

FCC PART 15.407

IC RSS-210, ISSUE 7, JUNE 2007 TEST AND MEASUREMENT REPORT

For

Senao Networks, Inc.

3F, No. 529, Chung Cheng Rd., Hsintien, Taipei, Taiwan

FCC ID: U2M-ZF7762 IC: 3616C-ZF7762

Report Type:

CIIPC Report

Product Type:

Dual Band Wireless 802.11a/b/g/n

Kevon Lo

Industrial Access Point

Test Engineers: Kevin Li

Report Number: R1005051-407

Report Date: 2010-06-21

Reviewed By: Victor Zhang

Bay Area Compliance Laboratories Corp. **Prepared By:**

1274 Anvilwood Avenue, (84)

Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1		General Description	5	5
1	1.1	Product Description for Equipment under Test (EUT)	5	
1	1.2	Mechanical Description of EUT	5	
1	1.3	- J		
1	1.4	Related Submittal(s)/Grant(s)	5	
1	1.5	Test Methodology	5	
1	1.6	Measurement Uncertainty	5	
1	1.7	Test Facility	6	
2		System Test Configuration	7	7
2	2.1			
2	2.2	EUT Exercise Software	7	
2	2.3	Equipment Modifications	7	
2	2.4	Special Accessories	7	
2	2.5	Local Support Equipment	7	
2	2.6	Power Supply and Line Filters.	7	
2	2.7	Interface Ports and Cabling	7	
3		Summary of Test Results	8	8
4		FCC §15.407(f), §2.1091 & IC RSS-102 - RF Exposure		
4	1.1	Applicable Standard	9	
4	1.2	MPE Prediction	10	
4	1.3			
5]	FCC §15.203 & IC RSS-Gen §7.1.4 – Antenna Requirements	1	2
4	5.1	Applicable Standard	12	
4	5.2	Antenna List	12	
6]	FCC §15.407(b) & IC RSS-Gen §7.2.2- Conducted Emissions	1	3
(5.1	Applicable Standards	13	
(5.2	Test Setup	13	
(5.3	r		
6	5.4		13	
7]	FCC §15.407(b) & IC RSS-210 §A9.3 - Conducted Spurious Emissions at Antenna Terminals		4
-	7.1	- Fr		
-	7.2	Test Result	14	
3]	FCC §15.209, §15.407(b) & IC RSS-210 §A9.3 – Unwanted Emissions		.5
8	3.1	Applicable Standard		
8	3.2	Test Setup	16	
8	3.3	I		
8	3.4	1 I		
8	3.5			
8	3.6	r		
8	3.7			
	3.8			
8	3.9			
)]	FCC §15.407(a) & IC RSS-210 §A9.2 – 26 dB and 99% Emission Bandwidth		3
	9.1	Applicable Standard		
	9.2			
	9.3			
		FCC §407(a) & RSS-210 §A9.2- Peak Output Power Measurement		4
1	0.	1 Applicable Standard	34	

10.2	Measurement Procedure	34
10.3	Test Results	
11 FC	CC §15.407(b) & IC RSS-210 §A9.3 - 100 kHz Bandwidth of Band Edges	35
11.1	Applicable Standard	35
11.2	Test Results	
12 FC	C §15.407(a)(1) & IC RSS-210 §A9.2 - Power Spectral Density	
12.1	Applicable Standard	
12.2	Measurement Procedure	
12.3	Test Results	
	RSS-210 §2.6 & RSS-Gen §6-Receiver Spurious Radiated Emissions	
13.1	Applicable Standard	
13.2	EUT Setup	
13.3	Test Procedure	
13.4	Corrected Amplitude & Margin Calculation	
13.5	Test Equipment Lists and Details	
13.6	Test Environmental Conditions	
13.7	Summary of Test Results	
	hibit A - FCC & IC Equipment Labeling Requirements	
14.1	FCC ID Label Requirements	
14.2	IC Label Requirements	
14.3	Suggested FCC ID & IC Label	45
14.4	Suggested Label Location	
15 EXI	hibit B - Test Setup Photographs	
15.1	Radiated Emission below 1 GHz Front View (6 dBi Antenna)	
15.2	Radiated Emission above 1 GHz Front View (6 dBi Antenna)	
15.3	Radiated Emission above 1 GHz Rear View (6dBi Antenna)	
15.4	Radiated Emission below 1 GHz Front View (16 dBi Antenna)	
15.6	Radiated Emission below 1 GHz Front View (10 dBi Antenna)	
15.7	Radiated Emission above 1 GHz Front View (16 dBi Antenna)	
15.8	Radiated Emission above 1 GHz Rear View (16 dBi Antenna)	49
	hibit C - EUT Photographs	50
16.1	EUT – Top View	
16.2	EUT-Bottom View	
16.3	EUT-Port View	
16.4	EUT-Antenna Port View	
16.5	EUT – 6 dBi External Antenna	
16.6	EUT – 16 dBi External Antenna View	
16.7	EUT – Adapter for POE	53
16.8	EUT – AC/DC Power Adapter	
16.9	EUT- Cover off View	
16.10		
16.11		
16.12		
16.13	EUT – Main Board Solder View	56

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision	
0	R1005051-407	Original Report	2010-06-21	

1 General Description

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Senao Networks*, *Inc.*, and their product FCC ID: U2M-ZF7762, IC: 3616C-ZF7762, model: ZF7762 or the "EUT" as referred to in this report. The EUT is a dual band Wireless 802.11a/b/g/n industrial access point.

1.2 Mechanical Description of EUT

The "EUT" measures approximately 24cm (L) x 19cm (W) x 6cm (H), and weighs approximately 1921.5g.

