FCC TEST REPORT

Z-Wave 700s Door Window Sensor

Model Number: ZW6308, ZW6308A

FCC ID: U2ZZW6308

Report Number : WT208001487

Test Laboratory	:	Shenzhen Academy of Metrology and Quality Inspection						
Site Location	:	NETC Building, No.4 Tongfa Rd., Xili, Nanshan,						
		Shenzhen, China						
Tel	:	0086-755-86928965						
Fax	:	0086-755-86009898-31396						
Web	:	www.smq.com.cn						
Email	:	emcrf@smq.com.cn						

Test report declaration

Applicant	:	Sheenway Asia Ltd.
Address	:	Room1313, 13/F, Austin Tower, 22-26 Austin Avenue, Tsim Sha Tsui, Kowloon, Hong Kong, China
Manufacturer	:	Sheenway Asia Ltd.
Address	:	Room1313, 13/F, Austin Tower, 22-26 Austin Avenue, Tsim Sha Tsui, Kowloon, Hong Kong, China
EUT Description	:	Z-Wave 700s Door Window Sensor
Model No.	:	ZW6308,ZW6308A
FCC ID	:	U2ZZW6308

Test Standards:

FCC Part 15 (October 1, 2019 Edition) ANSI C63.10-2013

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 and the energy emitted by the sample EUT tested as described in this report is in compliance with FCC Rules Part 15.249.

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

Project Engineer:	PERE	Date:	Sep.27, 2020
	(Zhou Fangai)		
Checked by:	林主钢	Date:	Sep.27, 2020
_	(Lin Yixiang)		
Approved by:	林和代	Date:	Sep.27, 2020
	(Lin Bin)		

TABLE OF CONTENTS

TEST	REPO	ORT DECLARATION	2
1.	TEST	RESULTS SUMMARY	4
2.	GEN	ERAL INFORMATION	5
	2.1.	Report information	
	2.2.	Laboratory Accreditation and Relationship to Customer	5
	2.3.	Measurement Uncertainty	6
3.	PRO		7
	3.1.	EUT Description	7
	3.2.	Block Diagram of EUT Configuration	7
	3.3.	Operating Condition of EUT	7
	3.4.	Special Accessories	7
	3.5.	Equipment Modifications	7
	3.6.	Support Equipment List	7
	3.7.	Test Conditions	7
4.	TEST	FEQUIPMENT USED	8
5.	CON	DUCTED EMISSION TEST	9
	5.1.	Test Standard and Limit	9
	5.2.	Test Procedure	9
	5.3.	Test Arrangement	9
	5.4.	Test Data	9
6.	RADI	IATED EMISSION TEST	10
	6.1.	Test Standard and Limit	10
	6.2.	Test Procedure	10
	6.3.	Test Arrangement	10
	6.4.	Test Data	11
7.	000	UPIED BANDWIDTH	
	7.1.	Test Standard and Limit	
	7.2.	Test Procedure	
	7.3.	Test Arrangement	
	7.4.	Test Data	
8.	BANI	D EDGE	
	8.1.	Test Standard and Limit	20
	8.2.	Band Edge FCC 15.249(d) Limit	20
	8.3.	Test Procedure	20
	8.4.	I est Arrangement	
_	8.5.		20
9.	ANTE	ENNA REQUIREMENT	22

1. TEST RESULTS SUMMARY

Table 1 Test Results Summary						
Test Items	FCC Rules	Test Results				
Conducted Emission	15.207	N/A				
Radiated Emission	15.249	Pass				
Occupied Bandwidth	15.215	Pass				
Band Edges	15.249	Pass				
Antenna Requirement	15.203	Pass				

Remark: "N/A" means "Not applicable."

2. GENERAL INFORMATION

2.1. Report information

This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.

The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.

Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

The lab will not be liable for any loss or damage resulting for false, inaccurate, inappropriate or incomplete product information provided by the applicant/manufacturer.

