

	SAR Evaluation Report			
	EUT Information			
Manufacturer	adeunis			
Model Name	ARF8320D			
Brand Name	Vokkero Guardian 915			
FCC ID	U3Z-ARF8320			
IC number	7016A-ARF8320			
EUT Type	mobile radio terminal			
Intended Use	body worn with belt clip and headset			
	Prepared by			
	IMST GmbH, Test Center			
	Carl-Friedrich-Gauß-Str. 2 – 4			
Testing Laboratory	47475 Kamp-Lintfort			
	Germany			
	The Test Center facility 'Dosimetric Test Lab' within IMST GmbH is accredited by the German National 'Deutsche Akkreditierungsstelle GmbH (DAkkS)' for testing according to the scope as listed in the accreditation certificate: D-PL-12139-01-00.			
Laboratory Accreditation	The German Bundesnetzagentur (BNetzA) recognizes IMST GmbH as CAB-EMC on the basis of the Council Decision of 22. June 1998 concerning the conclusion of the MRA between the European Community and the United States of America (1999/178/EC) in accordance with § 4 of the Recognition Ordinance of 11. January 2016. The recognition is valid until 20. July 2021 under the registration number: BNetzA-CAB-16/21-14.			
	Prepared for			
	adeunis			
Applicant	283 rue louis Néel, parc technologique Pré Roux			
Applicant	38920 Crolles			
	France			
	Test Specification			
Applied Rules/Standards	IEEE 1528-2013, FCC CFR 47 § 2.1093, RSS-102 Issue 5			
Exposure Category	☐ general public / uncontrolled exposure ☐ occupational / controlled exposure			
Test Result	⊠ PASS □ FAIL			
	Report Information			
Data Stored	60320_6180413_Guardian915			
Issue Date	March 27, 2018			
Revision Date				
Revision Number	-			
Remarks	This report relates only to the item(s) evaluated. This report shall not be reproduced, except in its entirety, without the prior written approval of IMST GmbH. The results and statements contained in this report reflect the evaluation for the certain model			
	described above. The manufacturer is responsible for ensuring that all production devices meet the intent of the requirements described in this report.			

Table of Contents

1	Sub	ject of Investigation and Test Results	3
	1.1	Technical Data of EUT	3
	1.2	Product Family / Model Variants	
	1.3	Antenna Configuration	4
	1.4	Test Specification / Normative References	5
	1.5	Attestation of Test Results	5
2	Ехр	osure Criteria and Limits	6
	2.1	SAR Limits	6
	2.2	Exposure Categories	6
	2.3	Distinction between Maximum Permissible Exposure and SAR Limits	6
3	The	Measurement System	7
	3.1	Phantoms	8
	3.2	E-Field-Probes	9
4	Меа	surement Procedure	10
	4.1	General Requirement	10
	4.2	Measurement Procedure	10
	4.3	Measurement Variability	11
5	Sys	tem Verification and Test Conditions	12
	5.1	Date of Testing	12
	5.2	Environment Conditions	12
	5.3	Tissue Simulating Liquid Recipes	12
	5.4	Tissue Simulating Liquid Parameters	13
	5.5	Simplified Performance Checking	13
6	SAR	R Measurement Conditions and Results	14
	6.1	Test Conditions	
	6.2	Tune-Up Information	
	6.3	Measured Output Power	
	6.4	Standalone SAR Test Exclusion according to KDB 447498	15
	6.5	SAR Test Exclusion Consideration according to RSS-102	15
	6.6	SAR Results	
7	Sim	ultaneous Transmission Consideration	16
8	Adn	ninistrative Measurement Data	17
	8.1	Calibration of Test Equipment	17
	8.2	Uncertainty Assessment	18
9	Rep	ort History	20
	Appena	lix A - Pictures	
	Append	lix B - SAR Distribution Plots	24
	Append	lix C - System Verification Plots	25
	Append	lix D – Certificates of Conformity	26
	Append	lix E – Calibration Certificates for DAEs	
	Append	lix F – Calibration Certificates for E-Field Probes	33
	Append	lix G – Calibration Certificates for Dipoles	51

I M S

1 Subject of Investigation and Test Results

The ARF8320D is a new mobile radio terminal (portable device) from adeunis which is intended to be used as worn on the body with attached belt clip and can only be used with connected headset for voice communication.

The objective of the measurements performed by IMST was the dosimetric assessment of one device in direct contact to the flat part of the SAM phantom in the intended use positions.

