

TEST REPORT

Test report no.: 1-6484/18-04-02-E BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com mail@ctcadvanced.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Adeunis

283 Rue Louis Néel - Part technologique Pré Roux

38920 Crolles / FRANCE +33 (0) 4 76 92 07 77 Phone: Contact: **Emmanuel Monnet** e-mail: e.monnet@adeunis-rf.com

Phone: +33 4 76 92 01 62

Manufacturer

Adeunis

283 Rue Louis Néel - Part technologique Pré Roux 38920 Crolles / FRANCE

Test standard/s

FCC - Title 47 CFR Part FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: LoRa Module Model name: **ARF8133A** FCC ID: U3Z-ARF8133 IC: 7016A-ARF8133

Frequency: ISM band 902 MHz - 928 MHz Technology tested: Long Range Wide Area Network Antenna: External dipole or PCB antenna Power supply: 3.3 V DC by external power supply

Temperature range: -20°C to +55°C

Radio Communications

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

performed:
Kumar n Manager

Radio Communications

Table of contents

1	Table	of contents	2
2	Gener	al information	4
	2.1	Notes and disclaimer	
	2.2	Application details	4
	2.3	Test laboratories sub-contracted	4
3	Test s	tandard/s and references	
4	Test e	nvironment	6
5	Test it	em	6
	5.1	General description	6
	5.2	Additional information	
6	Descr	iption of the test setup	7
	6.1	Shielded semi anechoic chamber	8
	6.2	Shielded fully anechoic chamber	
	6.3	Conducted measurements	
7	Seque	ence of testing	11
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	
	7.3	Sequence of testing radiated spurious 1 GHz to 12.75 GHz	
8	Meas	rement uncertainty	14
9	Sumn	nary of measurement results	15
	9.1	Part 1: Hybrid mode (915.2-927.8 MHz)	
	9.2	Part 2: DTS (915.9-927.1 MHz)	
	9.3	Part 3: Hybrid mode (923.2-923.4 MHz)	
10	RF	measurements	18
	10.1	Additional comments	18
11	Mea	surement results Part 1 Hybrid mode (915.2-927.8 MHz)	19
	11.1	Antenna gain	19
	11.2	Carrier Frequency Separation	
	11.3	Average Time of Occupancy (dwell time)	
	11.4	Spectrum bandwidth	
	11.5	Maximum Output Power	
	11.6 11.7	Power spectral density Detailed spurious emissions @ the band edge – conducted and radiated	
	11.8	Spurious Emissions Conducted	
	11.9	Spurious Emissions Radiated < 30 MHz	
	11.10	Spurious Emissions Radiated > 30 MHz	
	11.10.	1 Spurious emissions radiated 30 MHz to 1 GHz	
	11.10.	2 Spurious emissions radiated above 1 GHz	52
12	Mea	surement results Part 2 DTS (915.9-927.1 MHz)	58
	12.1	Maximum output power	58
	12.2	Antenna gain	
	12.3	Power spectral density	62
	12.4	Spectrum bandwidth - 6 dB bandwidth and 99% bandwidth	6
	12.5	Detailed spurious emissions @ the band edge – conducted and radiated	
	12.6	Spurious Emissions Conducted	
	12.7	Spurious Emissions Radiated < 30 MHz	75

	12.8	Spurious Emissions Radiated > 30 MHz	80
	12.8.1 5	Spurious emissions radiated 30 MHz to 1 GHz	80
	12.8.2	Spurious emissions radiated above 1 GHz	88
13	Meas	urement results Part 3 Hybrid Mode (923.2-923.4 MHz)	94
	13.1	Antenna gain	94
	13.2	Carrier Frequency Separation	95
	13.3	Average Time of Occupancy (dwell time)	97
	13.4	Spectrum bandwidth	
	13.5	Maximum Output Power	102
	13.6	Power spectral density	
	13.7	Detailed spurious emissions @ the band edge - conducted and radiated	
	13.8	Spurious Emissions Conducted	
	13.9	Spurious Emissions Radiated < 30 MHz	
	13.10	Spurious Emissions Radiated > 30 MHz	
		Spurious emissions radiated 30 MHz to 1 GHz	
	13.10.2	Spurious emissions radiated above 1 GHz	119
14	Obse	rvations	123
An	nex A	Glossary	124
An	nex B	Document history	125
An	nex C	Accreditation Certificate - D-PL-12076-01-04	125
An	nex D	Accreditation Certificate - D-PL-12076-01-05	126

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-6484/18-04-02-D and dated 2020-04-01.

2.2 Application details

Date of receipt of order: 2019-06-11
Date of receipt of test item: 2019-07-10
Start of test: 2019-07-18
End of test: 2020-01-13

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 4 of 126

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic
ANSI C63.10-2013	-/-	Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-05

© CTC advanced GmbH Page 5 of 126

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	3.3 V DC by external power supply No tests under extreme conditions required. No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item	:	LoRa Module
Type identification		ARF8133A
HMN	:	n/A
PMN		LoRaWAN Module
HVIN		ARF8133A
FVIN	:	V01.07.01
S/N serial number	:	Evaluation board
Hardware status	:	No information available
Software status	:	No information available
Firmware status	:	No information available
Frequency band	:	ISM band 902 MHz – 928 MHz
Type of radio transmission Use of frequency spectrum		DTS and Hybrid mode
Number of channels		Hybrid mode (915.2-927.8 MHz): 64 Hybrid mode (923.2-923.4 MHz): 2 DTS mode (915.9-927.1 MHz): 8
Antenna		External dipole or PCB antenna
Power supply	•	3.3 V DC by external power supply
Temperature range	:	-20°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-6484/18-01-01_AnnexA 1-6484/18-01-01_AnnexD

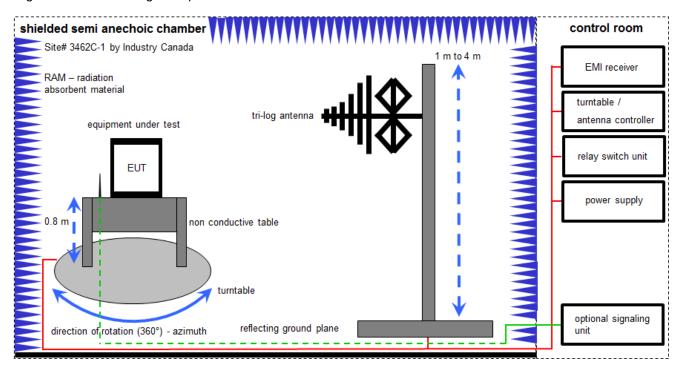
© CTC advanced GmbH Page 6 of 126

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 126

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

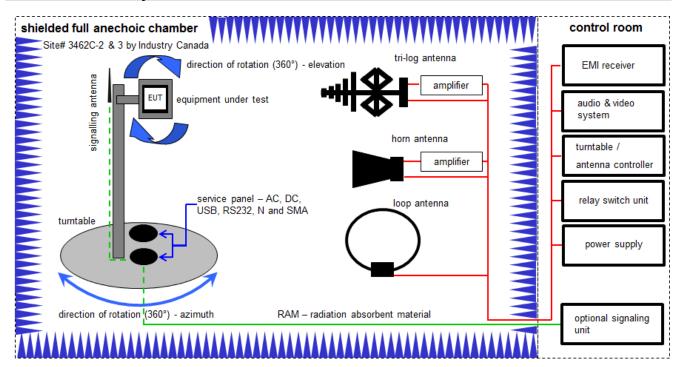
EMC32 software version: 10.30.0

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.05.2020
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKI!	24.11.2017	23.11.2020

© CTC advanced GmbH Page 8 of 126

6.2 Shielded fully anechoic chamber

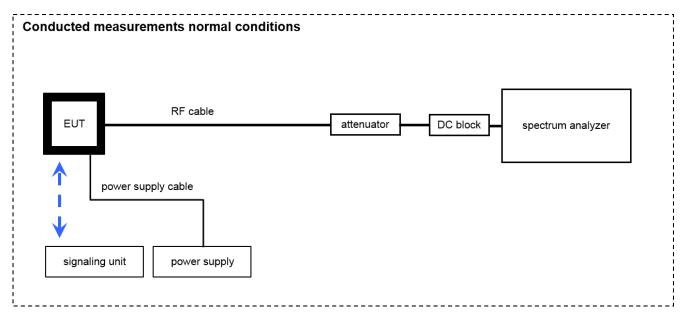
Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	С	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	27.02.2019	26.02.2021
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
3	A,B,C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04590	300001041	vIKI!	14.12.2017	13.12.2020
4	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	-/-	-/-
5	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	23.05.2017	22.05.2020
6	С	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	ev	-/-	-/-
7	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
8	A,B,C	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
9	A,B,C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
10	A,B,C	Anechoic chamber		TDK		300003726	ne	-/-	-/-
11	A,B,C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	19.12.2018	18.12.2019
12	A,B,C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	10.12.2019	09.12.2020

© CTC advanced GmbH Page 9 of 126

6.3 **Conducted measurements**

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Power Supply	2X30V	Zentro	870008	300000830	NK!	-/-	-/-
2	А	Signal- and Spectrum Analyzer 2 Hz - 26 GHz	FSW26	R&S	101455	300004528	k	19.12.2018	18.12.2019
	А	Signal- and Spectrum Analyzer 2 Hz - 26 GHz	FSW26	R&S	101455	300004528	k	12.12.2019	11.12.2020
3	Α	Coaxial Attenuator	WA23-20-34	Weinschel Ass	B4661	400001130	ev	-/-	-/-
4	А	RF-Cable SRD021 No. 1	Enviroflex 316 D	Huber & Suhner		400001311	ev	-/-	-/-

© CTC advanced GmbH Page 10 of 126

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 11 of 126

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 126

7.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 126

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Carrier frequency separation	± 21.5 kHz					
Number of hopping channels	-/-					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum output power	± 1 dB					
Detailed conducted spurious emissions @ the band edge	± 1 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions conducted	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					

© CTC advanced GmbH Page 14 of 126

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

9.1 Part 1: Hybrid mode (915.2-927.8 MHz)

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	TX hopping	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth	Nominal	Nominal	TX single channel	×				-/-
§15.247(f) RSS - 247 / 5.2 (b)	Power spectral density	Nominal	Nominal	TX single channel	×				-/-
§15.247(b)(3) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	TX single channel	×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	TX hopping	×				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	TX single channel	×				-/-
§15.247(f) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	TX hopping	×				-/-
§15.247(d) RSS-210 / A8.5	TX spurious emissions radiated	Nominal	Nominal	TX single channel	×				-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	Nominal	Nominal	TX single channel	×				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 15 of 126

9.2 Part 2: DTS (915.9-927.1 MHz)

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS 210 / A8.4(2)	Antenna gain	Nominal	Nominal	TX single channel	×				-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	Nominal	Nominal	TX single channel	×				-/-
§15.247(a)(2) RSS Gen clause 4.6.1	Spectrum bandwidth 6dB bandwidth	Nominal	Nominal	TX single channel	×				-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	Nominal	Nominal	TX single channel	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance conducted	Nominal	Nominal	TX single channel	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-	×				-/-
§§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	Nominal	Nominal	TX single channel	×				-/-
§15.247(d) RSS-210 / A8.5	TX spurious emissions radiated	Nominal	Nominal	TX single channel	×				-/-
§15.109 RSS-Gen.	RX spurious emissions radiated	Nominal	Nominal	RX	\boxtimes				-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	Nominal	Nominal	TX single channel	\boxtimes				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 16 of 126

9.3 Part 3: Hybrid mode (923.2-923.4 MHz)

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	TX single channel	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	TX hopping	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(f) RSS - 247 / 5.2 (b)	Power spectral density	Nominal	Nominal	TX single channel	X				-/-
§15.247(b)(3) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	TX single channel	×				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	TX hopping	×				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(f) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	TX hopping	\boxtimes				-/-
§15.247(d) RSS-210 / A8.5	TX spurious emissions radiated	Nominal	Nominal	TX single channel	×				-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	Nominal	Nominal	TX single channel	×				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 17 of 126

10 RF measurements

10.1 Additional comments

Reference documents: None

Special test descriptions: The EUT uses a Long Range Wide Area Network (LoRaWAN) technology with

a combination of two hybrid systems in different frequency ranges and a DTS

system. All three systems were tested.

Configuration descriptions: Hybrid mode: 64 channels (AU915-928 MHz ISM Band) with a nominal

bandwidth of 125 kHz and 200 kHz channel spacing:

lowest channel 915.2 MHz, middle channel 921.5 MHz, highest channel 927.8 MHz.

These channels were tested in part 1 of this test report).

DTS: 8 channels (AU915-928 MHz ISM Band) with 500 kHz nominal bandwidth and 1600 kHz channel spacing:

lowest channel 915.9 MHz, middle channel 921.5 MHz, highest channel 927.1 MHz.

These channels were tested in part 2 of this test report).

Hybrid mode: 2 channels **(AS923 MHz ISM Band)** with a nominal bandwidth of 125kHz and 200 kHz channel spacing:

lowest channel 923.2 MHz, highest channel 923.4 MHz,

These channels were tested in part 3 of this test report).

NOTE: In hybrid mode (915.2-927.8 MHz) the minimum number of hopping channels is 8. In this mode the minimum channel separation and bandwidths stay the same as in the mode with 64 channels. Also the device also comply with the dwell time requirements while using 8 channels:

The time slot length: 164.81 ms

Average time of occupancy: 329.62 ms

Hops in 3.2 second: 2

Test mode:

⊠ Special software is used.

EUT is transmitting pseudo random data by itself

© CTC advanced GmbH Page 18 of 126

11 Measurement results Part 1 Hybrid mode (915.2-927.8 MHz)

11.1 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement:

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 6.2 B (radiated) See sub clause 6.3 A (conducted)			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC				
Antenna gain					

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

		Low channel	Middle channel	High channel
Conducted power		16.16 dBm	16.38 dBm	16.49 dBm
dinale entenne	Radiated power	21.35 dBm	21.15 dBm	20.35 dBm
dipole antenna	Gain Calculated	5.19 dBi	4.77 dBi	3.86 dBi
DCB ontonno	Radiated power	20.32 dBm	19.70 dBm	19.24 dBm
PCB antenna	Gain Calculated	4.16 dBi	3.32 dBi	2.75 dBi

© CTC advanced GmbH Page 19 of 126

11.2 Carrier Frequency Separation

Description:

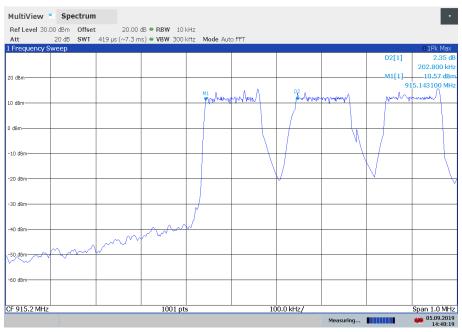
Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use LoRa modulation to show compliance. EUT in hopping mode.

