| Appendixes for | | | | |-------------------------|---|--|--| | SAR_Re | port_FCC_ISED_60320_6180413_Guardian915 | | | | | EUT Information | | | | Manufacturer | adeunis | | | | Brand Name | ARF8320D | | | | FCC ID | U3Z-ARF8320 | | | | IC number | 7016A-ARF8320 | | | | EUT Type | mobile radio terminal | | | | Intended Use | body worn with belt clip and headset | | | | | Prepared by | | | | | IMST GmbH, Test Center | | | | Testing Laboratory | Carl-Friedrich-Gauß-Str. 2 – 4 | | | | Testing Laboratory | 47475 Kamp-Lintfort | | | | | Germany | | | | | Prepared for | | | | | adeunis | | | | Applicant | 283 rue louis Néel, parc technologique Pré Roux | | | | Applicant | 38920 Crolles | | | | | France | | | | | Test Specification | | | | Applied Rules/Standards | IEEE 1528-2013, FCC CFR 47 § 2.1093, RSS-102 Issue 5 | | | | Exposure Category | ☐ general public / uncontrolled exposure ☐ occupational / controlled exposure | | | | | Report Information | | | | Data Stored | 60320_6180413_Guardian915 | | | | Issue Date | March 27, 2018 | | | | Revision Date | | | | | Revision Number | - | | | | | Appendix A - Pictures | | | | | Appendix B - SAR Distribution Plots | | | | | Appendix C - System Verification Plots | | | | Appendixes | Appendix D – Certificates of Conformity | | | | | Appendix E – Calibration Certificates for DAEs | | | | | Appendix F – Calibration Certificates for E-Field Probes | | | | | Appendix G – Calibration Certificates for Dipoles | | | | | <u> </u> | | | ## **Appendix A - Pictures** ## Pictures of the EUT Revision Date: Pic.1: Front side view of the device under test. Pic. 2: Back side view of the device under test. Pic. 3: Device under test with attached headset and detached battery. ## **Pictures of Test Positions of the EUT** Pic. 4: Test position back side of EUT towards the phantom with attached belt clip and headset. ### **Appendix B - SAR Distribution Plots** #### Worst Case Plots for SAR Measurement per Technology Test Laboratory: IMST GmbH, DASY Yellow (II); File Name: ARF8320D y 902.188MHz fl back clip HS 0mm wdh.da4 DUT: ADEUNIS; Type: Vokkero ARF8320D; Serial: 0123456789ABCDEF Program Name: 902.188 MHz Communication System: CW; Frequency: 902.188 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 902.188 MHz; $\sigma = 1.06 \text{ mho/m}$; $\varepsilon_r = 54.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section ### **DASY4** Configuration: - Probe: ET3DV6R SN1579; ConvF(6.63, 6.63, 6.63); Calibrated: 3/16/2018 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn631; Calibrated: 9/25/2017 - Phantom: SAM 1341; Type: QD 000 P40 CB; Serial: TP-1341 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Flat/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.03 mW/g Flat/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 30.0 V/m; Power Drift = 0.069 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.973 mW/g; SAR(10 g) = 0.706 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.04 mW/g Plot. 1: SAR distribution plot for Guardian, low channel ,back side of EUT toward the phantom, belt clip and headset attached . ### **Appendix C - System Verification Plots** Test Laboratory: IMST GmbH, DASY Yellow (II); File Name: 26032018_835b_y_1579_631.da4 DUT: Dipole 835 MHz SN470; Type: D835V2; Serial: D835V2 - SN:470 Program Name: System Performance Check at 835 MHz Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 1.02 \text{ mho/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY4 Configuration: - Probe: ET3DV6R SN1579; ConvF(6.63, 6.63, 6.63); Calibrated: 3/16/2018 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn631; Calibrated: 9/25/2017 - Phantom: SAM 1341; Type: QD 000 P40 CB; Serial: TP-1341 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 d=15mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.54 mW/g d=15mm, Pin=250mW/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=6mm, dy=6mm, dz=5mm Reference Value = 52.0 V/m; Power Drift = 0.027 dB Peak SAR (extrapolated) = 3.33 W/kg SAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.56 mW/g Maximum value of SAR (measured) = 2.50 mW/g Plot. 2: System Verification Measurement 835 MHz, body. ## Appendix D – Certificates of Conformity Schmid & Partner Engineering AG a g e p Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com Certificate of conformity | Item | Dosimetric Assessment System DASY4 | |-----------------------|---| | Type No | SD 000 401A, SD 000 402A | | Software Version No | DASY 4.7 | | Manufacturer / Origin | Schmid & Partner Engineering AG | | | Zeughausstrasse 43, CH-8004 Zürich, Switzerland | #### References - [1] IEEE 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz -Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005 - IEC 62209 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz. Human models, Instrumentation and Procedures, Part 2: Procedure to determine the Specific Absorption Rate (SAR) for ... including accessories and multiple transmitters", March 2010 - KDB 865664. "SAR Measurement Requirements for 100 MHz to 6 GHz" - ANSI-C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids", May 2011 #### Conformity We certify that this system is designed to be fully compliant with the standards [1 - 5] for RF emission tests of wireless devices. #### Uncertainty The uncertainty of the measurements with this system was evaluated according to the above standards and is documented in the applicable chapters of the DASY4 system handbook and in Chapter 27 of the DASY5 system handbook. The uncertainty values represent current state of methodology and are subject to changes. They are applicable to all laboratories using DASY4 provided the following requirements are met (responsibility of the system end user): - the system is used by an experienced engineer who follows the manual and the guidelines taught during the training provided by SPEAG, - the probe and validation dipoles have been calibrated for the relevant frequency bands and media 2) within the requested period. - the DAE has been calibrated within the requested period, - the "minimum distance" between probe sensor and inner phantom shell and the radiation source is 4) selected properly, - the system performance check has been successful, - the operational mode of the DUT is CW, CDMA, FDMA or TDMA (GSM, DCS, PCS, IS136, PDC) and the measurement/integration time per point is ≥ 500 ms, - if applicable, the probe modulation factor is evaluated and applied according to field level, modulation and frequency, - the dielectric parameters of the liquid are conform with the standard requirement, 8) - the DUT has been positioned as described in the manual. - the uncertainty values from the calibration certificates, and the laboratory and measurement equipment dependent uncertainties, are updated by end user accordingly p Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 ag.com, http://www.speag.com Signature / Stamp **Date** 19.09.2016 Doc No 880 - SD00040XA-Standards_1609 - G Certificate of conformity for the used DASY4 system: KP/FB Page 1 (1) Fig. 4: Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### Certificate of Conformity / First Article Inspection | Item | SAM Twin Phantom V4.0 and V5.0 | | |--------------|--|--| | Type No | QD 000 P40 C | | | Series No | TP-1150 and higher | | | Manufacturer | Untersee Composites Knebelstrasse 8, CH-8268 Mannenbach, Switzerland | | #### Tests Complete tests were made on the pre-series QD 000 P40 A, # TP-1001, on the series first article QD 000 P40 B # TP-1006. Certain parameters are retested on series items. | Test | Requirement | Details | Units tested | |-----------------------------|--|---|---| | Dimensions | Compliant with the geometry according to the CAD model. | IT'IS CAD File * | First article,
Samples | | Material thickness of shell | 2mm +/- 0.2mm in flat section,
other locations: +/- 0.2mm with
respect to CAD file | in flat section,
in the cheek area | First article,
Samples,
TP-1314 ff. | | Material thickness at ERP | 6mm +/- 0.2mm at ERP | | First article, All items | | Material parameters | rel. permittivity 2 – 5,
loss tangent ≤ 0.05, at f ≤ 6 GHz | rel. permittivity 3.5 +/- 0.5 loss tangent ≤ 0.05 | Material samples | | Material resistivity | Compatibility with tissue simulating liquids . | Compatible with SPEAG liquids. ** | Phantoms,
Material sample | | Sagging | Sagging of the flat section in tolerance when filled with tissue simulating liquid. | < 1% for filling height
up
to 155 mm | Prototypes,