1.1 Technical Data of EUT

Product Specifications					
Model Name	ARF8320D				
SN	0123456789ABCDEF				
Firmware Version	02-03.00-03.00				
Integrated Transmitter	Guardian ARF8099	Sierra Wireless BC127			
Frequency Range	902.188 – 927.688 MHz	902.188 – 927.688 MHz 2402.0 – 2480.0 MHz			
Modulation	GFSK 8 DPSK, PI/4 DQPSK, GFSK				
Antenna Type	external	internal			
Operation Mode	vokkero guardian radio (TDMA)	Bluetooth Classic	Bluetooth LE		
Maximum Avg. Output Power *	24.0 dBm	4.0 dBm	6.0 dBm		
Power Supply	internal battery 3.7V 2050mAh (VOKKER-GUARD-BAT001)				
Used Accessory	headset, belt clip				
EUT Stage	☑ production unit				
Notes: *for additional details please	Notes: *for additional details please refer chapter 6.3				

Table 1: Technical data of EUT declared by the manufacturer.

1.2 Product Family / Model Variants

As declared by the applicant, the assessed ARF8320D is technically identical with the product variants shown in Table 2. The tested sample is within the ARF8320x product family where "x" relates to different supported software features and frequency tables shown in Table 3.

Product Family					
Reference	Frequency Table Used	Reference	Frequency Table Used		
ARF8320A	H1,A1	ARF8320F	H1,A1		
ARF8320B	H1,A1,H2,A2	ARF8320G	H1,A1,H2,A2		
ARF8320C	H1, A1,H2,A2,H3,A3,C1	ARF8320H	H1, A1,H2,A2,H3,A3,C1		
ARF8320D	H1, A1,H2,A2,H3,A3,C1	ARF8320I	H1, A1,H2,A2,H3,A3,C1		
ARF8320E	H1, A1,H2,A2,H3,A3,C1	ARF8320J	H1, A1,H2,A2,H3,A3,C1		

Table 2: Product family of Vokkero Guardian 915.

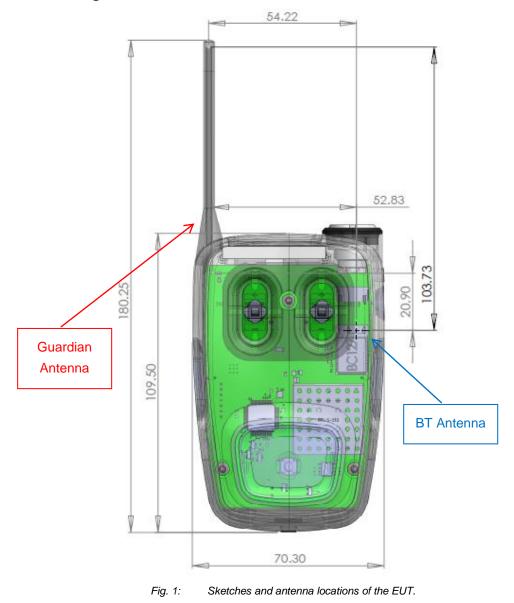

Supported Frequency Tables							
	H1	A1	H2	A2	H3	A3	C1
Min. Frequency [Mhz]	916.698	902.188	903.688	902.75	902.188	903.313	902.188
Max. Frequency [Mhz]	927.573	916.063	927.313	926.375	917.938	917.563	927.688

Table 3:Supported frequency tables.

Revision Date:

1.3 Antenna Configuration

I M S

1.4 Test Specification / Normative References

The tests documented in this report were performed according to the standards and rules described below.

	Test Specifications					
	Test Standard / Rule	Description	Issue Date			
	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.	June 14, 2013			
	FCC CFR 47 § 2.1091	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Mobile Devices.	October 01, 2010			
	FCC CFR 47 § 2.1093	Code of Federal Regulations; Title 47. Radiofrequency radiation exposure evaluation: Portable Devices.	October 01, 2010			
	RSS-102, Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)	March, 2015			
		Measurement Methodology KDB				
\boxtimes	KDB 865664 D01 v01r04	SAR measurement 100 MHz to 6 GHz	August 07, 2015			
\boxtimes	KDB 865664 D02 v01r01	Exposure Reporting	October 23, 2015			
	Product KDB					
\boxtimes	KDB 447498 D01 v06	General RF Exposure Guidance	October 23, 2015			
\boxtimes	KDB 648474 D04 v01r03	Handset SAR	October 23, 2015			

Table 4: Normative references.

1.5 Attestation of Test Results

Highest Reported Standalone SAR _{1g} [W/kg]								
Band Frequency [MHz] CH Exposure Side of EUT Gap [mm] Pic. Highest Reported SAR1g [W/kg] SAR1g Limit [W/kg]							-	
Guardian	902.188	Low	Back with attached belt clip	0	3	0.973	1.6	PASS
Notes: To establish a continuous transmitting signal with 100% duty cycle at specific frequency and with maximum output power, engineering test software has been used. All measured SAR results and configurations are shown in chapter 6.6 on page 16.								

Table 5: Test results.