1.3 Objective

This report is prepared on behalf of *Senao Networks*, *Inc.* in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commissions rules and IC RSS-210 Issue 7, June 2007.

The objective is to determine compliance with FCC/IC rules for Antenna Requirements, Radiated Spurious Emissions with additional antennas in the Non-DFS band.

1.4 Related Submittal(s)/Grant(s)

No Related Submittals.

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are: spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values range from +2.0 for Conducted Emissions tests and +4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL.

Detailed instrumentation measurement uncertainties can be found in BACL report QAP-018.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

^{*} The test data gathered are from typical production sample, serial number: 470955000123 and 390955000247, provided by the manufacturer.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: R-2463 and C-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2001670.htm

Page 6 of 56

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.4-2003.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

The worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the average power, peak power and PPSD across all data rates bandwidths, and modulations.

2.2 EUT Exercise Software

N/A

2.3 Equipment Modifications

No modifications were made to the EUT.

2.4 Special Accessories

N/A

2.5 Local Support Equipment

Manufacturer	Description	Model No.	Serial No.
IBM	Laptop	T30	78-BWY97

2.6 Power Supply and Line Filters

Manufacturer	Description	Model No.	Serial No.	
Ruckus Wireless	AC/DC Power Adapter	ADS-18C-12N	740-64129-011	

2.7 Interface Ports and Cabling

Cable Description	Length (m)	From	То	
Ethernet cable	< 10m	EUT	Laptop	

3 Summary of Test Results

Results reported relate only to the product tested.

FCC & IC Rules	Description of Test	Results
FCC §15.407(f), §2.1091 IC RSS-102	RF Exposure	Compliant
FCC §15.203 IC RSS-Gen §7.1.4	Antenna Requirement	Compliant
FCC §15.407(b) IC RSS-Gen §7.2.2	Conducted Emissions	N/A*
FCC §15.407(b), §15.209 IC RSS-210 §9.3	Radiated Spurious Emissions	Compliant
FCC §15.407(a) IC RSS-210 §9.3	26 dB & 99% Emission Bandwidth	N/A*
FCC §15.407(a) IC RSS-210 §A9.2	Transmitter Power	N/A*
FCC §15.407(b), §15.209 IC RSS-210 §9.3	100 kHz Bandwidth of Frequency Band Edge	N/A*
FCC §15.407(a) IC RSS-210 §9.3	Power Spectral Density	N/A*
IC RSS-210 §2.6 RSS-Gen § 4.10	Receiver Spurious Emission	Compliant

Note: N/A* please refer to FCC ID: U2M-ZF7762

4 FCC §15.407(f), §2.1091 & IC RSS-102 - RF Exposure

4.1 Applicable Standard

According to FCC §15.407(f) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Range Strength		Range Strength Strength		Power Density (mW/cm ²)	Averaging Time (minutes)
Limits for General Population/Uncontrolled Exposure						
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	$*(180/f^2)$	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz

Before equipment certification is granted, the procedure of IC RSS-102 must be followed concerning the exposure of humans to RF fields.

According to RSS-102 Issue 2 section 4.1, RF limits used for general public will be applied to the EUT.

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Time Averaging (min)
0.003 - 1	280	2.19	-	6
1 - 10	280 / f	2.19 / f	-	6
10 - 30	28	2.19 / f	-	6
30 - 300	28	0.073	2*	6
300 – 1 500	1.585 f ^{0.5}	$0.0042 \text{ f}^{0.5}$	f / 150	6
1 500 – 15 000	61.4	0.163	10	6
15 000 – 150 000	61.4	0.163	10	616000 / f ^{1.2}
150 000- 300 000	0.158 f ^{0.5}	4.21 x 10 -4 f ^{0.5}	6.67 x 10 ⁻⁵ f	616000 / f ^{1.2}

Note: f is frequency in MHz

^{* =} Plane-wave equivalent power density

^{*} Power density limit is applicable at frequencies greater than 100 MHz

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

4.3 MPE Results

For 5 GHz Band, 6 dBi External Antenna:

802.11a Mode

Cha	nnel	Power Out	put (dBm)	Total	Total	Power	Limit
& Fre	quency	Chain 0	Chain 1	Power (mW)	Power (dBm)	Density (mW/cm ²)	$\frac{(\mathbf{mW/cm^2})}{(\mathbf{W/m^2})}$
36	5180	2.11	2.03	3.22	5.08	0.00255	1/10
40	5200	2.10	2.08	3.24	5.10	0.00257	1/10
48	5240	2.14	2.04	3.24	5.10	0.00257	1/10

802.11 n20 Mode

Cha	nnel	Power Out	put (dBm)	Total	Total	Power	Limit
& Fre	quency	Chain 0	Chain 1	Power (mW)	Power (dBm)	Density (mW/cm ²)	$\frac{(\mathbf{mW/cm}^2)}{(\mathbf{W/m}^2)}$
36	5180	2.06	2.15	3.25	5.12	0.00257	1/10
40	5200	2.08	2.05	3.22	5.08	0.00255	1/10
48	5240	2.11	2.10	3.25	5.12	0.00257	1/10

802.11 n40 Mode

Channel & Frequency		Power Output (dBm)				Power	Limit
		Chain 0	Chain 1	Power (mW)	Power (dBm)	Density (mW/cm ²)	$\frac{(\mathbf{mW/cm}^2)}{(\mathbf{W/m}^2)}$
38	5190	2.04	2.08	3.21	5.07	0.00254	1/10
46	5230	2.14	2.10	3.26	5.13	0.00258	1/10