2.2. Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at NETC Building, No.4 Tongfa Rd., Xili, Nanshan, Shenzhen, China. At the time of testing, Laboratory is accredited by the following organizations:

China National Accreditation Service for Conformity Assessment (CNAS) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is CNAS L0579.

The Laboratory is Accredited Testing Laboratory of FCC with Designation number CN1165 and Site registration number 582918.

The Laboratory is registered to perform emission tests with Innovation, Science and Economic Development (ISED), and the registration number is 11177A.

The Laboratory is registered to perform emission tests with VCCI, and the registration number are C-20048, G20076, R-20077, R-20078 and T-20047.

The Laboratory is Accredited Testing Laboratory of American Association for Laboratory Accreditation (A2LA) and certificate number is 3292.01.

2.3. Measurement Uncertainty

Conducted Emission 9 kHz~150 kHz 3.7dB 150 kHz~30MHz 3.3dB

Radiated Emission 30MHz~1000MHz 4.3dB 1GHz~6GHz 4.6 dB 6GHz~18GHz 5.1dB

3. PRODUCT DESCRIPTION

3.1. EUT Description

Description	:	Z-Wave 700s Door Window Sensor
Manufacturer	:	Sheenway Asia Ltd.
Model Number	:	ZW6308,ZW6308A
Rated Input	:	DC3V
Power supply	:	DC3V
Operate Frequency	:	908.4MHz, 916MHz
Modulation		908.4MHz: FSK, 916MHz: GFSK
Antenna Designation	:	Monopole Antenna

Remark: Comparing with ZW6308A, ZW6308 removes the temperature sensing component to reduce the temperature sensing function. The others circuit theory, electrical design and the critical components are exactly the same. The differences do not affect the RF performance. All the tests were performed on model ZW6308A.

3.2. Block Diagram of EUT Configuration

EUT Test Setup

3.3. Operating Condition of EUT

Test Mode 1: Transmitting at 908.4MHz Test Mode 2: Transmitting at 916MHz

3.4. Special Accessories

Not available for this EUT intended for grant.

3.5. Equipment Modifications

Not available for this EUT intended for grant.

3.6. Support Equipment List

Table 2 Support Equipment List

Name	Model No	S/N	Manufacturer	

3.7. Test Conditions

Date of test: Aug.19, 2020 – Sep.02, 2020 Date of EUT Receive: Jul.31, 2020 Temperature: (24-25) °C Relative Humidity: (47-57) %

4. TEST EQUIPMENT USED

No.	Equipment	Equipment Manufacturer		Last Cal.	Cal. Interval
SB3436	Test Receiver	R&S ESI		Nov.07,2019	1 Year
SB3955	Broadband Antenna	Schwarzbeck	VULB9163	Jan.10,2020	1 Year
SB8501/09	Test Receiver	R&S	ESU40	Feb.14,2020	1 Year
SB3435	Horn Antenna	R&S	HF906	Dec.17,2019	1 Year
SB9060	Signal Analyzer	R&S	FSQ40	May.18, 2020	1 Year

Table 3 Test Equipment

5. CONDUCTED EMISSION TEST

5.1. Test Standard and Limit

5.1.1.Test Standard

FCC Part 15 15.207

5.1.2.Test Limit

Table 4 Conducted Emission Test Limit						
Fraguaday	Maximum RF Line Voltage (dBμV)					
Flequency	Quasi-peak Level	Average Level				
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

*Decreasing linearly with logarithm of the frequency *The lower limit shall apply at the transition frequency.

5.2. Test Procedure

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). AN EMI test receiver is used to test the emissions from both sides of AC line. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

5.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

5.4. Test Data

The EUT is powered by button battery, so this item is not applicable.

