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier.
 The measurement results are obtained as described below:
 Power (EIRP)=P_{Mea}- P_{pl} + G_a
- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (unit: dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

A.1.2 Measurement Limit

Part 27.53(g), Part 27.53(h), Part 27.53(m) all specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.1.3 Measurement Results

7. Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the LTE Bands12. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen

from a carrier in one block of the LTE Bands12. Into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. The evaluated frequency range is from 30MHz to 26GHz.

HE test data RSE-LTE12-L

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
1400.1	-50.71	4.0	3.4	-51.31	-13	V
2104.2	-36.48	4.9	2.8	-38.58	-13	Н
2812.7	-36.86	5.7	4.1	-38.46	-13	V
3505.2	-49.68	6.4	4.7	-51.38	-13	Н
4216.8	-53.08	7.0	7.7	-52.38	-13	Н
4905.6	-50.27	7.7	9.0	-48.97	-13	Н
		•	•	•	•	•

RSE-LTE12-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
1412.9	-50.6	4.0	3.4	-51.2	-13	н
2122.7	-32.94	4.9	2.8	-35.04	-13	н
2855.0	-35.61	5.8	4.1	-37.31	-13	V
3574.4	-46.36	6.4	4.7	-48.06	-13	н
4220.8	-53.3	7.0	7.7	-52.6	-13	V
4911.6	-51.12	7.7	9.0	-49.82	-13	V

RSE-LTE12-H

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
1423.0	-50.78	4.0	3.4	-51.38	-13	Н
2136.2	-35.17	5.0	3.3	-36.87	-13	Н
2856.5	-34.77	5.8	4.1	-36.47	-13	V
3560.4	-46.34	6.4	4.7	-48.04	-13	Н
4277.6	-52.87	7.1	7.7	-52.27	-13	Н
5023.2	-50.27	7.8	9.0	-49.07	-13	Н

LE test data

RSE-LTE12-L

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
1400.1	-50.71	4.0	3.4	-51.31	-13	V
2104.2	-36.48	4.9	2.8	-38.58	-13	Н
2812.7	-36.86	5.7	4.1	-38.46	-13	V
3505.2	-49.68	6.4	4.7	-51.38	-13	Н
4216.8	-53.08	7.0	7.7	-52.38	-13	Н
4905.6	-50.27	7.7	9.0	-48.97	-13	Н

RSE-LTE12-M

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
1412.9	-50.6	4.0	3.4	-51.2	-13	н
2122.7	-32.94	4.9	2.8	-35.04	-13	Н
2855.0	-35.61	5.8	4.1	-37.31	-13	V
3574.4	-46.36	6.4	4.7	-48.06	-13	Н
4220.8	-53.3	7.0	7.7	-52.6	-13	V
4911.6	-51.12	7.7	9.0	-49.82	-13	V

RSE-LTE12-H

Frequency (MHz)	PMea (dBm)	Pcl (dBm)	Ga (dBd)	Peak ERP (dBm)	Limit (dBm)	Polarization
1423.0	-50.78	4.0	3.4	-51.38	-13	н
2136.2	-35.17	5.0	3.3	-36.87	-13	Н
2856.5	-34.77	5.8	4.1	-36.47	-13	V
3560.4	-46.34	6.4	4.7	-48.04	-13	Н
4277.6	-52.87	7.1	7.7	-52.27	-13	Н
5023.2	-50.27	7.8	9.0	-49.07	-13	Н

Note: the EUT was displayed in several different direction, the worst cases were shown.

ANNEX B. Deviations from Prescribed Test Methods

No deviation from Prescribed Test Methods.

ANNEX C. Detailed Test Results

ANNEX C.1. Main Terms

Verdict	Verdict of each test cases.		
Test cases	Test cases identification number and description in ETSI EN 300 328 test		
	specification and ETSI specification.		

ANNEX C.2. Terms used in Condition column

Tnom	Normal temperature	
Tmin	Low temperature	
Tmax	High temperature	
Vnom	Normal voltage	

ANNEX C.3. Terms used in Verdict column

Ρ	Pass,the EUT complies with the essential requirements in the standard.		
NM	Not measure, the test was not measured by ECIT.		
NA	Not applicable, the test was not applicable.		
F	Fail, the EUT does not comply with the essential requirements in the standard.		

ANNEX C.4. Terms used in Note column

EUT ID	EUT ID (e.g N01, N02) is used to identify the EUT tested used for each test
LOTID	cases as specified in section 3 of this test report.
Lab Code	Lab code is used to identify the subcontracted lab if this test cases is performed
	in the subcontracted lab.

Subcontracted test lab code: N/A

ANNEX D. Accreditation Certificate

Accredited Laboratory

A2LA has accredited

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this óth day of May 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

***********END OF REPORT*********