Prepared by:

Simultaneous Transmission Scenario SAR _{1g} [W/kg]							
Highest Sta	Exposure Side of	Gap	Pic.	ΣSAR1q	SAR1	g Limit	
Guardian	Bluetooth	EUT	[mm]	No.	ZSARIG	[W/kg]	
0.973	0.168	back with attached belt clip	0	3	1.141	1.6	PASS
Notes: Estimated SAR values marked in blue (not measured).							

Table 6: SAR results for simultaneous transmission scenario.

2...

Alexander Rahn Test Engineer

Reviewed by:

Dessislava Patrishkova Quality Assurance

2 Exposure Criteria and Limits

2.1 SAR Limits

Human Exposure Limits				
Condition	Uncontrolled E (General Po		Controlled Environment (Occupational)	
Condition	SAR Limit [W/kg]	Mass Avg.	SAR Limit [W/kg]	Mass Avg.
SAR averaged over the whole body mass	0.08	whole body	0.4	whole body
Peak spatially-averaged SAR for the head, neck & trunk	1.6	1g of tissue*	8.0	1g of tissue*
Peak spatially-averaged SAR in the limbs	4.0	10g of tissue*	20.0	10g of tissue*
Note: *Defined as a tissue volume in the shape of a cube				

Table 7: SAR limits specified in IEEE Standard C95.1-2005 and Health Canada's Safety Code 6.

In this report the comparison between the exposure limits and the measured data is made using the spatial peak SAR; the power level of the device under test guarantees that the whole body averaged SAR is not exceeded.

2.2 Exposure Categories

General Public / Uncontrolled Exposure

General population comprises individuals of all ages and of varying health status, and may include particularly susceptible groups or individuals. In many cases, members of the public are unaware of their exposure to electromagnetic fields. Moreover, individual members of the public cannot reasonably be expected to take precautions to minimize or avoid exposure.

Occupational / Controlled Exposure

The occupationally exposed population consists of adults who are generally exposed under known conditions and are trained to be aware of potential risk and to take appropriate precautions.

Table 8: RF exposure categories.

2.3 Distinction between Maximum Permissible Exposure and SAR Limits

The biological relevant parameter describing the effects of electromagnetic fields in the frequency range of interest is the specific absorption rate SAR (dimension: power/mass). It is a measure of the power absorbed per unit mass. The SAR may be spatially averaged over the total mass of an exposed body or its parts. The SAR is calculated from the r.m.s. electric field strength *E* inside the human body, the conductivity σ and the mass density ρ of the biological tissue:

$$SAR = \sigma \frac{E^2}{\rho} = c \frac{\partial T}{\partial t} \Big|_{t \to 0+}$$
(1)

The specific absorption rate describes the initial rate of temperature rise $\partial T / \partial t$ as a function of the specific heat capacity *c* of the tissue. A limitation of the specific absorption rate prevents an excessive heating of the human body by electromagnetic energy.

As it is sometimes difficult to determine the SAR directly by measurement (e.g. whole body averaged SAR), the standard specifies more readily measurable maximum permissible exposures in terms of external electric E and magnetic field strength H and power density S, derived from the SAR limits. The limits for E, H and S have been fixed so that even under worst case conditions, the limits for the specific absorption rate SAR are not exceeded.

3 The Measurement System

DASY is an abbreviation of <u>"D</u>osimetric <u>A</u>ssessment <u>Sy</u>stem" and describes a system that is able to determine the SAR distribution inside a phantom of a human being according to different standards. The DASY4 system consists of the following items as shown in Fig: 2. Additionally, Fig: 3 shows the equipment, similar to the installations in other laboratories.

- Fully compliant with all current measurement standards as stated in Fig. 4
- High precision robot with controller
- Measurement server (for surveillance of the robot operation and signal filtering)
- Data acquisition electronics DAE (for signal amplification and filtering)
- · Field probes calibrated for use in liquids
- Electro-optical converter EOC (conversion from the optical into a digital signal)
- Light beam (improving of the absolute probe positioning accuracy)
- · Two SAM phantoms filled with tissue simulating liquid
- DASY4 software
- SEMCAD

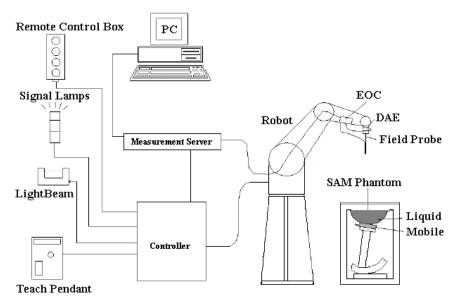


Fig. 2: The DASY4 measurement system.

Revision Date:

Fig. 3: The measurement set-up with a DASY system and phantoms containing tissue simulating liquid.

The EUT operating at the maximum power level is placed by a non-metallic device holder (delivered from Schmid & Partner) in the above described positions at a shell phantom of a human being. The distribution of the electric field strength *E* is measured in the tissue simulating liquid within the shell phantom. For this miniaturised field probes with high sensitivity and low field disturbance are used. Afterwards the corresponding SAR values are calculated with the known electrical conductivity σ and the mass density ρ of the tissue in the SEMCAD FDTD software. The software is able to determine the averaged SAR values (averaging region 1 g or 10 g) for compliance testing.