Measurement:

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	See plots			
Video bandwidth	See plots			
Span	See plots			
Trace mode	Max hold			
Test setup	See sub clause 6.3 A			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC				
Carrier frequency separation					
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.					


Result: The channel separation is 202.800 kHz

© CTC advanced GmbH Page 20 of 126

Plots:

Plot 1: Frequency separation <u>AU915-928MHz ISM Band</u>

14:40:19 05.09.2019

© CTC advanced GmbH Page 21 of 126

11.3 Average Time of Occupancy (dwell time)

Measurement:

The measurement is performed in zero span mode to show that none of the 64 used channels is allocated more than 0.4 seconds within a 25.6 seconds interval (64 channels times 0.4s).

Limits:

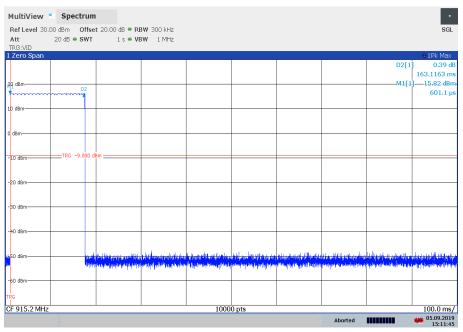
FCC	IC					
Average time of occupancy						
For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and						

For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4

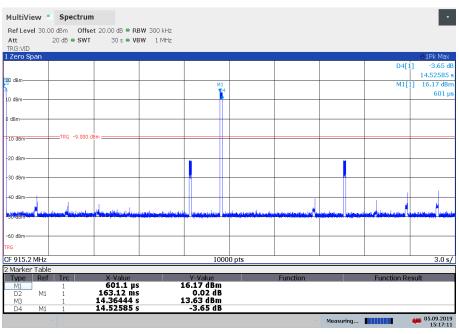
Result: The time slot length is = 163.1 ms

Number of hops / channel @ 25.6s = 2

Within 25.6 s period, the average time of occupancy in 25,6 s: 326.22 ms


-> The average time of occupancy = 326.22ms

© CTC advanced GmbH Page 22 of 126


Plots:

Plot 1: Time slot length = 163.11ms

15:11:45 05.09.2019

Plot 2: hops / channel @ 25.6s = 2

15:17:12 05.09.2019

© CTC advanced GmbH Page 23 of 126

11.4 Spectrum bandwidth

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement:

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	5 kHz			
Video bandwidth	100 kHz			
Span	See plots			
Trace mode	Max hold			
Test setup	See sub clause 6.3 A			
Measurement uncertainty	See sub clause 8			

Limits:

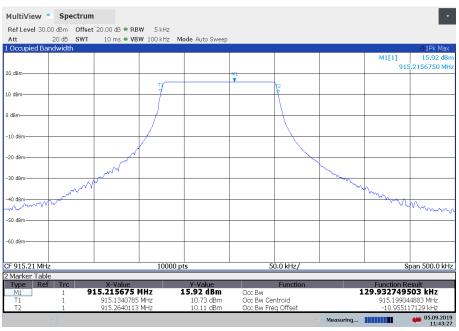
FCC	IC
None	

Result:

Test Co	onditions	20dB BANDWIDTH [kHz]		z]
		Low channel Middle channel High channel		
T_{nom}	V_{nom}	146.9	146.6	147.55

Test Conditions		99% BANDWIDTH [kHz]		z]
		Low channel Middle channel High channel		
T_{nom}	V_{nom}	129.93	129.54	130.04

© CTC advanced GmbH Page 24 of 126


Plots:

Plot 1: Lowest Channel, 20 dB-BW

09:00:00 11.09.2019

Plot 2: Lowest Channel, 99%OBW

11:43:27 05.09.2019

© CTC advanced GmbH Page 25 of 126

Plot 3: Middle Channel, 20 dB-BW

09:13:20 11.09.2019

Plot 4: Middle Channel, 99%OBW



12:18:22 05.09.2019

© CTC advanced GmbH Page 26 of 126

Plot 5: Highest Channel, 20 dB-BW

09:24:37 11.09.2019

Plot 6: Highest Channel, 99%OBW

14:21:44 07.09.2019

© CTC advanced GmbH Page 27 of 126

11.5 Maximum Output Power

Measurement:

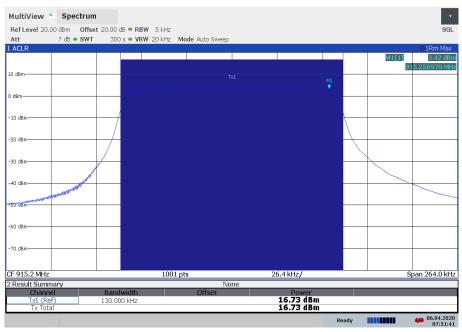
Measurement parameter		
Detector:	RMS	
Sweep time:	300 s	
Resolution bandwidth:	5 kHz	
Video bandwidth:	20 kHz	
Span:	264 kHz	
Trace-Mode:	Single sweep	
Measurement method	According to ANSI C63.10-2013 11.9.2.2.3 Method AVGSA-1A (alternative)	
Used equipment:	See chapter 6.3 A	
Measurement uncertainty:	See chapter 8	

Limits:

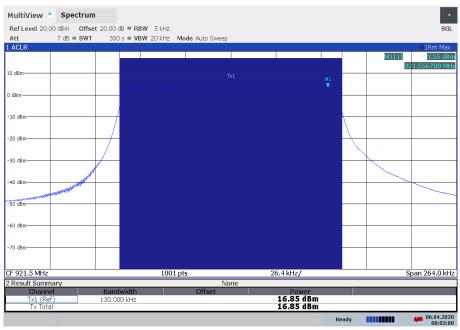
FCC	IC	
Maximum Output Power Conducted		
For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing		

at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:


Test Conditions		Maximum Output Power Conducted [dBm]		
		Lowest channel Middle channel Highest channel		Highest channel
T _{nom}	V_{nom}	16.7	16.9	17.0

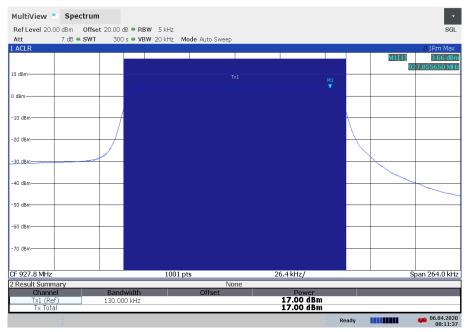
© CTC advanced GmbH Page 28 of 126


Plots:

Plot 1: Lowest Channel

07:51:42 06.04.2020

Plot 2: Middle Channel



08:03:00 06.04.2020

© CTC advanced GmbH Page 29 of 126

Plot 3: Highest Channel

08:11:37 06.04.2020

© CTC advanced GmbH Page 30 of 126

11.6 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

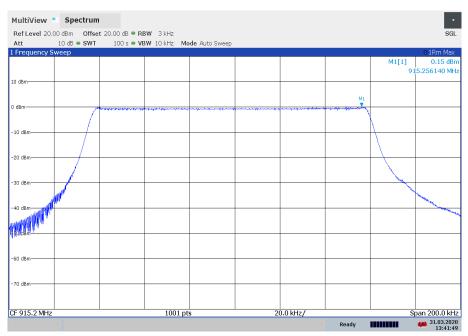
Measurement parameter		
Detector:	RMS	
Sweep time:	100 s	
Video bandwidth:	10 kHz	
Resolution bandwidth:	3 kHz	
Span:	200 kHz	
Trace mode:	Max Hold	
Measurement method	According to ANSI C63.10-2013 11.10.4 Method AVGPSD-1A (alternative)	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

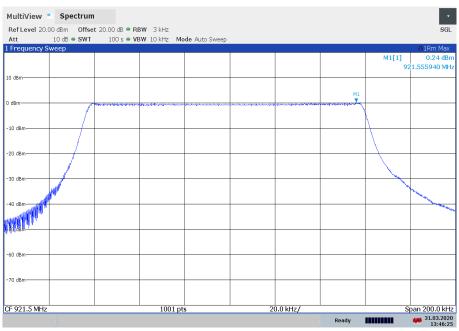
FCC	IC	
Power Spectral Density		
The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in		

any 3 kHz band during any time interval of continuous transmission.

Results:


Modulation	Power Spectral density [dBm/3kHz]		m/3kHz]
Channel	Lowest	Middle	Highest
	0.2	0.2	0.4

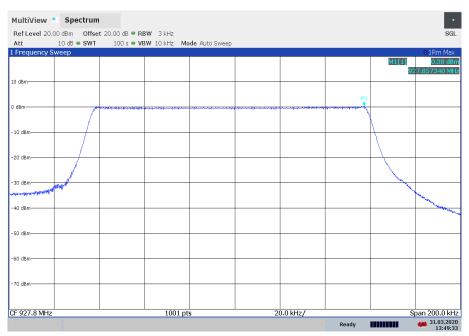
© CTC advanced GmbH Page 31 of 126


Plots:

Plot 1: Low Channel

13:41:50 31.03.2020

Plot 2: Middle Channel



13:46:26 31.03.2020

© CTC advanced GmbH Page 32 of 126

Plot 3: High Channel

13:49:34 31.03.2020

© CTC advanced GmbH Page 33 of 126

11.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

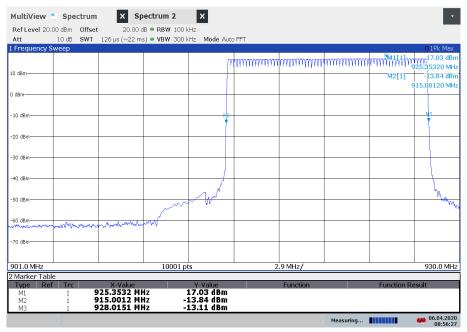
Limits:

FCC	IC

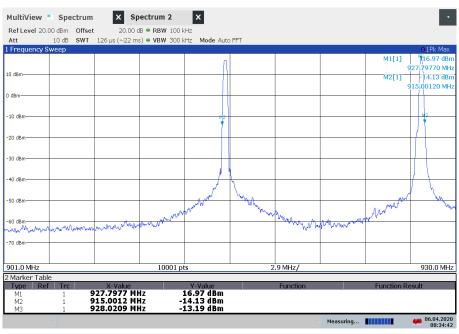
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Results conducted:


Scenario	Spurious band edge conducted	
Modulation	lowest channel	highest channel
Lower band edge – hopping on	> 30 dB	> 30 dB
Upper band edge – hopping off	> 30 dB	> 30 dB

© CTC advanced GmbH Page 34 of 126


Plots:

Plot 1: 30 dB - hopping on

08:56:27 06.04.2020

Plot 2: 30 dB - hopping off

08:34:43 06.04.2020

© CTC advanced GmbH Page 35 of 126

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

© CTC advanced GmbH Page 36 of 126

11.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	1 MHz			
Span:	9 kHz to 12.75 GHz			
Trace-Mode:	Max Hold			
Used equipment:	See chapter 6.3 A			
Measurement uncertainty:	See chapter 8			

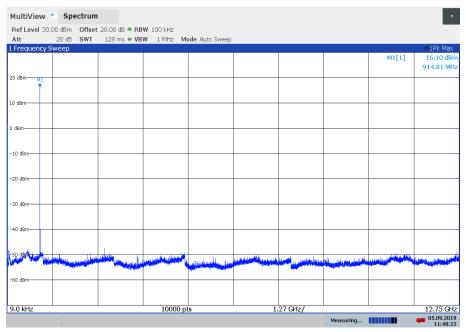
Limits:

FCC	IC				
TX spurious emissions conducted					

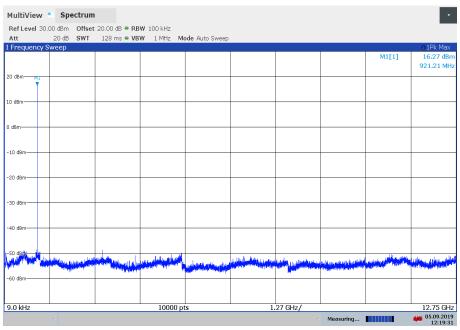
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Result:


	Emission Limitation						
Frequency [MHz]		Amplitude of emission [dBm]	Limit max. allowed emission power	actual attenuation below frequency of operation [dB]	Results		
902.3		16.10	24 dBm		Operating frequency		
No e	missions dete	ected!	-30 dBc				
909.3		16.27	24 dBm		Operating frequency		
No emissions detected!		-30 dBc					
914.2		16.36	24 dBm		Operating frequency		
No emissions detected!			-30 dBc				

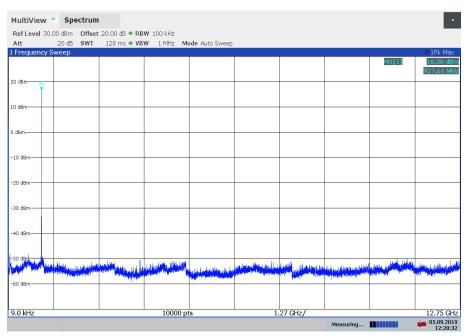
© CTC advanced GmbH Page 37 of 126


Plots:

Plot 1: Lowest channel, 9 kHz - 12.75 GHz

11:40:22 05.09.2019

Plot 2: Middle channel, 9 kHz - 12.75 GHz



12:19:31 05.09.2019

© CTC advanced GmbH Page 38 of 126

Plot 3: Highest channel, 9 kHz - 12.75 GHz

12:20:33 05.09.2019

© CTC advanced GmbH Page 39 of 126

11.9 Spurious Emissions Radiated < 30 MHz

Description:

The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

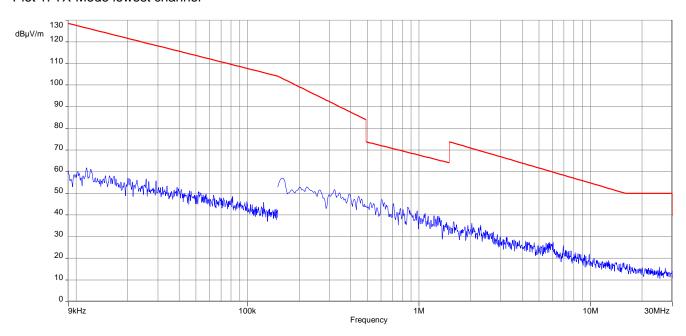
Measurement:

Measurement parameter					
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace-Mode:	Max Hold				
Used equipment:	See chapter 6.2 B				
Measurement uncertainty:	See chapter 8				

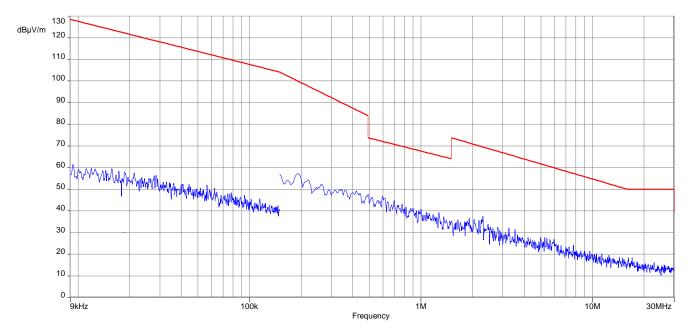
Limits:

FCC	IC					
TX spurious emissions radiated < 30 MHz						
Frequency (MHz)	Field streng	th (dBµV/m)	Measurem	ent distance		
0.009 – 0.490	2400/F	F(kHz)	3	00		
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		3	30
1.705 – 30.0	30		3	30		

Result:

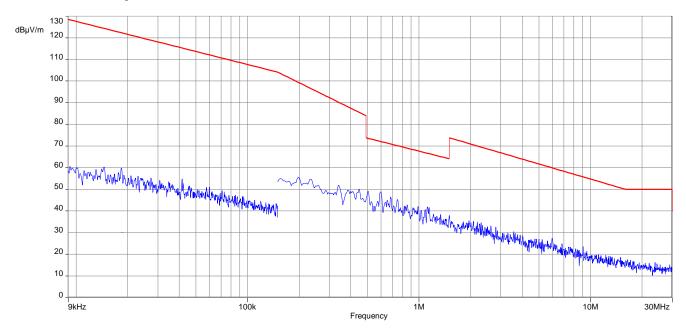

SPURIOUS EMISSIONS LEVEL [dBµV/m]								
Lowest channel Middle channel					Highest channel			
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency Detector Leve		
	All emissions were more than 10 dB below the limit.							

