

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-9737/19-01-02-D

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Adeunis

283 Rue Louis Néel - Part technologique Pré Roux

38920 Crolles / FRANCE
Phone: +33 (0) 4 76 92 07 77
Contact: Emmanuel Monnet
e-mail: e.monnet@adeunis-rf.com

Phone: +33 4 76 92 01 62

Manufacturer

FeedbackNow-Forrester Research Ltd

22b rue du lac

1020 Renens / Switzerland

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence -

Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Smiley Box V2 915 LoRa

Model name: 8354B
FCC ID: U3Z-A8354
IC: 7016A-A8354

Frequency: ISM band 902 MHz – 928 MHz
Technology tested: Long Range Wide Area Network

Antenna: Integrated antenna
Power supply: 3.3 V DC by battery
Temperature range: -20°C to +55°C

Radio Communications

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
	p.o.
Christoph Schneider	Sumit Kumar
Lab Manager	Testing Manager

Radio Communications

1 Table of contents

1	Table (of contents	
2	Genera	al information	
_		Notes and disclaimer	
		Application details	
		Test laboratories sub-contracted	
3	_	andard/s and references	
4		nvironment	
5	Test it	em	6
	5.1	General description	6
	5.2	Additional information	6
6	Descri	ption of the test setup	
	6.1	Shielded semi anechoic chamber	8
	6.2	Shielded fully anechoic chamber	
	6.3	Conducted measurements	10
7	Seaue	nce of testing	11
	•	•	
		Sequence of testing radiated spurious 9 kHz to 30 MHzSequence of testing radiated spurious 30 MHz to 1 GHz	
		Sequence of testing radiated spurious 30 MHz to 1 GHz	
8		rement uncertainty	
9	Summ	ary of measurement results	15
	9.1	Part 1: DTS mode	15
	9.2	Part 2: Hybrid mode	16
10	RF n	neasurements	17
	10.1	Additional comments	17
11	Mea	surement results Part 1 DTS mode	18
	11.1	Maximum output power	18
	11.2	Antenna gain	
	11.3	Power spectral density	
	11.4	Spectrum bandwidth – 6 dB bandwidth and 99% bandwidth	2
	11.5	Detailed spurious emissions @ the band edge - conducted and radiated	29
	11.6	Spurious Emissions Conducted	32
	11.7	Spurious Emissions Radiated < 30 MHz	35
	11.8	Spurious Emissions Radiated > 30 MHz	
	11.8.1	Spurious emissions radiated 30 MHz to 1 GHz	
	11.8.2	Spurious emissions radiated above 1 GHz	42
12	Mea	surement results Part 2 Hybrid Mode	4
	12.1	Antenna gain	4
	12.2	Carrier Frequency Separation	
	12.3	Spectrum bandwidth	48

	12.4	Average Time of Occupancy (dwell time)	52
	12.5	Power spectral density	
	12.6	Maximum Output Power	57
	12.7	Detailed spurious emissions @ the band edge - conducted and radiated	60
	12.8	Spurious Emissions Conducted	
	12.9	Spurious Emissions Radiated < 30 MHz	66
	12.10	Spurious Emissions Radiated > 30 MHz	
	12.10.		69
	12.10.		73
13	Obs	ervations	77
Anr	nex A	Glossary	78
Anr	nex B	Document history	79
Anr	nex C	Accreditation Certificate - D-PL-12076-01-04	79
Δnr	nex D	Accreditation Certificate - D-PL-12076-01-05	80

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9737/19-01-02-C and dated 2020-03-27.

2.2 Application details

Date of receipt of order: 2020-01-15
Date of receipt of test item: 2020-01-15
Start of test: 2020-01-20
End of test: 2020-01-21

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 4 of 80

3 Test standard/s and references

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
DTS: KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf	DAKKS Deutsche Akkreditierungsstelle Del-1/2076-01-05

© CTC advanced GmbH Page 5 of 80

4 Test environment

		T_{nom}	+22 °C during room temperature tests
Temperature	:	T_{max}	No tests under extreme conditions required.
		T_{min}	No tests under extreme conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V_{nom}	3.3 V DC by battery
Power supply	:	V_{max}	No tests under extreme conditions required.
		V_{min}	No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Smiley Box V2 915 LoRa
Model name :	8354B
HMN :	-/-
PMN :	Smiley Box
HVIN :	8354B
FVIN :	-/-
S/N serial number :	-/-
Hardware status :	ARF8354/B
Software status :	V02.00.00
Firmware status :	-/-
Frequency band :	ISM band 902 MHz - 928 MHz
Type of radio transmission: Use of frequency spectrum:	DTS and Hybrid mode
Number of channels :	Hybrid mode: 64 DTS mode: 8
Antenna :	Integrated antenna
Power supply :	3.3 V DC by battery
Temperature range :	-20°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-9737/19-01-01_AnnexA

1-9737/19-01-01_AnnexB 1-9737/19-01-01_AnnexD

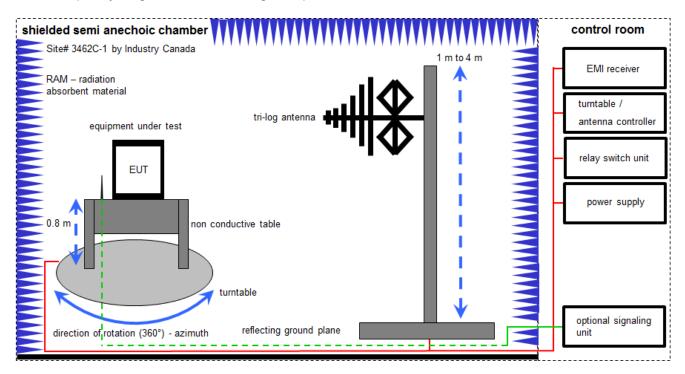
© CTC advanced GmbH Page 6 of 80

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 80

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

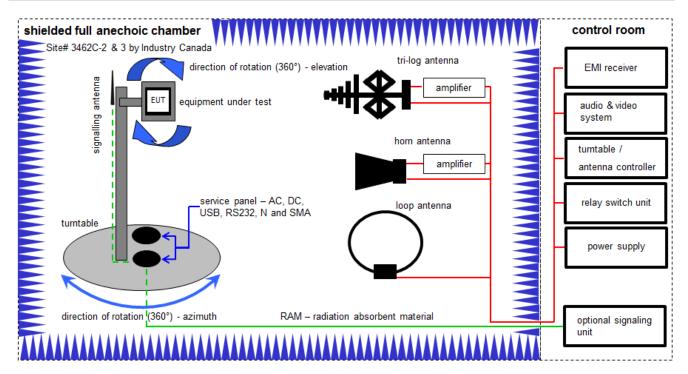
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.05.2020
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vlKI!	24.11.2017	23.11.2020

© CTC advanced GmbH Page 8 of 80

6.2 Shielded fully anechoic chamber

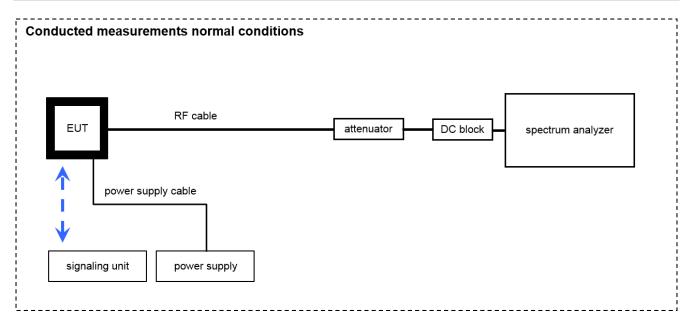
Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	13.06.2019	12.06.2021
2	A, B.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	27.02.2019	26.02.2021
4	A, B.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	A, B.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.12.2020
6	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
7	В	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
8	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
9	A, B.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	A, B.	NEXIO EMV- Software	BAT EMC V3.19.1.19	EMCO		300004682	ne	-/-	-/-
11	A, B.	PC	ExOne	F+W		300004703	ne	-/-	-/-
12	В.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 80

6.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Signal- and Spectrum Analyzer 2 Hz - 26 GHz	FSW26	R&S	101455	300004528	k	12.12.2019	11.12.2020
2	А	RF-Cable SRD021 No. 2	Enviroflex 316 D	Huber & Suhner		400001312	ev	-/-	-/-

© CTC advanced GmbH Page 10 of 80

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with guasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 11 of 80