The measurements are done by two scans: first a coarse scan determines the region of the maximum SAR, afterwards the averaged SAR is measured in a second scan within the shape of a cube.

3.1 Phantoms

TWIN SAM PHANTOM V4.0				
* 5 · · · · · · · · · · · · · · · · · ·	Specific Anthropomorphic Mannequin defined in IEEE 1528 and IEC 62209-1 and delivered by Schmid & Partner Engineering AG. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. The details and the Certificate of conformity can be found in Fig. 5.			
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)			
Dimensions	Length: 1000 mm; Width: 500 mm Height: adjustable feet			
Filling Volume	approx. 25 liters			

3.2 E-Field-Probes

For the measurements the Dosimetric E-Field Probes ET3DV6R or EX3DV4 with following specifications are used. They are manufactured and calibrated in accordance with FCC and IEEE 1528-2013 recommendations annually by Schmid & Partner Engineering AG.

	ET3DV6R
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Dimensions	Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm
Frequency	10 MHz to 2.3 GHz Linearity: ± 0.2 dB (30 MHz to 2.3 GHz)
Directivity	Axial isotropy: \pm 0.2 dB in TSL (rotation around probe axis) Spherical isotropy: \pm 0.4 dB in TSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Calibration Range	450 MHz / 750 MHz / 900 MHz / 1750 MHz / 1900 MHz for head and body simulating liquid

	EX3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	Axial isotropy: ± 0.3 dB in TSL (rotation around probe axis) Spherical isotropy: ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Calibration Range	2450 MHz / 2600 MHz / 5250 MHz / 5600 MHz / 5750 MHz for head and body simulating liquid

4 Measurement Procedure

4.1 General Requirement

The test shall be performed in a laboratory with an environment which avoids influence on SAR measurements by ambient EM sources and any reflection from the environment itself. The ambient temperature shall be in the range of 20°C to 26°C and 30-70% humidity. All tests have been conducted according the latest version of all relevant KDBs.

4.2 Measurement Procedure

The following steps are used for each test position:

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile phone and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location (P1). This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with resolution settings for area scan and zoom scan according KDB 865664 D01 as shown in Table 9.
- The used extrapolation and interpolation routines are all based on the modified Quadratic Shepard's method [DASY4].
- Repetition of the E-field measurement at the fixed location (P1) and repetition of the whole procedure if the two results differ by more than \pm 0.21dB.

			≤ 3 GHz	≥ 3 GHz			
	ance fro r of probe s	m closest measurement point ensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm			
Maximum probe at the measureme		probe axis to phantom surface normal	30° ± 1°	20° ± 1°			
			≤ 2 GHz: ≤ 15 mm 3 - 4 GHz: ≤ 12 mm 2 - 3 GHz: ≤ 12 mm 4 - 6 GHz: ≤ 10 mm				
Maximum area so	can spatial i	resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientation the measurement resolution mu y dimension of the test device point on the test device.	n, is smaller than the above, ust be \leq the corresponding x or			
Maximum zoom s	scan spatial	resolution: ΔX_{Zoom} , ΔY_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm*	3 - 4 GHz: ≤ 5 mm* 4 - 6 GHz: ≤ 4 mm*			
Maximum zoom scan spatial	Uniform o	prid: ΔZ _{Zoom} (n)	≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm			
resolution, normal to phantom surface	graded grid	$\Delta Z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 - 4 GHz: ≤ 3 mm 4 - 5 GHz: ≤ 2.5 mm 5 - 6 GHz: ≤ 2 mm			
Sundoo	gnu	$\Delta Z_{Zoom}(n>1)$: between subsequent points	≤ 1.5· ΔZ _{Zoom} (n-1)				
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 - 4 GHz: ≥ 28 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: ≥ 22 mm			
details. * When zoom sca	an is require	pth of a plane-wave at normal incidence t ed and the reported SAR from the area sc nd \leq 5 mm zoom scan resolution may be	an based 1-g SAR estimation pro	ocedures of KDB 447498 is ≤			

4 GHz to 6 GHz

Table 9: Parameters for SAR scan procedures.

I M S

4.3 Measurement Variability

According KDB 865664 repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5 System Verification and Test Conditions

5.1 Date of Testing

Date of Testing									
Band	Frequency [MHz]	Date of System Check	Date of SAR Measurement						
GUARDIAN 915	835	March 26, 2018	March 26, 2018						

Table 10: Date of testing.

5.2 Environment Conditions

Environment Conditions									
Ambient Temperature[°C]	Liquid Temperature [°C]	Humidity [%]							
22.0 ± 2	22.0 ± 2	40.0 ± 5							
		10.0 ± 0							

Notes: To comply with the required noise level (less than 12 mW/kg) periodically measurements without a DUT were conducted.