6. RADIATED EMISSION TEST

6.1. Test Standard and Limit

6.1.1.Test Standard

FCC Part 15 15.249

6.1.2.Test Limit

Table 5 Radiated Emission Test Limit								
FREG	QUEN	ICY	FIELD	FIELD				
Ν	ИНz		STRENGTHS	STRENGTHS				
			LIMITS	LIMITS				
			(μV/m)	dB (μV/m)				
Fundamental			50000	94.0				
Harmonics			500	54.0				
30	30 ~ 88		100	40.0				
88	~	216	150	43.5				
216	~	960	200	46.0				
960	~		500	54.0				

Table C Dedicted Carlesian Test Lineit

* The lower limit shall apply at the transition frequency.

* The test distance is 3m.

6.2. Test Procedure

Radiated emission test below 1 GHz, test at SAC, the EUT is placed on a turntable, which is 0.8 meter above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can move up and down to find out the maximum emission level. Radiated emission test above 1 GHz, test at FAR, the EUT is placed on a non-conductive table, which is 1.5 meter above ground. Broadband antenna is used as a receiving antenna at frequency range 30MHz to 1000MHz, Horn antenna is used as a receiving antenna at frequency range above 1GHz. Both horizontal and vertical polarization of the antenna is set on test, in order to find out the max emission, the relative positions of this EUT were rotated through three orthogonal axes.

The RBW of the EMI test receiver is: 30~1000MHz 120 KHz 1000-18000MHz 1MHz

6.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture. The EUT shall be measured in the XYZ three positions, and the test data which was shown in the

follow was the worst case.

6.4. Test Data

The emissions don't show in below are too low against the limits. Refer to the test curves.

Test mode:	Test mode: 1							
Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dBµV)	Emission Level dB (µV/m)	Limits dB (µV/m)	EUT axes	Note
30.970	Vertical	0.6	12.3	-8.0	4.9	40	х	QP
46.611	Vertical	0.8	13.6	-8.6	5.8	40	Х	QP
99.840	Vertical	1.1	12.8	-8.3	5.6	43.5	Х	QP
301.357	Vertical	2.0	13.1	-8.8	6.3	46	Х	QP
592.479	Vertical	3.0	16.6	-6.1	13.5	46	Х	QP
908.402	Vertical	3.9	21.1	41.6	66.6	94	х	Fundamental QP
5450.486	Vertical	-38.4	34.3	52.1	48.0	74	Х	PK
5450.486	Vertical	-38.4	34.3	39.6	35.5	54	Х	AV
9780.150	Vertical	-35.3	37.1	50.6	52.4	74	Х	PK
9780.150	Vertical	-35.3	37.1	36.6	38.4	54	Х	AV
55.462	Horizontal	0.8	13.0	-8.6	5.2	40	Х	QP
99.840	Horizontal	1.1	12.8	-8.5	5.4	43.5	Х	QP
225.818	Horizontal	1.7	11.2	-8.0	4.9	46	Х	QP
414.483	Horizontal	2.5	15.1	-7.5	10.1	46	Х	QP
576.231	Horizontal	3.0	16.6	-6.4	13.2	46	Х	QP
908.405	Horizontal	3.9	21.1	56.3	81.3	94	х	Fundamental QP
5450.347	Horizontal	-38.4	34.3	53.3	49.2	74	х	PK
5450.347	Horizontal	-38.4	34.3	42.7	38.6	54	Х	AV
9793.512	Horizontal	-35.3	37.1	50.5	52.3	74	Х	PK
9793.512	Horizontal	-35.3	37.1	36.7	38.5	54	Х	AV