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 80

7.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- · EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 80

8 Measurement uncertainty

Measurement uncertainty				
Test case	Uncertainty			
Antenna gain	± 3 dB			
Carrier frequency separation	± 21.5 kHz			
Number of hopping channels	-/-			
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative			
Maximum output power	± 1 dB			
Detailed conducted spurious emissions @ the band edge	± 1 dB			
Band edge compliance radiated	± 3 dB			
Spurious emissions conducted	± 3 dB			
Spurious emissions radiated below 30 MHz	± 3 dB			
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB			
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB			
Spurious emissions radiated above 12.75 GHz	± 4.5 dB			

© CTC advanced GmbH Page 14 of 80

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

9.1 Part 1: DTS mode

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS 210 / A8.4(2)	Antenna gain	Nominal	Nominal	TX single channel	×				-/-
§15.247(e) RSS - 247 / 5.2 (b)	Power spectral density	Nominal	Nominal	TX single channel	×				-/-
§15.247(a)(2) RSS Gen clause 4.6.1	Spectrum bandwidth 6dB bandwidth	Nominal	Nominal	TX single channel	×				-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output power	Nominal	Nominal	TX single channel	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance conducted	Nominal	Nominal	TX single channel	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-	×				-/-
§§15.247(d) RSS - 247 / 5.5	TX spurious emissions conducted	Nominal	Nominal	TX single channel	×				-/-
§15.247(d) RSS-210 / A8.5	TX spurious emissions radiated	Nominal	Nominal	TX single channel	×				-/-
§15.109 RSS-Gen.	RX spurious emissions radiated	Nominal	Nominal	RX	×				-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	Nominal	Nominal	TX single channel	×				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 15 of 80

9.2 Part 2: Hybrid mode

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	TX hopping	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(f) RSS - 247 / 5.2 (b)	Power spectral density	Nominal	Nominal	TX single channel	×				-/-
§15.247(b)(3) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	TX hopping	×				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	TX single channel	×				-/-
§15.247(f) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	TX hopping	×				-/-
§15.247(d) RSS-210 / A8.5	TX spurious emissions radiated	Nominal	Nominal	TX single channel	×				-/-
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	Nominal	Nominal	TX single channel	×				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 16 of 80

10 RF measurements

10.1 Additional comments

Reference documents: None

Special test descriptions: The EUT uses a Long Range Wide Area Network (LoRaWAN) technology with

a combination of a hybrid system and a DTS system. Both systems were

tested.

Configuration descriptions: DTS mode: 8 channels with 500 kHz nominal bandwidth and 1600 kHz

channel spacing:

lowest channel 903.0 MHz, middle channel 907.8 MHz, highest channel 914.2 MHz

These channels were tested in part 1 of this test report.

Hybrid mode: 64 channels with a nominal bandwidth of 125 kHz:

lowest channel 902.3 MHz, middle channel 908.5 MHz, highest channel 914.9 MHz.

These channels were tested in part 2 of this test report.

NOTE: In hybrid mode the minimum number of hopping channels is 8. In this mode the minimum channel separation and bandwidths stay the same as in the mode with 64 channels. Also the device also comply with the dwell time requirements while using 8 channels:

The time slot length: 164.81 ms

Average time of occupancy: 329.62 ms

Hops in 3.2 second: 2

EUT is transmitting pseudo random data by itself

© CTC advanced GmbH Page 17 of 80

11 Measurement results Part 1 DTS mode

11.1 Maximum output power

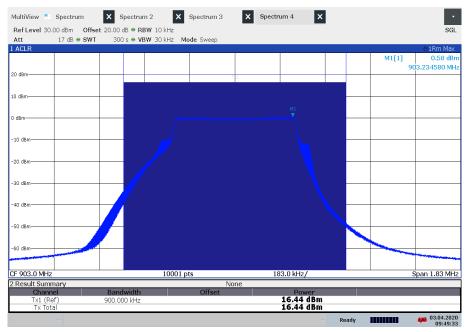
Measurement:

Measurement parameter			
Detector:	RMS		
Sweep time:	Auto		
Resolution bandwidth:	10 kHz		
Video bandwidth:	30 kHz		
Span:	1.83 MHz		
Trace mode:	Max hold		
Measurement method	According to ANSI C63.10-2013		
Measurement method	11.9.2.2.3 Method AVGSA-1A (alternative)		
Used equipment:	See chapter 6.3 A		
Measurement uncertainty:	See chapter 8		

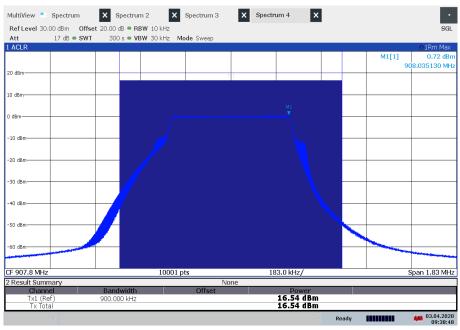
Limits:

FCC	IC	
1 watt (30 dBm) Maximum Output Power Conducted		

Result:


Test Conditions		Maximum Output Power Conducted			
1631 00	Hultions	Lowest channel	Middle channel	Highest channel	
T _{nom}	V_{nom}	16.4 dBm	16.5 dBm	16.5 dBm	

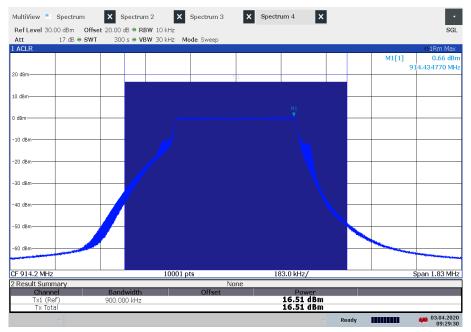
© CTC advanced GmbH Page 18 of 80


Plots:

Plot 1: Lowest Channel

09:49:33 03.04.2020

Plot 2: Middle Channel



09:38:49 03.04.2020

© CTC advanced GmbH Page 19 of 80

Plot 3: Highest Channel

09:29:31 03.04.2020

© CTC advanced GmbH Page 20 of 80

11.2 Antenna gain

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.1 A (radiated)		
	See sub clause 6.3 A (conducted)		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC		
Antenna gain			

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

	Lowest channel	Middle channel	Highest channel
Conducted power	16.48 dBm	16.50 dBm	16.45 dBm
Radiated power	20.51 dBm	20.86 dBm	21.54 dBm
Gain Calculated	4.03 dBi	4.36 dBi	5.09 dBi

© CTC advanced GmbH Page 21 of 80

11.3 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

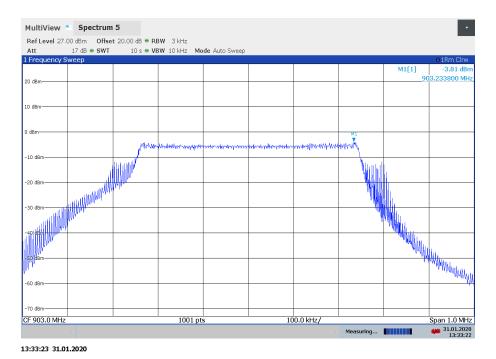
Measurement parameter			
Detector:	RMS		
Sweep time:	10 s		
Video bandwidth:	10 kHz		
Resolution bandwidth:	3 kHz		
Span:	2 MHz		
Trace mode:	Max hold		
Measurement method	According to ANSI C63.10-2013 11.10.4 Method AVGPSD-1A (alternative)		
Test setup	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

Limits:

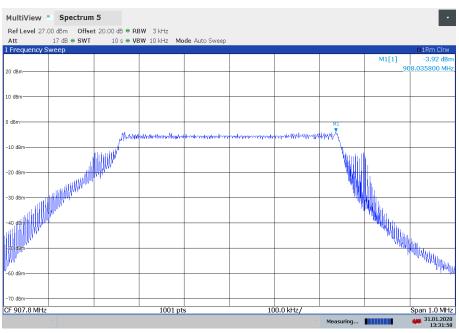
FCC	IC	
Power Spectral Density		
The transmitter newer spectral density conducted from the transmitter to the antenna shall not be greater than 9 dPm		

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.