Table 11: Environment Conditions.

5.3 Tissue Simulating Liquid Recipes

			Ti	ssue Simulat	ting Liquid			
Fre	equency Range	Water	Tween 20	Tween 80	Salt	Preventol	Preventol DGME	
	[MHz]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
				Head Tis	sue			
	300	50.4	47.3	-	2.2	0.1	-	-
	450	50.8	47.5	-	1.6	0.1	-	-
	700 - 1000	52.8	46.0	-	1.1	0.1	-	-
	1600 - 1800	55.4	44.1	-	0.4	0.1	-	-
	1850 - 1980	55.2	44.5	-	0.2	0.1	-	-
	2000 - 2700	55.7	45.2	-	-	0.1	-	-
	5000 - 6000	65.5	-	-	-	-	17.25	17.25
				Body Tis	sue			
	300	70.3	28.6	-	1.0	0.1	-	-
	450	71.0	28.0	-	0.9	0.1	-	-
\boxtimes	700 - 1000	71.2	28.0	-	0.7	0.1	-	-
	1600 - 1800	71.4	28.0	-	0.5	0.1	-	-
	1850 - 1980	71.5	28.0	-	0.4	0.1	-	-
	2000 - 2700	71.6	28.0	-	0.3	0.1	-	-
	5000 - 6000	79.9	-	20.0	-	0.1	-	-
Not	es: Used liquid fo	or measurement	is checked abov	e.	•			

Table 12:Recipes of the tissue simulating liquid.

5.4 Tissue Simulating Liquid Parameters

For the measurement of the following parameters the Speag DAK-3.5 dielectric probe kit is used, representing the open-ended coaxial probe measurement procedure.

Tissue Simulating Liquids											
Ambient	Temperatur	re(C) : 22.0 ± 2	Liquid Temperature(C): 22.6			Humidity (%) : 40.0 ± 10					
	Frequency		P	ermittivity	,	0	Date				
Band	Frequency	Channel	Measured	Target	Delta	Measured	Target	Delta	Date		
	[MHz]		٤'	٤'	+/- 5 [%]	σ [S/m]	σ [S/m]	+/- 5 [%]			
	835.0	System Check	55.1	55.2	-0.2	1.015	0.982	3.4			
Guardian	902.2	Low	54.8	55.0	-0.4	1.05	1.05	0.4	March 26, 2018		
Guarulan	914.9	Mid	54.7	55.0	-0.4	1.06	1.06	0.7			
	927.7	High	54.7	55.0	-0.5	1.07	1.07	0.9			
Notes: Liquid d	epth is at least 1	15 cm for all freque	ency ranged n	neasureme	ents.						

Table 13:Parameters of the head tissue simulating liquid.

5.5 Simplified Performance Checking

The simplified performance check was realized using the dipole validation kit. The input power of the dipole antenna was 250 mW (CW) and it was placed under the flat part of the SAM phantom. The target and measured results are listed in the table 14 and shown in Appendix C - System Verification Plots. The target values were adopted from the calibration certificates found also in the appendix.

System Check Results										
Frequency		SAR Values with Body TSL [W/kg]								
	Dipole #SN		Meas	sured		Target		Delta		
[MHz]		with 250 mW		scaled to 1 W		normalized to 1 W		+/- 10 [%]		Date
		1g	10g	1g	10g	1g	10g	1g	10g	
835	D835V2 #470	2.36	1.56	9.44	6.24	9.56	6.24	-1.26	0.00	March 26, 2018

Table 14:Dipole target and measured results.

Revision No.: -

6 SAR Measurement Conditions and Results

6.1 Test Conditions

Test Conditions										
Band	TX Range [MHz]	RX Range [MHz]	Used Channels	Crest Factor	Phantom					
Guardian	902.188 - 927.688	902.188 - 927.688	low / mid / high	1	SAM Twin Phantom V4.0					
Notes: To establish a continuous transmitting signal with 100% duty cycle at specific frequency and with maximum output power, engineering test software has been used										

 Table 15:
 Used channels and crest factors during the test.

6.2 Tune-Up Information

	Tune-Up Average Output Power											
Band	Antenna	Frequency [MHz]	СН	Target [dBm]	Tolerance [dBm]	Tune-Up Limit [dBm]						
TDMA	1	902.188 - 927.688	low / mid / high	22.0	+/- 2.0	24.0						
Bluetooth Classic	2	2402.0 - 2480.0	low / mid / high	2.0	+/- 2.0	4.0						
Bluetooth Low Energy	2	2402.0 - 2480.0	low / mid / high	4.0	+/- 2.0	6.0						
Notes:												

 Table 16:
 Maximum transmitting output power values declared by the manufacturer.