© CTC advanced GmbH Page 40 of 126

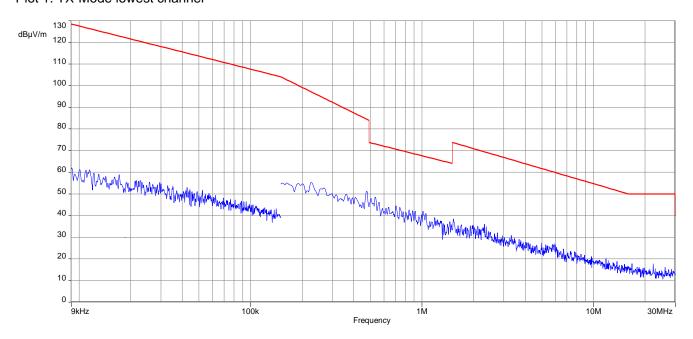


Plots EUT with dipole antenna:

Plot 1: TX-Mode lowest channel

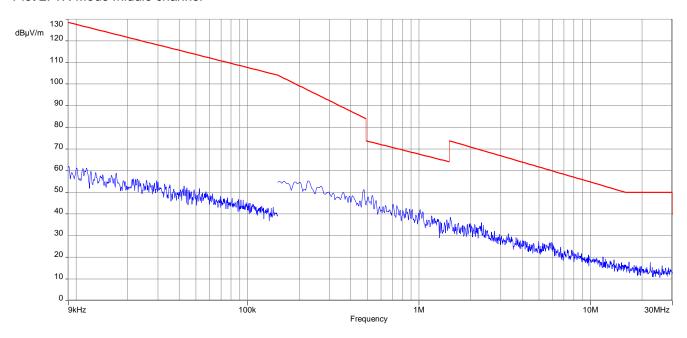

Plot 2: TX-Mode middle channel

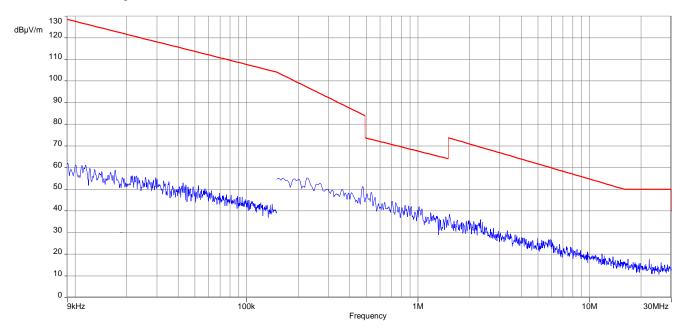
© CTC advanced GmbH Page 41 of 126



Plot 3: TX-Mode highest channel

Plots EUT with PCB antenna:


Plot 1: TX-Mode lowest channel


© CTC advanced GmbH Page 42 of 126

Plot 2: TX-Mode middle channel

Plot 3: TX-Mode highest channel

© CTC advanced GmbH Page 43 of 126

11.10 Spurious Emissions Radiated > 30 MHz

11.10.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

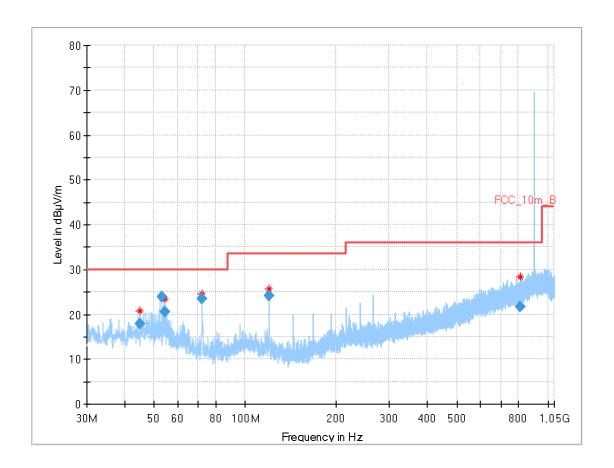
Measurement parameters				
Detector	Peak / Quasi Peak			
Sweep time	Auto			
Resolution bandwidth	3 x VBW			
Video bandwidth	120 kHz			
Span	30 MHz to 1 GHz			
Trace mode	Max hold			
Measured modulation	LoRa			
Test setup	See sub clause 6.1 A			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC			
Band-edge Compliance of conducted and radiated emissions				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

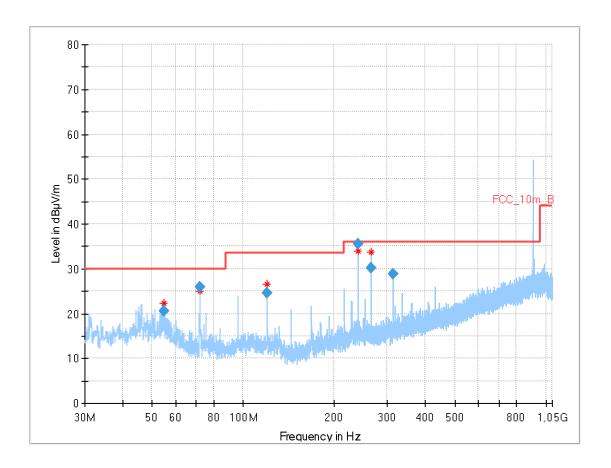
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3


Result: See result table below the plots.

© CTC advanced GmbH Page 44 of 126

Plots EUT with dipole antenna:

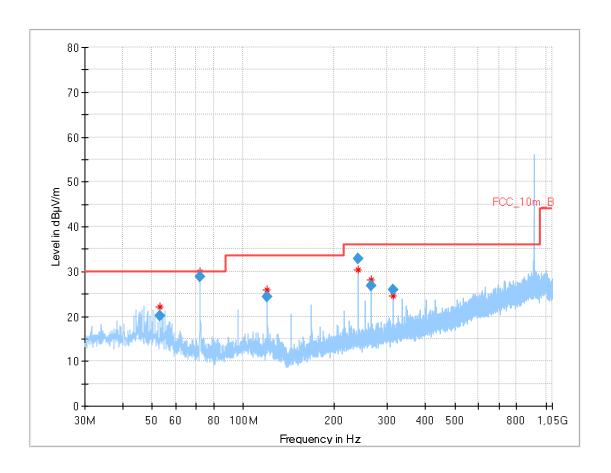
Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
45.061	17.90	30.0	12.10	1000	120	101.0	٧	202.0	15
53.045	24.01	30.0	5.99	1000	120	98.0	٧	248.0	14
54.233	20.66	30.0	9.34	1000	120	101.0	٧	161.0	14
72.060	23.51	30.0	6.49	1000	120	170.0	٧	-10.0	11
120.119	24.19	33.5	9.31	1000	120	170.0	٧	270.0	11
809.355	21.71	36.0	14.29	1000	120	170.0	٧	157.0	23

© CTC advanced GmbH Page 45 of 126

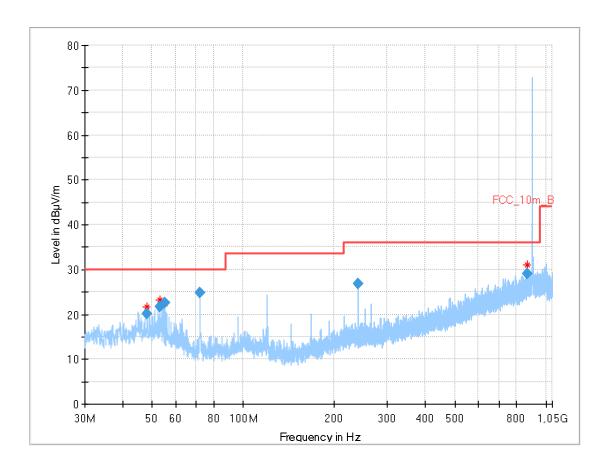
Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)



Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
54.934	20.46	30.0	9.54	1000	120	101.0	٧	-22.0	14
72.071	25.91	30.0	4.09	1000	120	170.0	٧	157.0	11
120.096	24.55	33.5	8.95	1000	120	147.0	٧	259.0	11
240.214	35.56	36.0	0.44	1000	120	98.0	٧	158.0	13
264.242	30.08	36.0	5.92	1000	120	101.0	٧	112.0	14
312.268	28.93	36.0	7.07	1000	120	98.0	٧	259.0	15

© CTC advanced GmbH Page 46 of 126

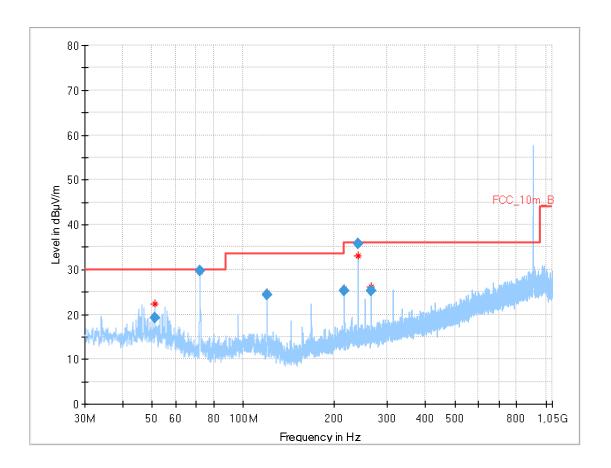
Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
53.144	20.02	30.0	9.98	1000	120	170.0	٧	259.0	14
72.065	28.73	30.0	1.27	1000	120	170.0	٧	-10.0	11
120.105	24.44	33.5	9.06	1000	120	147.0	٧	202.0	11
240.229	32.84	36.0	3.16	1000	120	98.0	٧	180.0	13
264.235	26.76	36.0	9.24	1000	120	101.0	٧	112.0	14
312.288	25.86	36.0	10.14	1000	120	98.0	٧	270.0	15

© CTC advanced GmbH Page 47 of 126

Plots EUT with PCB antenna:

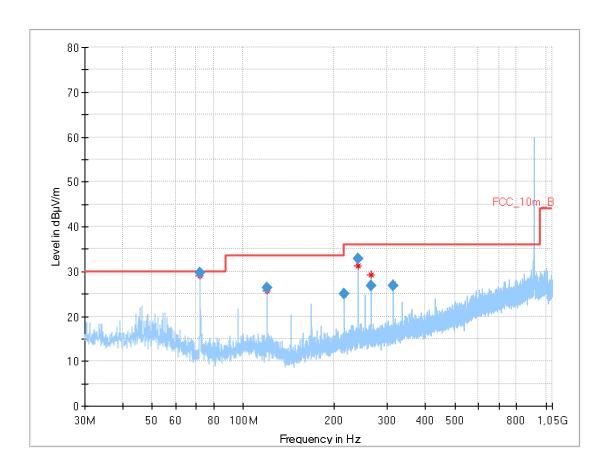
Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
48.219	20.16	30.0	9.84	1000	120	101.0	٧	191.0	15
53.030	21.64	30.0	8.36	1000	120	101.0	٧	292.0	14
55.000	22.54	30.0	7.46	1000	120	98.0	٧	247.0	14
72.070	24.74	30.0	5.26	1000	120	170.0	٧	112.0	11
240.227	26.76	36.0	9.24	1000	120	101.0	٧	90.0	13
870.302	29.00	36.0	7.00	1000	120	101.0	Н	259.0	23

© CTC advanced GmbH Page 48 of 126

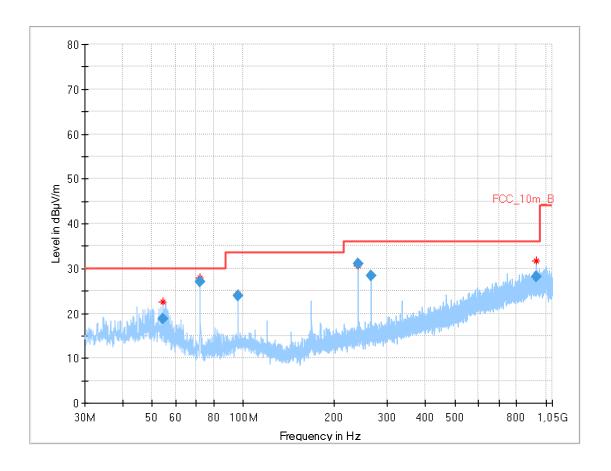
Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
51.139	19.30	30.0	10.70	1000	120	101.0	٧	259.0	15
72.063	29.63	30.0	0.37	1000	120	170.0	٧	22.0	11
120.103	24.36	33.5	9.14	1000	120	170.0	٧	292.0	11
216.196	25.29	36.0	10.71	1000	120	98.0	٧	-22.0	13
240.215	35.86	36.0	0.14	1000	120	98.0	٧	72.0	13
264.232	25.31	36.0	10.69	1000	120	98.0	٧	112.0	14