For 5 GHz Band, 16 dBi External Antenna:

802.11a Mode

Channel & Frequency		Power Output (dBm)		Total	Total	Power	Limit
		Chain 0	Chain 1	Power (mW)	Power (dBm)	Density (mW/cm ²)	$\frac{(\mathbf{mW/cm^2})}{(\mathbf{W/m^2})}$
36	5180	2.11	2.03	3.22	5.08	0.026	1/10
40	5200	2.10	2.08	3.24	5.10	0.026	1/10
48	5240	2.14	2.04	3.24	5.10	0.026	1/10

802.11 n20 Mode

Channel & Frequency		Power Output (dBm)		Total	Total	Power	Limit
		Chain 0	Chain 1	Power (mW)	Power (dBm)	Density (mW/cm ²)	(mW/cm ²)/ (W/m ²)
36	5180	2.06	2.15	3.25	5.12	0.026	1/10
40	5200	2.08	2.05	3.22	5.08	0.026	1/10
48	5240	2.11	2.10	3.25	5.12	0.026	1/10

802.11 n40 Mode

Channel & Frequency		Power Output (dBm)		Total	Total	Power	Limit
		Chain 0	Chain 1	Power (mW)	Power (dBm)	Density (mW/cm ²)	$\frac{(\mathbf{mW/cm}^2)}{(\mathbf{W/m}^2)}$
38	5190	2.04	2.08	3.21	5.07	0.026	1/10
46	5230	2.14	2.10	3.26	5.13	0.026	1/10

5 FCC §15.203 & IC RSS-Gen §7.1.4 – Antenna Requirements

5.1 Applicable Standard

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

As per IC RSS-Gen §7.1.4: Transmitter Antenna

A transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

5.2 Antenna List

Frequency Band	Antenna Gain (dBi)
5 GHz	6 (External)
5 GHz	16 (External)

6 FCC §15.407(b) & IC RSS-Gen §7.2.2- Conducted Emissions

6.1 Applicable Standards

As per FCC §15.207 & RSS-Gen 7.2.2 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency.

6.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.4-2003 measurement procedure. The specification used was FCC Part15.207 and IC RSS-Gen limits.

External I/O cables were draped along the edge of the test table and bundle when necessary. The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120 V / 60 Hz AC power.

6.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Cable Loss, and Attenuator Factor adding to the Indicated Reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Cable Loss + Attenuator Factor

For example, a Corrected Amplitude of 34.08 dBuV/m = Indicated Reading (23.85 dBuV) + Cable Factor (0.22 dB) + Attenuator Factor (10dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

6.4 Summary of Test Results

N/A

7 FCC §15.407(b) & IC RSS-210 §A9.3 - Conducted Spurious Emissions at Antenna Terminals

7.1 Applicable Standard

For FCC §15.407(b) and IC RSS-210 §A9.3(1), For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p.

7.2 Test Result

Refers to FCC ID: U2M-ZF7762

8 FCC §15.209, §15.407(b) & IC RSS-210 §A9.3 – Unwanted Emissions

8.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As per FCC §15.209(a) and RSS-210: Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 0.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	16.42 - 16.423 16.69475 - 16.69525 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4 399.9 - 410 608 - 614	960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2690 - 2900 3260 - 3267 3.332 - 3.339 3 3458 - 3 358 3.600 - 4.400	4. 5 - 5. 15 5. 35 - 5. 46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5 Above 38.6

As per FCC §15.407 (b) Undesirable emission limits: Except as shown in paragraph (b)(6) of this section, the peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz. Devices operating in the 5.25–5.35 GHz band that generate emissions in the 5.15–5.25 GHz band must meet all applicable technical requirements for operation in the 5.15–5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of –27 dBm/MHz in the 5.15–5.25 GHz band.
- (3) For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725–5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of –17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of –27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.
- (c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

8.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15 Subpart E & IC RSS-210 limits.

8.3 EUT Setup

The radiated emissions tests were performed using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15C limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

8.4 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Sunol Science Corp	Combination Antenna	JB3	A0020106-3	2009-06-05
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2010-03-24
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
A.R.A Inc	Horn antenna	DRG-1181A	1132	2009-10-27
Agilent	PSA Series Spectrum Analyzer	E4440A	MY44303352	2010-05-09
HP	Pre Amplifier	8449B	3147A00400	2010-02-01

^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

8.5 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

8.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Cable Loss, and Attenuator Factor adding to the Indicated Reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Cable Loss + Attenuator Factor

For example, a Corrected Amplitude of 34.08 dBuV/m = Indicated Reading (23.85 dBuV) + Cable Factor (0.22 dB) + Attenuator Factor (10 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

8.7 Test Environmental Conditions

Temperature:	18~21 °C
Relative Humidity:	30~35 %
ATM Pressure:	101.2-102.2kPa

^{*}The testing was performed by Kevin Li from 2010-05-10 to 2010-05-22.