Results:


Power Spectral density [dBm/3kHz]				
Channel Lowest Middle Highest				
	-3.81	-3.92	-3.75	

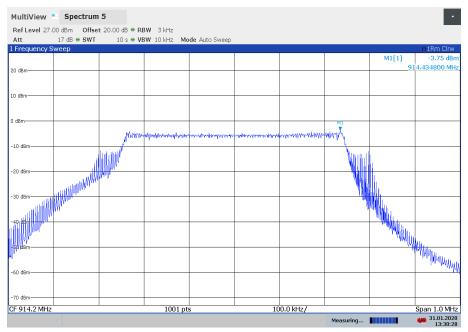
© CTC advanced GmbH Page 22 of 80



Plots:

Plot 1: Lowest Channel

Plot 2: Middle Channel



13:31:59 31.01.2020

© CTC advanced GmbH Page 23 of 80

Plot 3: Highest Channel

13:30:29 31.01.2020

© CTC advanced GmbH Page 24 of 80

11.4 Spectrum bandwidth - 6 dB bandwidth and 99% bandwidth

Description:

Measurement of the 6 dB bandwidth of the modulated signal.

Measurement:

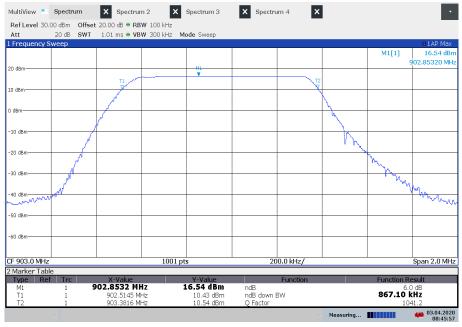
Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	300 kHz		
Resolution bandwidth:	100 kHz		
Span:	2 MHz		
Trace mode:	Max Hold		
Test setup	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC	
Spectrum Bandwidth – 6 dB Bandwidth		
The minimum 6 dB bandwidth shall be at least 500 kHz.		

Results:

Test Conditions		6-dB BANDWIDTH [kHz]		
rest Conditions		Lowest channel	Middle channel	Highest channel
T _{nom}	V_{nom}	867.1	859.1	863.1


Test Conditions		99% BANDWIDTH [kHz]		
rest conditions		Lowest channel	Middle channel	Highest channel
T _{nom}	V_{nom}	900.7	891.9	899.8

© CTC advanced GmbH Page 25 of 80


Plots:

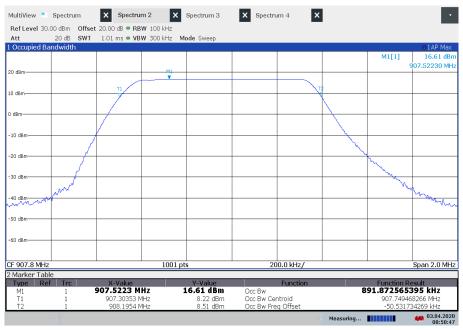
Plot 1: Lowest Channel, 6 dB-BW

08:45:57 03.04.2020

Plot 2: Lowest Channel, 99%OBW

08:47:48 03.04.2020

© CTC advanced GmbH Page 26 of 80



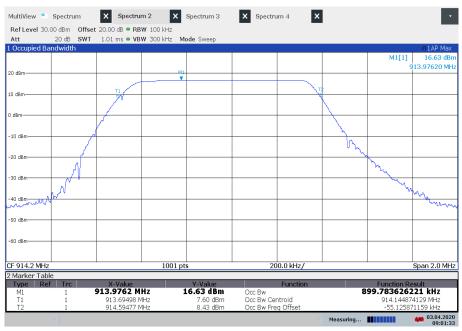
Plot 3: Middle Channel, 6 dB-BW

08:52:28 03.04.2020

Plot 4: Middle Channel, 99%OBW

08:50:48 03.04.2020

© CTC advanced GmbH Page 27 of 80



Plot 5: Highest Channel, 6 dB-BW

09:00:01 03.04.2020

Plot 6: Highest Channel, 99%OBW

09:01:34 03.04.2020

© CTC advanced GmbH Page 28 of 80

11.5 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel mode.

Measurement:

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

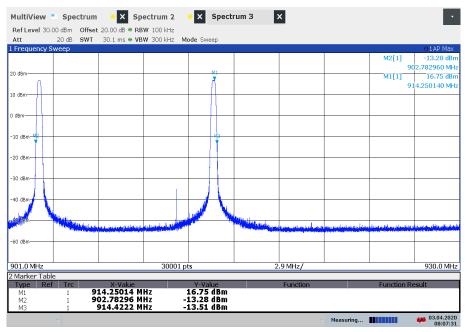
Limits:

FCC	IC

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Results conducted:


Scenario	Spurious band edge conducted	
Modulation	lowest channel	highest channel
Lower band edge – single channel mode	> 30 dB	> 30 dB
Upper band edge – single channel mode	> 30 dB	> 30 dB

© CTC advanced GmbH Page 29 of 80

Plots:

Plot 1: lowest and highest channel

08:07:32 03.04.2020

© CTC advanced GmbH Page 30 of 80

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

© CTC advanced GmbH Page 31 of 80

11.6 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span:	9 kHz to 12.75 GHz		
Trace mode:	Max Hold		
Used equipment:	See chapter 6.3A		
Measurement uncertainty:	See chapter 8		

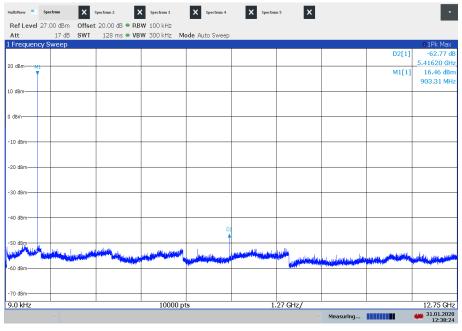
Limits:

FCC	IC	
TX spurious emissions conducted		

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

© CTC advanced GmbH Page 32 of 80

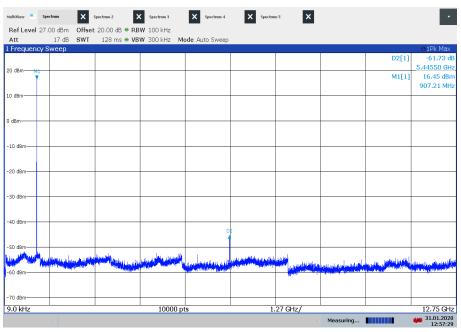


Result:

	Emission Limitation					
Frequency [MHz]		Amplitude of emission [dBm]	Limit max. allowed emission power	actual attenuation below frequency of operation [dB]	Results	
903.0		16.46	24 dBm		Operating frequency	
See plots		-30 dBc	No emissions detected!			
907.8		16.45	24 dBm		Operating frequency	
See plots		-30 dBc	No emissions detected!			
914.2		16.40	24 dBm		Operating frequency	
See plots		-30 dBc	No emissions detected!			

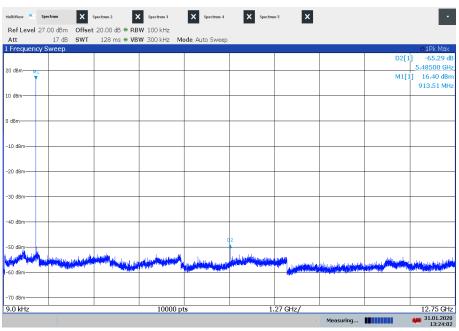
Plots:

Plot 1: Lowest channel, 9 kHz - 12.75 GHz



12:38:25 31.01.2020

© CTC advanced GmbH Page 33 of 80



Plot 2: Middle channel, 9 kHz - 12.75 GHz

12:57:29 31.01.2020

Plot 3: Highest channel, 9 kHz - 12.75 GHz

13:24:02 31.01.2020

© CTC advanced GmbH Page 34 of 80

11.7 Spurious Emissions Radiated < 30 MHz

Description:

The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

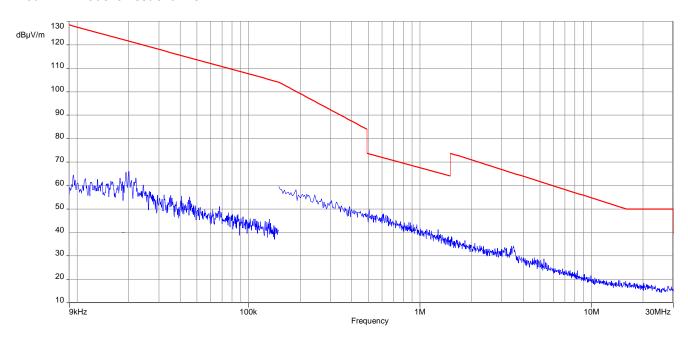
Measurement:

Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz						
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz						
Span:	9 kHz to 30 MHz						
Trace mode:	Max Hold						
Used equipment:	See chapter 6.2 A						
Measurement uncertainty:	See chapter 8						

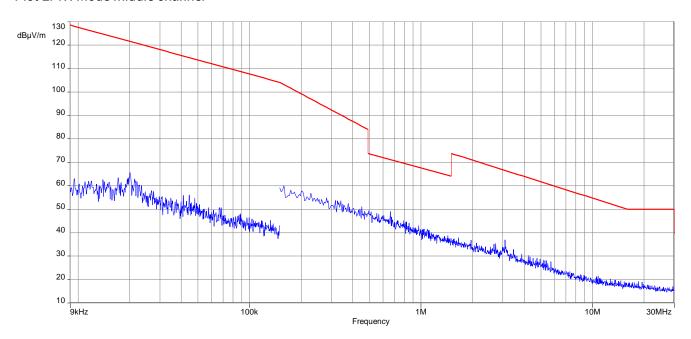
Limits:

FCC		IC			
TX spurious emissions radiated < 30 MHz					
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance		
0.009 - 0.490	2400/F(kHz)		300		
0.490 - 1.705	24000/F(kHz)		24000/F(kHz)		30
1.705 – 30.0	30		30		

Result:

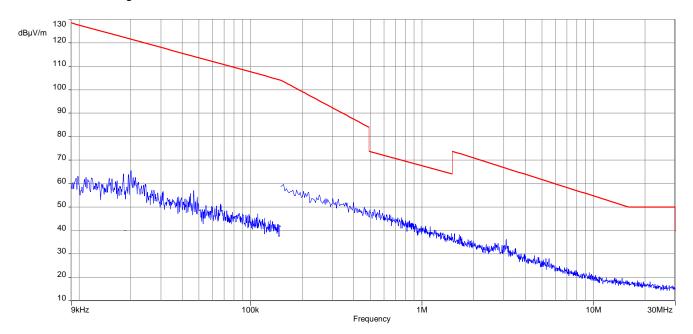

SPURIOUS EMISSIONS LEVEL									
Lowest channel			M	Middle channel		Highest channel			
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	
All emissions were more than 10 dB below the limit.									

© CTC advanced GmbH Page 35 of 80



Plots:

Plot 1: TX-Mode lowest channel


Plot 2: TX-Mode middle channel

© CTC advanced GmbH Page 36 of 80

Plot 3: TX-Mode highest channel

© CTC advanced GmbH Page 37 of 80

11.8 Spurious Emissions Radiated > 30 MHz

11.8.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

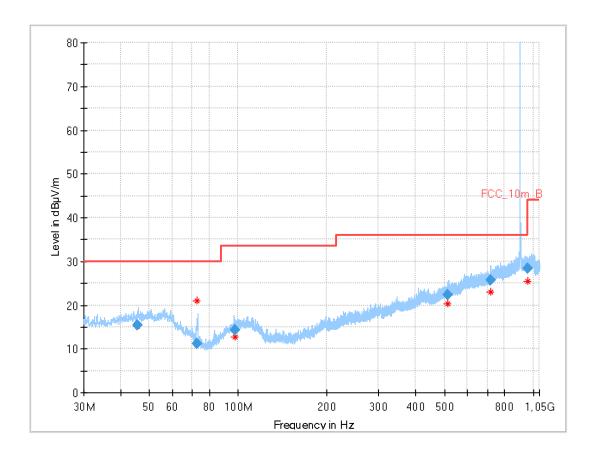
Measurement:

Measurement parameters					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	3 x VBW				
Video bandwidth	120 kHz				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	DSSS				
Test setup	See sub clause 6.1 A				
Measurement uncertainty	See sub clause 8				

Limits:

FCC	IC				
Band-edge Compliance of conducted and radiated emissions					

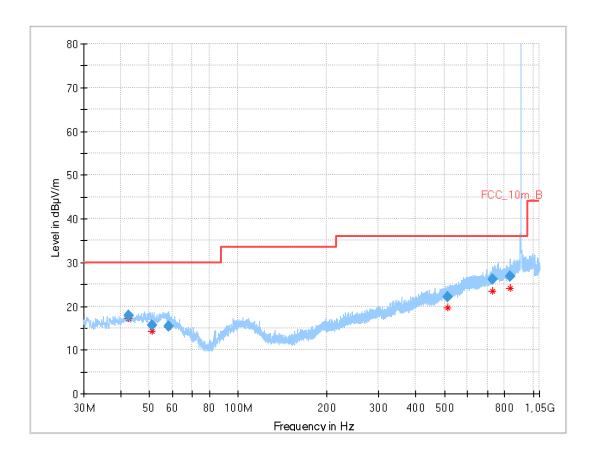
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

Result: See result table below the plots.

© CTC advanced GmbH Page 38 of 80

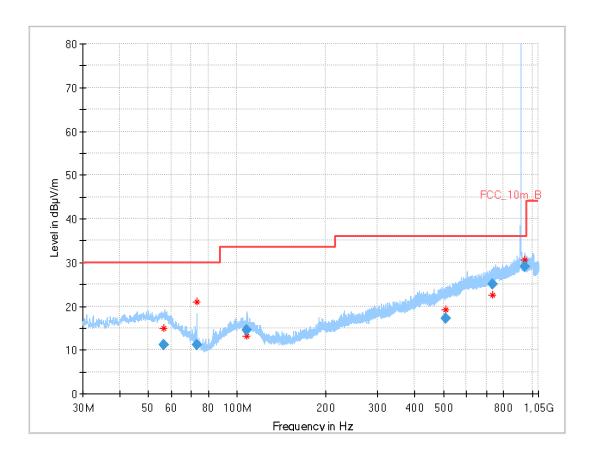
Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(ms)	(kHz)	(cm)		(dea)	(dB/m)
45.669	15.45	30.0	14.6	1000	120	170.0	Н	112	14
72.706	11.23	30.0	18.8	1000	120	170.0	٧	202	9
97.607	14.32	33.5	19.2	1000	120	170.0	Н	-22	12
515.211	22.30	36.0	13.7	1000	120	123.0	Н	157	19
719.786	25.69	36.0	10.3	1000	120	170.0	٧	-22	21
960.385	28.29	44.0	15.7	1000	120	170.0	V	-22	24

© CTC advanced GmbH Page 39 of 80

Plot 2: 30 MHz - 1 GHz, horizontal & vertical polarisation (middle channel)


Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(ms)	(kHz)	(cm)		(dea)	(dB/m)
42.681	17.84	30.0	12.2	1000	120	121.0	Н	158	14
50.972	15.65	30.0	14.4	1000	120	170.0	Н	67	14
58.353	15.49	30.0	14.5	1000	120	106.0	٧	247	14
511.700	22.14	36.0	13.9	1000	120	147.0	Н	247	19
728.044	26.14	36.0	9.9	1000	120	170.0	Н	247	21
833,156	26.76	36.0	9.2	1000	120	105.0	٧	157	23

© CTC advanced GmbH Page 40 of 80

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(ms)	(kHz)	(cm)		(dea)	(dB/m)
56.400	11.25	30.0	18.8	1000	120	170.0	Н	292	15
73.034	11.21	30.0	18.8	1000	120	170.0	٧	89	9
108.007	14.63	33.5	18.9	1000	120	170.0	Н	-22	12
510.582	17.20	36.0	18.8	1000	120	170.0	Н	247	19
734.509	25.04	36.0	11.0	1000	120	106.0	٧	67	22
946.351	29.16	36.0	6.8	1000	120	118.0	Н	189	24

© CTC advanced GmbH Page 41 of 80

11.8.2 Spurious emissions radiated above 1 GHz

Description:

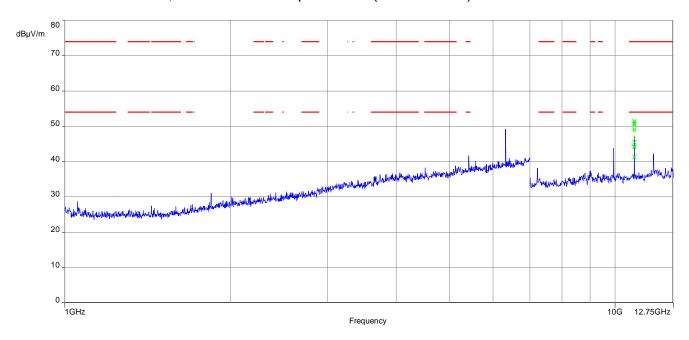
Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters					
Detector Peak / RMS					
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 x RBW				
Span	1 GHz to 12.75 GHz				
Trace mode	Max hold				
Test setup	See sub clause 6.2 B (1 GHz – 12.75 GHz)				
Measurement uncertainty	See sub clause 8				