© CTC advanced GmbH Page 49 of 126

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
72.057	29.74	30.0	0.26	1000	120	170.0	٧	190.0	11
120.117	26.30	33.5	7.20	1000	120	147.0	٧	-21.0	11
216.204	25.09	36.0	10.91	1000	120	98.0	٧	-22.0	13
240.225	32.82	36.0	3.18	1000	120	98.0	٧	169.0	13
264.249	26.71	36.0	9.29	1000	120	101.0	٧	112.0	14
312.285	26.77	36.0	9.23	1000	120	98.0	٧	248.0	15

© CTC advanced GmbH Page 50 of 126

Plot 4: 30 MHz – 1 GHz, horizontal & vertical polarisation (RX-Mode)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
54.203	18.75	30.0	11.25	1000	120	101.0	٧	3.0	14
72.070	27.07	30.0	2.93	1000	120	101.0	٧	68.0	11
96.093	23.85	33.5	9.65	1000	120	101.0	٧	-21.0	13
240.220	31.06	36.0	4.94	1000	120	98.0	٧	112.0	13
264.241	28.44	36.0	7.56	1000	120	145.0	٧	90.0	14
927.258	28.26	36.0	7.74	1000	120	170.0	٧	68.0	24

© CTC advanced GmbH Page 51 of 126

11.10.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement:

	Measurement parameters			
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 26 GHz			
Trace mode	Max hold			
Measured modulation	LoRa			
Test setup	See sub clause 6.2 C (1 GHz – 12.75 GHz)			
Measurement uncertainty See sub clause 8				

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC					
	TX spurious em	issions radiated			
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement. In addition, radiated emissions which for	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).				
	§15.	.209			
Frequency (MHz)	MHz) Field strength (dBµV/m) Measurement distance				
Above 960	54.0 3				

© CTC advanced GmbH Page 52 of 126

Result:

For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

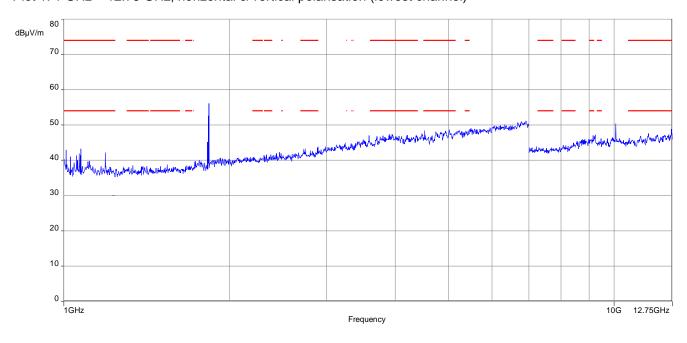
F = 20*log (dwell time/100 ms)

One pulse train is higher than 100 ms so the correction factor is 0 (see plots in chapter 11.4)

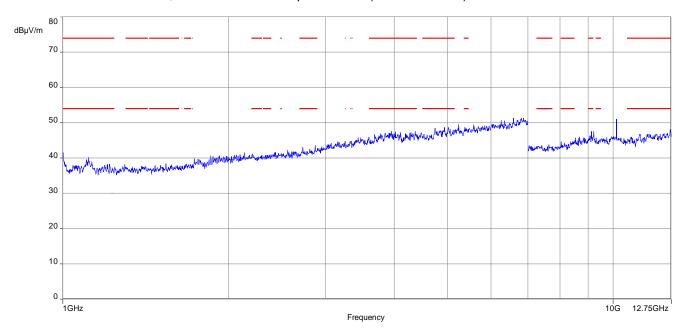
1) EUT with dipole antenna:

	TX spurious emissions radiated					
Lowest channel Middle channel Highest channel						nel
F [MHz]	F [MHz] Detector Level [dBµV/m] F [MHz] Detector Level [dBµV/m] F [MHz] Detector Level					
	No Spurious Emissions in restricted bands detected.					

2) EUT with PCB antenna

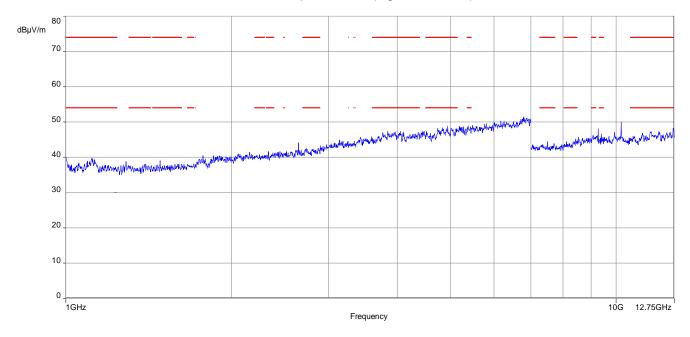

	TX spurious emissions radiated								
Lowest channel			Middle channel			Highest channel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBuV/m]			Detector	Level [dBµV/m]	
9151.07	Peak	53.69	No Spuriou	No Spurious Emissions in restricted			No Spurious Emissions in restricted		
9151.07	AVG	50.38				oands detecte	d.		

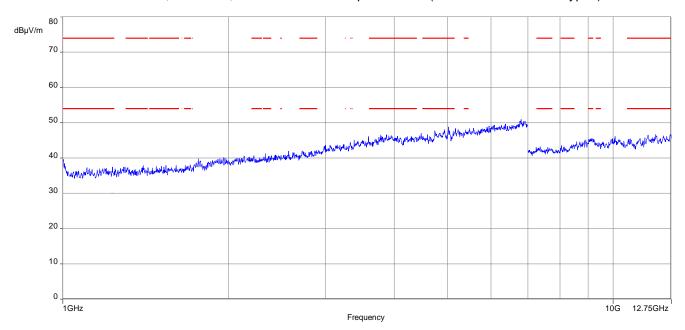
© CTC advanced GmbH Page 53 of 126



Plots EUT with dipole antenna:

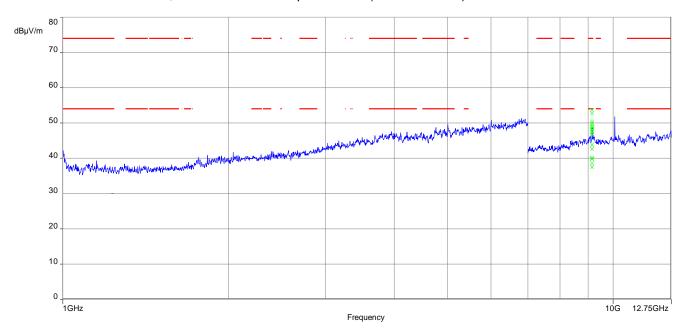
Plot 1: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

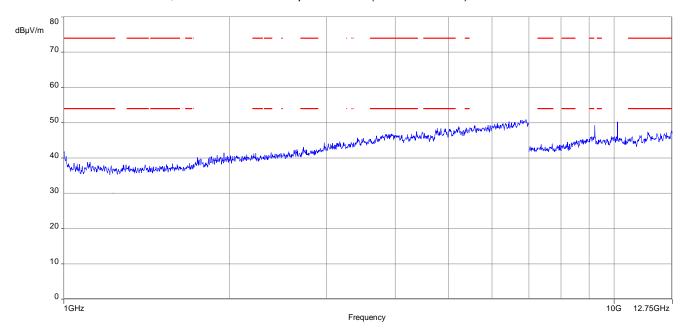

© CTC advanced GmbH Page 54 of 126

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

Plot 4: 1GHz – 12.75 GHz, RX-Mode, horizontal & vertical polarisation (valid for both antenna types)

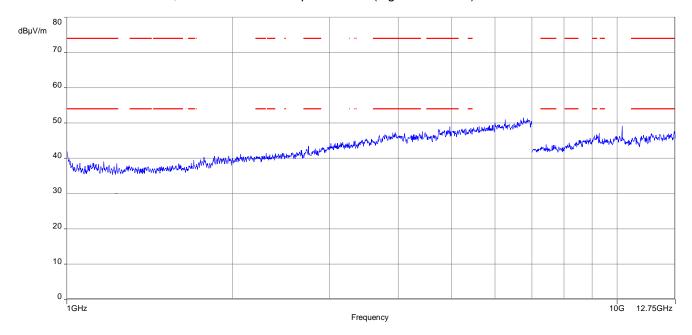


© CTC advanced GmbH Page 55 of 126



Plots EUT with PCB antenna:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

© CTC advanced GmbH Page 56 of 126

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

© CTC advanced GmbH Page 57 of 126

12 Measurement results Part 2 DTS (915.9-927.1 MHz)

12.1 Maximum output power

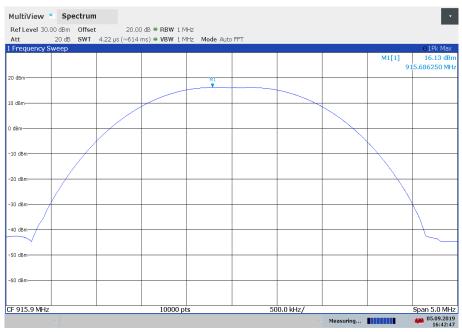
Measurement:

	Measurement parameter				
Detector:	Peak				
Sweep time:	Auto				
Resolution bandwidth:	1 MHz				
Video bandwidth:	3 MHz				
Span:	5 MHz				
Measurement method	According to ANSI C63.10-2013 11.9.1.1 RBW ≥ DTS bandwidth				
Trace-Mode:	Max Hold				
Used equipment:	See chapter 6.3 A				
Measurement uncertainty:	See chapter 8				

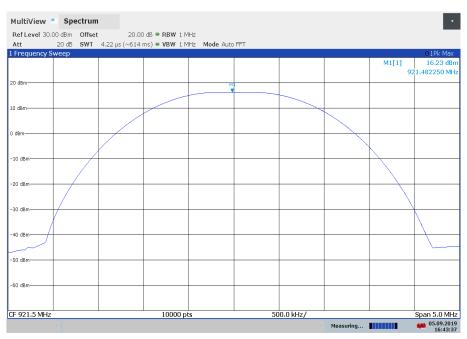
Limits:

FCC	IC
1 watt (30 dBm) Maximum	n Output Power Conducted

Result:


Test Conditions		Maximum Output Power Conducted					
100100	mantono	Lowest channel	Middle channel	Highest channel			
T_nom	V_{nom}	16.13 dBm	16.23 dBm	16.30 dBm			

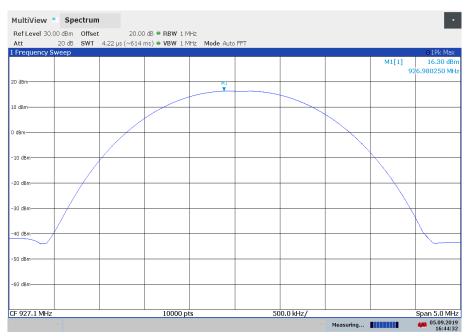
© CTC advanced GmbH Page 58 of 126


Plots:

Plot 1: Lowest Channel

16:42:47 05.09.2019

Plot 2: Middle Channel



16:43:37 05.09.2019

© CTC advanced GmbH Page 59 of 126

Plot 3: Highest Channel

16:44:33 05.09.2019

© CTC advanced GmbH Page 60 of 126

12.2 Antenna gain

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.2 B (radiated) See sub clause 6.3 A (conducted)		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC	
Antenna gain		

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

		Lowest channel	Middle channel	Highest channel
Cor	ducted power	16.13 dBm	16.23 dBm	16.30 dBm
dinala antanna	Radiated power	21.00 dBm	20.91 dBm	20.34 dBm
dipole antenna	Gain Calculated	4.87 dBi	4.68 dBi	4.04 dBi
PCB antenna	Radiated power	20.52 dBm	19.61 dBm	19.11 dBm
POB antenna	Gain Calculated	4.39 dBi	3.38 dBi	2.81 dBi

© CTC advanced GmbH Page 61 of 126

12.3 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	10 kHz	
Resolution bandwidth:	3 kHz	
Span:	2 MHz	
Trace-Mode:	Max Hold	
Measurement method	According to ANSI C63.10-2013 11.10.2 Method PKPSD (peak PSD)	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

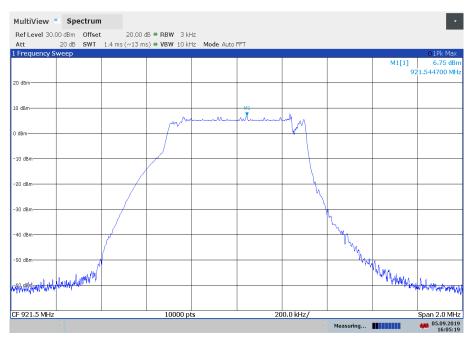
FCC	IC	
Power Spectral Density		
The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in		

any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0second duration.

Results:


Power Spectral density [dBm/3kHz]			
Channel	Lowest	Middle	Highest
	6.76	6.75	7.12

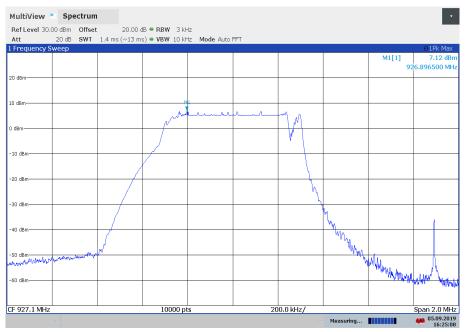
© CTC advanced GmbH Page 62 of 126


Plots:

Plot 1: Lowest Channel

16:10:39 05.09.2019

Plot 2: Middle Channel



16:05:19 05.09.2019

© CTC advanced GmbH Page 63 of 126

Plot 3: Highest Channel

16:25:08 05.09.2019

© CTC advanced GmbH Page 64 of 126

12.4 Spectrum bandwidth - 6 dB bandwidth and 99% bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	300 kHz	
Resolution bandwidth:	100 kHz	
Span:	2 MHz	
Trace-Mode:	Max Hold	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

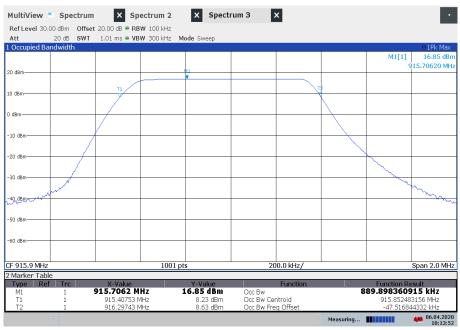
FCC	IC	
Spectrum Bandwidth – 6 dB Bandwidth		
The minimum 6 dB bandwidth shall be at least 500 kHz.		