6.3 Measured Output Power

Measured Average Output Power										
Band	Antenna	Frequency [MHz]	СН	Measured Output Power [dBm]						
		902.188	Low	24.0						
Guardian	1	914.938	Mid	23.7						
		927.688	High	23.1						
Notes:										

Table 17:Conducted output power values.

6.4 Standalone SAR Test Exclusion according to KDB 447498

SAR test exclusion is determined for the EUT according to KDB 447498 D01 with 1g SAR exclusion thresholds for 100 MHz to 6GHz at test separation distances \leq 50 mm determined by:

[(max power of channel. incl. tune-up tolerance. mW) / (min test separation distance. mm)] * [$\sqrt{f(GHz)}$]

 \leq 3.0 for 1g SAR and \leq 7.5 for 10g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

	Standalone SAR Test Exclusion Consideration (FCC)											
Mode	Frequency	Distance	Output Power		Threshold Comparison Value	SAR Testing Exclusion Threshold Value	SAR Testing Exclusion	SAR Testing Required				
	[MHz]	[mm]	[dBm]	[mW]	Value	HEAD/BODY	HEAD/BODY	HEAD/BODY				
Guardian	927.688	5	24.00	251.19	48.4	≤ 3.0	NO	YES				
BT Classic	2480.0	5	4.00	2.51	0.8	≤ 3.0	YES	NO				
BT LE	2480.0	5	6.00	3.98	1.3	≤ 3.0	YES	NO				

Table 18: SAR test exclusion for the applicable transmitter according to KDB 447498.

When the standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas the standalone SAR must be estimated according to KDB 447498 in order to determine simultaneous transmission SAR test exclusion:

(max. power of channel including tune-up tolerance. mW)/(min. test separation distance. mm)]·[√f(GHz)/x]
 W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

• 0.4 W/kg for 1g SAR and 1.0 W/kg for 10g SAR. when the test separation distance is > 50 mm

6.5 SAR Test Exclusion Consideration according to RSS-102

	Standalone SAR Test Exclusion Consideration (ISED)										
Mode	Frequency	Distance	1		SAR Testing Exclusion Threshold Value	SAR Testing Exclusion	SAR Testing Required				
	[MHz]	[mm]			HEAD/BODY	HEAD/BODY	HEAD/BODY				
Guardian	927.688	5	24.0	251.19	4.0	NO	YES				
BT Classic	2480.0	5	4.0	2.51	4.0	YES	NO				
BT LE	2480.0	5	6.0	3.98	4.0	YES	NO				

Table 19: SAR test exclusion for the applicable transmitter according to RSS-102, section 2.5.1.

6.6 SAR Results

The tables below contain the measured SAR values averaged over a mass of 1g. SAR assessment was conducted in the worst case configuration with output power values according to Table 16. According to KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Furthermore, SAR measurements are performed with an engineering test mode with a continuous wave transmission signal.

Reported SAR is calculated by the following formulas:

- Scaling factor tune up limit = tune-up limit power (mW) / RF power (mW)
- Scaling factor max. duty cycle = max. possible duty cycle / used duty cycle for SAR measurement
- Reported SAR = measured SAR * scaling factor tune up limit * scaling factor max. duty cycle

The plots with the highest measured SAR values are shown in Appendix B - SAR Distribution Plots.

	SAR Measurement Results												
Band	Freq. [MHz]	СН	Exposure Side of EUT	Gap Pic. [mm] No.	Measured SAR1q	Power	Output Power [dBm]		Scaling Factor	Reported SAR1g	Plot		
		-			[W/kg]	Drift [dB]	Meas.	Limit	Tune-Up Limit	[W/kg]	No.		
	902.188	Low	back side with attached belt clip	0	4	0.944	-0.171	24.0	24.0	1.000	0.944	-	
Guardian	914.938	Mid		0	4	0.842	0.050	23.7	24.0	1.072	0.902	-	
Guardian	927.688	High		0	4	0.673	0.129	23.1	24.0	1.230	0.828	-	
	902.188	Low		0	4	0.973*	0.069	24.0	24.0	1.000	0.973	1	
e	902.188 Low 0 4 0.973* 0.069 24.0 24.0 1.000 0.973 1 Notes: To establish a continuous transmitting signal with 100% duty cycle at specific frequency and with maximum output power, engineering test software has been used. * Measurement variability according to KDB 865664. Please refer chapter 4.3.												

Table 20: SAR measurement results.

To control the output power stability during the SAR test the used DASY4 system calculates the power drift by measuring the e-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in the above tables labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

7 Simultaneous Transmission Consideration

According to KDB 447498, the following table gives an overview about the Σ SAR for simultaneous transmitting modes. When Σ SAR > 1.6 W/kg. a SAR test exclusion is determined by the SAR to peak location separation ratio.