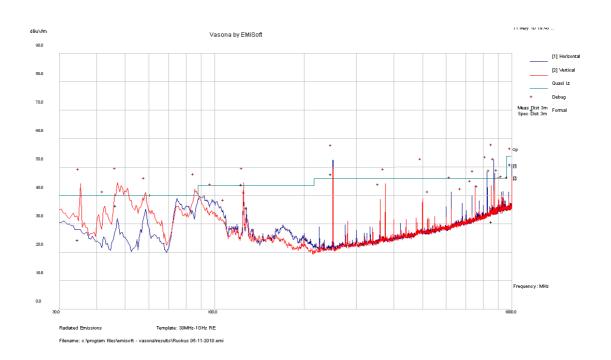
8.8 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC Part 15</u>, <u>Subpart E</u>, <u>section 15.205</u>, <u>15.209</u> <u>and 15.407 and IC RSS-210/RSS-Gen</u> standard's radiated emissions limits, and had the worst margin of:

30-1000 MHz:

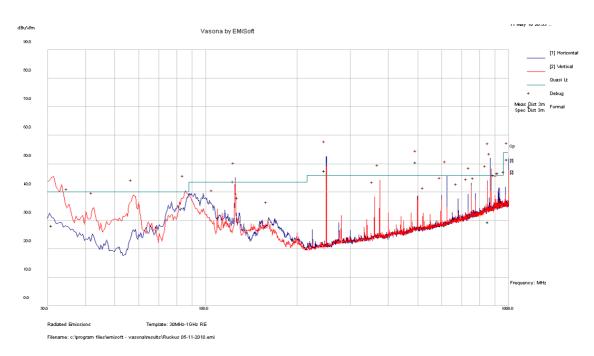
Mode: Transmitting						
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Channel, Range			
-0.23	125	Vertical	30 MHz-1 GHz			

Please refer to the following table and plots for specific test result details


8.9 Radiated Emissions Test Result Data

Radiated Emission at 3 meters, 30 MHz - 1 GHz

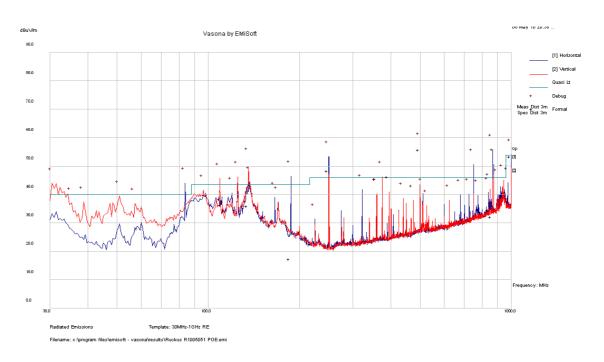
6 dBi External Antenna


802.11 n40 Mode

Middle channel (5230 MHz) – POE

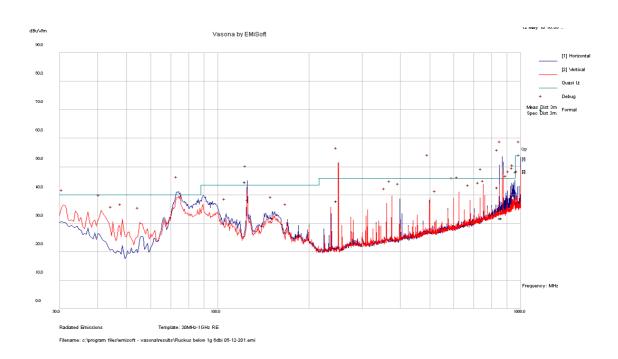
Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
866.9185	30.76	256	Н	23	46	-15.24
249.9448	45.45	116	Н	197	46	-0.55
47.07628	36.46	115	V	64	40	-3.54
125	43.27	98	V	321	43.5	-0.23
999.996	51.01	283	Н	17	54	-2.99

Middle channel (5230 MHz) -DC Power supply



Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
249.9443	43.51	92	Н	209	46	-2.49
31.46748	28.12	171	V	264	40	-11.88
125.0204	43.2	303	Н	189	43.5	-0.30
999.994	51.54	318	Н	23	54	-2.46
866.9792	29.47	306	Н	360	46	-16.53

16 dBi External Antenna


802.11 n40 Mode

Middle channel (5230 MHz) – POE

Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
1000	53.44	298	Н	29	54	-0.56
135.8462	36.02	184	V	58	43.5	-7.48
866.9888	32.22	256	Н	12	46	-13.78
187.3378	17.26	310	Н	299	43.5	-26.24

Middle channel (5230 MHz) -DC Power supply

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
125.0065	42.55	101	V	18	43.5	-0.95
999.988	53.63	242	Н	346	54	-0.37
249.705	45.58	100	Н	0	46	-0.42
127.97	41.92	300	Н	0	43.5	-1.58
499.965	43.7	100	V	0	46	-2.3

6 dBi External Antenna

802.11a Mode

Low Channel 5180MHz, measured at 3 meters

Frequency	S.A.	Turntable	_	est Anten	na	Cable	Pre-	Cord.	FCC	С/ІС	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	MAISH	Comments
-	-	-	-	-	-	-	-	-	-	-	-

Middle Channel 5200 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	VIALVIII	Comments
-	-	-	-	-	-	_	-	-	-	-	-

High Channel 5240 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC		
Frequency (MHz)		Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
-	-	-	-	-	-	-	-	-	-	i <u>-</u>	-

^{*} All the Restricted Band Frequencies are more than 20 dB below the margin

802.11 n20 Mode

Low Channel 5180MHz, measured at 3 meters

Frequency	S.A.	Turntable	•	est Anten		Cable	Pre-	Cord.	FCC		
(MHz)	(dBµV)	(degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	11141 2111	Comments
-	-	-	-	-	-	-	-	-	-	-	-

Middle Channel 5200 MHz, measured at 3 meters

Frequency	S.A.	Turntable	_	est Anten	na	Cable	Pre-	Cord.	FCC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)		Marsin	Comments
-	-	-	-	-	-	-	-	-	-	-	-

High Channel 5240 MHz, measured at 3 meters

Frequency		Turntable	T	est Anten	na	Cable	Pre-	Cord.	FCC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
-	-	-	-	-	-	-	-	-	-	-	-

