Nemko-CCL, Inc.

1940 West Alexander Street Salt Lake City, UT 84119 801-972-6146

Test Report

Certification

Test Of: YRMZB2

FCC ID: U4A-YRHCPZB0FM

Test Specifications:

FCC PART 15, Subpart C

Test Report Serial No: 278528-6.3

Applicant:
Assa Abloy Inc.
110 Sargent Drive
New Haven, CT 06511
U.S.A

Dates of Test: January 20 – 21, 2015

Report Issue Date: February 10, 2015

Accredited Testing Laboratory By:

NVLAP Lab Code 100272-0

TEST REPORT: 278528-6.3

REPORT ISSUE DATE: 02/10/2015

Page 2 of 57

CERTIFICATION OF ENGINEERING REPORT

This report has been prepared by Nemko-CCL, Inc. to document compliance of the device described below with the requirements of Federal Communications Commission (FCC) Part 15, Subpart C. This report may be reproduced in full, partial reproduction may only be made with the written consent of the laboratory. The results in this report apply only to the sample tested.

- Applicant: Assa Abloy Inc.

- Manufacturer: Assa Abloy Inc.

- Brand Name: Yale

- Model Number: YRMZB2

- FCC ID: U4A-YRHCPZB0FM

On this 10th day of February 2015, I, individually and for Nemko-CCL, Inc., certify that the statements made in this engineering report are true, complete, and correct to the best of my knowledge, and are made in good faith.

Although NVLAP has recognized that the Nemko-CCL, Inc. EMC testing facilities are in good standing, this report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Nemko-CCL, Inc.

Tested by: Norman P. Hansen

Test Technician

Reviewed by: Mark M. Feil

EMC Engineer

Page 3 of 57

TABLE OF CONTENTS

	PAGE
SECTION 1.0 CLIENT INFORMATION	4
SECTION 2.0 EQUIPMENT UNDER TEST (EUT)	5
SECTION 3.0 TEST SPECIFICATION, METHODS & PROCEDURES	7
SECTION 4.0 OPERATION OF EUT DURING TESTING	13
SECTION 5.0 SUMMARY OF TEST RESULTS	14
SECTION 6.0 MEASUREMENTS AND RESULTS	15
APPENDIX 1 TEST PROCEDURES AND TEST EQUIPMENT	
APPENDIX 2 PHOTOGRAPHS	

Nemko-CCL, Inc.

TEST REPORT: 278528-6.3 REPORT ISSUE DATE: 02/10/2015

Page 4 of 57

SECTION 1.0 CLIENT INFORMATION

1.1 Applicant:

Company Name: Assa Abloy Inc.

110 Sargent Drive

New Haven, CT 06511

U.S.A

Contact Name: Steven Pfalzgraf

Title: EM Product Engineer

1.2 Manufacturer:

Company Name: Assa Abloy Inc.

110 Sargent Drive

New Haven, CT 06511

U.S.A

Contact Name: Steven Pfalzgraf

Title: EM Product Engineer

Page 5 of 57

SECTION 2.0 EQUIPMENT UNDER TEST (EUT)

2.1 Identification of EUT:

Brand Name: Yale
Model Number: YRMZB2
Serial Number: None

Dimensions: 5.5 cm x 2.6 cm x 1.0 cm

2.2 Description of EUT:

The YRMZB2 is a transceiver module operating at 2.4 GHz that can interface a home automation/control system. The YRMZB2 typically is installed in a door lock assembly and interfaces an 8 pin header. 6 Vdc to power the YRMZB2 comes from the 4 AA batteries of the lock assembly. For testing conducted emissions at the AC mains as required for modules, an Anome Electric Co. LTD AEC-4850 AC to DC adapter was connected to the power pins of the YRMZB2. The 2.4 GHz transceiver operates using 15 channels with the frequency assignments shown in the table below. The antenna is an inverted F-type trace antenna with a maximum gain of 3.3 dBi.

Channel	Frequency (MHz)						
11	2405	15	2425	19	2445	23	2465
12	2410	16	2430	20	2450	24	2470
13	2415	17	2435	21	2455	25	2475
14	2420	18	2440	22	2460		_

This report covers the circuitry of the devices subject to FCC Part 15, Subpart C. The circuitry of the device subject to FCC Subpart B was found to be compliant and is covered in Nemko-CCL, Inc. report 278528-1.

2.3 EUT and Support Equipment:

The FCC ID numbers for all the EUT and support equipment used during the test are listed below:

Brand Name Model Number Serial Number	FCC ID Number or Compliance	Description	Name of Interface Ports / Interface Cables
BN: Yale MN: YRMZB2 (Note 1) SN: None	U4A- YRHCPZB0FM	2.4 GHz transceiver module	See Section 2.4

Note: (1) EUT

Page 6 of 57

2.4 Interface Ports on EUT:

Name of Ports	No. of Ports Fitted to EUT	Cable Descriptions/Length
Lock interface with power	1	8 pin header for direct connection to lock assembly (For testing, 10 cm conductors were attached and extended to 4 AA batteries and for connection to a computer for controlling the transceiver)

2.5 Modification Incorporated/Special Accessories on EUT:

The following modifications were made to the EUT by the Client during testing to comply with the specification. This report is not complete without an accompanying signed attestation, that the product will have all of the documented modifications incorporated into the product when manufactured and placed on the market.

1. In order to comply with the emissions in the restricted bands, the maximum power settings had to be reduced from 0 (Hexadecimal). The maximum transmitter power setting was reduced to -4 (Hexadecimal) when using channels 11 – 23. Channel 24 maximum power setting was reduced to -9 (Hexadecimal). Channel 25 maximum power setting was reduced to -F (Hexadecimal). In production firmware, the maximum power setting for channels 11 – 23 will be set to -4 (Hexadecimal). Channel 24 will have a maximum power setting of -9 (Hexadecimal) and channel 25 will have a maximum power setting of -F (Hexadecimal). These settings are coded in firmware and are not user accessible.

Page 7 of 57

SECTION 3.0 TEST SPECIFICATION, METHODS & PROCEDURES

3.1 Test Specification:

Title: FCC PART 15, Subpart C (47 CFR 15)

15.203, 15.207, and 15.247

Limits and methods of measurement of radio interference

characteristics of radio frequency devices.

Purpose of Test: The tests were performed to demonstrate initial compliance.

3.2 Methods & Procedures:

3.2.1 §15.203 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

3.2.2 §15.207 Conducted Limits

(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHZ to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Page 8 of 57

Frequency of Emission (MHz)	Frequency of Emission (MHz) Conducted Limit (dBµV)	
	Quasi-peak	Average
$0.15 - 0.5^*$	66 to 56*	56 to 46*
0.5 - 5	56	46
5 - 30	60	50

^{*}Decreases with the logarithm of the frequency.

<u>3.2.3 §15.247 Operation within the bands 902 – 928 MHz, 2400 – 2483.5 MHz, and 5725 – 5850 MHz</u>

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
 - (i) For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.
 - (ii) Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies. The maximum 20 dB bandwidth of the hopping channel is 1 MHz. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.
 - (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

Page 9 of 57

(2) Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

- (b) The maximum peak output power of the intentional radiator shall not exceed the following:
 - (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
 - (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
 - (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725 5850 MHz bands: 1 watt. As an alternative to a peak power measurement, compliance with the Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
 - (c) Operation with directional antenna gains greater than 6 dBi.
 - (1) Fixed point-to-point operation:
 - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
 - (ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Page 10 of 57

(iii) Fixed, point-to-point operation, as used in paragraphs (b)(4)(i) and (b)(4)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

- (2) In addition to the provisions in paragraphs (b)(1), (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5 MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:
 - (i) Different information must be transmitted to each receiver.
 - (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna /antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
 - (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
 - (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.
 - (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Page 11 of 57

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

- (e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
- (f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.
- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.
- (i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Note: Spread spectrum systems are sharing these bands on a noninterference basis with systems supporting critical Government requirements that have been allocated the usage of these bands, secondary only to ISM equipment operated under the provisions of Part 18 of this Chapter. Many

Page 12 of 57

of these Government systems are airborne radiolocation systems that emit a high EIRP which can cause interference to other users. Also, investigations of the effect of spread spectrum interference to U. S. Government operations in the 902-928 MHz band may require a future decrease in the power limits allowed for spread spectrum operation.