Results:

Test Conditions		6-dB BANDWIDTH [kHz]		
100100	Train or io	Lowest channel	Middle channel	Highest channel
T _{nom}	V_{nom}	853.1	849.2	845.2


Test Conditions		99% BANDWIDTH [kHz]		
. 551 65		Lowest channel	Middle channel	Highest channel
T _{nom}	V_{nom}	889.9	886.6	878.9

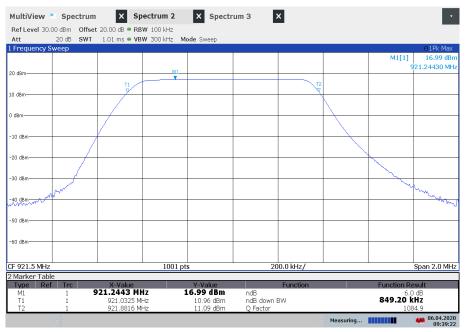
© CTC advanced GmbH Page 65 of 126


Plots:

Plot 1: Lowest Channel, 6 dB-BW

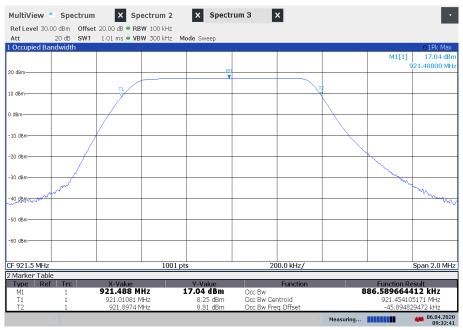
09:46:50 06.04.2020

Plot 2: Lowest Channel, 99%OBW



10:13:53 06.04.2020

© CTC advanced GmbH Page 66 of 126



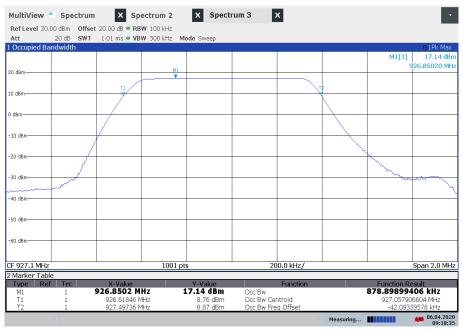
Plot 3: Middle Channel, 6 dB-BW

09:39:23 06.04.2020

Plot 4: Middle Channel, 99%OBW

09:32:41 06.04.2020

© CTC advanced GmbH Page 67 of 126



Plot 5: Highest Channel, 6 dB-BW

09:12:02 06.04.2020

Plot 6: Highest Channel, 99%OBW

09:18:36 06.04.2020

© CTC advanced GmbH Page 68 of 126

12.5 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel mode.

Measurement:

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	Lower Band Edge: 915 MHz Upper Band Edge: 928 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

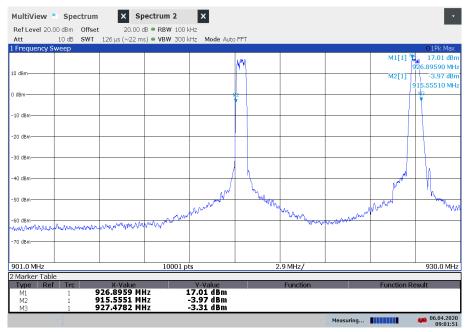
Limits:

FCC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Results conducted:


Scenario	Spurious band edge conducted	
Modulation	lowest channel	highest channel
Lower band edge	> 20 dB	> 20 dB
Upper band edge	> 20 dB	> 20 dB

© CTC advanced GmbH Page 69 of 126

Plots:

Plot 1: lowest and highest channel

09:01:52 06.04.2020

© CTC advanced GmbH Page 70 of 126

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

© CTC advanced GmbH Page 71 of 126

12.6 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	1 MHz			
Resolution bandwidth:	100 kHz			
Span:	9 kHz to 12.75 GHz			
Trace-Mode:	Max Hold			
Used equipment:	See chapter 6.3A			
Measurement uncertainty:	See chapter 8			

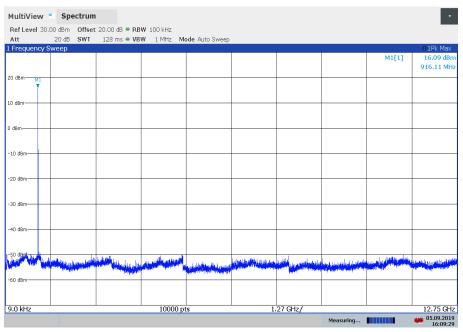
Limits:

FCC	IC			
TX spurious emissions conducted				

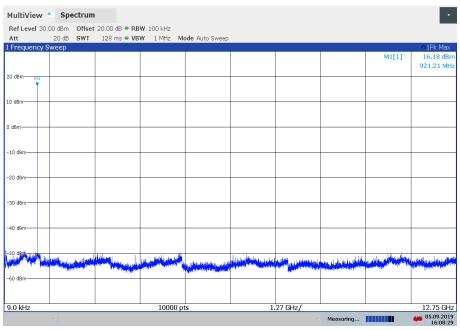
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Result:


Emission Limitation						
Frequency [MHz]		Amplitude of emission [dBm]	Limit max. allowed emission power	actual attenuation below frequency of operation [dB]	Results	
903.0		16.09	24 dBm		Operating frequency	
	See plots		-20 dBc	No emissions detected!		
909.4		16.18	24 dBm		Operating frequency	
See plots		-20 dBc	No emissions detected!			
914.2		16.27	24 dBm		Operating frequency	
	See plots		-20 dBc	No emissions detected!		

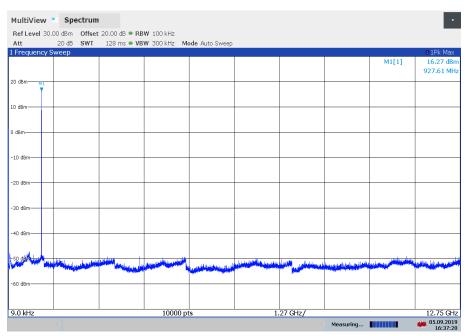
© CTC advanced GmbH Page 72 of 126


Plots:

Plot 1: Lowest channel, 9 kHz - 12.75 GHz

16:09:29 05.09.2019

Plot 2: Middle channel, 9 kHz - 12.75 GHz



16:08:30 05.09.2019

© CTC advanced GmbH Page 73 of 126

Plot 3: Highest channel, 9 kHz - 12.75 GHz

16:37:20 05.09.2019

© CTC advanced GmbH Page 74 of 126

12.7 Spurious Emissions Radiated < 30 MHz

Description:

The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

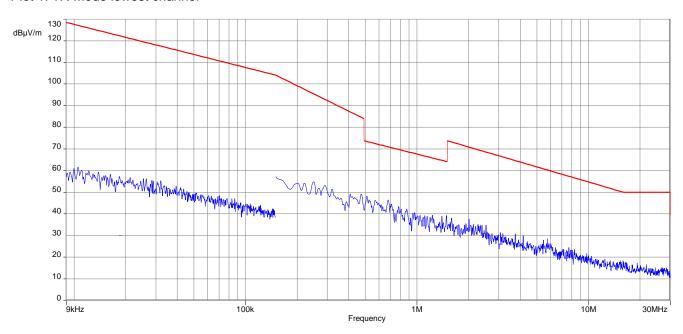
Measurement:

Measurement parameter								
Detector:	Peak / Quasi Peak							
Sweep time:	Auto							
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Span:	9 kHz to 30 MHz							
Trace-Mode:	Max Hold							
Used equipment:	See chapter 6.2 A							
Measurement uncertainty:	See chapter 8							

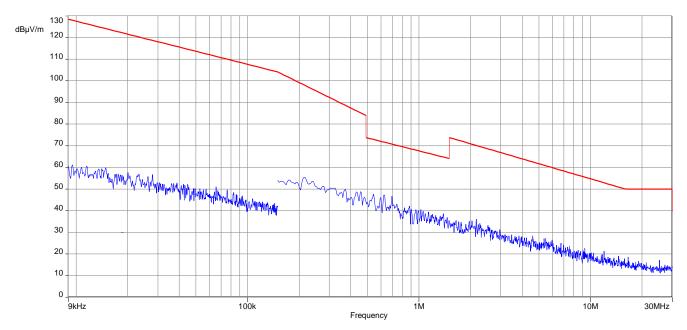
Limits:

FCC		IC				
TX spurious emissions radiated < 30 MHz						
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance			
0.009 – 0.490	2400/	F(kHz)	300			
0.490 – 1.705	24000/	F(kHz)	30			
1.705 – 30.0	3	0	30			

Result:

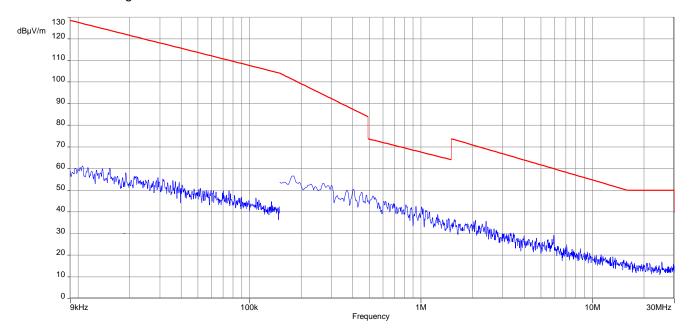

SPURIOUS EMISSIONS LEVEL										
L	owest chann	nel	Middle channel			Highest channel				
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]		
	All emissions were more than 10 dB below the limit.									

© CTC advanced GmbH Page 75 of 126



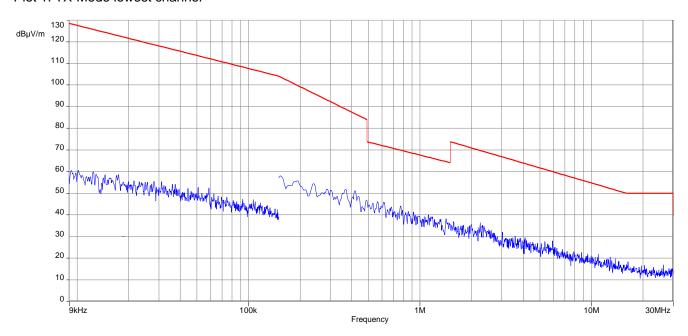
Plots EUT with dipole antenna:

Plot 1: TX-Mode lowest channel

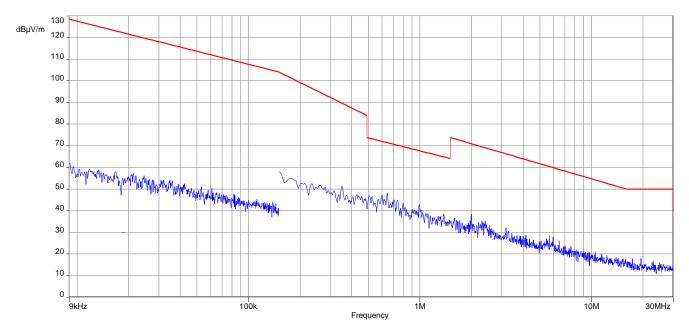

Plot 2: TX-Mode middle channel

© CTC advanced GmbH Page 76 of 126

Plot 3: TX-Mode highest channel

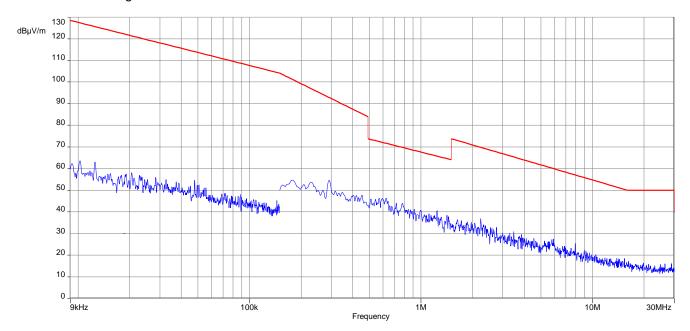


© CTC advanced GmbH Page 77 of 126



Plots EUT with PCB antenna:

Plot 1: TX-Mode lowest channel


Plot 2: TX-Mode middle channel

© CTC advanced GmbH Page 78 of 126

Plot 3: TX-Mode highest channel

© CTC advanced GmbH Page 79 of 126

12.8 Spurious Emissions Radiated > 30 MHz

12.8.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measure	Measurement parameters						
Detector Peak / Quasi Peak							
Sweep time	Auto						
Resolution bandwidth	3 x VBW						
Video bandwidth	120 kHz						
Span	30 MHz to 1 GHz						
Trace mode	Max hold						
Test setup	See sub clause 6.1 A						
Measurement uncertainty	See sub clause 8						

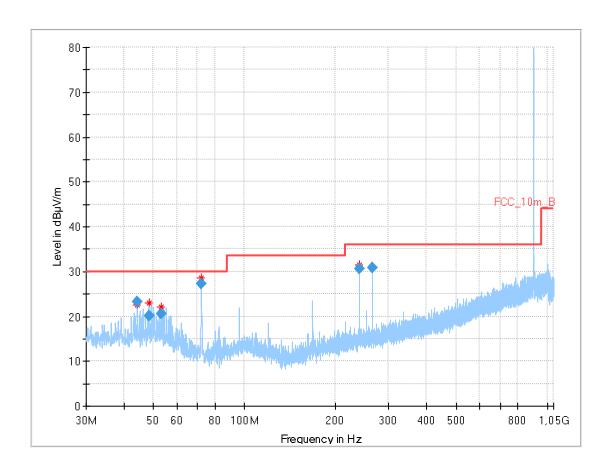
Limits:

FCC	IC
Band-edge Compliance of con	ducted and radiated emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

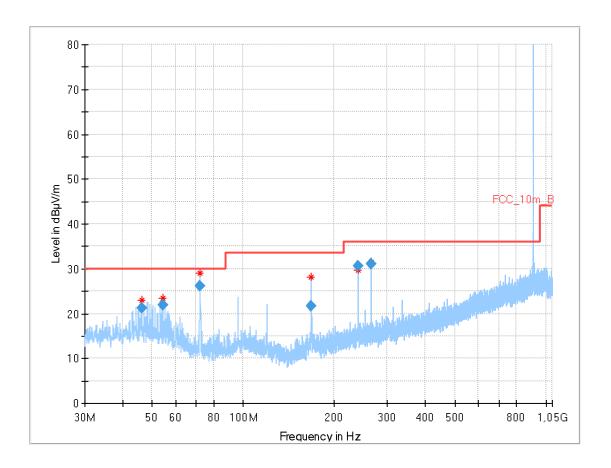
Result:


See result table below the plots.