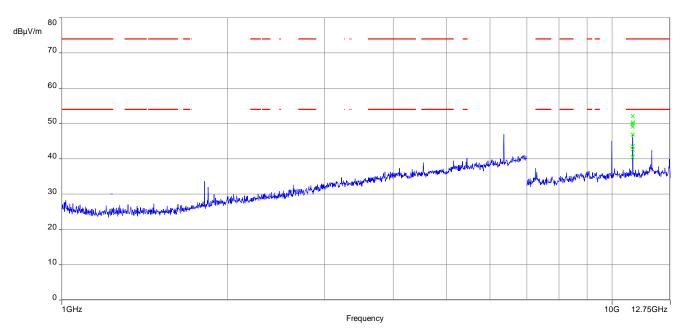
The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

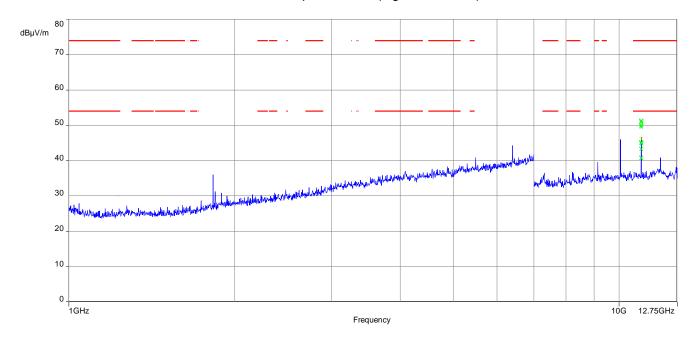
FCC			IC				
TX spurious emissions radiated							
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement.	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the						
§15.209							
Frequency (MHz) Field strength (dBµV/m) Measurement distance							
Above 960	54.0						


Results:

TX spurious emissions radiated									
L	owest chanr	nel	Middle channel			Highest channel			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
10027	Peak	51.54	10893	Peak	52.18	10060	Peak	51.39	
10837	RMS	45.60	10693	RMS	46.87	10968	RMS	44.99	


© CTC advanced GmbH Page 42 of 80

Plot 1: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

© CTC advanced GmbH Page 43 of 80

Plot 3: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (highest channel)

© CTC advanced GmbH Page 44 of 80

12 Measurement results Part 2 Hybrid Mode

12.1 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement:

Measurement parameters				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 MHz			
Span	5 MHz			
Trace mode	Max hold			
Test setup	See sub clause 6.2 B (radiated)			
Test setup	See sub clause 6.3 A (conducted)			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC								
Antenna gain									

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

	Low channel	Middle channel	High channel
Conducted power	16.43 dBm	16.49 dBm	16.46 dBm
Radiated power	20.46 dBm	20.90 dBm	21.54 dBm
Gain Calculated	4.03 dBi	4.41 dBi	5.08 dBi

© CTC advanced GmbH Page 45 of 80

12.2 Carrier Frequency Separation

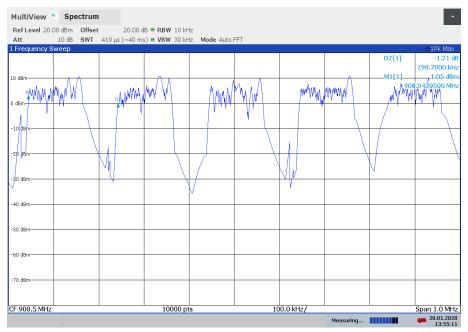
Description:

Measurement of the carrier frequency separation of a hybrid system. EUT in hopping mode.

Measurement:

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	See plots	
Video bandwidth	See plots	
Span	See plots	
Trace mode	Max hold	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

Limits:


FCC	IC	
Carrier frequency separation		
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hybrid system whichever is greater.		

Result: The channel separation is 198.70 kHz

© CTC advanced GmbH Page 46 of 80

Plot 1: Frequency separation

13:55:11 20.01.2020

© CTC advanced GmbH Page 47 of 80

12.3 Spectrum bandwidth

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

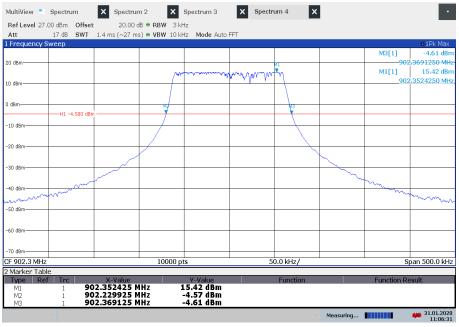
Measurement:

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	5 kHz	
Video bandwidth	100 kHz	
Span	See plots	
Trace mode	Max hold	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

Limits:

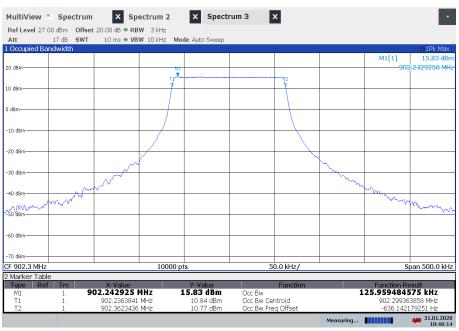
FCC	IC	
None		

Result:


Test Conditions Low cha		20dB BANDWIDTH [kHz]		
		Low channel	Middle channel	High channel
T _{nom}	V_{nom}	139.2	138.9	139.10

Test Conditions		99% BANDWIDTH [kHz]		
1000	nuntions	Low channel Middle channel High char		High channel
T _{nom}	V_{nom}	125.95	126.02	126.17

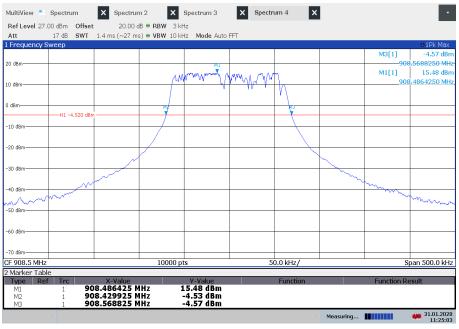
© CTC advanced GmbH Page 48 of 80



Plot 1: Lowest Channel, 20 dB-BW

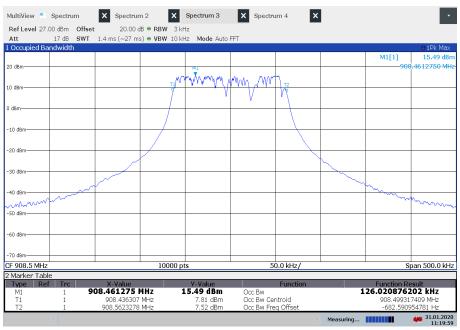
11:06:31 31.01.2020

Plot 2: Lowest Channel, 99%OBW



10:46:14 31.01.2020

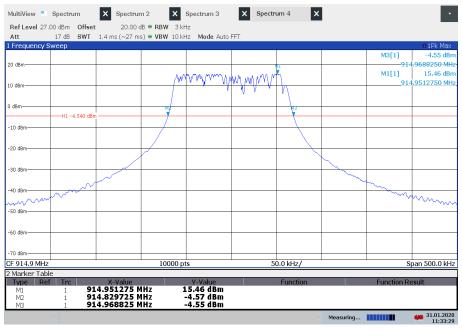
© CTC advanced GmbH Page 49 of 80



Plot 3: Middle Channel, 20 dB-BW

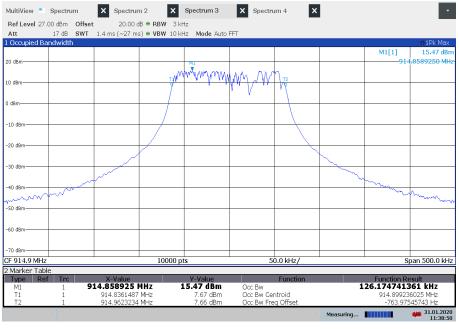
11:25:04 31.01.2020

Plot 4: Middle Channel, 99%OBW



11:20:00 31.01.2020

© CTC advanced GmbH Page 50 of 80



Plot 3: Highest Channel, 20 dB-BW

11:33:30 31.01.2020

Plot 2: Highest Channel, 99%OBW

11:38:50 31.01.2020

© CTC advanced GmbH Page 51 of 80

12.4 Average Time of Occupancy (dwell time)

Measurement:

The measurement is performed in zero span mode to show that none of the 64 used channels is allocated more than 0.4 seconds within a 25.6 seconds interval (64 channels times 0.4s).