3.3 Test Procedure

The testing was performed according to the procedures in ANSI C63.4: 2003 and 47 CFR Part 15. Testing was performed at the Nemko-CCL, Inc. Wanship open area test site #2, located at 29145 Old Lincoln Highway, Wanship, UT. This site has been registered with the FCC, and was renewed February 15, 2012 (90504). This registration is valid for three years.

Nemko-CCL, Inc. is accredited by National Voluntary Laboratory Accreditation Program (NVLAP); NVLAP Lab Code: 100272-0, which is effective until September 30, 2015.

Page 13 of 57

SECTION 4.0 OPERATION OF EUT DURING TESTING

4.1 Operating Environment:

Power Supply: 6 Vdc

4.2 Operating Modes:

The transmitter was tested on 3 orthogonal axes while in a constant transmit mode at the upper, middle, and lower channels. New batteries were installed for all testing except for AC mains conducted emissions. For AC mains conductance tests, an Anome Electric Co. LTD AEC-4850 power supply was used.

4.3 EUT Exercise Software:

Card Access software was used to exercise the transmitters.

Page 14 of 57

SECTION 5.0 SUMMARY OF TEST RESULTS

5.1 FCC Part 15, Subpart C

The YRMZB2 transceiver was subjected to each of the tests shown in the summary table below.

5.1.1 Summary of Tests:

Section	Environmental Phenomena	Frequency Range (MHz)	Result	
15.203	Antenna Requirements	Structural requirement	Complied	
15.207	Conducted Disturbance at Mains Ports 0.15 to 30		Complied	
15.247(a)	Bandwidth Requirement	2400 – 2483.5	Complied	
15.247(b)	Peak Output Power	2400 – 2483.5	Complied	
15.247(d)	Antenna Conducted Spurious Emissions	0.009 - 25000	Complied	
15.247(d)	Radiated Spurious Emissions	0.009 - 25000	Complied	
15.247(e)	Peak Power Spectral Density	2400 – 2483.5	Complied	
15.247(i)	RF Exposure	2400 – 2483.5	Complied (Note 1)	
Note 1: Compliance with these requirements is shown in documents filed with the FCC at the time of Certification.				

5.2 Result

In the configuration tested, the transceiver(s) complied with the requirements of the specification.

Page 15 of 57

SECTION 6.0 MEASUREMENTS AND RESULTS

6.1 General Comments:

This section contains the test results only. Details of the test methods used and a list of the test equipment used during the measurements can be found in Appendix 1 of this report.

6.2 Test Results:

6.2.1 §15.203 Antenna Requirements

The EUT uses an inverted F-type trace antenna with a maximum gain of 3.3 dBi.

RESULT

The EUT complied with the specification.

6.2.2 §15.207 Conducted Disturbance at the AC Mains Ports

Frequency (MHz)	AC Mains Lead	Detector	Measured Level (dBµV)	Limit (dBµV)	Margin (dB)
0.16	Hot	Peak (Note 1)	51.7	55.5	-3.8
0.22	Hot	Peak (Note 1)	48.6	52.7	-4.1
0.26	Hot	Peak (Note 1)	47.3	51.5	-4.2
0.29	Hot	Peak (Note 1)	45.3	50.5	-5.2
0.39	Hot	Peak (Note 1)	42.8	48.1	-5.3
0.46	Hot	Peak (Note 1)	42.2	46.7	-4.5
0.15	Neutral	Peak (Note 1)	50.8	56.0	-5.2
0.20	Neutral	Peak (Note 1)	48.7	53.5	-4.8
0.26	Neutral	Peak (Note 1)	46.6	51.4	-4.8
0.33	Neutral	Peak (Note 1)	44.7	49.6	-4.9
0.46	Neutral	Peak (Note 1)	42.4	46.8	-4.4
0.55	Neutral	Peak (Note 1)	41.6	46.0	-4.4

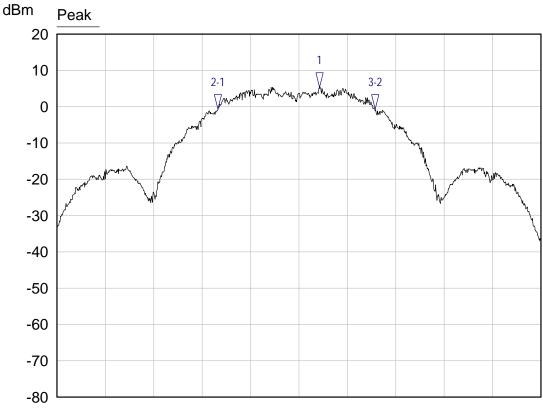
Note 1: The reference detector used for the measurements was Quasi-Peak or Peak and the data was compared to the average limit; therefore, the EUT was deemed to meet both the average and quasi-peak limits.

Page 16 of 57

RESULT

In the configuration tested, the EUT complied with the specification by 3.8 dB.

6.2.3 §15.247(a)(2) Emission Bandwidth


Frequency (MHz)	Emission 6 dB bandwidth (MHz)
2405	1.625
2440	1.585
2475	1.580

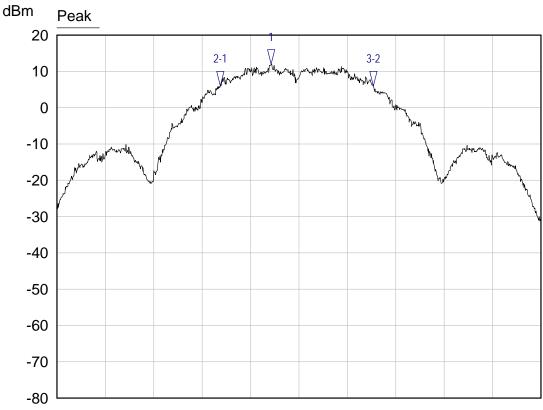
RESULT

In the configuration tested, the 6 dB bandwidth was greater than 500 kHz; therefore, the EUT complied with the requirements of the specification (see spectrum analyzer plots below).