Simultaneous Transmission Scenario SAR _{1g} [W/kg]								
Highe	st SAR	Expective Side of EUT	564P 1 <i>a</i>	SPLSR				
Guardian	Bluetooth	Exposure Side of EUT	ΣSAR1g	Analysis				
0.973	0.168	Back	1.141	NO				
Notes: Estimated SAR values marked in blue (not measured).								

 Table 21:
 Simultaneous transmission consideration for Guardian and BT.

M ST

8 Administrative Measurement Data

8.1 Calibration of Test Equipment

Test Equipment Overview								
	Test Equipment	Manufacturer	Model	Serial Number	Last Calibration	Next Calibration		
DAS	SY System Components		•					
\boxtimes	Software Versions DASY4	SPEAG	V4.7	N/A	N/A	N/A		
\boxtimes	Software Versions SEMCAD	SPEAG	V1.8	N/A	N/A	N/A		
\boxtimes	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1579	02/2018	02/2019		
	Dosimetric E-Field Probe	SPEAG	ET3DV6R	1669	02/2017	02/2019		
	Dosimetric E-Field Probe	SPEAG	EX3DV4	3536	09/2016	09/2018		
	Dosimetric E-Field Probe	SPEAG	EX3DV4	3860	09/2017	09/2018		
X	Data Acquisition Electronics	SPEAG	DAE 3	335	02/2018	02/2019		
	Data Acquisition Electronics	SPEAG	DAE 4	631	09/2017	09/2018		
	Phantom	SPEAG	SAM	1059	N/A	N/A		
\boxtimes	Phantom	SPEAG	SAM	1176	N/A	N/A		
	Phantom	SPEAG	SAM	1340	N/A	N/A		
	Phantom	SPEAG	SAM	1341	N/A	N/A		
	Phantom	SPEAG	ELI4	1004	N/A	N/A		
Dip	oles		•					
	System Validation Dipole	SPEAG	D450V2	1014	03/2018	03/2021		
X	System Validation Dipole	SPEAG	D835V2	470	03/2018	03/2021		
	System Validation Dipole	SPEAG	D900V2	006	11/2015	11/2018		
	System Validation Dipole	SPEAG	D1640V2	311	09/2015	09/2018		
	System Validation Dipole	SPEAG	D1750V2	1005	03/2018	03/2021		
	System Validation Dipole	SPEAG	D1900V2	535	03/2018	03/2021		
	System Validation Dipole	SPEAG	D2450V2	709	11/2015	11/2018		
	System Validation Dipole	SPEAG	D2600V2	1019	11/2015	11/2018		
٦	System Validation Dipole	SPEAG	D5GHzV2	1028	05/2017	05/2020		
/lat	erial Measurement							
\triangleleft	Network Analyzer	Agilent	E5071C	MY46103220	08/2017	08/2019		
X I	Dielectric Probe Kit	SPEAG	DAK-3.5	1234	02/2018	02/2020		
X	Thermometer	LKMelectronic	DTM3000	3511	02/2018	02/2020		
_	ver Meters and Sensors		2		01,1010	01,1010		
\boxtimes	Power Meter	Anritsu	ML2487A	6K00002319	06/2016	06/2018		
\boxtimes	Power Sensor	Anritsu	MA2472A	990365	06/2016	06/2018		
\boxtimes	Power Meter	Anritsu	ML2488A	6K00002078	06/2016	06/2018		
X [Power Sensor	Anritsu	MA2472A	002122	06/2016	06/2018		
\boxtimes	Spectrum Analyzer	Rohde & Schwarz	FSP7	100433	04/2016	04/2018		
	Sources			100100	0 1/2010	0 1/2010		
X	Network Analyzer	Agilent	E5071C	MY46103220	08/2017	08/2019		
X	RF Generator	Rohde & Schwarz	SM300	100142	N/A	N/A		
	olifiers		0.11000					
\boxtimes	Amplifier 10 MHz – 4200 MHz	Mini Circuits	ZHL-42-42W	D080504-1	N/A	N/A		
	Amplifier 2 GHz – 6 GHz	Ciao Wireless	CA26-451	37452	N/A	N/A N/A		
Rac	io Tester		0,120 401	01402	11/73			
	Radio Communication Tester	Anritsu	MT8815B	6200576536	04/2016	04/2018		
ר ו	RADIO COMMUNICATION LESIEL							

Table 22: Calibration of test equipment.