Limits:

FCC

Average time of occupancy

For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4

Result: The time slot length is = 164.81 ms

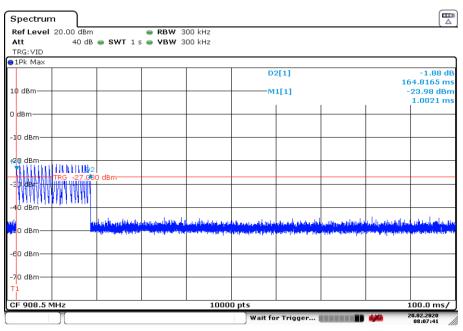
Number of hops / channel @ 25.6s = 2

Within 25.6 s period, the average time of occupancy in 25.6 s: 2* 164.81 ms

→ The average time of occupancy = 330.62 ms

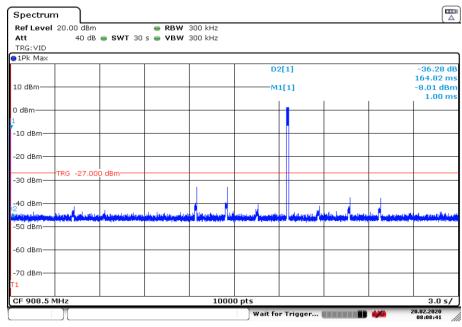
NOTE: In hybrid mode the minimum number of hopping channels is 8. In this mode the minimum channel separation and bandwidths stay the same as in the mode with 64 channels.

Also the device also comply with the dwell time requirements while using 8


The time slot length: 164.81 ms Average time of occupancy: 329.62 ms

Hops in 3.2 second: 2

© CTC advanced GmbH Page 52 of 80



Plot 1: Time slot length = 164.81ms

Date: 20.FEB.2020 08:07:42

Plot 2: hops / channel @ 30s = 2

Date: 20.FEB.2020 08:08:41

© CTC advanced GmbH Page 53 of 80

12.5 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

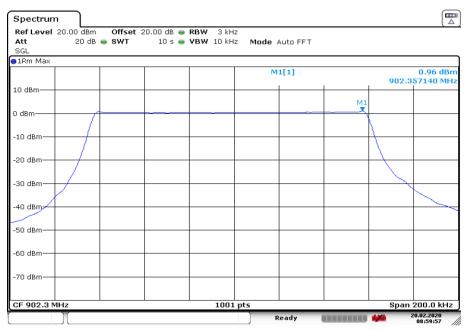
Measurement:

Measurement parameter*		
Detector:	RMS	
Sweep time:	10 s	
Video bandwidth:	10 kHz	
Resolution bandwidth:	3 kHz	
Span:	200 kHz	
Trace mode:	Single sweep	
Measurement method	According to ANSI C63.10-2013 11.10.4 Method AVGPSD-1A (alternative)	
Test setup	See sub clause 6.3 A	
Measurement uncertainty	See sub clause 8	

^{*)} according ANSI C63.10-2013; 11.11.4

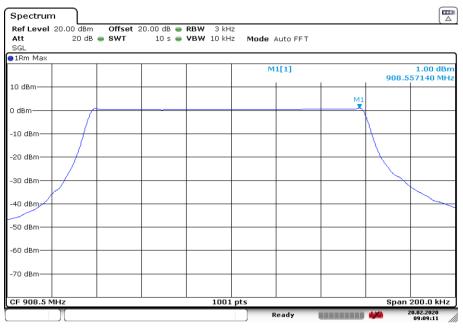
Limits:

FCC	IC	
Power Spectral Density		
A hybrid system must comply with the power density standard of 8 dBm in any 3 kHz band when the frequency hopping function is turned off.		


Results:

	Power Spectral density*/ 3 kHz		
Channel	902.3 MHz	908.5 MHz	914.9 MHz
	0.96 dBm	1.0 dBm	0.97 dBm

© CTC advanced GmbH Page 54 of 80



Plot 1: 902.3 MHz

Date: 20.FEB.2020 08:59:57

Plot 2: 908.5 MHz



Date: 20.FEB.2020 09:09:11

© CTC advanced GmbH Page 55 of 80

Plot 3: 914.9 MHz

Date: 20.FEB.2020 09:11:51

© CTC advanced GmbH Page 56 of 80

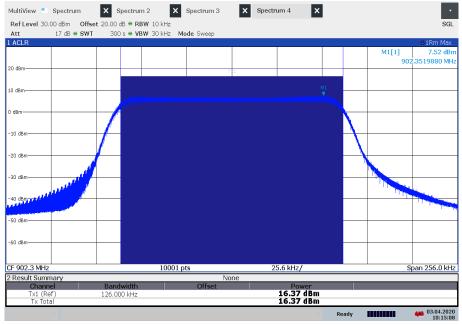
12.6 Maximum Output Power

Measurement:

Measurement parameter			
Detector:	RMS		
Sweep time:	Auto		
Resolution bandwidth:	10 kHz		
Video bandwidth:	30 kHz		
Span:	256 kHz		
Trace mode:	Max hold		
Measurement method	According to ANSI C63.10-2013 11.9.2.2.3 Method AVGSA-1A (alternative)		
Used equipment:	See chapter 6.3 A		
Measurement uncertainty:	See chapter 8		

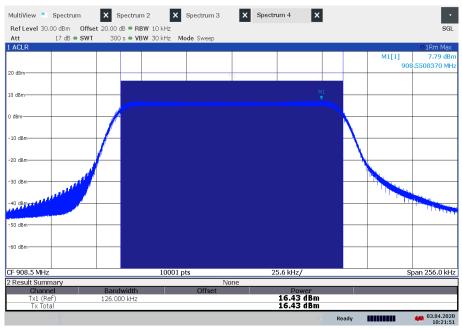
Limits:

FCC	IC	
Maximum Output Power Conducted		
Shall not exceed 30 dBm if number of hopping channels is above 50. Shall not exceed 24 dBm if number of hopping channels is below 50.		


Result:

Test Conditions		Maximum Output Power Conducted [dBm]		
1000	nations	Lowest channel Middle channel Highest chann		Highest channel
T _{nom}	V _{nom}	16.4	16.4	16.4

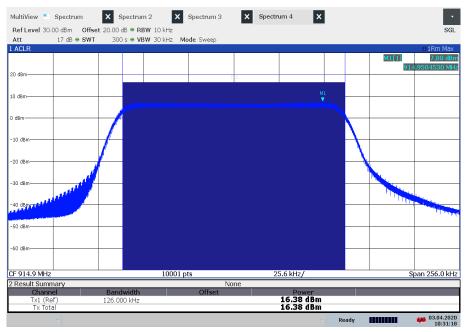
© CTC advanced GmbH Page 57 of 80



Plot 1: Lowest Channel

10:15:08 03.04.2020

Plot 2: Middle Channel



10:21:51 03.04.2020

© CTC advanced GmbH Page 58 of 80

Plot 3: Highest Channel

10:31:18 03.04.2020

© CTC advanced GmbH Page 59 of 80

12.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band in hopping mode.