Page 17 of 57

Lowest Channel Bandwidth

 Start: 2.4025 GHz
 Stop: 2.4075 GHz

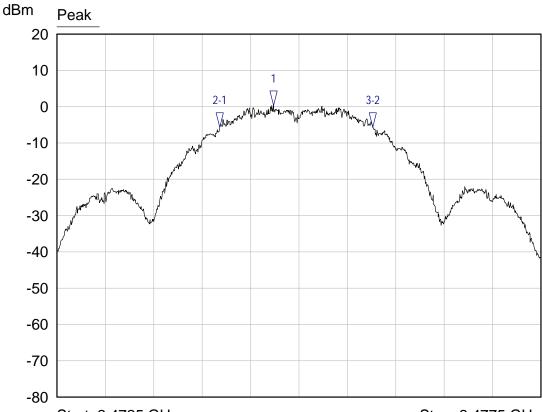

 Res BW: 100 kHz
 Vid BW: 300 kHz
 Sweep: 5.00 ms

 1/21/2015 11:52:26 AM
 Atten: 15 dB
 ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ▽	Peak	2.4052 GHz	5.37 dBm	
2-1 ▽	Peak	-1.0500 MHz	-6.08 dB	
3-2∇	Peak	1.6250 MHz	0.03 dB	

Page 18 of 57

Middle Channel Bandwidth


Start: 2.4375 GHz Stop: 2.4425 GHz Sweep: 5.00 ms Res BW: 100 kHz Vid BW: 300 kHz 1/21/2015 12:07:49 PM Atten: 15 dB

Mkr	Trace	X-Axis	Value	Notes
1 ∇	Peak	2.4397 GHz	12.07 dBm	
2-1∇	Peak	-530.0000 kHz	-6.10 dB	
3-2∇	Peak	1.5850 MHz	-0.01 dB	

ESU-40

Page 19 of 57

Highest Channel Bandwidth

 Start: 2.4725 GHz
 Stop: 2.4775 GHz

 Res BW: 100 kHz
 Vid BW: 300 kHz
 Sweep: 5.00 ms

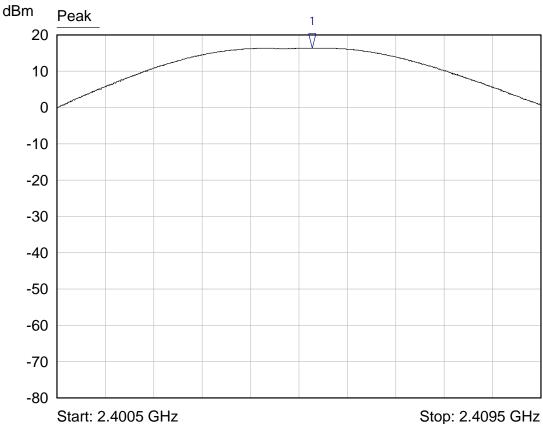
 1/21/2015 12:33:39 PM
 Atten: 15 dB
 ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ∇	Peak	2.4747 GHz	0.38 dBm	
2-1∇	Peak	-555.0000 kHz	-5.98 dB	
3-2∇	Peak	1.5800 MHz	-0.12 dB	

Page 20 of 57

6.2.4 §15.247(b)(3) Peak Output Power

The maximum peak RF Conducted output power measured for this device was 17.44 dBm or 55.46 mW. The limit is 30 dBm or 1 Watt when using antennas with 6 dBi or less gain. The antenna has a gain of 3.3 dBi.

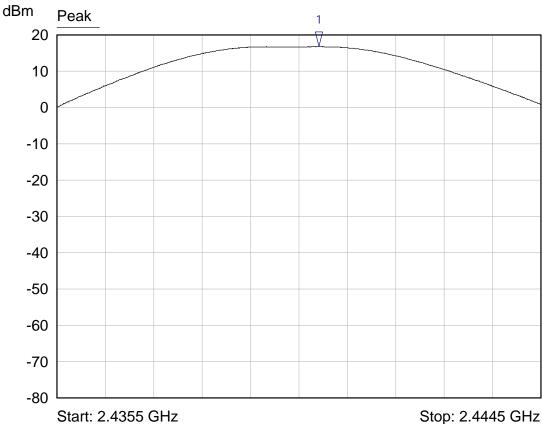

Frequency (MHz)	Measured Output Power (dBm)	Measured Output Power (mW)
2405	16.37	43.35
2440	16.79	47.75
2465	17.44	55.46
2470	12.82	19.14
2475	5.4	3.47

RESULT

In the configuration tested, the RF peak output power was less than 1.0 Watt; therefore, the EUT complied with the requirements of the specification (see spectrum analyzer plots below).

Page 21 of 57

Channel 11 Output Power Plot – Power Setting –4

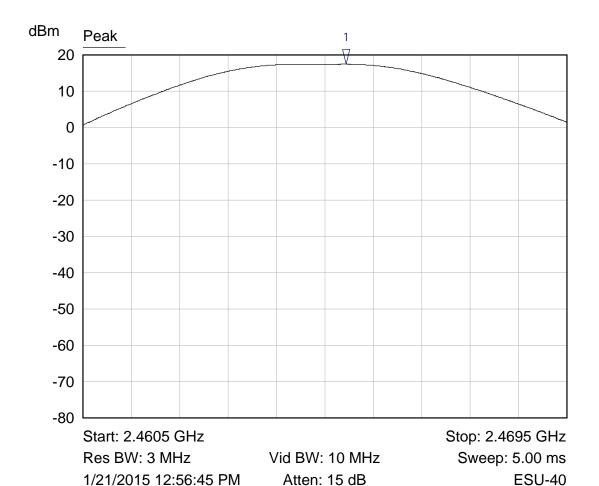

Res BW: 3 MHz 1/21/2015 11:56:45 AM

Vid BW: 10 MHz Atten: 15 dB Stop: 2.4095 GHz Sweep: 5.00 ms ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ▽	Peak	2.4052 GHz	16.37 dBm	

Page 22 of 57

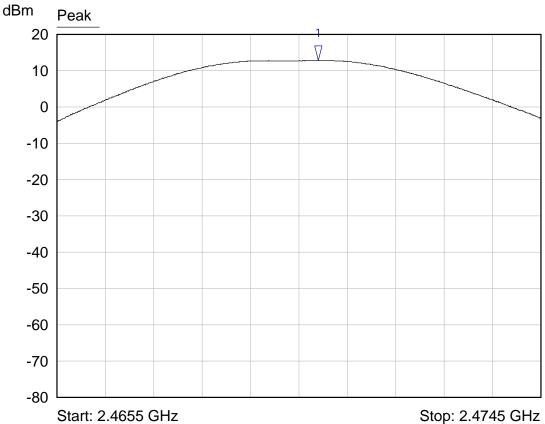
Channel 18 Output Power Plot – Power Setting –4


Res BW: 3 MHz 1/21/2015 12:09:05 PM

Vid BW: 10 MHz Atten: 15 dB Sweep: 5.00 ms ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ▽	Peak	2.4404 GHz	16.79 dBm	

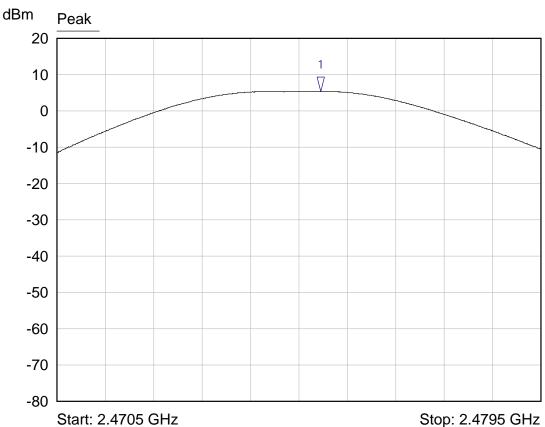
Page 23 of 57


Channel 23 Output Power Plot – Power Setting –4

Mkr	Trace	X-Axis	Value	Notes
1 ∇	Peak	2.4654 GHz	17.44 dBm	

Page 24 of 57

Channel 24 Output Power Plot – Power Setting –9


Start: 2.4655 GHz Sweep: 5.00 ms Res BW: 3 MHz Vid BW: 10 MHz 1/21/2015 12:45:26 PM Atten: 15 dB

Mkr	Trace	X-Axis	Value	Notes
1 ▽	Peak	2.4704 GHz	12.82 dBm	

ESU-40

Page 25 of 57

Channel 25 Output Power Plot – Power Setting –F

Res BW: 3 MHz 1/21/2015 12:34:40 PM

Vid BW: 10 MHz Atten: 15 dB Stop: 2.4795 GHz Sweep: 5.00 ms ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ▽	Peak	2.4754 GHz	5.40 dBm	

Page 26 of 57

6.2.5 §15.247(d) Spurious Emissions

6.2.5.1 Conducted Spurious Emissions

The frequency range from the lowest frequency generated or used in the device to the tenth harmonic of the highest fundamental frequency was investigated to measure any antenna-conducted emissions. The tables show the measurement data from spurious emissions noted across the frequency range when transmitting at the lowest frequency, middle frequency, and upper frequency using a power setting of -4. A power setting of -4 will not be allowed at channel 25 but because the power setting of -4 is higher than the production setting, compliance can be demonstrated although margin may be lost. Shown below are plots with the EUT tuned to the upper and lower channels. These demonstrate compliance with the provisions of this section at the band edges.