Sample testing | The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents. #### Standards - OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01 - [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003 - [3] IEC 62209–1 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", 2005-02-18 - [4] IEC 62209–2 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", 2010-03-30 #### Conformity Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of **hand-held** SAR measurements and system performance checks as specified in [1-4] and further standards. **s** p e a g Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerlan Phony 41 44 25 3100 Lag + Class 5979 Date 25.07.2011 Signature / Stamp Fig. 5: Certificate of conformity for the used SAM phantom. Doc No 881 - QD 000 P40 C - H 1 (1) Page ^{**} Note: Compatibility restrictions apply certain liquid components mentioned in the standard, containing e.g. DGBE, DGMHE or Triton X-100. Observe technical note on material compatibility. ## **Appendix E – Calibration Certificates for DAEs** **DAE 4 - SN: 631** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client IMST Certificate No: DAE4-631_Sep17 Accreditation No.: SCS 0108 | Object | DAE4 - SD 000 D0 | 04 BM - SN: 631 | | |---|--|---|----------------------------------| | Calibration procedure(s) | QA CAL-06.v29
Calibration proced | lure for the data acquisition elec | tronics (DAE) | | Calibration date: | September 25, 20 | 17 | | | The measurements and the unce | estainties with confidence proceed in the closed laboratory TE critical for calibration) | nal standards, which realize the physical un
sbability are given on the following pages an
facility: environment temperature (22 ± 3)°(| d are part of the certificate. | | Primary Standards | ID# | Cai Date (Certificate No.) | Scheduled Calibration | | Keithley Multimeter Type 2001 | SN: 0810278 | 31-Aug-17 (No:21092) | Aug-18 | | | ID# | Check Date (in house) | Scheduled Check | | Secondary Standards | SE LING DES AA 1001 | 05-Jan-17 (in house check) | In house check: Jan-18 | | Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 | | 05-Jan-17 (In house check) | In house check: Jan-18 | | Auto DAE Calibration Unit
Calibrator Box V2.1 | SE UMS 006 AA 1002 | 05-Jan-17 (in house check) Function | In house check: Jan-18 Signature | | Auto DAE Calibration Unit | SE UMS 006 AA 1002 | 05-Jan-17 (in house check) | | | Auto DAE Calibration Unit
Calibrator Box V2.1 | SE UMS 006 AA 1002 | 05-Jan-17 (in house check) Function | | Certificate No: DAE4-631_Sep17 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-631_Sep17 Page 2 of 5 Revision No.: - ## DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.336 ± 0.02% (k=2) | 404.289 ± 0.02% (k=2) | 406.231 ± 0.02% (k=2) | | Low Range | 3.94735 ± 1.50% (k=2) | 3.92769 ± 1.50% (k=2) | 3.95902 ± 1.50% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 33.5 ° ± 1 ° | |---|--------------| | | 0010 12 1 | Page 3 of 5 ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199995.55 | 0.72 | 0.00 | | Channel X + Input | 20004.05 | 2.52 | 0.01 | | Channel X - Input | -19994.83 | 6.07 | -0.03 | | Channel Y + Input | 199994.15 | -0.58 | -0.00 | | Channel Y + Input | 20002.15 | 0.75 | 0.00 | | Channel Y - Input | -19999.60 | 1:34 | -0.01 | | Channel Z + Input | 199993.59 | -1.31 | -0.00 | | Channel Z + Input | 19996.59 | -4.78 | -0.02 | | Channel Z - Input | -20003.58 | -2.60 | 0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.41 | 0.38 | 0.02 | | Channel X + Input | 201.48 | 0.00 | 0.00 | | Channel X - Input | -197.83 | 0.61 | -0.31 | | Channel Y + Input | 2001.47 | 0.39 | 0.02 | | Channel Y + Input | 201.40 | -0.19 | -0.09 | | Channel Y - Input | -198.57 | -0.21 | 0.10 | | Channel Z + Input | 2000.55 | -0.40 | -0.02 | | Channel Z + Input | 200.68 | -0.75 | -0.37 | | Channel Z - Input | -198.98 | -0.48 | 0.24 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 1.06 | -0.65 | | | - 200 | 1.24 | -0.01 | | Channel Y | 200 | 18.66 | 18.55 | | | - 200 | -19.18 | -19.88 | | Channel Z | 200 | 4.24 | 3.96 | | | - 200 | -5.83 | -6,07 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | 0.62 | -3.68 | | Channel Y | 200 | 9.20 | | -0.18 | | Channel Z | 200 | 6.70 | 7.94 | * | Certificate No: DAE4-631_Sep17 Page 4 of 5 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15993 | 15998 | | Channel Y | 15462 | 16407 | | Channel Z | 16651 | 17171 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(µV) | |-----------|--------------|------------------|------------------