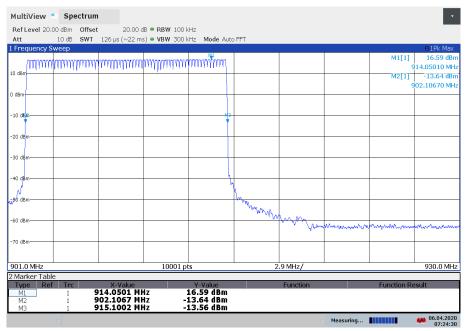
Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz / 500 kHz		
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz		
Trace mode	Max hold		
Test setup	See sub clause 6.3 A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC
-----	----

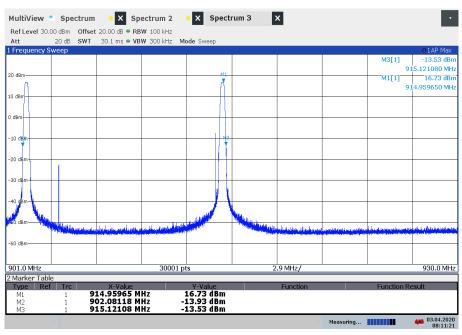
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


Results conducted:

Scenario	Spurious band edge conducted		
Modulation	lowest channel	highest channel	
Lower band edge – hopping on	> 30 dB	> 30 dB	
Upper band edge – hopping off	> 30 dB	> 30 dB	

© CTC advanced GmbH Page 60 of 80



Plot 1: 30 dB - hopping on

07:24:31 06.04.2020

Plot 2: 30 dB - hopping off

08:11:21 03.04.2020

© CTC advanced GmbH Page 61 of 80

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz MHz MHz		GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

© CTC advanced GmbH Page 62 of 80

12.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz		
Span:	9 kHz to 12.75 GHz		
Trace-Mode:	Max Hold		
Used equipment:	See chapter 6.3A		
Measurement uncertainty:	See chapter 8		

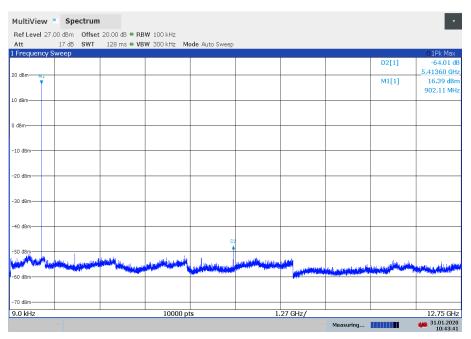
Limits:

FCC	IC
	ssions conducted

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

RSS-247, Issue 2: 5.5 Unwanted emissions: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

© CTC advanced GmbH Page 63 of 80

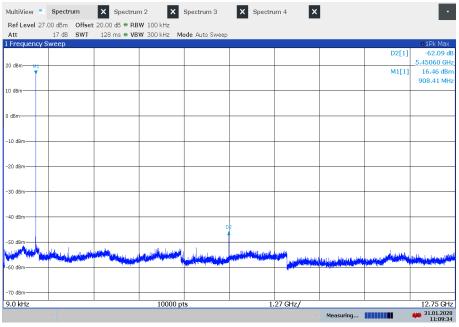


Result:

	Emission Limitation				
Frequency [MHz]		Amplitude of emission [dBm]	Limit max. allowed emission power	actual attenuation below frequency of operation [dB]	Results
902.3		16.39	24 dBm		Operating frequency
See Plots		30 dBc			
908.5		16.46	24 dBm		Operating frequency
See Plots		-30 dBc			
914.9		16.42	24 dBm		Operating frequency
See Plots		-30 dBc			

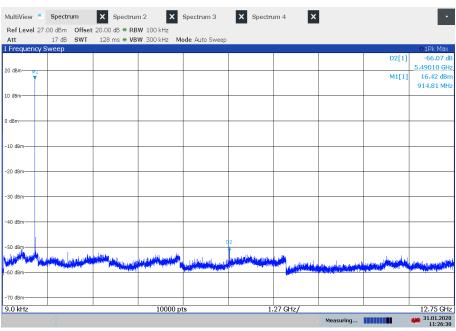
Plots:

Plot 1: Lowest channel, 9 kHz - 12.75 GHz



10:43:42 31.01.2020

© CTC advanced GmbH Page 64 of 80



Plot 2: Middle channel, 9 kHz - 12.75 GHz

11:09:35 31.01.2020

Plot 3: Highest channel, 9 kHz - 12.75 GHz

11:26:31 31.01.2020

© CTC advanced GmbH Page 65 of 80

12.9 Spurious Emissions Radiated < 30 MHz

Description:

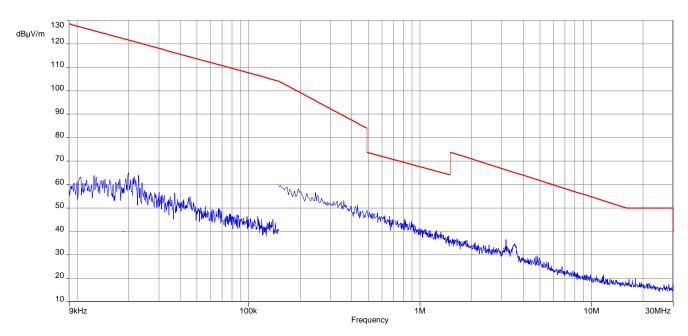
The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

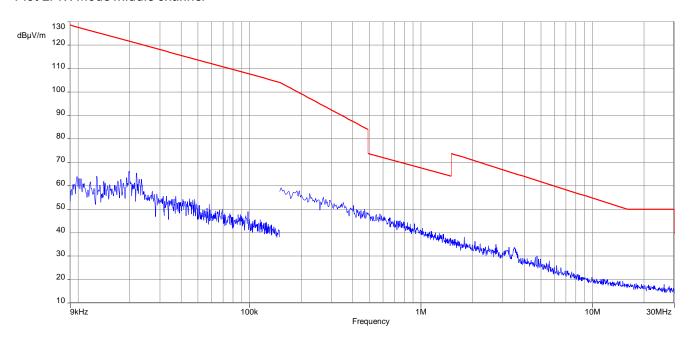
Measurement parameter			
Detector:	Peak / Quasi Peak		
Sweep time:	Auto		
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span:	9 kHz to 30 MHz		
Trace mode:	Max Hold		
Used equipment:	See chapter 6.2 A		
Measurement uncertainty:	See chapter 8		

Limits:

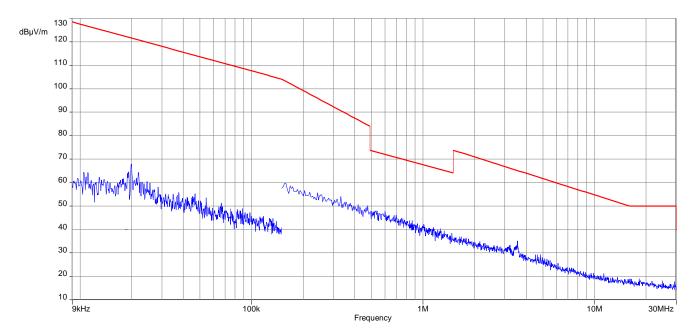
FCC			
TX spurious emissions radiated < 30 MHz			
Frequency (MHz)	Field strength (dBμV/m)	Measurement distance	
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	


Result:

	SPURIOUS EMISSIONS LEVEL [dBμV/m]							
Le	owest chanr	nel	М	iddle channe	el	Hi	ghest chanr	nel
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]
All emissions were more than 10 dB below the limit.								


© CTC advanced GmbH Page 66 of 80

Plot 1: TX-Mode lowest channel


Plot 2: TX-Mode middle channel

© CTC advanced GmbH Page 67 of 80

Plot 3: TX-Mode highest channel

© CTC advanced GmbH Page 68 of 80

12.10 Spurious Emissions Radiated > 30 MHz

12.10.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

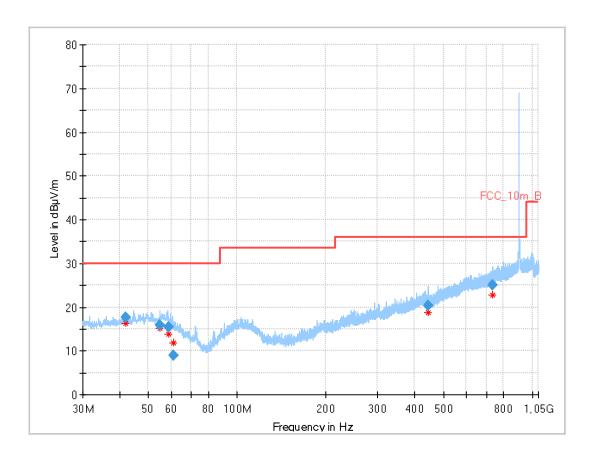
Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters			
Detector	Peak / Quasi Peak		
Sweep time	Auto		
Resolution bandwidth	120 kHz		
Video bandwidth	3 x RBW		
Span	30 MHz to 1 GHz		
Trace mode	Max hold		
Test setup	See sub clause 6.1 A		
Measurement uncertainty	See sub clause 8		