The emissions must be attenuated 20 dB below the highest power level measured within the authorized band as measured with a 100 kHz RBW. The highest power measured in was 12.59 dBm; therefore, the criteria is 12.59 - 20 = -7.41 dBm.

RESULT

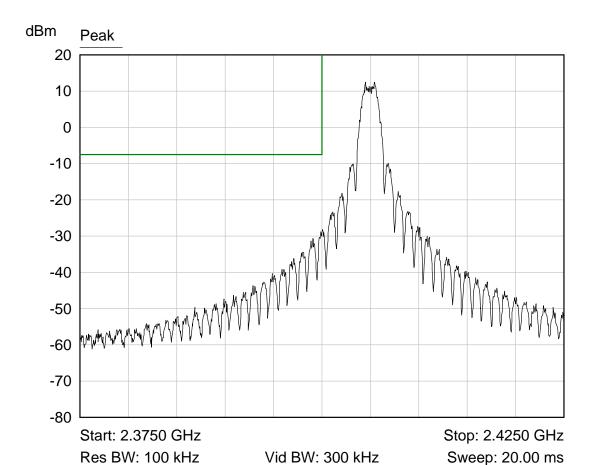
Conducted spurious emissions were attenuated 20 dB or more from the fundamental; therefore, the EUT complies with the specification.

Transmitting on the Lowest Channel

Frequency (MHz)	Corrected Level (dBm)	Criteria (dBm)	Margin (dB)
4810	-49.3	-7.4	-41.9
7215	-61.6	-7.4	-54.2
9620	-62.1	-7.4	-54.7
12025	-62.3	-7.4	-54.9
14430	-62.1	-7.4	-54.7
16835	-62.4	-7.4	-55.0
19240	-62.2	-7.4	-54.8
21645	-62.5	-7.4	-55.1
24050	-62.4	-7.4	-55.0

Page 27 of 57

Transmitting on the Middle Channel

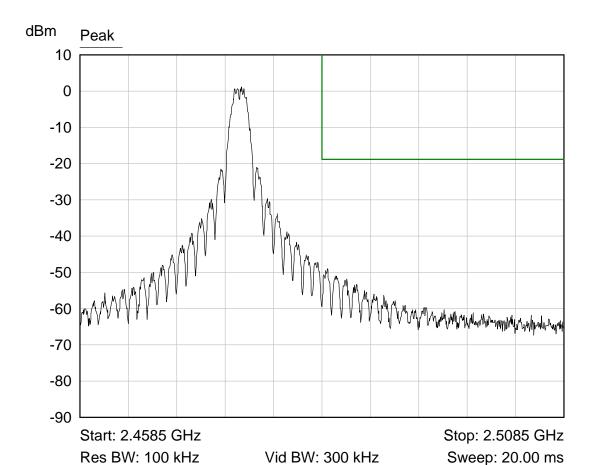

Frequency	Corrected Level	Criteria	Margin
(MHz)	(dBm)	(dBm)	(dB)
4880	-44.5	-7.4	-37.1
7320	-62.3	-7.4	-54.9
9760	-62.2	-7.4	-54.8
12200	-63.2	-7.4	-55.8
14640	-62.9	-7.4	-55.5
17080	-62.8	-7.4	-55.4
19520	-62.2	-7.4	-54.8
21960	-63.2	-7.4	-55.8
24400	-62.9	-7.4	-55.5

Transmitting on the Highest Channel

Frequency	Corrected Level	Criteria	Margin
(MHz)	(dBm)	(dBm)	(dB)
4950	-35.3	-7.4	-27.9
7425	-62.6	-7.4	-55.2
9900	-63.5	-7.4	-56.1
12375	-62.7	-7.4	-55.3
14850	-62.8	-7.4	-55.4
17325	-63.6	-7.4	-56.2
19800	-63.2	-7.4	-55.8
22275	-62.9	-7.4	-55.5
24750	-62.1	-7.4	-54.7

Page 28 of 57

Lower Band Edge Plot


Atten: 15 dB

1/21/2015 11:59:17 AM

ESU-40

Page 29 of 57

Upper Band Edge Plot

Atten: 15 dB

1/21/2015 12:37:17 PM

ESU-40

Page 30 of 57

6.2.5.2 Radiated Emissions in the Restricted Bands of §15.205

The frequency range from the lowest frequency generated or used in the device to the tenth harmonic of the highest fundamental emission was investigated to measure any radiated emissions in the restricted bands. The following tables show measurements of any emission that fell into the restricted bands of \$15.205. The tables show the worst-case emission measured from the EUT. For frequencies above 12.5 GHz, a measurement distance of 1 meter was used. The noise floor was a minimum of 6 dB below the limit. The emissions in the restricted bands must meet the limits specified in \$15.209. Tabular data for each of the spurious emissions is shown below for each of the units. The tabular data shows emissions found with the power setting at -4. Plots of the band edges are also shown using power settings to be incorporated in production firmware.

AVERAGE FACTOR

There was no average factor applied.

RESULT

All emissions in the restricted bands of §15.205 met the limits specified in §15.209; therefore, the EUT complies with the specification.

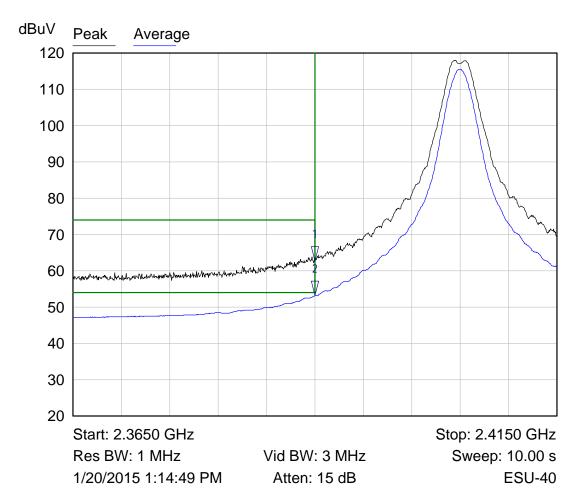
Transmitting at the Lowest Frequency

Frequency (MHz)	Detection Mode	Antenna Polarity	Receiver Reading (dBµV)	Correction Factor (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4810.0	Peak	Vertical	4.7	39.0	43.7	74.0	-30.3
4810.0	Average	Vertical	-4.5	39.0	34.5	54.0	-19.5
4810.0	Peak	Horizontal	9.0	39.0	48.0	74.0	-26.0
4810.0	Average	Horizontal	0.9	39.0	39.9	54.0	-14.1
7215.0	Peak	Vertical	7.9	43.7	51.6	74.0	-22.4
7215.0	Average	Vertical	-0.4	43.7	43.3	54.0	-10.7
7215.0	Peak	Horizontal	10.8	43.7	54.5	74.0	-19.5
7215.0	Average	Horizontal	3.2	43.7	46.9	54.0	-7.1
12025.0	Peak	Vertical	2.1	49.4	51.5	74.0	-22.5
12025.0	Average	Vertical	-6.9	49.4	42.5	54.0	-11.5
12025.0	Peak	Horizontal	0.0	49.4	49.4	74.0	-24.6
12025.0	Average	Horizontal	-11.4	49.4	38.0	54.0	-16.0