------------------------| | Channel X | 0.63 | -0.83 | 1.59 | 0.40 | | Channel Y | -0.35 | -1.18 | 1.64 | 0.49 | | Channel Z | 0.32 | -0.69 | 1.56 | 0.54 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Tvoical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-631_Sep17 Page 5 of 5 ### Appendix F - Calibration Certificates for E-Field Probes #### Probe ET3DV6R - SN1579 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (BAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates IMST Certificate No: ET3-1579_Feb18 ## CALIBRATION CERTIFICATE Object ET3DV6R - SN:1579 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: February 21, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI) The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID. | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | 5N: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: 85277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES30V2 | SN: 3013 | 30-Dec-17 (No. ES3-3013_Dec17) | Dec-18 | | DAE4 | SN: 660 | 21-Dec-17 (No. DAE4-650_Dec17) | Dec-18 | | Secondary Standards | 10 | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | 5N: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-16 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | |----------------|----------------|-----------------------|---------------------------| | Calibrated by: | Jeton Kastrati | Laboratory Technician | debe | | Approved by: | Katja Pokovic | Technical Manager | De des | | | | | Issued: February 22, 2018 | Certificate No: ET3-1579_Feb18 Page 1 of 11 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization o o rotation around probe axis Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement. - Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax.y.z; Bx.y.z; Cx.y.z; Dx.y.z; VRx.y.z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ET3-1579_Feb18 Page 2 of 11 February 21, 2018 # Probe ET3DV6R SN:1579 Manufactured: May 7, 2001 Calibrated: February 21, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ET3-1579_Feb18 Page 3 of 11 February 21, 2018 ## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 1.80 | 1.82 | 1.54 | ± 10.1 % | | DCP (mV) ⁶ | 101.5 | 100.5 | 102.0 | | #### Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc*
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 268.2 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 249.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 251.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1579_Feb18 Page 4 of 11 The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. February 21, 2018 ## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|--------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 43.5 | 0.87 | 7.95 | 7.95 | 7.95 | 0.35 | 1.80 | ± 13.3 % | | 750 | 41.9 | 0.89 | 7.31 | 7.31 | 7.31 | 0.30 | 2.63 | ± 12.0 % | | 900 | 41.5 | 0.97
 6.62 | 6.62 | 6.62 | 0.39 | 2.31 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 5.70 | 5.70 | 5.70 | 0.78 | 2.05 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 5.48 | 5.48 | 5.48 | 0.79 | 2.04 | ± 12.0 % | $^{^{\}circ}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 54, 128, 150 and 220 MHz respectively. Above 5 GHz frequency Certificate No: ET3-1579_Feb18 Page 5 of 11 below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 12e. 150 and 2ct setz respectively. Above 5 GHz requestly validity can be extended to \pm 110 MHz. All frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target fissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. February 21, 2018 ## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^q | Depth ^G
(mm) | Unc