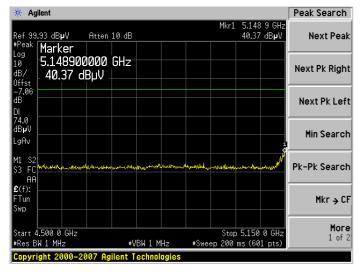
^{*} All the Restricted Band Frequencies are more than 20 dB below the margin

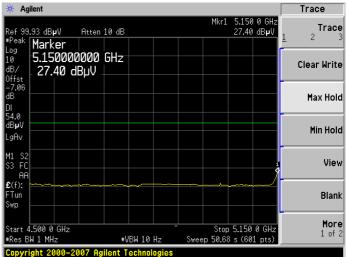
802.11 n40 Mode

Low Channel 5190 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	С/ІС	
Frequency (MHz)		Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
-	-	-	-	-	-	-	-	-	-	-	-

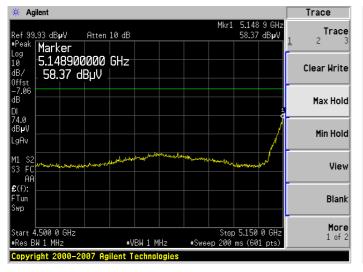
High Channel 5230 MHz, measured at 3 meters

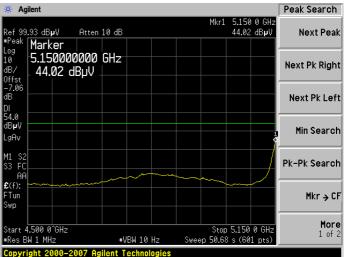

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	С/ІС	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
-	-	-	-	-	-	-	-	-	-	-	-


^{*} All the Restricted Band Frequencies are more than 20 dB below the margin

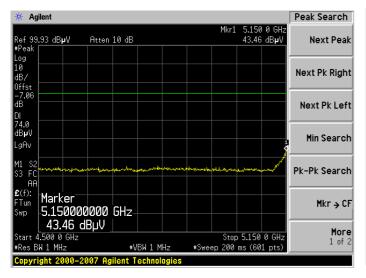
Restricted Band Emissions

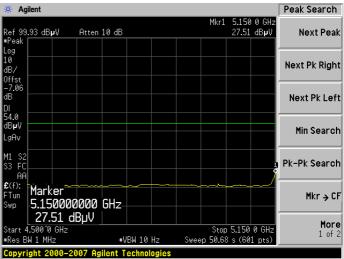
802.11a, Lowest Channel at Horizontal, Peak



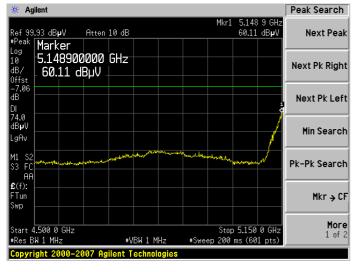


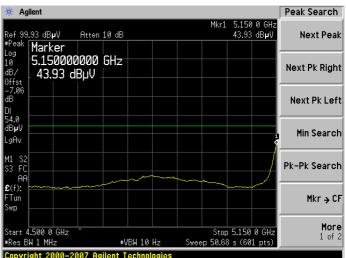
802.11a, Lowest Channel at Vertical, Peak


802.11a, Lowest Channel at Vertical, Average

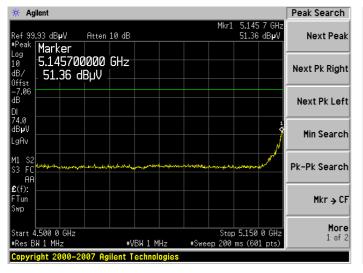


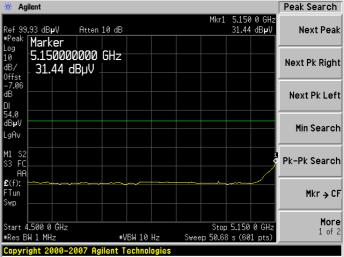
802.11 n20, Lowest Channel at Horizontal, Peak


802.11n20, Lowest Channel at Horizontal, Average

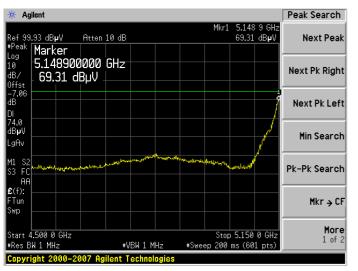


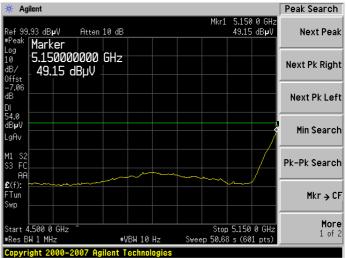
802.11n20, Lowest Channel at Vertical, Peak


802.11n20, Lowest Channel at Vertical, Average



802.11 n40, Lowest Channel at Horizontal, Peak


802.11 n40, Lowest Channel at Horizontal, Average



802.11 n40, Lowest Channel at Vertical, Peak

802.11 n40, Lowest Channel at Vertical, Average

16 dBi External Antenna

802.11a Mode

Low Channel 5180MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	С/ІС	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	11141 2111	Comments
-	-	-	-	-	-	-	-	-	-	-	-

Middle Channel 5200 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	C/IC	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	VIALVIII	Comments
_	-	-	-	-	-	-	-	-	-	-	-

High Channel 5240 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	C/IC	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit	wiai ziii	Comments
_	-	-	- -	-	- (uD/III)			-	<u>-</u>	- (ub)	-