© CTC advanced GmbH Page 80 of 126

Plots EUT with dipole antenna:

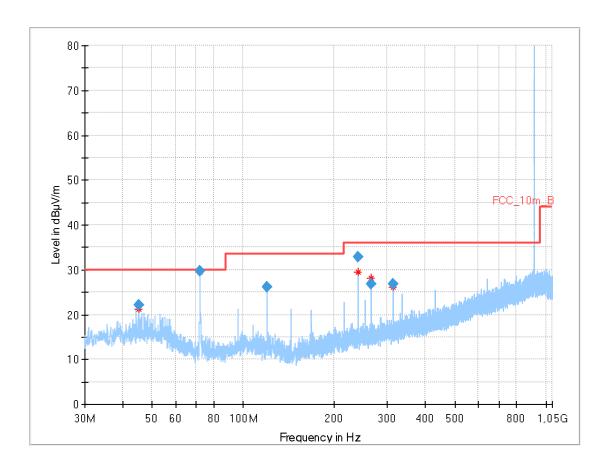
Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
44.340	23.15	30.0	6.85	1000	120	101.0	٧	112.0	15
48.348	20.11	30.0	9.89	1000	120	100.0	٧	252.0	15
53.122	20.49	30.0	9.51	1000	120	170.0	٧	12.0	14
72.068	27.31	30.0	2.69	1000	120	170.0	٧	68.0	11
240.219	30.53	36.0	5.47	1000	120	98.0	٧	67.0	13
264.242	30.78	36.0	5.22	1000	120	98.0	٧	90.0	14

© CTC advanced GmbH Page 81 of 126

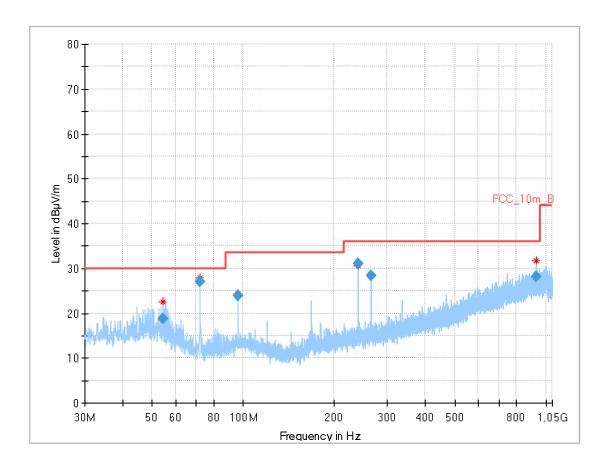
Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)



Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
46.301	21.13	30.0	8.87	1000	120	101.0	٧	259.0	15
54.301	21.88	30.0	8.12	1000	120	98.0	٧	247.0	14
72.074	26.25	30.0	3.75	1000	120	170.0	٧	101.0	11
168.154	21.63	33.5	11.87	1000	120	98.0	٧	-17.0	11
240.220	30.55	36.0	5.45	1000	120	98.0	٧	90.0	13
264.249	31.11	36.0	4.89	1000	120	98.0	٧	101.0	14

© CTC advanced GmbH Page 82 of 126

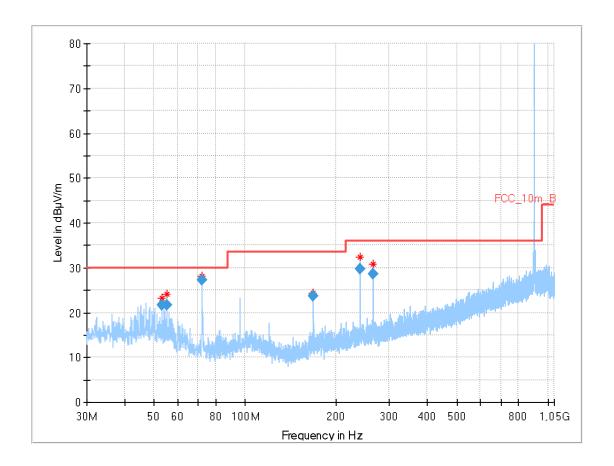
Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
45.143	22.11	30.0	7.89	1000	120	101.0	٧	292.0	15
72.066	29.78	30.0	0.22	1000	120	170.0	٧	112.0	11
120.112	26.13	33.5	7.37	1000	120	170.0	٧	-21.0	11
240.217	32.83	36.0	3.17	1000	120	98.0	٧	191.0	13
264.229	26.78	36.0	9.22	1000	120	98.0	٧	112.0	14
312.281	26.82	36.0	9.18	1000	120	98.0	٧	259.0	15

© CTC advanced GmbH Page 83 of 126

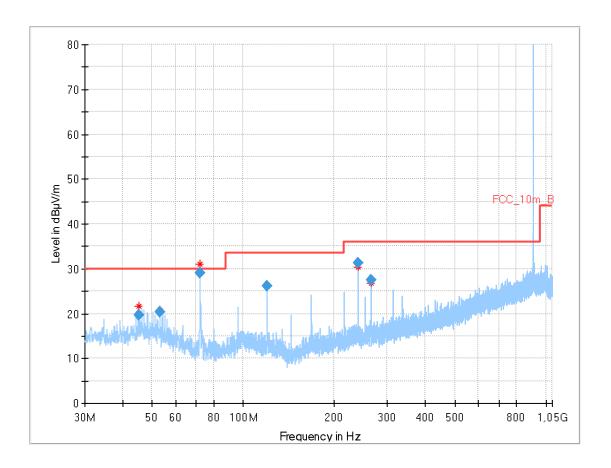
Plot 4: 30 MHz – 1 GHz, horizontal & vertical polarisation (RX-Mode, valid for both antenna types)


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
54.203	18.75	30.0	11.25	1000	120	101.0	٧	3.0	14
72.070	27.07	30.0	2.93	1000	120	101.0	٧	68.0	11
96.093	23.85	33.5	9.65	1000	120	101.0	٧	-21.0	13
240.220	31.06	36.0	4.94	1000	120	98.0	٧	112.0	13
264.241	28.44	36.0	7.56	1000	120	145.0	٧	90.0	14
927.258	28.26	36.0	7.74	1000	120	170.0	٧	68.0	24

© CTC advanced GmbH Page 84 of 126

Plots EUT with PCB antenna:

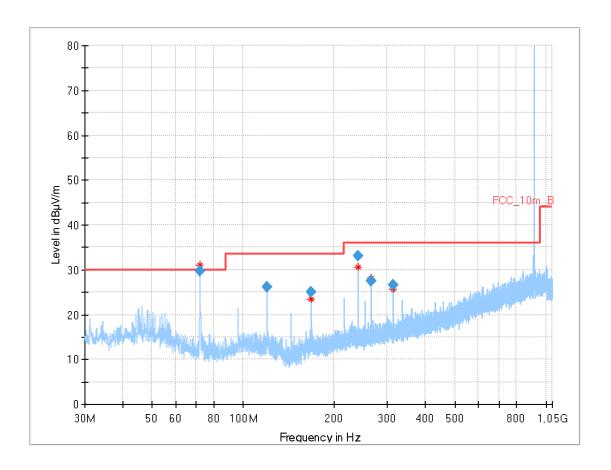
Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
53.120	21.60	30.0	8.40	1000	120	101.0	٧	2.0	14
55.108	21.71	30.0	8.29	1000	120	98.0	٧	292.0	14
72.067	27.32	30.0	2.68	1000	120	170.0	٧	102.0	11
168.156	23.68	33.5	9.82	1000	120	98.0	٧	202.0	11
240.219	29.71	36.0	6.29	1000	120	98.0	٧	101.0	13
264.256	28.59	36.0	7.41	1000	120	170.0	٧	91.0	14

© CTC advanced GmbH Page 85 of 126

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (middle channel)



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
45.112	19.60	30.0	10.40	1000	120	98.0	٧	292.0	15
53.104	20.30	30.0	9.70	1000	120	100.0	٧	248.0	14
72.072	29.04	30.0	0.96	1000	120	170.0	٧	12.0	11
120.120	26.13	33.5	7.37	1000	120	145.0	٧	-17.0	11
240.218	31.20	36.0	4.80	1000	120	98.0	٧	158.0	13
264.255	27.57	36.0	8.43	1000	120	101.0	٧	90.0	14

© CTC advanced GmbH Page 86 of 126

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
72.068	29.79	30.0	0.21	1000	120	170.0	٧	-9.0	11
120.120	26.19	33.5	7.31	1000	120	170.0	٧	-22.0	11
168.148	25.13	33.5	8.37	1000	120	98.0	٧	292.0	11
240.222	33.04	36.0	2.96	1000	120	98.0	٧	180.0	13
264.243	27.54	36.0	8.46	1000	120	147.0	٧	90.0	14
312.295	26.58	36.0	9.42	1000	120	98.0	٧	247.0	15

© CTC advanced GmbH Page 87 of 126

12.8.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 12.75 GHz			
Trace mode	Max hold			
Test setup	See sub clause 6.2 C (1 GHz – 12.75 GHz)			
Measurement uncertainty	See sub clause 8			

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC							
	TX spurious emissions radiated						
radiator is operating, the radio frequency that in the 100 kHz bandwidth within the conducted or a radiated measurement. A In addition, radiated emissions which fa	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
§15.209							
Frequency (MHz) Field strength (dBµV/m) Measurement distance							
Above 960 54.0 3							

© CTC advanced GmbH Page 88 of 126

Result:

For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

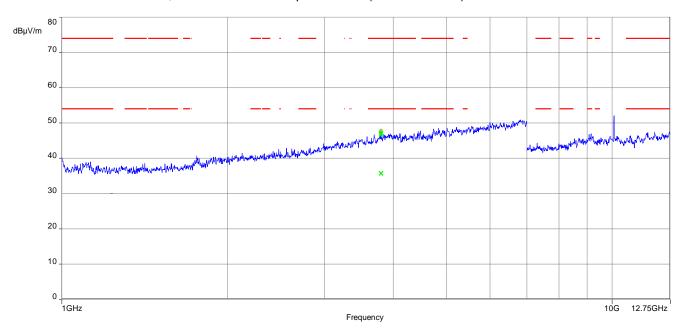
F = 20*log (dwell time/100 ms)

One pulse train is higher than 100 ms so the correction factor is 0 (see plots in chapter 11.4)

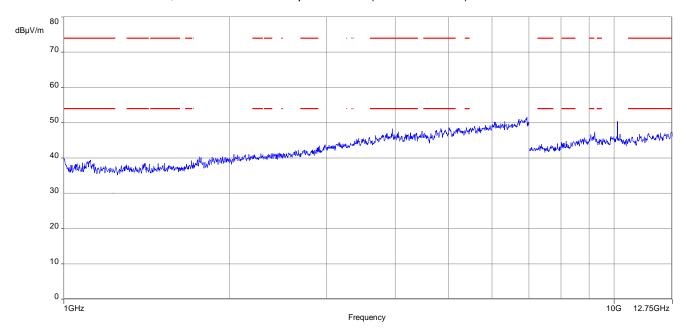
a) EUT with dipole antenna

TX spurious emissions radiated								
Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
3798.40	Peak	47.38	No Spurious Emissions in restricted			No Spurious Emissions in restricted		in restricted
3190.40	AVG	35.70	b	bands detected.			ands detecte	d.

b) EUT with PCB antenna

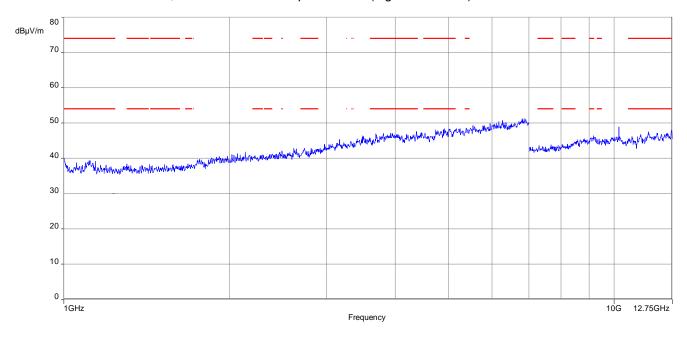

TX spurious emissions radiated								
Lowest channel			Middle channel		Highest channel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level F [dBµV/m] F [F [MHz]	Detector	Level [dBµV/m]
9158.55	Peak	53.81	No Spurious Emissions in restricted bands detected.		No Spurious Emissions in restricted bands detected.			
9100.00	AVG	50.63	5	4,140 40100100	4.	L	ando delecte	u.

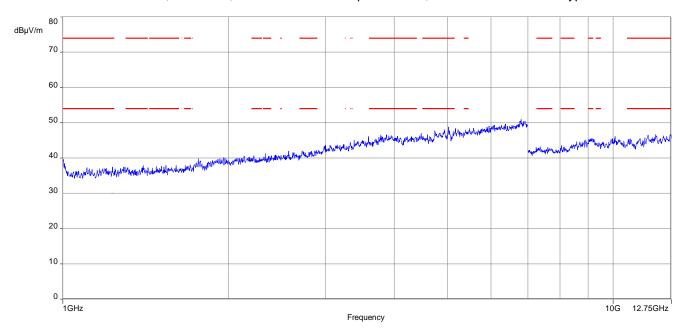
© CTC advanced GmbH Page 89 of 126



Plots EUT with dipole antenna:

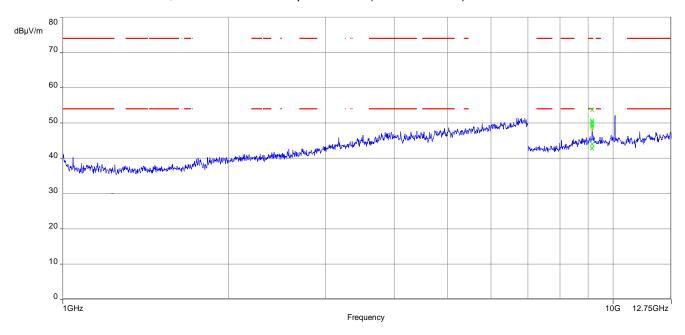
Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

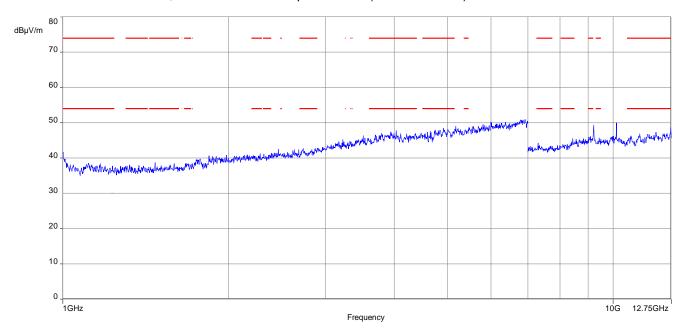

© CTC advanced GmbH Page 90 of 126

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

Plot 4: 1GHz - 12.75 GHz, RX-Mode, horizontal & vertical polarisation, valid for both antenna types