Page 31 of 57

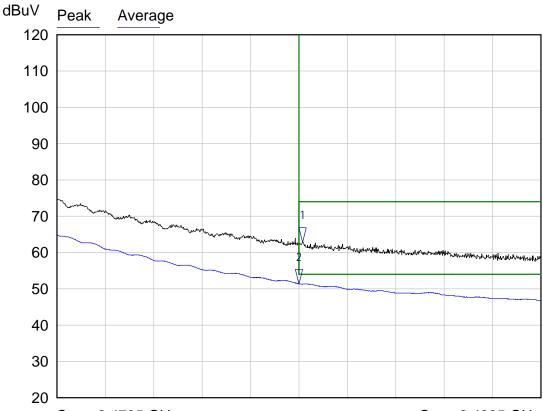
Transmitting at the Middle Frequency

Frequency (MHz)	Detection Mode	Antenna Polarity	Receiver Reading (dBµV)	Correction Factor (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4880.0	Peak	Vertical	5.2	39.1	44.3	74.0	-29.7
4880.0	Average	Vertical	-4.2	39.1	34.9	54.0	-19.1
4880.0	Peak	Horizontal	8.1	39.1	47.2	74.0	-26.8
4880.0	Average	Horizontal	1.8	39.1	40.9	54.0	-13.1
7320.0	Peak	Vertical	14.1	44.1	58.2	74.0	-15.8
7320.0	Average	Vertical	7.0	44.1	51.1	54.0	-2.9
7320.0	Peak	Horizontal	12.5	44.1	56.6	74.0	-17.4
7320.0	Average	Horizontal	5.3	44.1	49.4	54.0	-4.6
12200.0	Peak	Vertical	-0.5	49.3	48.8	74.0	-25.2
12200.0	Average	Vertical	-11.9	49.3	37.4	54.0	-16.6
12200.0	Peak	Horizontal	-1.4	49.3	47.9	74.0	-26.1
12200.0	Average	Horizontal	-12.8	49.3	36.5	54.0	-17.5


Transmitting at the Highest Frequency

Frequency (MHz)	Detection Mode	Antenna Polarity	Receiver Reading (dBµV)	Correction Factor (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4950.0	Peak	Vertical	5.1	39.3	44.4	74.0	-29.6
4950.0	Average	Vertical	-4.4	39.3	34.9	54.0	-19.1
4950.0	Peak	Horizontal	5.6	39.3	44.9	74.0	-29.1
4950.0	Average	Horizontal	-4.0	39.3	35.3	54.0	-18.7
7425.0	Peak	Vertical	15.5	44.4	59.9	74.0	-14.1
7425.0	Average	Vertical	8.7	44.4	53.1	54.0	-0.9
7425.0	Peak	Horizontal	10.7	44.4	55.1	74.0	-18.9
7425.0	Average	Horizontal	3.2	44.4	47.6	54.0	-6.4
12375.0	Peak	Vertical	-0.1	49.3	49.2	74.0	-24.8
12375.0	Average	Vertical	-11.9	49.3	37.4	54.0	-16.6
12375.0	Peak	Horizontal	-0.9	49.3	48.4	74.0	-25.6
12375.0	Average	Horizontal	-12.3	49.3	37.0	54.0	-17.0

No other emissions were seen in the restricted bands.

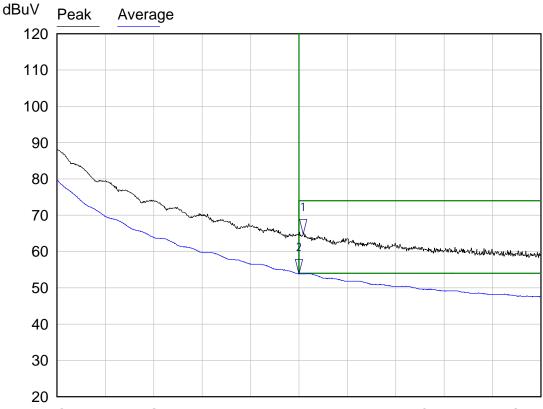

Page 32 of 57

Radiated Lower Band Edge Plot – Channel 11 at -4 Power Setting

Page 33 of 57

Radiated Upper Band Edge Plot – Channel 23 at –4 Power Setting

 Start: 2.4735 GHz
 Stop: 2.4935 GHz


 Res BW: 1 MHz
 Vid BW: 3 MHz
 Sweep: 10.00 s

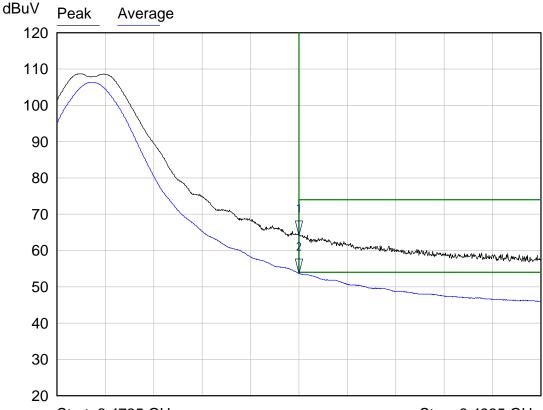
 1/21/2015 11:41:25 AM
 Atten: 15 dB
 ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ∇	Peak	2.4837 GHz	62.85 dBuV	
2 ▽	Average	2.4835 GHz	51.38 dBuV	

Page 34 of 57

Radiated Upper Band Edge Plot – Channel 24 at –9 Power Setting

 Start: 2.4735 GHz
 Stop: 2.4935 GHz


 Res BW: 1 MHz
 Vid BW: 3 MHz
 Sweep: 10.00 s

 1/21/2015 11:38:10 AM
 Atten: 15 dB
 ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ▽	Peak	2.4837 GHz	64.89 dBuV	
2 ▽	Average	2.4835 GHz	53.83 dBuV	

Page 35 of 57

Radiated Upper Band Edge Plot – Channel 25 at –F Power Setting

 Start: 2.4735 GHz
 Stop: 2.4935 GHz

 Res BW: 1 MHz
 Vid BW: 3 MHz
 Sweep: 10.00 s

 1/21/2015 11:22:54 AM
 Atten: 15 dB
 ESU-40

Mk	Trace	X-Axis	Value	Notes
1 ∇	Peak	2.4835 GHz	64.23 dBuV	
2 ∇	Average	2.4835 GHz	53.67 dBuV	

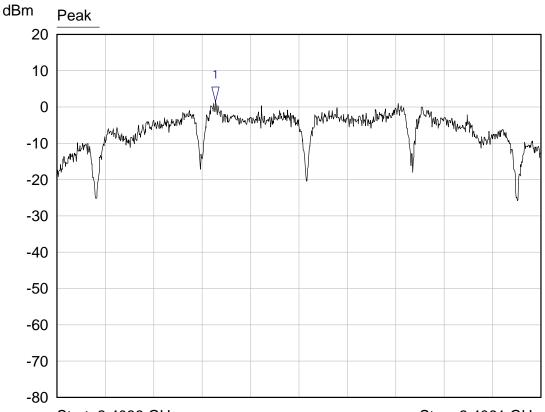
TEST REPORT: 278528-6.3

REPORT ISSUE DATE: 02/10/2015

Page 36 of 57

6.2.6 §15.247(e) Peak Power Spectral Density

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. The result of this testing is summarized in the table below.