^{*} All the Restricted Band Frequencies are more than 20 dB below the margin

802.11 n20 Mode

Low Channel 5180MHz, measured at 3 meters

Frequency		Turntable	2 000 1 211100111111			Cable	Pre-	Cord.	FCC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	VIALVIII	Comments
-	-	-	-	-	-	-	-	-	-	-	-

Middle Channel 5200 MHz, measured at 3 meters

Frequency (MHz)	Reading	Reading Azimuth			Cable	Pre-	Cord.	FCC/IC			
			Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
-	-	-	-	-	-	-	-	-	-	-	-

High Channel 5240 MHz, measured at 3 meters

Frequency (MHz)	S.A. Turntable Azimuth (dBµV) (degrees)		1 000 1 11110 11111		Cable	Pre-	Cord.	FCC/IC			
		Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	VIALVIII	Comments	
-	-	-	-	-	-	-	-	-	-	-	-

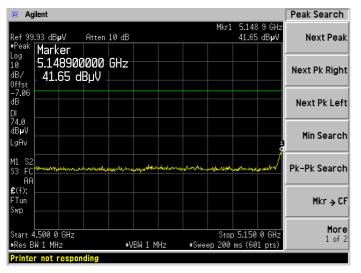
^{*} All the Restricted Band Frequencies are more than 20 dB below the margin

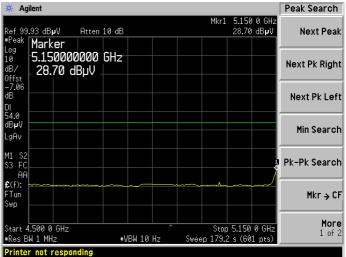
802.11 n40 Mode

Low Channel 5190 MHz, measured at 3 meters

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	С/ІС	
	Reading (dBµV)	Reading (dBµV) (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
-	-	-	-	-	-	-	-	-	-	-	-

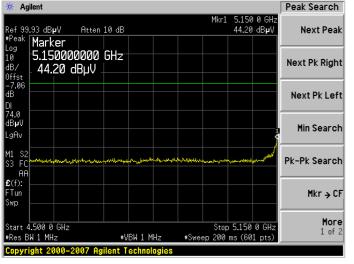
High Channel 5230 MHz, measured at 3 meters

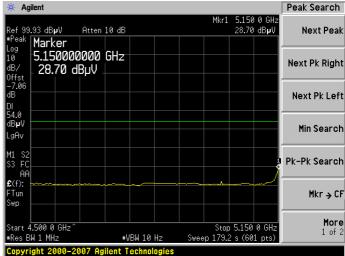

Frequency (MHz)	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	С/ІС	
	Reading (dBµV)	Reading (dBµV) (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
_	-	-	-	-	-	-	-	-	_	-	-


^{*} All the Restricted Band Frequencies are more than 20 dB below the margin

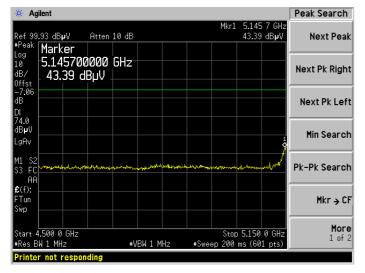
Restricted Band Emissions

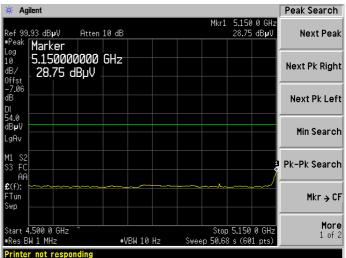
802.11a, Lowest Channel at Horizontal, Peak


802.11a, Lowest Channel at Horizontal, Average

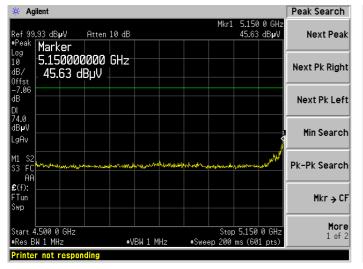


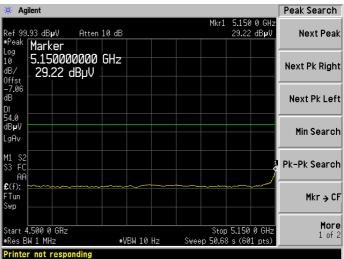
802.11a Lowest Channel at Vertical, Peak


802.11a, Lowest Channel at Vertical, Average

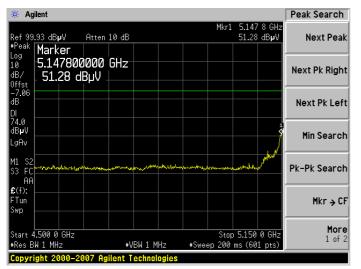


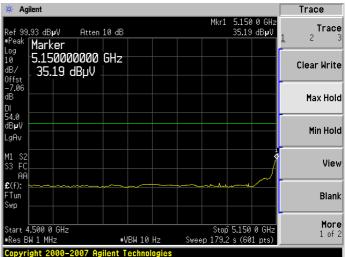
802.11 n20, Lowest Channel at Horizontal, Peak


802.11n20, Lowest Channel at Horizontal, Average

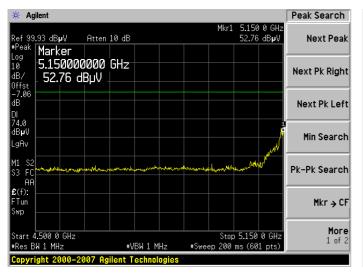


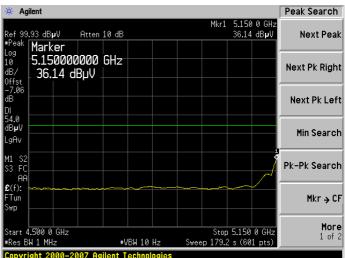
802.11n20, Lowest Channel at Vertical, Peak


802.11n20, Lowest Channel at Vertical, Average



802.11 n40, Lowest Channel at Horizontal, Peak


802.11 n40, Lowest Channel at Horizontal, Average



802.11 n40, Lowest Channel at Vertical, Peak

802.11 n40, Lowest Channel at Vertical, Average

9 FCC §15.407(a) & IC RSS-210 §A9.2 – 26 dB and 99% Emission Bandwidth

9.1 Applicable Standard

FCC §15.407(a) and RSS-210 A9.2.