(k=2) | |----------------------|--------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 56.7 | 0.94 | 7.97 | 7.97 | 7.97 | 0.25 | 1.80 | ± 13.3 % | | 750 | 55.5 | 0.96 | 6.76 | 6.76 | 6.76 | 0.39 | 2.32 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 5.02 | 5.02 | 5.02 | 0.80 | 2.46 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 4.67 | 4.67 | 4.67 | 0.80 | 2.38 | ± 12.0 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (c and α) can be released to ± 10% if liquid compensation formula is applied to Certificate No: ET3-1579_Feb18 Page 6 of 11 At requencies below 3 GHz, the validity or issue parameters (c and 4) can be released to 1 10% in liquid compensation formula is appoint to measured SAR values. At frequencies above 3 GHz, the validity of issue parameters (c and 4) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than helf the probe tip diameter from the boundary. February 21, 2018 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: ET3-1579_Feb18 Page 7 of 11 Revision No.: - February 21, 2018 ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: ET3-1579_Feb18 Page 9 of 11 February 21, 2018 # DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 ## Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 76.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 6.8 mm | | Probe Tip to Sensor X Calibration Point | 2.7 mm | | Probe Tip to Sensor Y Calibration Point | 2.7 mm | | Probe Tip to Sensor Z Calibration Point | 2.7 mm | | Recommended Measurement Distance from Surface | 4 mm | Certificate No: ET3-1579_Feb18 Page 11 of 11 ## Additional Conversion Factors for 900 Body - ET3DV6R - SN1579 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **IMST** Certificate No: ET3-1579_Mar18 ## **CALIBRATION CERTIFICATE** Object ET3DV6R - SN:1579 Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: March 16, 2018 (Additional Conversion Factor) This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |--|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-17 (No. ES3-3013_Dec17) | Dec-18 | | DAE4 | SN: 660 | 21-Dec-17 (No. DAE4-660_Dec17) | Dec-18 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E SN: US37390585 | | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | |----------------|----------------|--|------------------------| | Calibrated by: | Jeton Kastrati | Laboratory Technician | 402 | | Approved by: | Katja Pokovic | Technical Manager | RIUS- | | Ti | | 1. 21-
1. 21- 1. | Issued: March 17, 2018 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: ET3-1579_Mar18 Page 1 of 7 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Revision No.: - Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z ConvF DCP tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement - Techniques", June 2013 IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - *NORMx,y,z*: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: ET3-1579 Mar18 Page 2 of 7 March 16, 2018 # Probe ET3DV6R SN:1579 # **Additional Conversion Factors** Manufactured: Calibrated: May 7, 2001 March 16, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: ET3-1579_Mar18 Page 3 of 7 March 16, 2018 ## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--------------------------|----------|----------|----------|-----------|--| | Norm $(\mu V/(V/m)^2)^A$ | 1.80 | 1.82 | 1.54 | ± 10.1 % | | | DCP (mV) ^B | 101.5 | 100.5 | 102.0 | | | ## **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^b
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 268.2 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 249.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 251.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: ET3-1579_Mar18 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the March 16, 2018 ## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 900 | 55.0 | 1.05 | 6.63 | 6.63 | 6.63 | 0.35 | 2.61 | ± 12.0 % | Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Fat frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: ET3-1579_Mar18 Page 5 of 7 March 16, 2018 ## **Conversion Factor Assessment** Revision Date: ## Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1. Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: ET3-1579_Mar18 Page 6 of 7 March 16, 2018 ## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 76.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 6.8 mm | | Probe Tip to Sensor X Calibration Point | 2.7 mm | | Probe Tip to Sensor Y Calibration Point | 2.7 mm | | Probe Tip to Sensor Z Calibration Point | 2.7 mm | | Recommended
Measurement Distance from Surface | 4 mm | Certificate No: ET3-1579_Mar18 Page 7 of 7