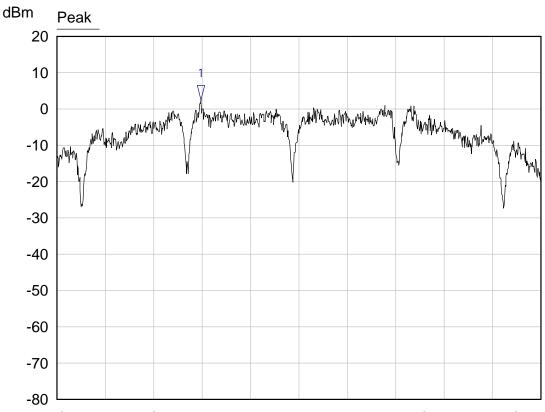

Frequency (MHz)	Measurement (dBm)	Criteria (dBm)
2405	1.58	8.0
2440	2.57	8.0
2465	2.29	8.0
2470	-3.27	8.0
2475	-9.67	8.0

RESULT

The maximum peak power spectral density was 2.57 dBm which is less than the limit of 8 dBm; therefore, the EUT complies with the specification.

Page 37 of 57

Channel 11 3 kHz PSD Plot – Power Setting –4



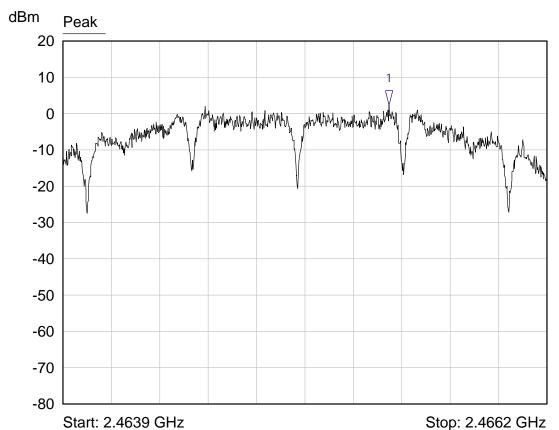
Start: 2.4038 GHz Stop: 2.4061 GHz
Res BW: 3 kHz Vid BW: 10 kHz Sweep: 260.00 ms
1/21/2015 11:58:18 AM Atten: 15 dB ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ▽	Peak	2.4045 GHz	1.58 dBm	

Page 38 of 57

Channel 18 3 kHz PSD Plot – Power Setting –4

 Start: 2.4389 GHz
 Stop: 2.4412 GHz

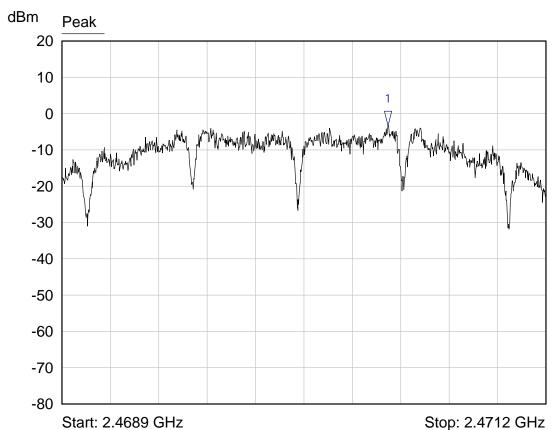

 Res BW: 3 kHz
 Vid BW: 10 kHz
 Sweep: 260.00 ms

 1/21/2015 12:10:17 PM
 Atten: 15 dB
 ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ▽	Peak	2.4395 GHz	2.57 dBm	

Page 39 of 57

Channel 23 3 kHz PSD Plot – Power Setting –4

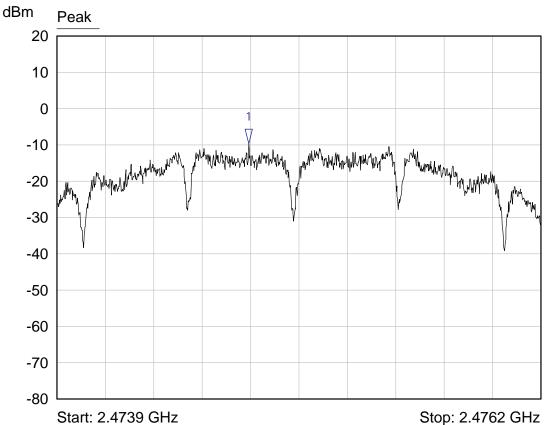

Res BW: 3 kHz 1/21/2015 12:55:52 PM

Vid BW: 10 kHz Atten: 15 dB Sweep: 260.00 ms ESU-40

N	Иkr	Trace	X-Axis	Value	Notes
1	ı	Peak	2.4654 GHz	2.29 dBm	

Page 40 of 57

Channel 24 3 kHz PSD Plot – Power Setting –9



Start: 2.4689 GHz Res BW: 3 kHz 1/21/2015 12:46:12 PM

Vid BW: 10 kHz Atten: 15 dB Sweep: 260.00 ms ESU-40

Page 41 of 57

Channel 25 3 kHz PSD Plot – Power Setting –F

Start: 2.4739 GHz Res BW: 3 kHz 1/21/2015 12:35:52 PM

Vid BW: 10 kHz Atten: 15 dB Sweep: 260.00 ms ESU-40

Mkr	Trace	X-Axis	Value	Notes
1 ▽	Peak	2.4748 GHz	-9.67 dBm	

Page 42 of 57

APPENDIX 1 TEST PROCEDURES AND TEST EQUIPMENT

A1.1 Conducted Disturbance at the AC Mains

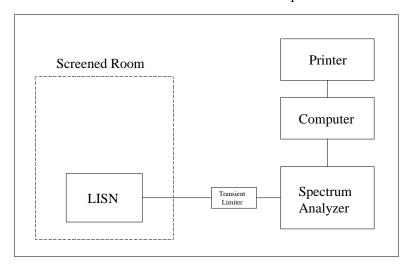
The conducted disturbance at mains ports from the EUT was measured using a spectrum analyzer with a quasi-peak adapter for peak, quasi-peak and average readings. The quasi-peak adapter uses a bandwidth of 9 kHz, with the spectrum analyzer's resolution bandwidth set at 100 kHz, for readings in the 150 kHz to 30 MHz frequency ranges.

The conducted disturbance at mains ports measurements are performed in a screen room using a (50 Ω /50 μ H) Line Impedance Stabilization Network (LISN).

Where mains flexible power cords are longer than 1 m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

Where the EUT is a collection of equipment with each device having its own power cord, the point of connection for the LISN is determined from the following rules:

- (a) Each power cord, which is terminated in a mains supply plug, shall be tested separately.
- (b) Power cords, which are not specified by the manufacturer to be connected via a host unit, shall be tested separately.
- (c) Power cords which are specified by the manufacturer to be connected via a host unit or other power supplying equipment shall be connected to that host unit and the power cords of that host unit connected to the LISN and tested.
- (d) Where a special connection is specified, the necessary hardware to effect the connection is supplied by the manufacturer for the testing purpose.
- (e) When testing equipment with multiple mains cords, those cords not under test are connected to an artificial mains network (AMN) different than the AMN used for the mains cord under test.


For AC mains port testing, desktop EUT are placed on a non-conducting table at least 0.8 meters from the metallic floor and placed 40 cm from the vertical coupling plane (copper plating in the wall behind EUT table). Floor standing equipment is placed directly on the earth grounded floor.