9.2 Measurement Procedure

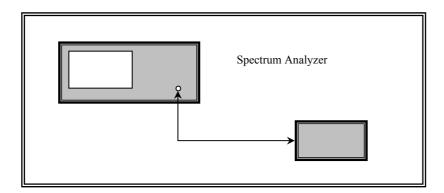
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 26 dB from the reference level. Record the frequency difference as the emissions bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

9.3 Test Results

Refers to FCC ID: U2M-ZF7762

10 FCC §407(a) & RSS-210 §A9.2- Peak Output Power Measurement

10.1 Applicable Standard


According to FCC §15.407(a)(1)

(1) For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to IC RSS-210 § 9.2: (1) For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

10.2 Measurement Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a spectrum analyzer.
- 3. Add a correction factor to the display.

10.3 Test Results

Please refer to FCC ID: U2M-ZF7762

11 FCC §15.407(b) & IC RSS-210 §A9.3 - 100 kHz Bandwidth of Band Edges

11.1 Applicable Standard

According to FCC §15.407(b) and IC RSS-210 §A9.3, for transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

Page 35 of 56

11.2 Test Results

Please refer to FCC ID: U2M-ZF7762

12 FCC §15.407(a)(1) & IC RSS-210 §A9.2 - Power Spectral Density

12.1 Applicable Standard

FCC §15.407(a)(1) and IC RSS-210 §9.2

12.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to 1.5 MHz span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Repeat above procedures until all frequencies measured were complete.

12.3 Test Results

Please refer to FCC ID: U2M-ZF7762

13 IC RSS-210 §2.6 & RSS-Gen §6-Receiver Spurious Radiated Emissions

13.1 Applicable Standard

According to IC RSS-Gen §4.10, the receiver shall be operated in the normal receive mode near the mid-point of the band over which the receiver is designed to operate.

Unless otherwise specified in the applicable RSS, the radiated emission measurement is the standard measurement method (with the device's antenna in place) to measure receiver spurious emissions.

Radiated emission measurements are to be performed using a calibrated open-area test site.

For either method, the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

For emissions below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector with the same measurement bandwidth as that for CISPR quasi-peak measurements. Above 1 GHz, measurements shall be performed using an average detector and a resolution bandwidth of 300 kHz to 1 MHz.

According to RSS-210 §2.6, Tables 2 and 3 show the general field strength limits of unwanted emissions, where applicable, for transmitters and receivers operating in accordance with the provisions specified in this RSS. Transmitters whose wanted emissions are also within the limits shown in Tables 2 and 3 may operate in any of the frequency bands of Tables 2 and 3, other than the restricted bands of Table 1 and the TV bands, and shall be certified under RSS-210.

Table 2: General Field Strength Limits for Transmitters and Receivers at Frequencies above 30 MHz

Frequency (MHz)	Field Strength Microvolts/m at 3 meters (watts, e.i.r.p.)						
(IVIIIZ)	Transmitters	Receivers					
30-88	100 (3 nW)	100 (3 nW)					
88-216	150 (6.8 nW)	150 (6.8 nW)					
216-960	200 (12 nW)	200 (12 nW)					
Above 960	500 (75 nW)	500 (75 nW)					

Note: Transmitting devices are not permitted in Table 1 bands or in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz, and 614-806 MHz). Prohibition of operation in TV bands does not apply to momentary devices, or to medical telemetry devices in the band 174-216 MHz, and to perimeter protection systems in the bands 54-72 and 76-88 MHz. The perimeter protection devices are to meet Table 3 field strengths limits.

Table 3: General Field Strength Limits for Transmitters at Frequencies below 30 MHz (Transmit)

Frequency (fundamental or spurious)	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

13.2 EUT Setup

The radiated emissions tests were performed in the 3 meter chamber, using the setup in accordance with ANSI C63.4-2003.

13.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a "**QP**" in the data table.

13.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

13.5 Test Equipment Lists and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Sunol Science Corp	Combination Antenna	JB3	A0020106-3	2009-06-05
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2010-03-24
Sunol Science Corp	System Controller	SC99V	122303-1	N/R
A.R.A Inc	Horn antenna	DRG-1181A	1132	2009-10-27
Agilent	PSA Series Spectrum Analyzer	E4440A	MY44303352	2010-05-09
Agilent	Pre Amplifier	8449B	3008A01978	2010-01-29
HP	Pre Amplifier	8449B	3147A00400	2010-02-01

^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

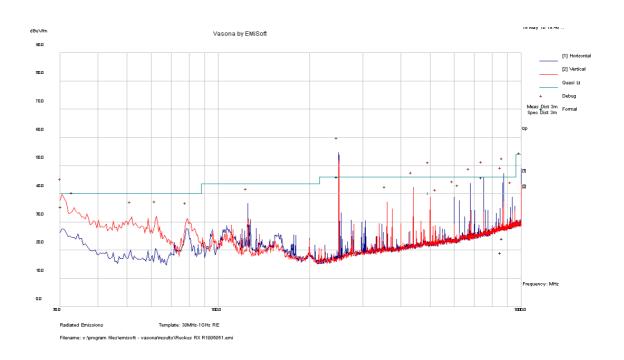
13.6 Test Environmental Conditions

Temperature:	18~21 °C
Relative Humidity:	30~35 %
ATM Pressure:	101.2-102.2kPa

^{*}The testing was performed by Kevin Li from 2010-05-10 to 2010-05-22.

