-1 of 3- FCC ID: U4F0022

IC: 3862D-006

Report Number: ISL-13LR276MPE

Maximum Permissible Exposure (MPE)

Standard Applicable

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a Mobile device, the MPE is required.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minute)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	F/1500	30
1500-15000	/	/	1.0	30

F = frequency in MHz

^{* =} Plane-wave equipment power density

-2 of 3- FCC ID: U4F0022

IC: 3862D-006

Maximum Permissible Exposure (MPE) Evaluation – High Speed Mode Conducted Power result:

Cable loss = 0	Output Power		
Frequency (MHz)	Detector		Limit
	PK	AV	(dBm)
	(dBm)	(dBm)	
903.64900	14.51	14.48	
910.0	14.64	14.60	30
926.93600	14.64	14.60	

MPE Prediction (High Speed) with the max antenna gain 3 dBi

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4 R^2

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	14.64	(dBm)
Maximum peak output power at antenna input terminal:	29.10717118	(mW)
Duty cycle:	100	(%)
Maximum Pav :	29.10717118	(mW)
Antenna gain (typical):	3	(dBi)
Maximum antenna gain:	1.995262315	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	910	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.0115598	(mW/cm^2)

Evaluation Result

The predicted power density level at 20 cm is $0.012~\text{mW/cm}^2$. This is below the uncontrolled exposure limit of $1~\text{mW/cm}^2$ at 910MHz.

Report Number: ISL-13LR276MPE

-3 of 3- FCC ID: U4F0022

IC: 3862D-006

Maximum Permissible Exposure (MPE) Evaluation—Low Speed High Power Mode Conducted Power result:

Frequency (MHz)	Reading Power (dBm)	Cable Loss	Output Power (dBm)	Output Power (W)	Limit (W)
902.80	16.60	0.00	16.60	0.04571	1
915.14	15.90	0.00	15.90	0.03890	1
927.48	16.20	0.00	16.20	0.04169	1

offset: 0.5dB

MPE Prediction with the max antenna gain 3 dBi

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4 R^2

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	16.6	(dBm)
Maximum peak output power at antenna input terminal:	45.70881896	(mW)
Duty cycle:	100	(%)
Maximum Pav :	45.70881896	(mW)
Antenna gain (typical):	3	(dBi)
Maximum antenna gain:	1.995262315	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	910	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.0181531	(mW/cm^2)

Evaluation Result

The predicted power density level at 20 cm is $0.018~\text{mW/cm}^2$. This is below the uncontrolled exposure limit of $1~\text{mW/cm}^2$ at 902.80MHz.

Report Number: ISL-13LR276MPE