Page 43 of 57

Type of Equipment	Manufacturer	Model Number	Barcode Number	Date of Last Calibration	Due Date of Calibration
Spectrum Analyzer	Hewlett Packard	8566B	644	02/25/2014	02/25/2015
Quasi-Peak Detector	Hewlett Packard	85650A	572	03/10/2014	03/10/2015
LISN	Nemko	LISN-COMM-50	1424	03/04/2014	03/04/2015
Conductance Cable Wanship Site #2	Nemko	Cable J	840	12/23/2014	12/23/2015
Transient Limiter	Hewlett Packard	11947A	768	12/23/2014	12/23/2015

An independent calibration laboratory or Nemko-CCL, Inc. personnel calibrates all the equipment listed above at intervals defined in ANSI C63.4:2003 Section 4.4 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to tractability is on file and is available for examination upon request.

Conducted Emissions Test Setup

Page 44 of 57

A1.2 Direct Connection at the Antenna Port Tests

Type of Equipment	Manufacturer	Model Number	Barcode Number
Spectrum Analyzer	Hewlett Packard	8566B	644
Quasi-Peak Detector	Hewlett Packard	85650A	572
Spectrum Analyzer/Receiver	Rohde & Schwarz	ESU40	1229
Low Loss Cable (1 dB)	N/A	N/A	N/A

An independent calibration laboratory or Nemko-CCL, Inc. personnel calibrates all the equipment listed above at intervals defined in ANSI C63.4:2003 Section 4.4 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to tractability is on file and is available for examination upon request.

Test Configuration Block Diagram

Page 45 of 57

A1.3 Radiated Emissions

The radiated emissions from the intentional radiator were measured using a spectrum analyzer with a quasi-peak adapter for peak and quasi-peak readings.

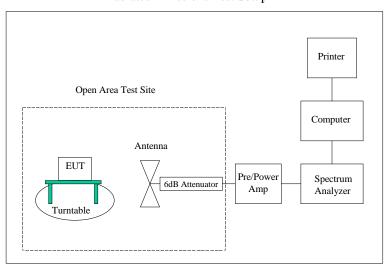
A loop antenna was used to measure emissions below 30 MHz. Emission readings more than 20 dB below the limit at any frequency may not be listed in the reported data. For frequencies between 9 kHz and 30 MHz, or the lowest frequency generated or used in the device greater than 9 kHz, and less than 30 MHz, the spectrum analyzer resolution bandwidth was set to 9 kHz and the video bandwidth was set to 30 kHz. For average measurements, the spectrum analyzer average detector was used.

For frequencies above 30 MHz, an amplifier and preamplifier were used to increase the sensitivity of the measuring instrumentation. The quasi-peak adapter uses a bandwidth of 120 kHz, with the spectrum analyzer's resolution bandwidth set at 1 MHz, for readings in the 30 to 1000 MHz frequency ranges. For peak emissions above 1000 MHz the spectrum analyzer's resolution bandwidth was set to 1 MHz and the video bandwidth was set to 3 MHz. For average measurements above 1000 MHz the spectrum analyzer's resolution bandwidth was set to 1 MHz and the average detector of the analyzer was used.

A biconilog antenna was used to measure the frequency range of 30 to 1000 MHz and a Double Ridge Guide Horn antenna was used to measure the frequency range of 1 GHz to 18 GHz, and a Pyramidal Horn antenna was used to measure the frequency range of 18 GHz to 25 GHz, at a distance of 3 meters and/or 1 meter from the EUT. The readings obtained by the antenna are correlated to the levels obtained with a tuned dipole antenna by adding antenna factors.

The configuration of the EUT was varied to find the maximum radiated emission. The EUT was connected to the peripherals listed in Section 2.3 via the interconnecting cables listed in Section 2.4. A technician manually manipulated these interconnecting cables to obtain worst-case radiated disturbance. The EUT was rotated 360 degrees, and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission. Where there were multiple interface ports all of the same type, cables are either placed on all of the ports or cables added to these ports until the emissions do not increase by more than 2 dB.

Desktop EUT are measured on a non-conducting table 0.8 meters above the ground plane. The table is placed on a turntable, which is level with the ground plane. For equipment normally placed on floors, the equipment shall be placed directly on the turntable.


For radiated emission testing at 30 MHz or above that is performed at distances closer than the specified distance, an inverse proportionality factor of 20 dB per decade is used to normalize the measured data for determining compliance.

Page 46 of 57

Type of Equipment	Manufacturer	Model Number	Barcode Number	Date of Last Calibration	Due Date of Calibration
Spectrum Analyzer/Receiver	Rohde & Schwarz	ESU40	1229	04/08/2014	04/08/2015
Spectrum Analyzer	Hewlett Packard	8566B	644	02/25/2014	02/25/2015
Quasi-Peak Detector	Hewlett Packard	85650A	572	03/10/2014	03/10/2015
Loop Antenna	EMCO	6502	176	03/04/2013	03/04/2015
Biconilog Antenna	EMCO	3142	714	04/25/2013	04/25/2015
Double Ridged Guide Antenna	EMCO	3115	735	03/07/2013	03/07/2015
Pyramidal Standard Gain Horn	EMC Test System	3160-09	1052	04/10/2009	ICO
High Frequency Amplifier	Miteq	AFS4-00102650- 35-10P-4	1299	12/23/2014	12/23/2015
20' High Frequency Cable	Microcoax	UFB197C-1-3120- 000000	1297	12/23/2014	12/23/2015
3 Meter Radiated Emissions Cable Wanship Site #2	Microcoax	UFB205A-0-4700- 000000	1295	12/23/2014	12/23/2015
Pre/Power-Amplifier	Hewlett Packard	8447F	762	09/05/2014	09/05/2015
6 dB Attenuator	Hewlett Packard	8491A	1103	12/23/2014	12/23/2015

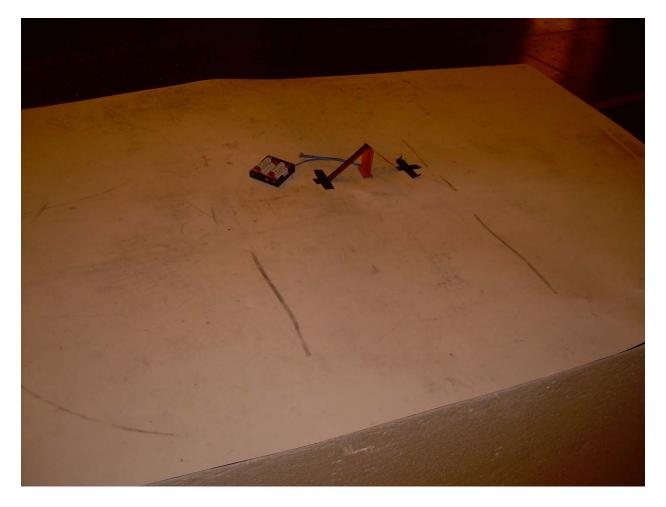
An independent calibration laboratory or Nemko-CCL, Inc. personnel calibrates all the equipment listed above at intervals defined in ANSI C63.4:2003 Section 4.4 following outlined calibration procedures. All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Supporting documentation relative to tractability is on file and is available for examination upon request.