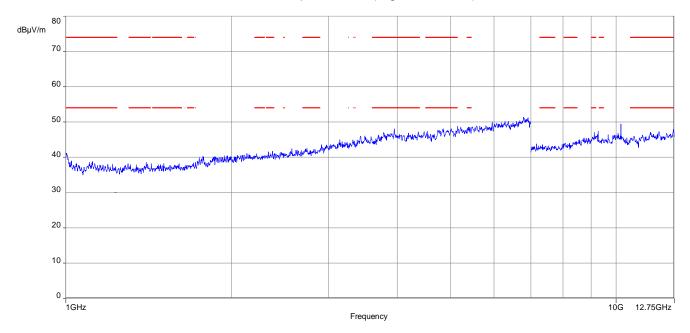


© CTC advanced GmbH Page 91 of 126



Plots EUT with PCB antenna:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

© CTC advanced GmbH Page 92 of 126

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (Highest channel)

© CTC advanced GmbH Page 93 of 126

13 Measurement results Part 3 Hybrid Mode (923.2-923.4 MHz)

13.1 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement:

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 6.2 B (radiated) See sub clause 6.3 A (conducted)			
Measurement uncertainty	See sub clause 8			

Limits:

FCC
Antenna gain
The conducted output according to a cifed in a consequence (b) of this continue is bounded as the consequence

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

		Low channel	High channel	
Conducted power		15.28 dBm	15.16 dBm	
dipole antenna	Radiated power	19.58 dBm	19.71 dBm	
	Gain Calculated	4.30 dBi	4.55 dBi	
PCB antenna	Radiated power	18.45 dBm	20.24 dBm	
	Gain Calculated	3.17 dBi	5.08 dBi	

© CTC advanced GmbH Page 94 of 126

13.2 Carrier Frequency Separation

Description:

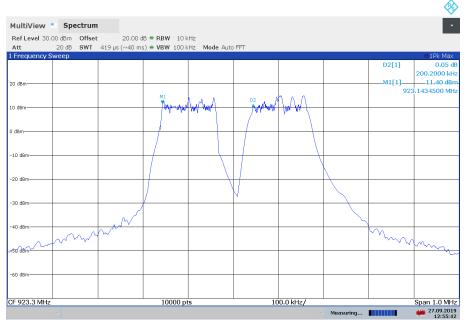
Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use LoRa-modulation to show compliance. EUT in hopping mode.

Measurement:

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	See plots			
Video bandwidth	See plots			
Span	See plots			
Trace mode	Max hold			
Test setup	See sub clause 6.3 A			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	
Carrier frequency separation	
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.	


Result: The channel separation is 200.2 kHz

© CTC advanced GmbH Page 95 of 126

Plots:

Plot 1: Frequency separation

12:55:43 27.09.2019

© CTC advanced GmbH Page 96 of 126

13.3 Average Time of Occupancy (dwell time)

Measurement:

The measurement is performed in zero span mode to show that none of the 2 used channels is allocated more than 0.4 seconds within a 0.8 seconds interval (2 channels times 0.4s).

Limits:

FCC

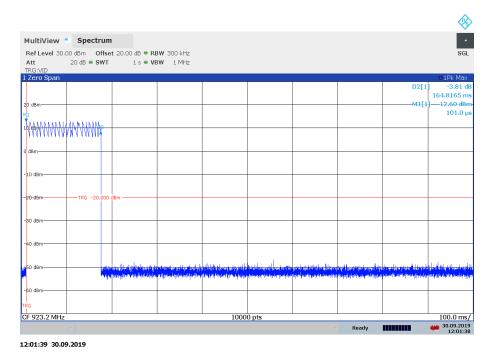
Average time of occupancy

For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4

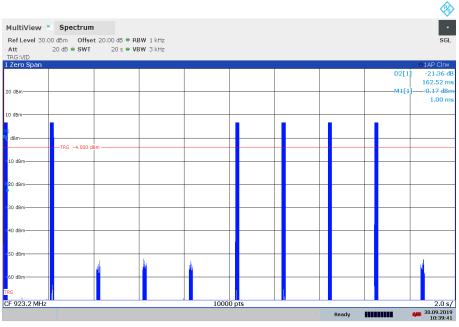
Result: The time slot length is = 164.81 ms

Number of hops / channel @ 0.8s = 1

Within 0.8 s period, the average time of occupancy in 0.8 s: 1* 164.81 ms


→ The average time of occupancy = 164.81 ms

© CTC advanced GmbH Page 97 of 126



Plots:

Plot 1: Time slot length = 164.81ms

Plot 2: hops / channel @ 20s = 5

10:39:41 30.09.2019

© CTC advanced GmbH Page 98 of 126

13.4 Spectrum bandwidth

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	100 kHz			
Resolution bandwidth:	20 kHz			
Span:	2 MHz			
Trace-Mode:	Max Hold			
Test setup	See sub clause 6.3 A			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC		
None			

Results:

Test Conditions		20-dB BANDWIDTH [kHz]	
		Lowest channel	Highest channel
T _{nom}	V_{nom}	139.5	139.0

Test Conditions		99% BANDWIDTH [kHz]	
		Lowest channel	Highest channel
T _{nom}	V_{nom}	127.8	126.9

© CTC advanced GmbH Page 99 of 126

Plots:

Plot 1: Lowest Channel, 20 dB-BW

11:49:43 10.01.2020

Plot 2: Lowest Channel, 99%OBW

11:51:00 10.01.2020

© CTC advanced GmbH Page 100 of 126

Plot 5: Highest Channel, 20 dB-BW

11:02:32 10.01.2020

Plot 6: Highest Channel, 99%OBW

11:05:17 10.01.2020

© CTC advanced GmbH Page 101 of 126

13.5 Maximum Output Power

Measurement:

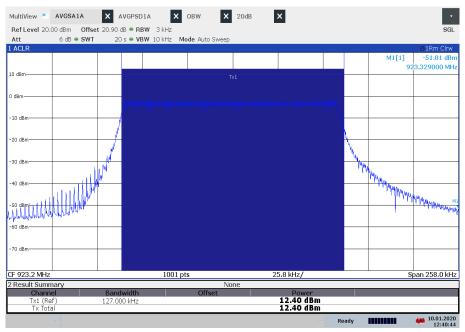
Measurement parameter*		
Detector: RMS		
Sweep time:	See plots	
Resolution bandwidth:	3 kHz	
Video bandwidth:	10 kHz	
Span:	258 kHz	
Trace-Mode:	Single sweep	
Measurement method	According to ANSI C63.10-2013 11.9.2.2.3 Method AVGSA-1A (alternative)	
Used equipment:	See chapter 6.3 A	
Measurement uncertainty:	ent uncertainty: See chapter 8	

Limits:

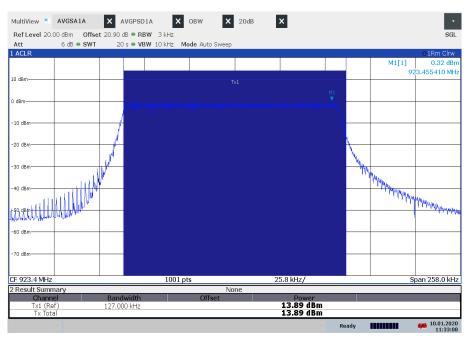
FCC	IC		
Maximum Output Power Conducted			
For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing			

For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:


Test Conditions		Maximum Output Power Conducted [dBm]	
		Lowest channel	Highest channel
T_nom	V_{nom}	12.4	13.9

© CTC advanced GmbH Page 102 of 126


Plots:

Plot 1: Lowest Channel

12:40:44 10.01.2020

Plot 2: Highest Channel

11:33:09 10.01.2020

© CTC advanced GmbH Page 103 of 126

13.6 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

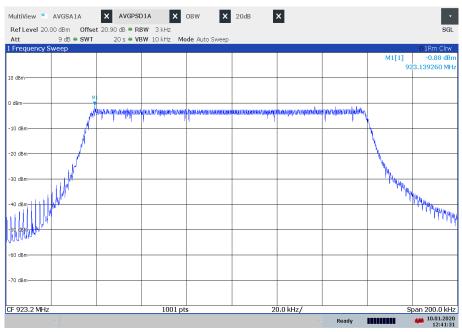
Measurement:

Measurement parameter*		
Detector:	RMS	
Sweep time:	20 s	
Video bandwidth:	10 kHz	
Resolution bandwidth:	3 kHz	
Span:	200 kHz	
Trace-Mode:	Single sweep	
Measurement method	According to ANSI C63.10-2013 11.10.4 Method AVGPSD-1A (alternative)	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

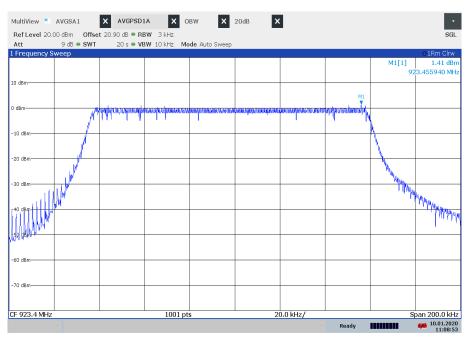
Limits:

FCC		
Power Spectral Density		
A hybrid system must comply with the power density standard of 8 dBm in any 3 kHz band when the frequency hopping function is turned off.		

Results:


	Power Spectral density / 3 kHz	
Channel	Lowest	Highest
	-0.88 dBm	1.41 dBm

© CTC advanced GmbH Page 104 of 126


Plots:

Plot 1: Lowest Channel

12:41:32 10.01.2020

Plot 2: Highest Channel

11:08:54 10.01.2020

© CTC advanced GmbH Page 105 of 126

13.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel mode.

Measurement:

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz	
Trace mode	Max hold	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

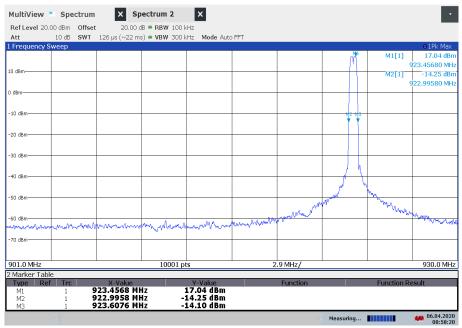
Limits:

FCC

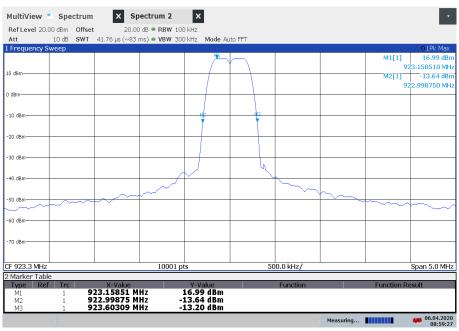
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Results conducted:


Scenario	Spurious band edge conducted	
Modulation	lowest channel	highest channel
Lower band edge – hopping on	> 30 dB	> 30 dB
Upper band edge – hopping off	> 30 dB	> 30 dB

© CTC advanced GmbH Page 106 of 126


Plots:

Plot 1: 30 dB - hopping on

08:58:21 06.04.2020

Plot 2: 30 dB - hopping off

08:59:28 06.04.2020

© CTC advanced GmbH Page 107 of 126

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

© CTC advanced GmbH Page 108 of 126

13.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Video bandwidth:	300 kHz				
Resolution bandwidth:	100 kHz				
Span:	9 kHz to 12.75 GHz				
Trace-Mode:	Max Hold				
Used equipment:	See chapter 6.3A				
Measurement uncertainty:	See chapter 8				

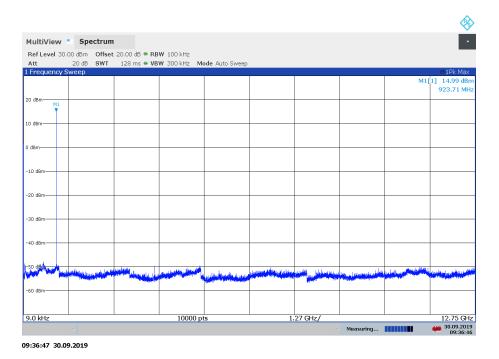
Limits:

FCC
TX spurious emissions conducted

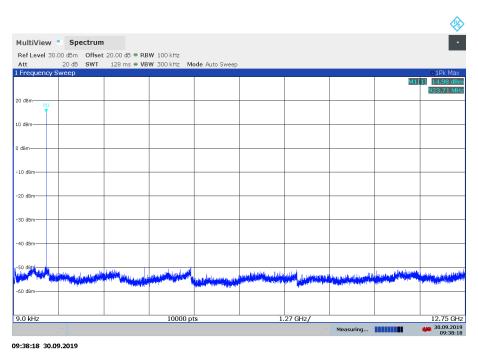
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Result:


	Emission Limitation							
Frequency Amplitude of emission [dBm]			Limit max. allowed emission power	actual attenuation below frequency of operation [dB]	Results			
923.2		14.99	24 dBm		Operating frequency			
See plots			-30 dBc	No emissions detected!				
923.4		14.98	24 dBm		Operating frequency			
See plots			-30 dBc	No emissions detected!				

© CTC advanced GmbH Page 109 of 126



Plots:

Plot 1: Lowest channel, 9 kHz - 12.75 GHz

Plot 3: Highest channel, 9 kHz - 12.75 GHz

© CTC advanced GmbH Page 110 of 126

13.9 Spurious Emissions Radiated < 30 MHz

Description:

The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

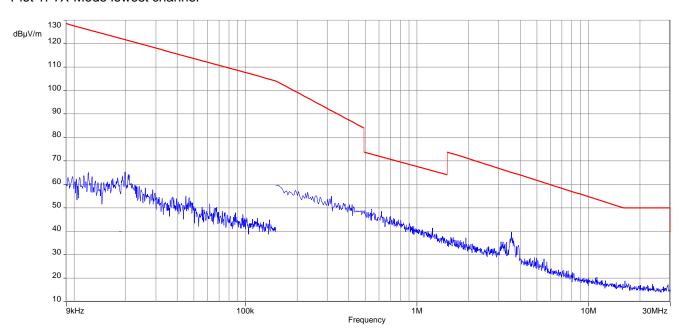
Measurement:

Measurement parameter						
Detector:	Peak / Quasi Peak					
Sweep time:	Auto					
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span:	9 kHz to 30 MHz					
Trace-Mode:	Max Hold					
Used equipment:	See chapter 6.2 A					
Measurement uncertainty:	See chapter 8					

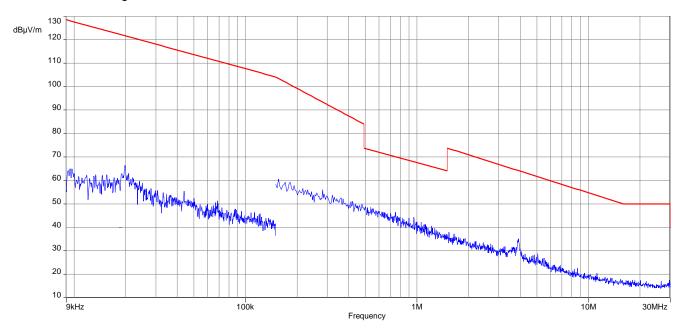
Limits:

FCC						
TX spurious emissions radiated < 30 MHz						
Frequency (MHz) Field strength (dBµV/m) Measurement distance						
0.009 – 0.490	2400/F(kHz)	300				
0.490 – 1.705	24000/F(kHz)	30				
1.705 – 30.0	30	30				

Result:


SPURIOUS EMISSIONS LEVEL									
L	owest chann	nel	Middle channel			Highest channel			
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	
	All emissions were more than 10 dB below the limit.								