Table 6 Radiated Emissio	n Test Data
	II I OOL DULU

Test mode: 2										
Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dBµV)	Emission Level dB (µV/m)	Limits dB (µV/m)	EUT axes	Note		
49.279	Horizontal	0.7	13.6	-8.0	4.9	40	Х	QP		
102.143	Horizontal	1.1	13.2	-9.4	4.5	43.5	Х	QP		
244.248	Horizontal	1.8	12.1	-7.8	6.1	46	Х	QP		
388.900	Horizontal	2.4	14.6	-5.2	8.8	46	Х	QP		
637.583	Horizontal	3.1	18.5	-6.2	15.4	46	Х	QP		
916.001	Horizontal	3.9	21.1	55.9	80.9	94	х	Fundamental QP		
5495.807	Horizontal	-38.3	34.3	49.9	49.7	74	Х	PK		
5495.807	Horizontal	-38.3	34.3	38.8	38.6	54	Х	AV		
9991.305	Horizontal	-34.4	37.0	50.3	52.7	74	Х	PK		
9991.305	Horizontal	-34.4	37.0	36.4	38.8	54	Х	AV		
37.153	Vertical	0.6	12.3	-6.8	6.1	40	Х	QP		
59.948	Vertical	0.9	13.0	-8.4	5.5	40	Х	QP		
99.476	Vertical	1.1	12.8	-7.8	6.1	43.5	Х	QP		
274.682	Vertical	1.9	12.1	-8.2	5.8	46	Х	QP		
601.451	Vertical	3.1	18.5	-8.0	13.6	46	Х	QP		
916.001	Vertical	3.9	21.1	41.9	66.9	94	х	Fundamental QP		
6376.981	Vertical	-34.9	34.7	50.5	50.3	74	Х	PK		
6376.981	Vertical	-34.9	34.7	37.1	36.9	54	Х	AV		
9989.177	Vertical	-34.6	37.0	50.7	53.1	74	Х	PK		
9989.177	Vertical	-34.6	37.0	36.7	39.1	54	Х	AV		

Table / Radiated Emission Test Da	Data
-----------------------------------	------

Note: 1. Emission level (dBuV/m)=Reading Value(dBuV) + Correction Factor(dB)+Antenna Factor (dB/m)

2. Correction Factor (dB) = Cable Factor (dB)+Amplifier Factor(dB)

3. No other spurious and harmonic emissions were reported greater than listed emissions above table.

MHz	MHz	MHz	GHz	
$\begin{array}{c} 0.090 - 0.110 \\ 0.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 \\ 12.52025 \\ 12.57675 \\ 12.57725 \\ 13.36 - 13.41 \end{array}$	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339 3345.8 - 3358 3600 - 4400	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5	

Table 8 Restricted Band Radiated Emission Data

All the emission levels of the above band were less than the limit 20dB.

Test mode 1, below 1GHz, Horizontal

Copy of Field strength 30M-1GHz

Test mode 1, above 1GHz, Horizontal

Test mode 1, above 1GHz, Vertical

Test mode 2, below 1GHz, Horizontal

Test mode 2, above 1GHz, Horizontal

Test mode 2, above 1GHz, Vertical

7. OCCUPIED BANDWIDTH

7.1. Test Standard and Limit

7.1.1.Test Standard

FCC Part 15 15.215

7.2. Test Procedure

1. Set EUT as normal operation

2. Set EMI test receiver Center Frequency = fundamental frequency, RBW=1% to 5% of the OBW, VBW=3 times of RBW, Span=Wide enough to capture the complete power envelope.

3. Set EMI test receiver Max hold. Mark peak, -20dB.

7.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

7.4. Test Data

8. BAND EDGE

8.1. Test Standard and Limit

8.1.1.Test Standard

FCC Part 15 15.249

8.2. Band Edge FCC 15.249(d) Limit

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation

8.3. Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instruments. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.

3. Measure the highest amplitude appearing on spectral display and set it as reference level. Plot the graph with marking the highest point and edge frequency.

4. Repeat above procedures until all measured frequencies were complete.

8.4. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

8.5. Test Data

All the emission outside 902 to 928 is lower than 46 dB (μ V/m). The detailed information refers to test picture.

Transmitting at 908.4MHz

Transmitting at 916MHz

9. ANTENNA REQUIREMENT

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The EUT has a built in antenna which is integrated inside the enclosure, this is permanently attached antenna and meets the requirements of this section.

-----End of Report-----