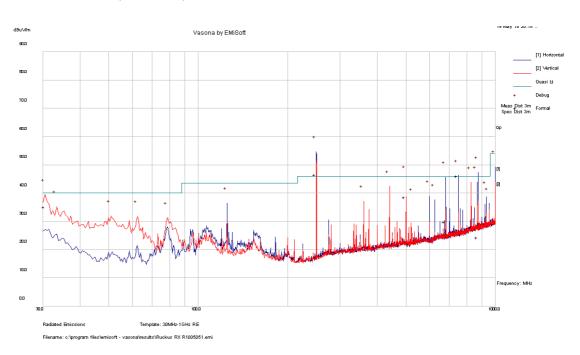
13.7 Summary of Test Results

According to the test data,, the EUT <u>complied with the with the RSS-210/RSS-Gen</u>, with the closest margins from the limit listed below:


30-1000 MHz:

Mode: Receiving									
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (MHz)						
-0.04	249.945	Horizontal	30 to 1000 MHz						

Radiated Emission at 3 meters, 30 MHz -1GHz


16 dBi External Antenna

802.11 a Mode Low Channel (5180 MHz)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
249.945	45.96	99	Н	97	46	-0.04
875.1162	24.13	120	Н	318	46	-21.87
750.0025	45.8	98	Н	360	46	-0.20
500.0116	40.32	131	V	37	46	-5.68
30.62924	35.37	142	V	188	40	-4.63
866.9516	19.04	263	Н	0	46	-26.96

802.11 n40 Mode Low Channel (5190 MHz)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Ant. Polarity (H/V)	Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
249.945	45.43	106	Н	113	46	-0.57
875.1169	24.25	205	Н	38	46	-21.75
749.9992	45.94	98	Н	341	46	-0.06
680.1452	29.86	98	Н	360	46	-16.14
30.63068	35.08	101	V	336	40	-4.92
499.9945	38.48	155	Н	173	46	-7.52

16 dBi Antenna

802.11a Mode

Low Channel 5180MHz, measured at 3 meters

Frequency (MHz)	Reading	Turntable Azimuth (degrees)	Height	Test Antenna eight Polarity Factor (m) (H/V) (dB/m)		Cable Loss	Loss Amp.	Cord. Reading	Limit Margin		Comments
-	- (uDµ v)	- (degrees)	<u>(m)</u> -	(H/V)	(dB/m) -	- -	- (ub)	- (α <i>D</i> μ ν <i>γ</i> ι ι ι)	(dBµV/m)	(dB) -	-

Middle Channel 5200 MHz, measured at 3 meters

Frequency	Frequency S.A. Turntable			Test Antenna			Pre-	Cord.	FCC		2
(MHz)	" Reading Azimiith	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	wiai ziii	Comments	
-	-	-	-	-	-	-	1	-	-	i	-

High Channel 5240 MHz, measured at 3 meters

Frequency	S.A.	Turntable	1 050 12110011111					e- Cord.	FCC/IC		
(MHz)		Azimuth (degrees)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Factor (dB/m)	Loss (dB)		Reading (dBµV/m)	Lillit	Margin (dB)	Comments
-	-	-	-	-	-	-	-	-	-	-	-

^{*} All the Restricted Band Frequencies are more than 20 dB below the margin

802.11n20 Mode

Low Channel 5180MHz, measured at 3 meters

Frequency	S.A.	Turntable	•	Test Antenna			Pre-	Cord. Reading (dBµV/m)	FCC/IC		
(MHz)	(dBµV)	eading Azimuth Height Polarity Factor (m) (H/V) (dB/r)		Factor (dB/m)	Loss (dB)	Amp. (dB)	Limit (dBµV/m)		11141 2111	Comments	
-	-	-	-	-	-	-	-	-	-	-	-

Middle Channel 5200 MHz, measured at 3 meters

Frequency	Frequency S.A. Turntable			Test Antenna			Pre-	Cord.	FCC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)		Marsin	Comments
-	-	-	-	-	-	-	-	-	-	-	-

High Channel 5240 MHz, measured at 3 meters

Frequency		Turntable	Test Antenna			Cable	Pre-		FCC/IC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments
-	-	-	-	-	-	-	-	-	-	-	-

^{*} All the Restricted Band Frequencies are more than 20 dB below the margin

802.11 n40 Mode

Low Channel 5190 MHz, measured at 3 meters

Frequency		Turntable	2 000 1 21110011110				Pre-	Cord.	FCC	С/ІС	
(MHz)	* Reading Azimiith		Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	wiai ziii	Comments
-	_	-	-	-	-	-	-	-	-	-	-

High Channel 5230 MHz, measured at 3 meters

Frequency	S.A. Turntable		Т	Test Antenna			Pre-	Cord.	FCC	С/ІС	
(MHz)	Reading (dBµV)	(10 17) (1		Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)		Comments	
_	-	-	-	-	-	-	-	-	_	-	-

^{*} All the Restricted Band Frequencies are more than 20 dB below the margin