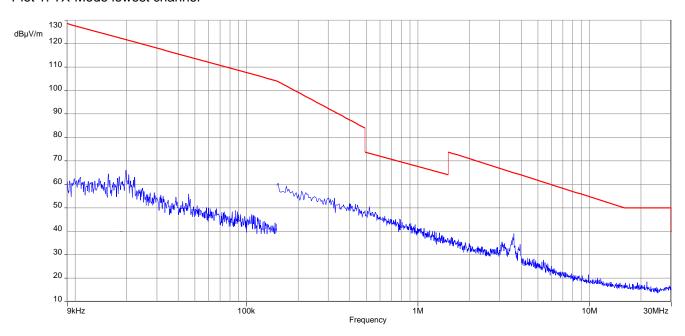
© CTC advanced GmbH Page 111 of 126



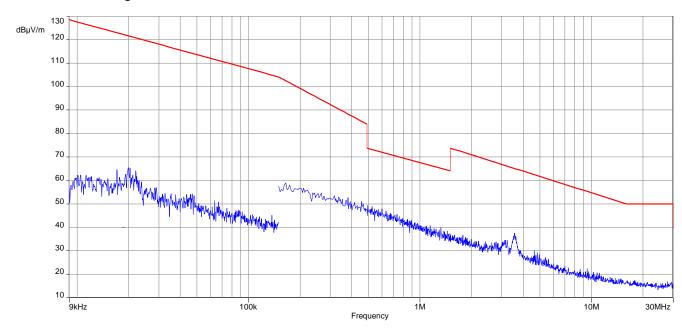
Plots EUT with dipole antenna:

Plot 1: TX-Mode lowest channel

Plot 2: TX-Mode highest channel



© CTC advanced GmbH Page 112 of 126



Plots EUT with PCB antenna:

Plot 1: TX-Mode lowest channel

Plot 2: TX-Mode highest channel

© CTC advanced GmbH Page 113 of 126

13.10 Spurious Emissions Radiated > 30 MHz

13.10.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters				
Detector	Peak / Quasi Peak			
Sweep time	Auto			
Resolution bandwidth	120 kHz			
Video bandwidth	3 x RBW			
Span	30 MHz to 1 GHz			
Trace mode	Max hold			
Test setup	See sub clause 6.1 A			
Measurement uncertainty	See sub clause 8			

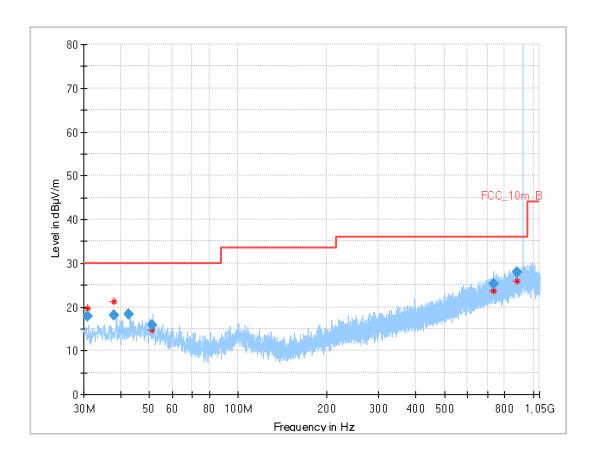
Limits:

FCC	IC
Band-edge Compliance of con-	ducted and radiated emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

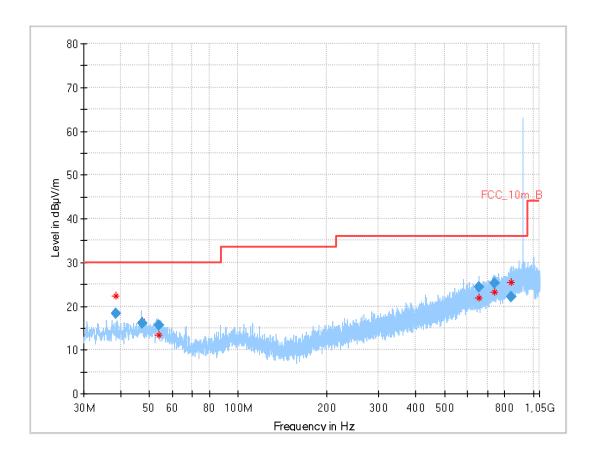
Result:


See result table below the plots.

© CTC advanced GmbH Page 114 of 126

Plots EUT with dipole antenna:

Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)

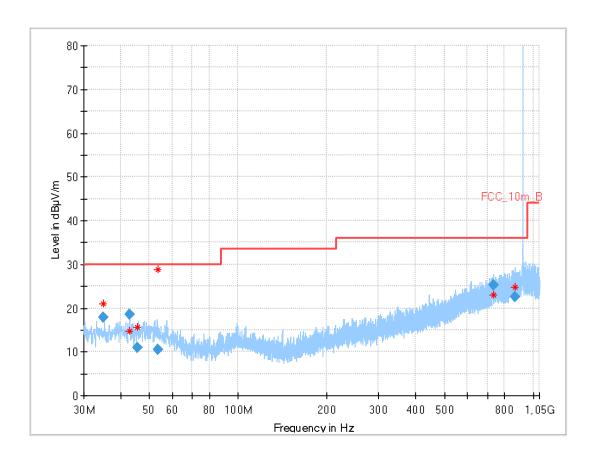

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
30.998	17.78	30.0	12.22	1000	120	152.0	Н	112.0	13
38.102	18.16	30.0	11.84	1000	120	170.0	Н	-22.0	14
42.470	18.39	30.0	11.61	1000	120	108.0	Н	280.0	15
50.994	15.96	30.0	14.04	1000	120	170.0	Н	67.0	15
735.953	25.14	36.0	10.86	1000	120	170.0	Н	247.0	22
879.366	27.94	36.0	8.06	1000	120	170.0	٧	157.0	24

© CTC advanced GmbH Page 115 of 126

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

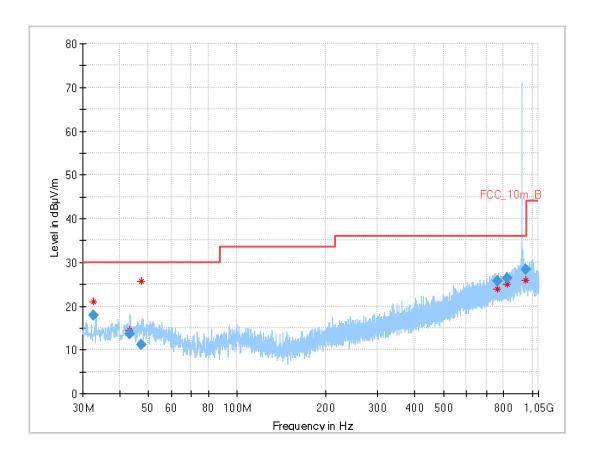
Final_Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
38.649	18.24	30.0	11.76	1000	120	126.0	Н	165.0	14
47.413	16.04	30.0	13.96	1000	120	170.0	Н	169.0	15
53.951	15.55	30.0	14.45	1000	120	170.0	٧	247.0	14
656.672	24.40	36.0	11.60	1000	120	163.0	Н	157.0	21
741.588	25.31	36.0	10.69	1000	120	170.0	٧	-14.0	22
844.868	22.23	36.0	13.77	1000	120	151.0	٧	157.0	23

© CTC advanced GmbH Page 116 of 126

Plots EUT with PCB antenna:

Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
34.802	17.95	30.0	12.05	1000	120	170.0	Н	112.0	14
42.828	18.44	30.0	11.56	1000	120	170.0	Н	247.0	15
45.641	10.94	30.0	19.06	1000	120	150.0	Н	67.0	15
53.609	10.45	30.0	19.55	1000	120	154.0	Н	67.0	14
732.215	25.21	36.0	10.79	1000	120	170.0	٧	247.0	22
865.241	22.61	36.0	13.39	1000	120	170.0	٧	96.0	23

© CTC advanced GmbH Page 117 of 126

Plot 2: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
32.726	17.85	30.0	12.15	1000	120	163.0	Н	292.0	13
43.090	13.62	30.0	16.38	1000	120	170.0	Н	-22.0	15
47.285	11.13	30.0	18.87	1000	120	170.0	Н	247.0	15
760.982	25.74	36.0	10.26	1000	120	170.0	Н	157.0	22
820.796	26.44	36.0	9.56	1000	120	170.0	Н	247.0	23
950.208	28.46	36.0	7.54	1000	120	170.0	Н	178.0	24

© CTC advanced GmbH Page 118 of 126

13.10.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters			
Detector	Peak / RMS		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 x RBW		
Span	1 GHz to 12.75 GHz		
Trace mode	Max hold		
Test setup	See sub clause 6.2 C (1 GHz – 12.75 GHz)		
Measurement uncertainty	See sub clause 8		

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC					
TX spurious emissions radiated					
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).					
§15.209					
Frequency (MHz) Field strength (dBµV/m) Measurement distance					
Above 960	54.0	3			

© CTC advanced GmbH Page 119 of 126

Result:

For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

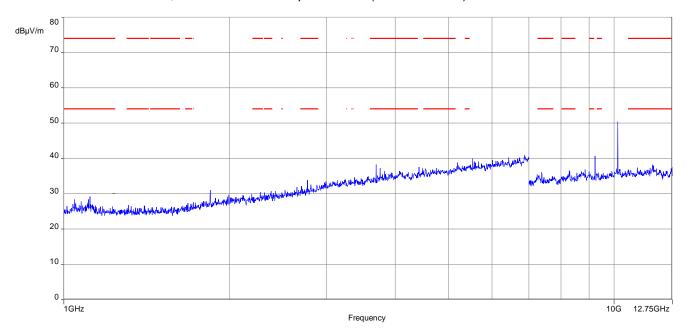
F = 20*log (dwell time/100 ms)

One pulse train is higher than 100 ms so the correction factor is 0 (see plots in chapter 11.4)

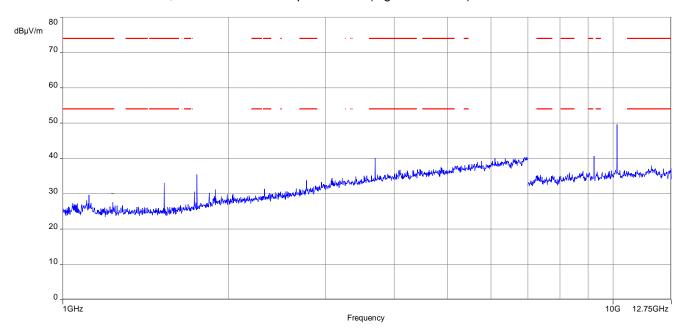
a) EUT with dipole antenna

TX spurious emissions radiated					
Lowest channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz] Detector	Level	[dBµV/m]
No Spurious Emissions in restricted bands detected.			No Spurious I	Emissions in restric	ted bands detected.

b) EUT with PCB antenna


TX spurious emissions radiated					
Lowest channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz] Detector	Level	[dBµV/m]
No Spurious Emissions in restricted bands detected.			No Spurious I	Emissions in restric	ted bands detected.

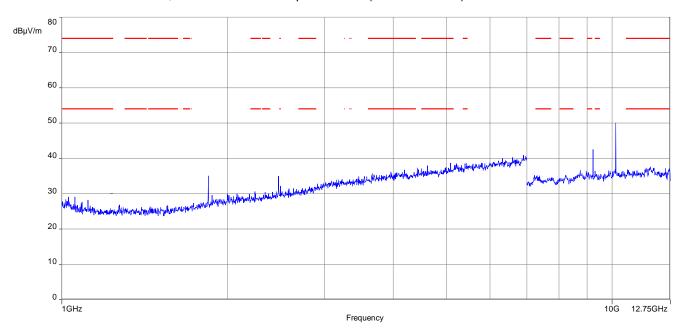
© CTC advanced GmbH Page 120 of 126



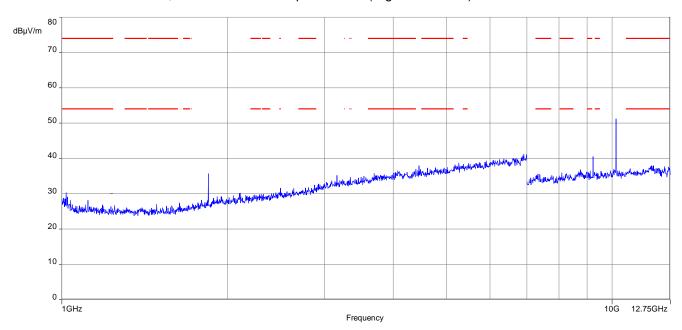
Plots EUT with dipole antenna:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)

Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)



© CTC advanced GmbH Page 121 of 126



Plots EUT with PCB antenna:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)

Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (Highest channel)

© CTC advanced GmbH Page 122 of 126

14 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 123 of 126

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
ocw	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 124 of 126

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-12-18
А	Output Power, Spectral Bandwidth & Spectral Power updated for Hybrid Systems	2020-01-10
В	Editorial changes	2020-01-13
С	FHSS mode removed, Hybrid mode added, Editorial changes	2020-03-31
D	Editorial changes	2020-04-01
E	Several plots and measurement results replaced	2020-04-06

Annex C Accreditation Certificate - D-PL-12076-01-04

first page last page

Deutsche Akkreditierungsstelle GmbH

Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition

Accreditation

The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory

CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:

The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages.

Registration number of the certificate: D-PL-12076-01-04

Frankfurt am Main, 11.01.2019

Deutsche Akkreditierungsstelle GmbH

Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

ie publication of extracts of the accreditation certificate is subject to the prior wri butsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of sseminations of the cover sheet by the conformity assessment body mentioned o

© CTC advanced GmbH Page 125 of 126

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

Annex D Accreditation Certificate – D-PL-12076-01-05

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 126 of 126