8.2 Uncertainty Assessment

Uncertainty Budget for SAR Measurements according to IEEE 1528-2013 (300 MHz - 6 GHz)								
Error Sources	Uncertainty Value [± %]	Probability Distribution	Divisor	ci	ci	Unce	idard rtainty %]	vi² or veff
Measurement System	·			1g	10g	1g	10g	
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	×
Axial isotropy	0.3	Rectangular	√3	√0.5	√0.5	0.1	0.1	8
Hemispherical isotropy	1.3	Rectangular	√3	√0.5	√0.5	0.5	0.5	~
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	×
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	×
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	×
Modulation response	4.0	Rectangular	√3	1	1	2.3	2.3	×
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	×
Response time	0.8	Rectangular	√3	1	1	0.5	0.5	×
Integration time	1.4	Rectangular	√3	1	1	0.8	0.8	×
RF ambient conditions - noise	3.0	Rectangular	√3	1	1	1.7	1.7	×
RF ambient conditions - refl.	3.0	Rectangular	√3	1	1	1.7	1.7	×
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	×
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	×
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	×
Test Sample Related	·	•			•			
Test sample positioning	2.9	Normal	1	1	1	2.9	2.9	145
Device holder uncertainty	3.6	Normal	1	1	1	3.6	3.6	5
SAR drift measurement (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	×
SAR scaling	2.0	Rectangular	√3	1	1	1.2	1.2	×
Phantom and Set-up								
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	×
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	×
Liquid conductivity (meas.)	5.0	Normal	1	0.78	0.71	3.9	3.6	×
Liquid permittivity (meas.)	5.0	Normal	1	0.23	0.26	1.2	1.3	×
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	×
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	×
Combined Standard Uncertainty							11.0	
Coverage Factor for 95%						kp	=2	
Expanded Standard Uncertainty						22.2	21.9	
Notes: Worst case probe calibration unc	ertainty has been appl	ied for all available	e probes and	d frequer	ncies.			

Table 23: Uncertainty budget for SAR measurements.

Revision No.: -

	(000)	MHz - 6 GHz)		-				
Error Sources	Uncertainty Value [± %]	Probability Distribution	Divisor	ci	ci	Standard Uncertainty [± %]		vi² or veff
Measurement System		L		1g	10g	1g	10g	
Probe calibration	6.7	Normal	1	1	1	6.7	6.7	×
Axial isotropy	0.3	Rectangular	√3	1	1	0.1	0.1	×
Hemispherical isotropy	1.3	Rectangular	√3	0	0	0.0	0.0	×
Boundary effects	1.0	Rectangular	√3	1	1	0.6	0.6	∞
Linearity	0.3	Rectangular	√3	1	1	0.2	0.2	∞
System detection limit	1.0	Rectangular	√3	1	1	0.6	0.6	×
Modulation response	0.0	Rectangular	√3	0	0	0.0	0.0	∞
Readout electronics	0.3	Normal	1	1	1	0.3	0.3	∞
Response time	0.0	Rectangular	√3	0	0	0.0	0.0	×
Integration time	0.0	Rectangular	√3	0	0	0.0	0.0	∞
RF ambient conditions - noise	1.0	Rectangular	√3	1	1	0.6	0.6	×
RF ambient conditions - refl.	1.0	Rectangular	√3	1	1	0.6	0.6	×
Probe positioner mech. tol.	0.4	Rectangular	√3	1	1	0.2	0.2	∞
Probe positioning	2.9	Rectangular	√3	1	1	1.7	1.7	∞
Algorithms for max SAR eval.	4.0	Rectangular	√3	1	1	2.3	2.3	∞
Validation Dipole			•					
Dev. of exp. dipole from num.	5.0	Normal	1	1	1	5.0	5.0	∞
Input power and SAR drift (< 0.2 dB)	4.7	Rectangular	√3	1	1	2.7	2.7	∞
Dipole axis to liquid distance (< 2deg)	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Phantom and Set-up			•					
Phantom uncertainty	4.0	Rectangular	√3	1	1	2.3	2.3	∞
SAR correction for perm./cond.	1.9	Normal	1	1	0.84	1.9	1.6	∞
Liquid conductivity (meas.)	5.0	Normal	1	0.78	0.71	3.9	3.6	×
Liquid permittivity (meas.)	5.0	Normal	1	0.23	0.26	1.2	1.3	∞
Liquid conductivity temp. unc.	2.9	Rectangular	√3	0.78	0.71	1.3	1.2	∞
Liquid permittivity temp. unc.	1.8	Rectangular	√3	0.23	0.26	0.2	0.3	×
Combined Standard Uncertainty							10.6	
Coverage Factor for 95%						kp)=2	
Expanded Standard Uncertainty						21.5	21.2	
Notes: Worst case probe calibration uncer	tainty has been appl	ind for all available	n nrohoo on	d froquor				

Table 24: Uncertainty budget for SAR system validation.

9 Report History

Revision History								
Revision	Description of Revision	Date	Revised Page	Revised By				
/	Initial Release	March 27, 2018	-	-				

END OF THE SAR REPORT

Please refer to separated appendix file for the following data:

- Appendix A Pictures
- Appendix B SAR Distribution Plots
- Appendix C System Verification Plots
- Appendix D Certificates of Conformity
- Appendix E Calibration Certificates for DAEs
- Appendix F Calibration Certificates for E-Field Probes
- Appendix G Calibration Certificates for Dipoles