Limits:

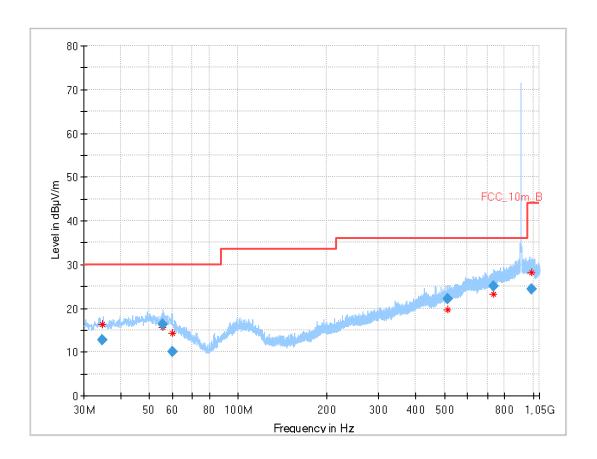
FCC	IC	
Band-edge Compliance of conducted and radiated emissions		


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

© CTC advanced GmbH Page 69 of 80

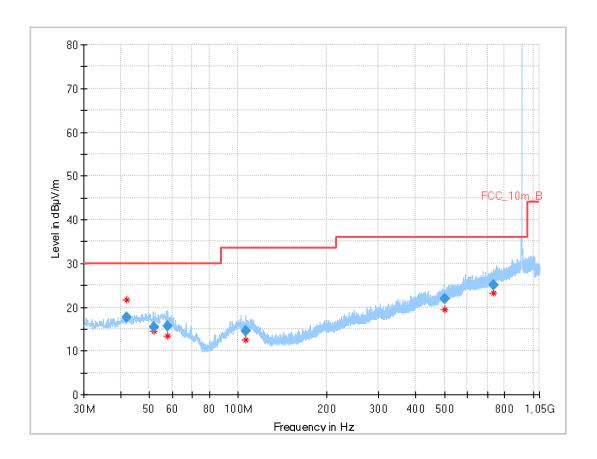
Plot 1: 30 MHz - 1 GHz, horizontal & vertical polarisation (lowest channel)


Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(ms)	(kHz)	(cm)		(dea)	(dB/m)
42.059	17.74	30.0	12.3	1000	120	104.0	Н	202	14
54.885	15.77	30.0	14.2	1000	120	114.0	٧	159	14
58.513	15.50	30.0	14.5	1000	120	170.0	٧	247	14
61.074	9.05	30.0	21.0	1000	120	160.0	Н	157	13
443.453	20.43	36.0	15.6	1000	120	98.0	Н	-22	17
732.268	25.02	36.0	11.0	1000	120	170.0	Н	-7	22

© CTC advanced GmbH Page 70 of 80

Plot 2: 30 MHz - 1 GHz, horizontal & vertical polarisation (middle channel)


Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(ms)	(kHz)	(cm)		(dea)	(dB/m)
34.540	12.67	30.0	17.3	1000	120	150.0	Н	202	12
55.693	16.25	30.0	13.8	1000	120	104.0	Н	157	15
60.068	10.08	30.0	19.9	1000	120	109.0	V	-6	13
512.201	22.17	36.0	13.8	1000	120	170.0	V	82	19
734.657	25.07	36.0	10.9	1000	120	170.0	Н	11	22
984.844	24.25	44.0	19.8	1000	120	98.0	Н	-17	24

© CTC advanced GmbH Page 71 of 80

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Final_Result

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
42.053	17.70	30.0	12.3	1000	120	102.0	V	281	14
51.943	15.46	30.0	14.5	1000	120	170.0	V	157	14
57.683	15.71	30.0	14.3	1000	120	170.0	Н	-22	14
105.980	14.58	33.5	18.9	1000	120	170.0	٧	-22	12
499.853	21.88	36.0	14.1	1000	120	170.0	Н	157	18
734.628	25.04	36.0	11.0	1000	120	170.0	٧	165	22

© CTC advanced GmbH Page 72 of 80

12.10.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters			
Detector	Peak / RMS		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 x RBW		
Span	1 GHz to 12.75 GHz		
Trace mode	Max hold		
Test setup	See sub clause 6.2 B (1 GHz – 12.75 GHz)		
Measurement uncertainty	See sub clause 8		

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

ANSI C63.10

The average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor: F = $20 \log \text{ (dwell time}/100 \text{ ms)}$

FCC

TX spurious emissions radiated

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

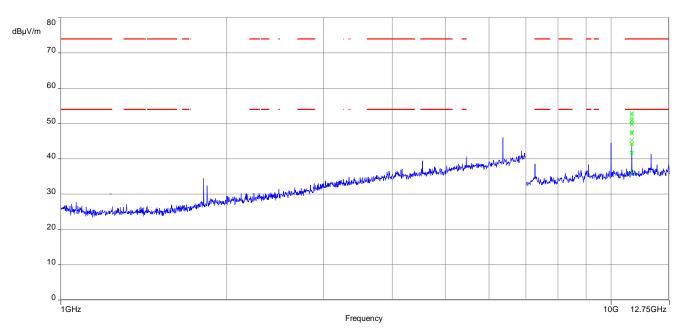
21	F	2	n	C
§1	J.		U	3

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance
Above 960	54.0	3

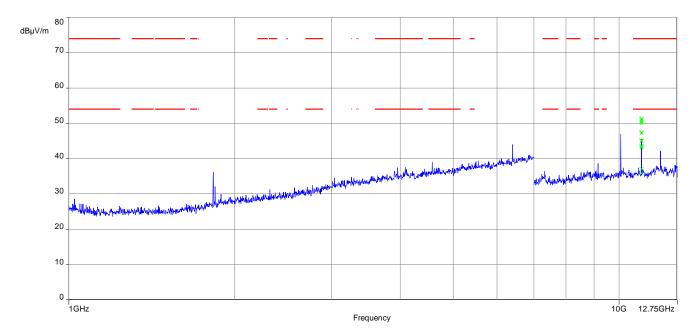
© CTC advanced GmbH Page 73 of 80

Results:

TX spurious emissions radiated								
Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
10827	Peak	51.37	10901	Peak	52.95	10978	Peak	51.34
10627	RMS	45.57	10901	RMS	47.56	10978	RMS	44.97


© CTC advanced GmbH Page 74 of 80

Plot 1: 1 GHz - 12.75 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

© CTC advanced GmbH Page 75 of 80

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

© CTC advanced GmbH Page 76 of 80

13 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 77 of 80

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 78 of 80

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-02-14
Α	Updated HW / SW information	2020-02-18
В	Hybrid Mode added, FHSS mode removed, editorial changes	2020-03-26
С	Changes in Chapters 10.1 and 12.4.	2020-03-27
D	Several plots and measurement results replaced	2020-04-06

Annex C Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkstelleG in connection with Section 1 subsection 1 AkkstelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 10117 Berlin S0327 Frankfurt am Main Spittelmarkt 20 10117 Berlin S0327 Frankfurt am Main S116 Braunschweig
is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 11.01.2019 The accreditation of the certificate in the following annex with a total of 7 pages. Registration number of the certificate: D-PL-12076-01-04 The accreditation of the certificate in the following annex with a total of 7 pages. Registration number of the certificate in the following annex with a feet of Division the following annex with a feet of Division the Division the	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditterungsstelle GmbH (DAKAS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlant. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkks. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 3.1 July 2009 (Federa Law Gazette 1p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Parliament and Secretification Council 2.18 of 9 July 2008, 7.93) DAKs is a signatory to the Multilateral Agreements for Mutual Recognition of the European on-operation for Accreditation (EA). International Accreditation Form (IAAC) The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.cucuppean-accreditation.org IAAC: www.laf.nu

© CTC advanced GmbH Page 79 of 80

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

Annex D Accreditation Certificate - D-PL-12076-01-05

first page	last page
Dakks Deutsche Aktreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2005 to carry out tests in the following fields:	
Telecommunication (FCC Requirements)	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkStelleG) of 31 July 2009
The accreditation certificate shall only apply in connection with the notice of accreditation of 11.01.2019 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a	(Federal Law Gazette I.p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 3 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union I. 218 of 9 July 2008, p. 30). DAMAS is a signation to the Multilateral Agreements for Multian Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.libc.org IAF: www.latinu
total of 5 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 1.1012019 Des Black Over Emmersion Read of Division	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf

© CTC advanced GmbH Page 80 of 80