Radiated Emissions Test Setup

Page 47 of 57

APPENDIX 2 PHOTOGRAPHS

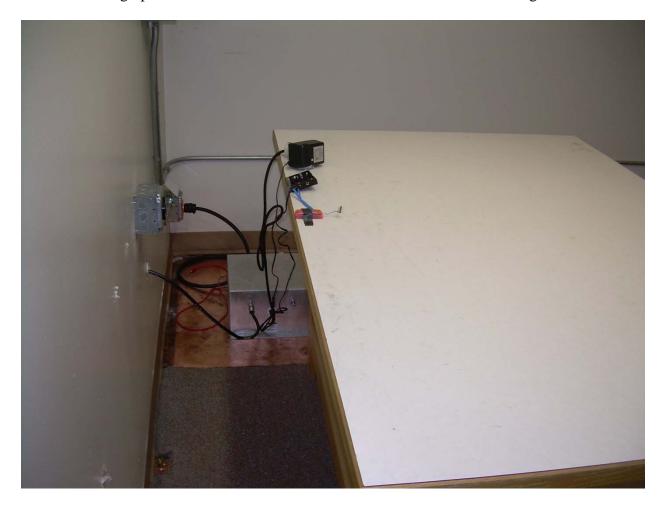
Photograph 1 – Front View Radiated Disturbance Worst Case Configuration – Horizontal


Page 48 of 57

Photograph 2 – Front View Radiated Disturbance Configuration – On Edge

Page 49 of 57

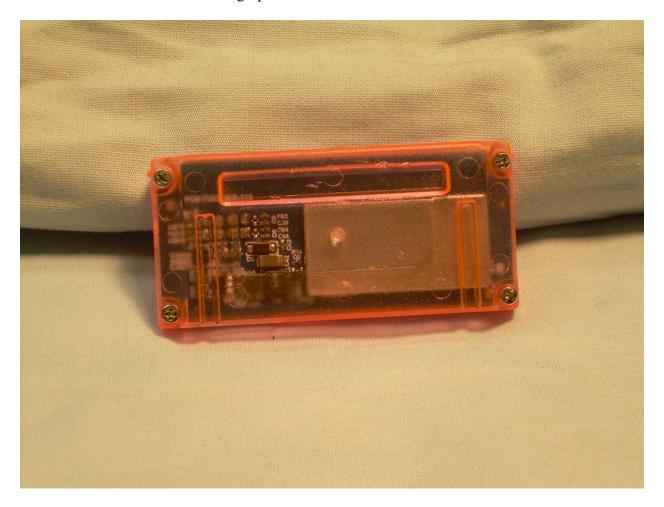
Photograph 3 – Front View Radiated Disturbance Configuration – Vertical


Page 50 of 57

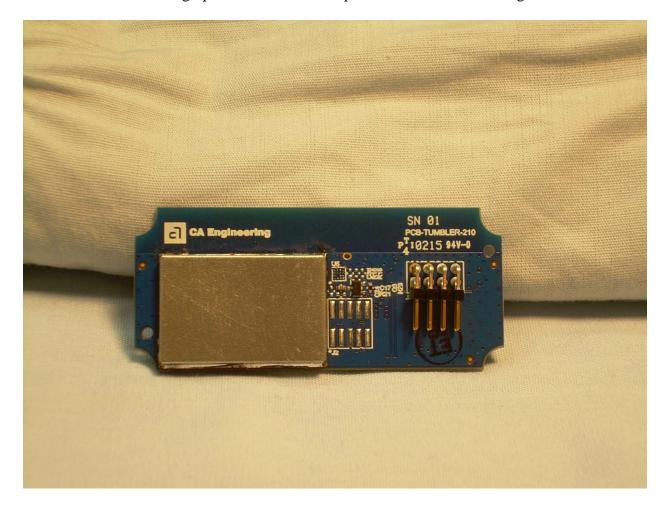
Photograph 4 – Front View Conducted Disturbance Worst Case Configuration

Page 51 of 57

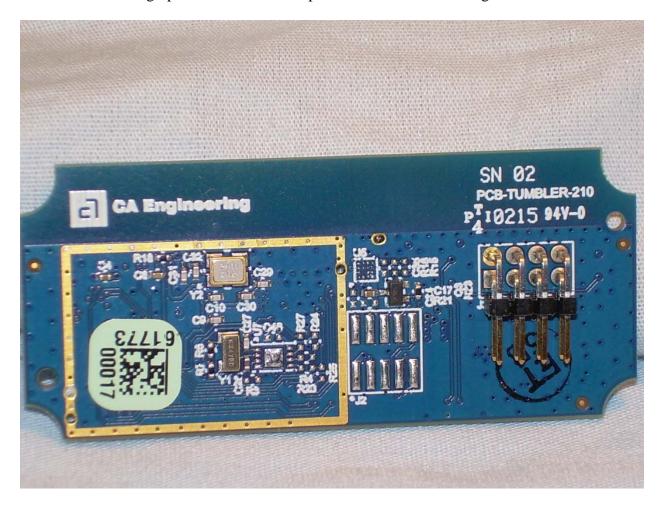
Photograph 5 – Back View Conducted Disturbance Worst Case Configuration


Page 52 of 57

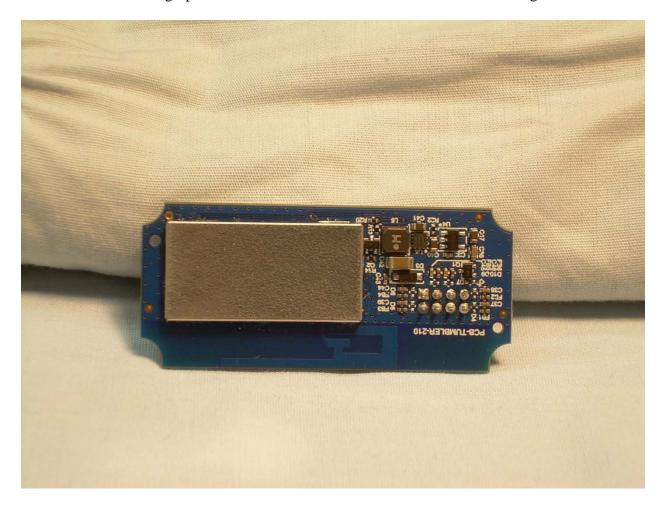
Photograph 6 – Top View of the EUT


Page 53 of 57

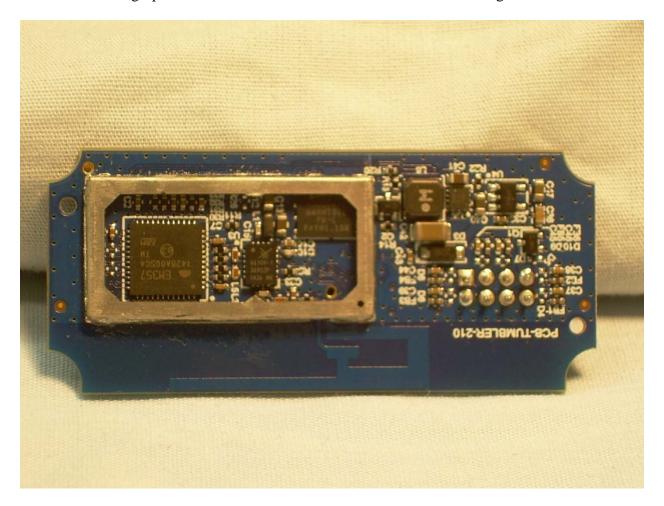
Photograph 7 – Bottom View of the EUT


Page 54 of 57

Photograph 8 – View of the Top of the PCB with Shielding


Page 55 of 57

Photograph 9 – View of the Top of the PCB with Shielding Removed


Page 56 of 57

Photograph 10 – View of the Bottom of the PCB with Shielding

Page 57 of 57

Photograph 11 – View of the Bottom of the PCB with Shielding Removed

